
Inter-Residue Distance Prediction
From Duet Deep Learning Models
Huiling Zhang1,2, Ying Huang1,2, Zhendong Bei1,2, Zhen Ju1,2, Jintao Meng1,2, Min Hao3,
Jingjing Zhang1,2, Haiping Zhang2 and Wenhui Xi1,2*

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 2University of Chinese Academy
of Sciences, Beijing, China, 3College of Electronic and Information Engineering, Southwest University, Chongqing, China

Residue distance prediction from the sequence is critical for many biological applications
such as protein structure reconstruction, protein–protein interaction prediction, and
protein design. However, prediction of fine-grained distances between residues with
long sequence separations still remains challenging. In this study, we propose DuetDis, a
method based on duet feature sets and deep residual network with squeeze-and-
excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the
ability to learn and fuse features directly or indirectly extracted from the whole-
genome/metagenomic databases and, therefore, minimize the information loss through
ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely
used peer methods on a large-scale test set (610 proteins chains). The experimental
results suggest that 1) prediction results from different feature sets show obvious
differences; 2) ensembling different feature sets can improve the prediction
performance; 3) high-quality multiple sequence alignment (MSA) used for both training
and testing can greatly improve the prediction performance; and 4) DuetDis is more
accurate than peer methods for the overall prediction, more reliable in terms of model
prediction score, and more robust against shallow multiple sequence alignment (MSA).

Keywords: residue distance prediction, protein structure reconstruction, deep learning, residual network, multiple
sequence alignment

INTRODUCTION

Knowing the structure of a protein helps to understand the role of the protein, reveals how the
protein performs its biological function, and also, sets the foundation for the protein’s interaction
with other molecules. Therefore, the knowledge of a protein’s structure is very important for biology
as well as for medicine and pharmacy. Since Anfinsen suggested that the advanced spatial structure of
a protein is determined by its amino acid sequence (Anfinsen, 1973), it has been a “holy grail” for the
computational biology community to develop an algorithm that can accurately predict a protein’s
structure from its amino acid sequence. Sequence-based residue contact/distance prediction plays a
crucial role in protein structure reconstruction.

Residue–residue contacts refer to the residue pairs that are close within a specific distance
threshold in the three-dimensional protein structure. The contact map of a protein tells the
constraints between residues in a binary form. Unlike the contact map, the distance map of a
protein contains fine-grained information and, thus, provides more physical constraints of a protein
structure. Protein contact/distance maps are 2D representations of the 3D protein structure and are
being considered as one of the most important components in modern protein structure prediction
packages. The application of predicted contacts/distances has been extended to intrinsic disorder
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region recognition (Schlessinger et al., 2007; Shimomura et al.,
2019), protein–protein interaction prediction (Vangone and
Bonvin, 2015; Du et al., 2016; Cong et al., 2019), protein
design (Anishchenko et al., 2021), etc.

Contact predictionmethods in the early stage are mainly based
on mutual information (MI) (Pollock and Taylor, 1997; Dunn
et al., 2007; Lee and Kim, 2009), integer linear programming
(ILP) techniques (McAllister and Floudas, 2008; Rajgaria et al.,
2009; Rajgaria et al., 2010; Wei and Floudas, 2011), traditional
machine learning (ML) algorithms (Cheng and Baldi, 2007; Wu
and Zhang, 2008; Tegge et al., 2009), or techniques combining
ILP with ML (Wang and Xu, 2013; Zhang et al., 2016). These
methods are generally considered as local strategies since a
residue pair is treated statistically independent of others
(Zhang et al., 2020). Breakthroughs were achieved by
capturing the correlated pattern of coevolved residues by
global statistical inference methods such as direct coupling
analysis (DCA) (Weigt et al., 2009) and sparse inverse
covariance estimation (PSICOV) (Jones et al., 2012). Methods
developed based on the ideas of DCA include EVfold (mfDCA)
(Morcos et al., 2011), plmDCA (Ekeberg et al., 2013), GREMLIN
(Kamisetty et al., 2013), CCMpred (Seemayer et al., 2014), gDCA
(Baldassi et al., 2014), and Freecontact (Kaján et al., 2014). These
methods emphasize the importance of distinguishing between
directly and indirectly correlated residues. Consensus-predictors
like PconsC (Skwark et al., 2013), MetaPSICOV (Jones et al.,
2014), and NeBcon (He et al., 2017) combine the output of
different DCA-based or ML-based contact predictors to create
consensus predictions. In recent years, the introduction of deep
learning (DL) techniques has made tremendous progress for
residue contact prediction. The DL-based contact map
prediction algorithms are mainly based on convolutional
neural networks (CNN) (such as DeepCov (Jones and
Kandathil, 2018), DeepContact (Liu et al., 2018), and
DNCON2 (Adhikari et al., 2018)), Unet [such as PconsC4
(Michel et al., 2019)], residual networks (ResNet) [such as
DeepConPred2 (Ding et al., 2018), ResPRE (Li et al., 2019),
MapPred (Wu et al., 2020) and TripletRes (Li et al., 2021)],
ResNet combined with long short-termmemory (LSTM) [such as
SPOT-Contact (Hanson et al., 2018)] and transformers [such as
ESM (Malinin and Gales, 2021) and SPOT-Contact-LM (Singh
et al., 2022)]. COMTOP (Reza et al., 2021) uses the mixed ILP
technique to combine different contact predictors (including
several DL predictors) to further improve the prediction
performance.

