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In Echo-Planar Imaging (EPI)-based Magnetic Resonance Imaging (MRI), inter-subject

registration typically uses the subject’s T1-weighted (T1w) anatomical image to learn

deformations of the subject’s brain onto a template. The estimated deformation fields

are then applied to the subject’s EPI scans (functional or diffusion-weighted images) to

warp the latter to a template space. Historically, such indirect T1w-based registration

was motivated by the lack of clear anatomical details in low-resolution EPI images:

a direct registration of the EPI scans to template space would be futile. A central

prerequisite in such indirect methods is that the anatomical (aka the T1w) image of

each subject is well aligned with their EPI images via rigid coregistration. We provide

experimental evidence that things have changed: nowadays, there is a decent amount of

anatomical contrast in high-resolution EPI data. That notwithstanding, EPI distortions due

to B0 inhomogeneities cannot be fully corrected. Residual uncorrected distortions induce

non-rigid deformations between the EPI scans and the same subject’s anatomical scan.

In this manuscript, we contribute a computationally cheap pipeline that leverages the

high spatial resolution of modern EPI scans for direct inter-subject matching. Our pipeline

is direct and does not rely on the T1w scan to estimate the inter-subject deformation.

Results on a large dataset show that this new pipeline outperforms the classical indirect

T1w-based registration scheme, across a variety of post-registration quality-assessment

metrics including: Normalized Mutual Information, relative variance (variance-to-mean

ratio), and to a lesser extent, improved peaks of group-level General Linear Model (GLM)

activation maps.

Keywords: functional MRI, human brain-mapping, high-resolution EPI, inter-subject registration, B0

inhomogeneity, distortions

1. INTRODUCTION

Registering brain images from different subjects in a common space (for example, the MNI space
Collins et al., 1994; Mazziotta et al., 1995), is an essential step in any multi-subject analysis pipeline
(Friston et al., 1995). Indeed, a voxel-to-voxel correspondence across subjects is needed for group-
level statistics on brain maps to make sense. In addition, the use of a standard space opens the
possibility to share results in a consistent fashion, hence the comparison of experiments and
meta-analysis (Wager et al., 2007; Gorgolewski et al., 2015). This is especially true in functional
Magnetic Resonance Imaging (fMRI) studies in which the activations might span just a few voxels
in diameter.
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Traditionally, a pipeline for registering functional images
proceeds as follows. EPI and T1w images are rigidly aligned
in a primary step called coregistration; then one applies the
T1w → template transformation—estimated in a separate
step—to the EPI images to warp them from subject to template
space. As regards coregistration, it is assumed that the T1w
and EPI images of the same subject could be properly aligned
to one another via a rigid (affine) transformation. Thus, one
typically assumes that distortion correction is good enough so
that the EPI can be realigned to the T1w image with a rigid
transformation. Historically, such an indirect T1w-based method
for preprocessing functional images has been prompted by the
fact that learning a deformation from the subject’s T1w image to
a template is easier, due to the relatively high anatomical contrast
in T1w images, than learning a deformation from the subject’s
EPI image to the template.

However, it is widely known that even after correction
efforts, high-resolution (3 T and above) EPI sequences suffer
residual from distortions that push them non-linearly out-of-
match relative to the T1w image of the same subject (see
Renvall et al., 2016 for example), and so the two cannot
be geometrically matched by a simple coregistration step. As
illustrated in Figure 1, this is the case, for example, with
the Human Connectome Project (HCP) (Van Essen et al.,
2012) dataset, a reference dataset that contains high-quality
EPI data acquired using state-of-the-art sequences, yet with
severe distortions (Wan et al., 1997; Mangin et al., 2002; Zeng
and Constable, 2002; Andersson et al., 2003). Thus, EPI-to-
anatomy registration is nowadays typically treated as a non-linear
registration problem (e.g., using boundary-based registration—
BBR), after EPI distortion correction. Indeed, as discussed in
the literature (e.g., Freire et al., 2002), EPI distortions and
signal loss related to B0 inhomogeneities cannot be separated
with registration based techniques, that are compensatory
operations. Consequently, the quest for efficient combined
distortion correction and coregistration method is still largely an
open question.

In the present contribution, we formally test whether
replacing the anatomical image by a high-quality EPI image
works as well. For this we use a large dataset, obtained from

FIGURE 1 | Non-linear mismatch between EPI and T1w image of the same subject of the HCP dataset (Van Essen et al., 2012), before and after distortion-correction.

(Left) Single-band high-resolution EPI (SBRef) image of the same subject. Notice the large distortions along the Left-Right direction (inside the highlighted patches).