Although the predicted contacts have been successfully
applied to the protein structure prediction packages (Marks
et al., 2012; Michel et al., 2014; Adhikari et al., 2015; Gao
et al., 2019), contact maps are still insufficient for accurate
structure prediction. The reason is twofold. Most contact
prediction methods use a cutoff of 8�A between Cβ-Cβ atoms
to determine whether two residues are in contact or not, resulting
a contact/non-contact ratio of less than 0.1 for globular proteins
and a ratio of around 0.02 for alpha-helical transmembrane
proteins (Zhang et al., 2016). The definition of contacts means
that the native distance information is insufficiently being
distinguished. Furthermore, contact-assisted conformation

sampling may be misguided by several wrongly predicted
contacts and needs a long time to generate good
conformations for large proteins (Xu, 2019). In this context,
inter-residue distance maps are more informative than
residue–residue contact maps since distances are fine-grained
or real numbers, while contacts are binary values.

The methods for inter-residue distance prediction can be
roughly categorized into two groups, those based on multiclass
classification with discrete values and those based on regression
with continuous values. Early distance maps are mainly predicted
from homologous proteins (Aszódi and Taylor, 1996) or from
traditional machine learning techniques (Walsh et al., 2009; Zhao
and Xu, 2012; Kukic et al., 2014). The introduction of deep
learning technology has injected new life into distance prediction.
Wang et al. (2017) pioneered the study of introducing residual
network to multiclass distance prediction. The success of this
approach can be partially attributed to the ability of deep learning
to simultaneously consider the global set of pair-wise interactions
instead of considering only one interaction at a time, thereby
leading to more accurate discrimination between direct and
indirect contacts. TripletRes (Li et al., 2021), which uses a
similar deep learning architecture but with a unique set of
features that include multiple coevolutionary coupling matrices
directly deduced from deep multiple sequence alignment (MSA)
without post-processing. GANProDist (Ding and Gong, 2020)
predicts real value distance as a regression problem by generative
adversarial network. PDNET (Adhikari, 2020), DeepDist (Wu
et al., 2021), SDP (Rahman et al., 2022), and Li et al. (2021) (Li
and Xu, 2021) predict both real-valued and binned distances from
residual networks. DL-based distance prediction has recently
demonstrated unprecedented ability to assist protein structure
reconstruction such as DMPFold (Greener et al., 2019), RaptorX
(Xu, 2019), trRosetta (Yang et al., 2020), and AlhpaFold (Senior
et al., 2020). However, further progress needs more accurate
inter-residue distance prediction since the quality of a predicted
protein structure highly depends on the accuracy of the distance
prediction.

Shimomura et al. (2019) introduced a technique for predicting
structurally disordered regions in proteins through average
distance maps (AMD) based on statistics of average distances
between residues. AMD first divides the residue pairs into
different ranges according to their sequence separations, and
calculates the distances of residue pairs within each range. AMD
contact density maps were plotted against distance thresholds in
different ranges. AMD technology detects the boundaries of
structurally compact regions and finally predicts structurally
disordered regions by calculating differences in density maps.
The accuracy of AMD technology is comparable to the leading
methods in the CASP competition such as PrDOS, DISOPRED,
and Biomine. Protein domains are subunits that can fold and
function independently. Therefore, correct domain boundary
assignment is a critical step to achieve accurate protein
structure and function analysis. Zheng et al. (2020) proposed
FUPred to detect protein domains based on contact maps
predicted by deep learning. The core idea of this method is to
retrieve domain boundary locations by maximizing the number
of intra-domain contacts while minimizing the number of inter-
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domain contacts from the contact map. FUpred was tested on a
large-scale dataset consisting of 2,549 proteins and achieved a
Matthews correlation coefficient (MCC) of 0.799 for single
domain and multi-domain classification, which is 19.1%
higher than the best machine learning-based method. For
proteins with discontinuous domains, FUPred domain
boundary detection and normalized domain overlap scores
were 0.788 and 0.521, which were 17.3% and 23.8% higher
than the best peer method. The results demonstrate that
residue contact prediction provides a new way to accurately
detect domains, especially discontinuous multi-domains. Cong
et al. (2019) first compared the contact prediction methods based
on mutual information, evolutionary coupling analysis, and deep
learning in the prediction of residue contacts between protein
complex chains and found that although the deep learning
methods are outstanding for monomer contact prediction,
they fail to outperform methods based on mutual information
and evolutionary coupling analysis in inter-chain contact
prediction. By identifying coevolving residue pairs between
protein chains based on mutual information and evolutionary
coupling analysis methods, 1,618 protein interactions (682 of
which were unexpected) in Escherichia coli, and 911 protein
interactions in M. tuberculosis (most of which were not
identified in previous studies) were detected. The expected
false positive rate for this study is between 10% and 20%, and
the predicted interactions and networks provide a good starting
point for further research. Anishchenko et al. (2021) investigated
whether the residue distance information captured by deep neural
networks is rich enough to generate new folded proteins. The
study generated random amino acid sequences that were
completely unrelated to the sequences of the native proteins
used in the trRosetta training model, and fed them into the
trRosetta structure prediction network to predict the starting
residue distance map. Monte Carlo sampling is then performed in
the amino acid sequence space to optimize the contrast between
the network-predicted distribution of inter-residue distances and
the background distribution averaged across all proteins.
Optimization from different random starting points yields
novel proteins spanning a broad range of sequences and
predicted structures. Synthetic genes encoding 129 of the
‘network-hallucinated’ sequences were obtained, and the
proteins were expressed and purified in E. coli; 27 of the
proteins yielded monodisperse species with circular dichroism
spectra consistent with the hallucinated structures. Three of the
three-dimensional structures of the hallucinated proteins were
determined by experiments, and these closely matched the
hallucinated models. We can see that residue distance-assisted
protein structure prediction methods can be inverted to de novo
protein design.

In this study, we develop a method based on deep residual
convolutional neural network, named DuetDis, to predict the
full-length multiclass distance map from a sequence. DuetDis
uses a modified ResNet module to build the network, and adopts
two sets of complementary feature sets to further improve the
prediction accuracy. The results by DuetDis suggest that
prediction results from different feature sets show obvious
differences and ensembles of different feature sets can improve

the prediction performance. DuetDis is also evaluated together
with 11 widely used contact/distance prediction methods, and the
results show that DuetDis is more accurate for the overall
prediction, more reliable in terms of model prediction score,
and more robust against shallow MSA. DuetDis is available at
http://hpcc.siat.ac.cn/hlzhang/DuetDis/.

MATERIALS AND METHODS

Datasets
The test set is obtained from our previous work, containing
610 highly non-redundant protein chains (Zhang et al., 2021).
The training set is obtained through culling from the whole
PDB with the following criteria: 1) with maximum sequence
identity of 30% against each chain in the training set and test
set; 3) with structure resolutions better than 2.5 Å; 4) released
before 1 May 2018 (before the beginning of CASP13). Finally,
we get a non-redundant training set with 13,069 protein
chains.

Definition of Contact and Distance
In this study, the definition of contacts is directly taken from
the CASP experiments. A pair of residues in the experimental
structure is considered to be in contact if the distance
between their Cβ atoms (Cɑ for Gly) is less than or equal
to 8 Å. For direct comparison, the multiclass distance
definition is taken directly from trRosetta (Adhikari,
2020). The Cβ–Cβ distance of every pair of residues in a
target protein is treated as a vector of probabilities. The
distance range (2–20 Å) is binned into 36 equally spaced
segments, 0.5 Å each, and one bin indicating that residues are
not in contact, generating a distance vector of 37 bins for each
residue pair.

Depending on the separation of two residues along the
sequence (seq_sep), the contacts are classified into four classes:
all-range (seq_sep ≥6), short-range (6≤ seq_sep <12), medium-
range (12≤ seq_sep <24), and long-range (seq_sep >24).

Multiple Sequence Alignment Generation
for Training and Test
Generating high-quality MSA is the first step for protein
structure prediction based on the fact that interacting
residue pairs are under evolutionary pressure to maintain
the structure. The MSA used for model training is obtained
as indicated in Figure 1. The target sequence in the training set
is searched against NCBI-nr (Jackhmmer), MetaClust
(Jackhmmer), and BFD (HHblits) respectively, with E-
values of 1e−10 and 1e−3. The search will stop if the target
MSA has Nseq> 25*L (L is the sequence length) and Neff > 8*L,
where Nseq is the number of sequences (with sequence coverage
>50%) and Neff [defined in (Zhang et al., 2021)] is the number
of effective sequences in the MSA. After the search, the final
MSA is obtained through sequence clustering (with sequence
identity of 95%) using our in-house software nGIA (Ju et al.,
2021).
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The MSA used for testing is obtained through searching
JackHMMER (Johnson et al., 2010) against the NCBI-nr
database with iteration = 3 and E-value = 0.0001.