(Center) Distortion-corrected single-band EPI image. Here, the distortion-correction managed to undo most—but not all—of the distortions. Even after distortion

correction, there are minor shape differences between the EPI and the T1 image of the subject (Right). The same native-space coordinates where used in all of the

three plots.

the HCP dataset (Van Essen et al., 2012), and comprising 110
subjects. We find that the direct EPI-to-EPI registration pipeline
yields higher inter-subject similarity: in particular, it maps more
accurately raw BOLD contrasts and image outline, as measured
by standard evaluation metrics. The impact on the results of
group level analyses (from task and resting-state functional MRI)
is however minor, meaning that between-subject variability is
not primarily dominated by geometric aspects. This last point is
discussed in detail in section 6. One should mention that some
ultra-modern acquisition techniques and hardware setup make it
possible to obtain very fine anatomical details in sub-millimeter
EPI images at high field (7T) (Heidemann et al., 2012; Renvall
et al., 2016). The concern of our paper is to investigate whether
one can still bypass the anatomical scan and instead use an EPI
image of worse resolution, say 2 mm3 as in the HCP functional
data (Van Essen et al., 2012).

2. MATERIALS AND METHODS

2.1. An Important Note on Normalization
Let us begin by stressing that the normalization problem (i.e.,
registration to a standard template) is not addressed in our
work. We concentrate on inter-subject (non-linear) registration,
since our goal is to show the benefits of using EPI images
in place of anatomical images in pipelines. We also note
that there is an increasing concern in the literature that in
the future, normalization will be based on techniques using
more fine-grained information like multi-modal atlases (tissue
probability maps, functional parcellation maps, etc.) (Amunts
et al., 2014), and anatomical maps (Waehnert et al., 2016), which
link directly the functional competence of cortical areas directly
with myeloarchitecture, and thence to cyto-architecture (Turner,
2016).

2.2. General Preprocessing Procedures
2.2.1. Motion Correction
During acquisitions, participant’s head moves in the scanner, at
least due to respiratory motion. This head movement induces
an approximately rigid mismatch between different volumes
acquired in the same run. Motion correction is done to remove
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this source of intra-subject variability. We used FSL’s flirt tool
(Smith et al., 2004) for motion correction.

2.2.2. Distortion Correction
Due to inhomogeneities in the ambient B0 field, the EPI
images are distorted along the phase-encoding direction [Left-
Right/Right-Left in the case of HCP dataset (Van Essen et al.,
2012)]. See Figure 1. In our experiments, distortion correction
(Jezzard and Balaban, 1995; Wan et al., 1997; Mangin et al.,
2002; Zeng and Constable, 2002; Andersson et al., 2003) was
achieved using the methods described in Van Essen et al.
(2012). Both methods use FSL’s topup tool (Andersson et al.,
2003; Smith et al., 2004) to estimate the deformation field
due to B0 inhomogeneities (Glasser et al., 2013). Given the
spin echo field maps for the LR (left-right) and RL (right-left)
phase-encoding directions, the topup tool (Andersson et al.,
2003; Smith et al., 2004) estimates the deformation field that
when applied to the two volumes will maximize the similarity
of the unwarped volumes. The similarity is gauged by the
sum-of-squared differences between the unwarped images. This
similarity metric is optimized via a Gauss-Newton algorithm
for jointly finding the field and any movement that may have
occurred between the two acquisitions. These transformation are
composed with subsequently estimated transformations (warp-
fields for registration to template, etc.) and applied to the 4D EPI
images.

2.2.3. Deformation Model
We used ANTs’ Symmetric Normalization (aka SyN) deformation
model (Avants et al., 2008, 2011), that has been shown to be a
state-of-the art method for non-linear registration (Klein et al.,
2009). As done usually, we initialize a non-linear registration
algorithm with a rigid-body registration algorithm. The former
is simply meant to estimate an alignment for the bounding
boxes of the images (thus ensuring a sufficiently large region
of overlap). Concretely, we stack a 2-level pyramidal1 rigid
transformation model (as initialization) with a 3-level pyramidal
SyN deformation model. Mattes mutual information (Mattes
et al., 2003) is used as the loss function.