Input Features
We used two subsets of features as the inputs for the deep residual
network of DuetDis. The first feature set contains 526 feature

channels: one-hot-encoder of the target sequence (1D features,
20*2 channels); position-specific frequency matrix (1D features,
21*2 channels, considering gap) and positional entropy (Yang
et al., 2020) (1D features, 1*2 channels); and coupling features
(Yang et al., 2020) (2D features, 441 channels) derived from the
inverse of the shrunk covariance matrix of MSA. The second
feature set contains 151 feature channels: one-hot-encoder of the

FIGURE 1 | The flowchart of MSA generation for the training set.
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target sequence (1D features, 20*2 channels), position-specific
scoring matrix (Altschul et al., 1997) (1D features; 20*2 channels;
not considering gap), HMM profile (Remmert et al., 2012) (1D
features, 30*2 channels), secondary structure from SPOT-1D
(Hanson et al., 2019) (1D features, 3*2 channels), solvent
accessible surface area from SPOT-1D (Hanson et al., 2019)
(1D features, 1*2 channels), CCMPRED score (Seemayer et al.,
2014) (2D features, 1 channel), mutual information (Zhang et al.,
2022) (2D feature, 1 channel), and statistical pair-wise contact
potential (Betancourt and Thirumalai, 1999) (2D feature, 1

channel). The first feature set, indicated as FeatSet1, is mainly
composed of 2D direct coupling features (441 out of 526 total
features) from the MSA, while the second feature set, indicated as
FeatSet2, is mainly composed of 1D sequence-based features (148
out of 151 total features). Most of the features except the one-hot-
encoder features in FeatSet1 and FeatSet2 are different, so the
prediction results from the two feature sets can be
complementary in a duet way (as indicated in the results).

Both FeatSet1 and FeatSet2 are widely used by previous works
(Hanson et al., 2018; Yang et al., 2020; Jain et al., 2021; Su et al.,

FIGURE 2 | The network architecture used in this work. (A) The network used by DuetDis; (B) the reference network; (C) basic modules used in the networks;
dilated convolution.
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2021), showing their great efficacy in contact/distance prediction.
The aim of DuetDis is not to design new feature types, but to
evaluate the performance of previously widely used feature sets
under the situation of unified input and identical network, as well
to study how to complement the advantages of different types of
features for better prediction performance.

Deep Network Architectures and Model
Training for Distance Prediction
The proposed method DuetDis implements residual neural
networks (ResNet) (He et al., 2016) as the deep learning model.
Compared to traditional convolutional networks, ResNet adds
feedforward neural networks to an identity map of input, which
helps enable the efficient training of extremely deep neural
networks. ResNet has shown its power in successful residue
contact/distance prediction (Xu, 2019; Li et al., 2021). The deep
residual network of DuetDis is shown in Figure 2A. The basic
module of DuetDis network is a combination of squeeze-and-
excitation and ResNet (SEResNet). The DuetDis network is
composed of 33 SEResNet modules. In order to observe the
impact of different networks and features on the prediction
performance, we also designed another reference network
(Figure 2B), which has very different basic modules and
backbones from Figure 2A. The reference network is composed
of 16 Res2Net modules. In this work, both SEResNet and Res2Net
use dilation convolutions, while SEResNet use gelu and Res2Net
use relu as the activation functions. The networks in Figures 2A
and B are indicated as Net1 and Net2, respectively. The final MSA
obtained in Figure 1 is indicated asMSA_All, and a subset with top
10 L sequences (ranked with sequence identity against the target
sequence) selected from MSA_All is indicated as MSA_Top, and
two disjoint subsets with each containing 10 L sequences randomly
selected from MSA_All are indicated as MSA_1 and MSA_2,
respectively. As described in Table 1, 10 sub-models are trained
based on Net1 (the DuetDis network) and Net2 (the reference
network) with different feature sets from different MSAs. “MSA
Shuffle” in Table 1 means that the MSA are constructed through
randomly selecting 10 L sequences in MSA_All. For each epoch,
N1_M1/N2_M1 are trained through “MSA Shuffle” strategy,
N1_M2/N1_M3/N2_M2/N2_M3 are trained with MSA_Top,
N1_M4/N2_M4 are trained with MSA_1, and N1_M5/N2_M5

are trained with MSA_2. The outputs of five sub-models are
averaged to produce the final distance map, indicated as
“DuetAverage” in Figures 2A,B.

The sub-models are generated by independent training
branches. AdamW optimizer is performed with an initial
learning rate of 0.0001 (multi-step decay is adopted as the
learning rate decay strategy). Cross-entropy is used as the loss-
function, and L2 regularization is used during the training process
to correct overfitting. The training set is split into two parts: 600
protein chains are used as the validation set and the rest are used
for training. The precision of top-L long-range contact
predictions (multiclass distance map is converted to the binary
contact map according to the definition in Section 2.2) on the
validation dataset is calculated at each epoch, and the training
process will stop when there is no update of the validation
precision for 10 epochs. The training processes are
implemented in Pytorch on TeslaV100 SMX2, and each
independent training generally takes 5–10 days.

Evaluation Metrics
1) The predicted distance map is a matrix of probability

estimates. We analyze the performance of predictors on
reduced lists of distances/contacts (sorted by the
probability estimates) selected by either the probability
threshold or the top-L/n (L is the sequence length, and n =
1, 2, 5) criteria. The prediction performance is assessed using
precision (accuracy in some references), coverage (recall in
some references), and Matthew’s Correlation Coefficient
(MCC), defined as follows:

Precision � TP

TP + FP
, (1)

Coverage � TP

TP + FN
, (2)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ , (3)

where TP, FP, TN, and FN are the number of true positive, false
positive, true negative, and false negative contacts, respectively.

2) Standard deviation reflects the degree of dispersion among
individuals within the group, which is defined as

STD �
��������������
1
N

∑N

i�1(xi − �x)2
√

, (4)

where �x is the mean of the variable x. The standard deviation can
be used to evaluate the dispersion of Precision, Coverage,
and MCC.

3) Jaccard index (Jaccard similarity coefficient) measures the
similarities between sets. It is defined as the size of the
intersection divided by the size of the union of two sets.

J(X,Y) � |X ∩ Y|/|X ∪ Y|, (5)
where X and Y are the set of predicted contacts from two different
predictors, |X ∩ Y| is the number of elements in the intersection
of X and Y and the |X ∪ Y| represents the number of elements in

TABLE 1 | The strategies used for the training of sub-models (N1_M1/N1_M2/
N1_M3/N1_M4/N1_M5 are used for DuetDis).

Sub-models Network Feature set MSA MSA shuffle

N1_M1 Net1 FeatSet1 MSA_All Yes
N1_M2 Net1 FeatSet1 MSA_Top No
N1_M3 Net1 FeatSet2 MSA_Top No
N1_M4 Net1 FeatSet2 MSA_1 No
N1_M5 Net1 FeatSet2 MSA_2 No
N2_M1 Net2 FeatSet1 MSA_All Yes
N2_M2 Net2 FeatSet1 MSA_Top No
N2_M3 Net2 FeatSet2 MSA_Top No
N2_M4 Net2 FeatSet2 MSA_1 No
N2_M5 Net2 FeatSet2 MSA_2 No
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the union of X and Y. The Jaccard index has values in the range of
[0,1], with the value of 0 for completely dissimilar ones and 1 for
identical predictors.

RESULTS

In this section, we assess the performance of DuetDis from
different perspectives. Section 3.1, 3.2 study the performance
of sub-models, while Section 3.3–3.5 focus on the comparison
between DuetDis and peer methods. The peer methods used in
this work are 4 DCA-based contact predictors (EVfold,
FreeContact, gDCA, and CCMpred), 4 DL-based contact
predictors (DeepCov, PconsC4, DNCON2, and SPOT-

Contact), and 3 DL-based distance predictors (TripletRes,
trRosetta, and RaptorX). Section 3.1–3.3 and Section 3.5 use
the results of top-L/n (n = 1, 2, 5) predictions, while Section 3.4
considers the results given by specific probability/score threshold.
All sub-models and peer-methods use the same MSA as input.