This model is triggered in ANTs (Avants et al., 2008, 2011)
using the following command-line options:

--transform Affine[ 2.0 ]

--metric Mattes[ ${fixed_img}.nii.gz, ${moving_img}.nii.gz, \

1, 32, Random, 0.05 ]

--convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas \

1.0x0.0vox

--shrink-factors 2x1 --use-estimate-learning-rate-once 1

--use-histogram-matching 1

2.3. The Pipelines
We now present constructions for the pipelines whose
benchmark is the core of this work. The pipelines are

1Pyramidal means that multiple passes are made by a registration algorithm on

the input images, with finer and finer resolution (aka pyramid). In this speedup

technique, each pass of the pyramid is initialized with the solution of the previous

pass (this is known as warmstarting).

schematized in Figure 2. All pipelines presented here were
scripted in using command-line tools from FSL version 5.0
(Smith et al., 2004) for rigid registration, distortion correction,
motion correction, ANTs (Avants et al., 2009) antsRegistration,
antsApplyTranforms, and some custom scripts (for distortion
correction) from the HCP scripts described in Glasser et al.
(2013), hosted on Github. Except stated otherwise, all rigid
registrations (motion correction, coregistration) were performed
using FSL’s flirt tool (Smith et al., 2004) with Normalized Mutual
Information as cost the function (option: -cost normmi).

2.3.1. Classical Indirect T1w-Based Method
The classical indirect T1w-based pipeline for registration of EPI
images can be schematized as follows2:

EPI → templ. = (T1w → templ.)
︸ ︷︷ ︸

non-linear

◦ (EPI0
BBR→ T1w)

︸ ︷︷ ︸

linear

◦ DistCorr

(1)

in which a deformation of the subject’s T1w image to a template
is estimated and then applied to warp the same subject’s EPI
data. Here, EPI0 is any single-volume EPI image previously-
coregistered with the 4D EPI sequence. Typical choices include:
the middle volume of the EPI 4D time-series or the mean volume
after motion correction. In our implementations, we used the
former.

For the template, a subject is chosen and his/her T1w image
is used as the template. For each other subject, (a) distortion
correction is used to learn a non-linear undistorting warpfield,
in a procedure already described in subsection 2.2 above. Then,
(b) motion correction is done to realign the subject’s EPI data to
the mean thereof. The subject’s T1w image is then aligned to this
mean EPI image via coregistration (a rigid-body transformation).
We use BBR (Greve and Fischl, 2009) for this coregistration
step, for optimal results and fair comparison. BBR is a state-
of-the-art functional-to-structural registration method driven by
intensity difference across boundary (samples). It uses white-
matter boundaries (via T1w segmentation). BBR needs good
structural images (with little contrast bias), and some anatomical
contrast in the EPI image, which is the case of the single-band

high-resolution reference images in the HCP dataset (Van Essen

et al., 2012). The implementation we use is based on the

epi_reg command of FSL (Smith et al., 2004). However, since

BBR is an affine correction method, it still suffers from the

limitations explained in the introductory section. In particular,

2The “◦” symbol denotes composition of transformations.
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FIGURE 2 | The pipelines. The template-generation step is done using ANTs

(Avants et al., 2008, 2011). It pools registered data from all subjects. N.B.:

SBRef, single-band reference image; i.e., high-resolution 3D volume EPI. As in

Glasser et al. (2013), all the transformations are postponed and the original 4D

EPI is resampled at the end by applying the composition of these

transformations in a single step.

it is not resilient to distortions in the input EPI image. (c)
ANTs is used to learn a deformation of the T1w image to the
template. This produces a warped version of the T1w image,
together with the corresponding deformation (and its inverse),
for passing from the subject’s space to the template space.
Finally, (d) the deformations above—including all the postponed
warpfields and affine transformations—are then applied to all
EPI data that were previously coregistered to the T1w image of
the subject. These EPI images include EPI images acquired on
the same subject during another task, for instance. This one-
step resampling procedure (see subsection 2.2) then produces
a registered, motion-corrected, undistorted version of the input
EPI data.

Then mean of all the registered T1w images is computed, and
becomes the template henceforth. This procedure is iterated a
couple of times.

2.3.2. Our Proposed Direct EPI-Based Non-linear

Inter-subject Registration Method
Our proposed pipeline operates just as the classical indirect
T1w-based pipeline described above in section 2.3.1, except that
the anatomical image is replaced with the single-band high-
resolution EPI (the SBRef) image, which has more tissue contrast

than any volume of the 4D EPI time-series being registered
(Glasser et al., 2013), and also does not suffer from multi-band
artifacts. The anatomical image is not used anywhere in this
pipeline. The pipeline can be schematized as follows:

EPI → templ. = (EPI0 → templ.)
︸ ︷︷ ︸

non-linear

◦DistCorr,
(2)

where we take EPI0 = Single-band high-resolution (SBRef) EPI
image.

2.3.2.1. A note on image interpolation (resampling)
To avoid degrading the images as they travel through a
pipeline, we stack all intermediate transformations and postpone
the resampling operations to the end of the pipeline. The
transformations are then composed, and applied to the input
image in a one-step resampling procedure based on the
ApplyTransforms tool of the ANTs software (Avants et al., 2008,
2009). For example, affine transformations estimated during
the motion correction step are converted to warpfields using
FSL’s convertwarp tool (Smith et al., 2004). FSL’s applywarp tool
(Smith et al., 2004) is then used to jointly apply this affine
transformation warpfields and the warpfields corresponding to
the deformations estimated by topup (Smith et al., 2004), that are
stacked with subsequent transformations. We use this strategy in
both pipelines.

3. RELATION TO PREVIOUS WORKS

3.1. Direct EPI-to-EPI Non-linear
Inter-subject Registration
The idea of EPI-to-EPI registration has already been used in
the literature. Renvall et al. (2016) proposed a novel method
to synthesize segmentable T1 anatomical contrast from high-
resolution (7T) EPI functional images, in a way that alleviates
geometric distortions between estimated functional activation
patterns and the subject’s underlying anatomy. Grabner et al.
(2014) used high-resolution EPI (1.1 mm isotropic) data
for different subjects acquired at 7 T to iteratively build a
sequence of EPI-based study-specific templates of increasing
quality/resolution (Grabner et al., 2006). The finest of these
templates shows a great deal of anatomical detail. Group-level
activation patterns for a finger-tapping task were also shown to
be very accurately localized on the posterior bank of the central
sulcus. The authors concluded that high-resolution (7T) EPI
images contain enough anatomical information for inter-subject
registration, and so one can effectively by-pass the anatomical
image of subjects in the processing pipeline. This would for
example allow one to avoid the classical coregistration step used
to align the subject’s EPI images to their anatomy. These works
(Huang et al., 2010; Grabner et al., 2014) demonstrated results
on small sample sizes, namely n = 16 and n = 10, respectively,
and very high resolution (for functional images): 1.1 and 1 mm
isotropic, respectively. In contrast, our results are on a much
larger population—n = 110 subjects—and the data have lower
spatial resolution, namely 2mm isotropic. Moreover, we consider
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the EPI distortion problem (ignored by the cited works), which
can greatly mar the results of registration procedures.

Our experiments confirm and extend the findings of (Huang
et al., 2010; Grabner et al., 2014), but at an even lower resolution:
2 mm resolution, obtained from 3 T MRI, and on a much larger
dataset. Using a variety of different task contrasts, we show that
registration with our pipeline increases the pairwise Normalized
Mutual Information (NMI) of subjects, over the classical pipeline;
crucially, this leads to a decrease in residual post-registration
inter-subject misalignement.

In comparison to Grabner et al. (2014), the pipeline we
propose (refer to section 2.3.2) is much lighter computationally
as it bypasses the potentially expensive and challenging step
of generating a good template from EPI data (Grabner et al.,
2006). Of course, this economy is more of a compromise between
complexity and accuracy, andmight be potential limitation of our
contribution.

When preparing this manuscript, a recent work (Calhoun
et al., 2017) was brought to our attention. This work is quite
similar in spirit to ours and the conclusions reached are also
similar. The work proposes to bypass the T1w scan during
normalization of EPI images, in the presence of EPI distortions,
and shows that EPI-based methods is significantly better than
the traditional traditional T1w-based approach (is no distortions-
correction is done) for more common lower resolution EPIs from
multiple datasets as in the Autism Brain Imaging Data Exchange
(ABIDE ) (Di Martino et al., 2014).

3.2. Non-linear EPI-to-Structural
Coregistration
A recent work (Wang et al., 2017) has considered the possibility
of replacing the classical rigid EPI-to-structural coregistration
step with a non-linear counterpart, and then running a non-
linear structural-to-template registration as usual. They show
that their method outperforms the method based on distortion
correction and linear EPI-to-structural coregistration followed by
structural-to-template registration as usual (see section 2.3.1). In
contrast, our proposed method (refer to section 2.3.2) does not
use the structural image at all.

4. EXPERIMENTS

We now describe benchmarks done to compare the pipelines
presented in this paper (subsection 2.3) on the task fMRI data
of 110 subjects from the HCP dataset (Van Essen et al., 2012).
The task fMRI data were acquired in an attempt to assess major
domains that sample the diversity of neural systems, including:
(1) visual, motion, somatosensory, and motor systems; (2)
language processing (semantic and phonological processing); (3)
social cognition (Theory of Mind); and (4) emotion processing.
Due to time constraints, our benchmarks were run only on these
4 (out of a total of 7) tasks (i.e., protocols). Also, only data for
LR (left-right) phase-encoding direction (Chang and Fitzpatrick,
1992) runs were used. In all the non-T1w-based pipelines, the
single-band high-resolution (SBRef) image of the motor task was

used to learn deformations of the subject’s brain into template
space (a fixed subject of the same dataset).