Prediction Results From Different Feature
Sets Show Obvious Differences
We use the Jaccard indices of prediction results from 10 sub-
models (as described in Table 1) to study their prediction
similarities. Figure 3 shows the dendrogram heatmap of
Jaccard indices using Ward’s hierarchical clustering method on
the independent test set. The Jaccard index between two methods

FIGURE 3 | Prediction similarities between different sub-models for (A) all-range, (B) short-range, (C) mid-range, and (D) long-range contacts/distances.
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is calculated by averaging the Jaccard index value of each protein
on the whole test set. According to the clustering results, these
10 sub-models can be roughly divided into two categories, and
each category contains two sub-categories. N1_M1/ N1_M2 and
N2_M1/ N2_M2 trained by FeatSet1 are clustered into one
category (Category_1), while N1_M3/ N1_M4/ N1_M5 and
N2_M3/ N2_M4/ N2_M5 trained by FeatSet2 form another
category (Category_2). N1_M1/ N1_M2 trained by Net1 and
N2_M1/ N2_M1 trained by Net2 form two sub-categories in
Category_1, while N1_M3/ N1_M4/ N1_M5 trained by Net1 and
N2_M3/ N2_M4/ N2_M5 trained by Net2 form two sub-
categories in Category_2. So, we can draw the conclusion that
prediction results from different feature sets show obvious
differences, and the conclusion is true for all-range, short-
range, mid-range, and long-range contacts/distances. The
feature set decides the similarity between models for typical
architectures of networks.

Ensembling Different Feature Sets
Improves Prediction Performance
The prediction accuracies of N1_M1/ N1_M2/ N1_M3/ N1_M4/
N1_M5/ N1_Ensemble (obtained by averaging the five Net1 sub-
models) and N2_M1/ N2_M2/ N2_M3/ N2_M4/ N2_M5/
N2_Ensemble (obtained by averaging the five Net2 sub-
models) are listed in Tables 2, 3, respectively.

As we can see from Table 2, N1_M1 trained through randomly
shufflingMSA_All can obtain the best performance, which is 1.8%/
0.3%/ 0.9%/ 1.8%, 2.8%/ 0.1%/ 0.9%/ 3.0%, 5.1%/ 1%/ 2.1%/ 5.5%,
and 4.5%/ 0.1%/ 2.1%/ 5% higher than N2_M2/ N2_M3/ N2_M4/
N2_M5 for top-L all-/ short-/ medium-/ long-range predictions.

Although using the same network and feature set, N1_M1 shows
superior prediction precisions than N1_M2, implying that
randomly shuffling MSA_All in each epoch enables
augmentation of the training set and thus, a better model can
be obtained. N1_M3 uses the same network and feature set as
N1_M4 and N1_M5, but the prediction precisions of N1_M3 are
higher thanN1_M4 andN1_M5, indicating that high-qualityMSA
used for training helps to boost the model performance.
N1_Ensemble outperforms the individual sub-models N1_M1/
N1_M2/ N1_M3/ N1_M4/ N1_M5 by 1.3%/ 3.1%/ 4.0%/ 6.4%/
5.8%, 0.3%/ 0.6%/ 0.4%/ 1.6%/ 0.4%, 0.3%/ 1.2%/ 1.2%/ 2.3%/ 1.7%,
and 1.7%/ 3.5%/ 4.8%/ 7.2%/ 6.7% for top-L all-/ short-/ medium-/
long-range predictions, suggesting that ensembles of models
trained on different feature sets can improve the overall
prediction performance. Similar phenomenon can be observed
and consistent conclusions can be drawn from the results in
Table 3.

The Overall Performance of DuetDis
The prediction precisions of all-/ short-/ medium-/ long-range
contacts for DuetDis and other 11 peer methods on the
independent test set are shown in Figure 4. In general, DL
methods, which can capture the higher-order residue
correlations and use nonlinear models with fewer parameters
to be estimated from thousands of protein families (Rajgaria et al.,
2010), significantly outperform DCA methods. Specifically,
DuetDis shows the best overall performance. Compared with
DeepCov/ PconsC4/ DNCON2/ SPOT/ TripletRes/ trRosetta/
RaptorX, DuetDis obtains 22.1%/ 18.8%/ 17.2%/ 3.5%/ 6.3%/
3.8%/ 2.4%, 5.2%/ 5.2%/ 3.9%/ 1.0%/ 1.4%/ 0.8%/ 2.2%, 8.7%/
7.5%/ 6.2%/ 1.4%/ 1.8%/ 1.4%/ 1.4%, and 2.4%/ 1.9%/ 3.8%/

TABLE 2 | The prediction precisions of N1_M1/N1_M2/N1_M3/N1_M4/N1_M5/
N1_Ensemble for different sequence separations.

Range Method Top-L Top-L/2 Top-L/5

All N1_M1 0.7769 0.8717 0.9206
N1_M2 0.7587 0.8475 0.8941
N1_M3 0.7491 0.846 0.9027
N1_M4 0.7256 0.8266 0.8888
N1_M5 0.7319 0.8328 0.8942
N1_Ensemble 0.7896 0.8786 0.9266

Short N1_M1 0.2955 0.481 0.7389
N1_M2 0.2928 0.4754 0.7287
N1_M3 0.2948 0.4757 0.7374
N1_M4 0.2824 0.4588 0.7109
N1_M5 0.2947 0.473 0.7219
N1_Ensemble 0.2988 0.4918 0.7633

Medium N1_M1 0.3512 0.5477 0.7725
N1_M2 0.3422 0.5336 0.7514
N1_M3 0.342 0.5329 0.7533
N1_M4 0.3306 0.5135 0.7275
N1_M5 0.3371 0.5209 0.7352
N1_Ensemble 0.3537 0.5592 0.7895

Long N1_M1 0.6245 0.7696 0.865
N1_M2 0.6062 0.7411 0.8273
N1_M3 0.594 0.7308 0.8246
N1_M4 0.5695 0.7091 0.8088
N1_M5 0.5742 0.712 0.8121
N1_Ensemble 0.6416 0.7797 0.8626

TABLE 3 | The prediction precisions of N2_M1/N2_M2/N2_M3/N2_M4/N2_M5/
N2_Ensemble for different sequence separations. -80

Range Method Top-L Top-L/2 Top-L/5

All N2_M1 0.7532 0.8562 0.9103
N2_M2 0.7435 0.839 0.8938
N2_M3 0.7148 0.8188 0.8828
N2_M4 0.7091 0.8119 0.8768
N2_M5 0.7071 0.8121 0.879
N2_Ensemble 0.7590 0.8579 0.9153

Short N2_M1 0.2864 0.4654 0.7172
N2_M2 0.2901 0.4647 0.71
N2_M3 0.2852 0.4583 0.7014
N2_M4 0.2831 0.4547 0.6982
N2_M5 0.2825 0.4548 0.7002
N2_Ensemble 0.3449 0.5396 0.7367

Medium N2_M1 0.3413 0.5325 0.755
N2_M2 0.3428 0.5267 0.7395
N2_M3 0.3298 0.5082 0.7206
N2_M4 0.3281 0.5042 0.7152
N2_M5 0.3283 0.5057 0.7159
N2_Ensemble 0.3449 0.5396 0.7602

Long N2_M1 0.6035 0.746 0.8473
N2_M2 0.5997 0.7361 0.828
N2_M3 0.5638 0.7022 0.8066
N2_M4 0.5525 0.6877 0.7913
N2_M5 0.5548 0.6917 0.7941
N2_Ensemble 0.6136 0.7508 0.8473

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8874918

Zhang et al. Deep-Learning-Based Residue Distance Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


6.2%/ 3.8%/ 1.8% higher precisions for all-range, short-range,
medium-range, and long-range top-L predictions, as well as
12.5%/ 13.3%/ 9.5%/ 1.9%/ 4.2%/ 2.7%/ 1.9%, and 17.6%/ 16.3%/
13.1%/ 2.6%/ 6.6%/ 4.3%/ 3.4% higher precisions for all-range, short-
range, medium-range, and long-range top-L/5 predictions,
respectively. The better performance of DuetDis is probably due
to the high-quality MSAs used for training, the delicately designed
deep residual network, and the effective integration of different
features.

DuetDis Embraces High Model Reliability in
Terms of Prediction Score
The confidence of the probability (score) given by a DCA or DL
model can greatly reflect the reliability of the corresponding model.
The prediction probabilities (scores) given by EVfold, FreeContact,

gDCA, CCMpred, DeepCov, PconsC4, DNCON2, SPOT,
TripletRes, trRosetta, RaptorX, and DuetDis are distributed at
(0.000,1.309), (−2.537,17.931), (−1.243, 6.564), (0.000, 5.270), (0.0,
1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), and
(0.0, 1.0), respectively. For machine learning (both traditional and
deep learning) applications, people usually use 0.5 as a threshold for
classification. However, the threshold may be inaccurate for a
complex problem like contact/distance prediction. Therefore,
studying the scoring trend and the reliability of the model is of
great benefit to understand the model performance.

Figure 5 illustrates the prediction performance in terms of
precision/ coverage/ MCC with the increase in probability (score)
threshold given by DuetDis and the peer methods. With the
increase of the probability (score) threshold, the prediction
coverages decrease monotonically for all methods. As the
threshold increases, their precision curves go down at some

FIGURE 4 | The overall prediction precisions for (A) all-range, (B) short-range, (C) medium-range, and (D) long-range contacts/distances.
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probability (score) value. The prediction precisions of all DL
methods (DeepCov/ PconsC4/ DNCON2/ SPOT/ TripletRes/
trRosetta/ RaptorX) increase monotonically with the
probability (score) threshold. However, the precision curves of
DCA methods (EVfold/ FreeContact/ gDCA/ CCMpred) show
turning points at some probability (score) values. Meanwhile,
DCA methods also show much larger STDs on precisions and
relatively lower coverages/MCCs compared with DL methods.
The numbers under the precision curve in Figure 4 are the
numbers of proteins with predictions returned using the
corresponding probability (score) threshold on the x-axis. It is

obvious that, as the probability (score) threshold increases, there
are more proteins being predicted by DL methods than by DCA
methods. Specifically, DuetDis achieves prediction precisions/
coverages/ MCCs of 98.1%/ 15.0%/ 0.352 (calculated on the 523
proteins with prediction scores higher than 0.95) at the (score)
threshold of 0.95, which are higher than that by DeepCov (94.7%/
7.4%/ 0.240: 431 proteins), PconsC4 (96.3%/ 6.5%/ 0.228: 448
proteins), DNCON2 (96.8%/ 4.4%/ 0.173: 396 proteins), SPOT
(97.5%/ 12.3%/ 0.318: 544 proteins), TripletRes (93.0%/ 19.6%/
0.399: 557 proteins), trRosetta (96.5%/ 9.4%/ 0.276: 513 proteins),
and RaptorX (97.2%/ 14.5%/ 0.352: 497 proteins). In summary,

FIGURE 5 | Prediction performance in terms of precision, coverage, MCC, and the corresponding standard deviation (the shaded area around the curves) with the
increasing probability (score) threshold given by the predictors. The numbers under the precision curve (blue) are the numbers of proteins with predictions returned using
the corresponding (score) threshold on the x-axis.
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DuetDis shows higher reliability in model probability (score)
compared with peer methods.

DuetDis Is Robust Against Shallow Multiple
Sequence Alignment
Coevolutionary coupling signals extracted fromMSA play central
role in most modern contact/distance prediction methods. In this
study, the independent test set is divided into six groups
according to Neff (<5, 5–0.2 L, 0.2 L–L, L–5 L, 5–8 L, and
>8 L). The performance of different methods on these sub-
groups of the test set is shown in Figure 6. DuetDis achieves
prediction precisions of 64.4% for Neff <5, 85.1% for Nef = 5–0.2 L
(2.5% higher than the second), 92.5% for Neff = 0.2 L–L (0.5%
higher than the second), 97.5% for Neff = L–5 L (0.8% higher than
the second), 96.9% forNeff = 5–8 L (0.2% higher than the second),
and 95.6% for Neff = 5–8 L (0.9% higher than the second). For Neff

<5 L, DuetDis ranks the second in prediction precision; while for
Neff = 5–0.2 L, 0.2 L–L, L–5 L, 5–8 L and >8 L, DuetDis is in the
leading position of prediction precision. For Neff <5 L, PconsC4
shows a STD of 0.125 which is smaller than DuetDis, however, the
smaller STD is because of lower overall precision by PconsC4 (the
average prediction precisions are 8.7% for PconsC4 and 64.4% for
DuetDis). Hence, DuetDis obtains the least STD among all DL
methods for all sub-groups of the test set. In general, DuetDis
shows leading precisions and the smallest STD for most ranges of
Neff, especially highlights its robustness in shallow MSA-based
distance prediction.

CONCLUSION

Proteins are considered as the molecular machines and performmany
important functions of life (Zhang et al., 2017). Knowing the structure
of a protein helps to understand the role of the protein, how the protein
performs its biological function, and the interaction between the
protein and the protein (or other molecules), which is very
important for biology as well as for medicine and pharmacy.
Residue distance prediction from the sequence is critical for many
biological applications such as protein structure reconstruction.
However, prediction of large distances and distances between
residues with long sequence separation length still remains challenging.

In this paper, we propose DuetDis, which uses duet deep learning
models for distance prediction. DuetDis adopts two complementary
feature sets, one set is mainly composed of 2D coevolutionary
couplings, and another set contains mainly 1D sequence-based
features. We trained 10 sub-models using two different networks
(Net1 and Net2), two different sets of features (FeatSet1 and
FeatSet2), and four different MSAs (MSA_All, MSA_Top, MSA_1,
MSA_2). By evaluating 10 sub-models based on the large-scale test set,
we found that: 1) prediction results from different feature sets show
obvious differences; 2) ensembling different feature sets can improve
the prediction performance; and 3) high-quality MSA used for both
training and testing can greatly improve the prediction performance.
DuetDis is also compared with 11 widely used contact/distance
predictors. The experimental results show that DuetDis outperforms
the peer methods in terms of overall prediction precisions, model
reliability, and robustness against shallow MSA.

FIGURE 6 | Prediction precisions of different methods for all-range, top-L, and top-L/5 predictions with the variation ofNeff. The error bar is the standard deviation of
all precisions (for top L/5 predictions) in each sub-test set.
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