The estimated deformations were then applied to warp EPI
data (previously coregistered to same subject’s motor SBRef)
acquired on the same subject during different task conditions,
into template space. General Linear Models (GLMs) (Friston
et al., 1994) were run using nipy (Gorgolewski et al., 2011), an
open-source Python library for analysis of neuro-imaging data.
For the purpose of reporting the results, the resulting maps were
was co-registered to MNI space a posteriori.

4.1. Evaluation Metrics
The pipelines were evaluated using the following qualitative and
quantitative metrics.

4.1.1. Normalized Mutual Information Evaluation

(NMI)
NMI is a popular similarity metric used to assess the quality of
registration between two images, i.e., how well the images are
aligned to one another (for example Maes et al., 1997). It is also
the loss function minimized by many optimization algorithms
in image registration. Formally, the NMI between two images
X1 ∼ pX1 and X2 ∼ pX2 is defined by

NMI(X1,X2) =
I(X1,X2)√
H(X1)H(X2)

, (3)

whereH(Xi) := H(pXi ) :=
∑

x pXi (x) log(pXi (x)) are the marginal
entropies of images and I(X1,X2) := H(X1) − H(X2|X1) the
mutual information between the voxel values.

A detailed overview of the use of the NMI metric in medical
image registration can be found in Pluim et al. (2003). In our
experiments, FSL’s flirt3 tool (Smith et al., 2004) was used to
compute NMI from subjects EPI’ data after registration in both
scenarios: the classical T1w-based method and our proposed
direct EPI-to-EPI method.

4.1.2. Inter-subject Residual Variance
In a good registration method, the residual subject-to-subject
variance of the EPI image should be reduced. The aim of
inter-subject registration is indeed to put subjects into spatial
correspondence to facilitate later group analysis. To measure the
quality of the different registration methods in this regards, we
computed the relative variance—also known as variance-to-mean
ratio (VMR)—across the different subjects after registration. This
is defined for each voxel by

VMR =
variance image across subjects

mean image across subjects
. (4)

This produces a 3D statistic image in which regions of the brain
that are not well registered across subjects are outlined.

4.1.3. Group-Level Statistics and Functional Brain

Network Patterns
Finally, in a successful inter-subject registration procedure, we
expect the functional activation patterns to be more localized in

3With the “-schedule” option.
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space and to have higher peaks. Or could this effect could be
masked by inter-subject variability in activation magnitude? This
will be discussed in detail in the discussion section 6.

4.2. How Many (Plausible) Pipelines Are
There?
It is worth noting that potentially hundreds of pipelines could
have been considered for testing: should we do distortion
correction? And if yes, how? Should we use linear or non-linear
model for the deformation field? What degree should we use for
the interpolating splines? In fact as noted in Poldrack et al. (2017),
there are exponentially many pipelines that can be considered,
based on the answers to the above choices. Of course some of
these parameters have rule-of-thumb default values (for example,
there is no doubt distortion correction is a good thing to do),
but others are open to preferential choice. Thus, our goal is not
to consider all possible pipelines, but to look at a more focal
question: does direct EPI-based inter-registration outperform the
traditional indirect T1w-based pipeline?

5. RESULTS

We now present results of experiments performed on the task
fMRI protocols of the HCP dataset (Van Essen et al., 2012). Refer
to section 4 for detailed information about the experiments that
we did. The different pipelines discussed in section 2.3 were used
to register the data (inter-subject registration), and the quality of
the registration was benchmarked using the different evaluation
metrics discussed in section 4.

5.1. Normalized Mutual Information (NMI)
The results comparing across-subject NMI for the pipelines are
presented in Figure 3. We see that NMI is in most cases higher
through our approach, which means that our proposed direct
EPI-based pipeline outperforms the classical indirect T1w-based
pipeline.

5.2. Residual Inter-subject Spatial
Variability
In Figure 4, we show histograms of across-subject per-voxel
relative variance [refer to Equation (4) for formal definition]. We
see that our proposed direct method outperforms the classical
indirect T1w-based method, as the former leads to relatively
more mis-aligned voxels across subjects, most concentrated on
the outer edge of the cortex (see Figure 4).

5.3. Quality of Estimated EPI Group
Template
To compare the quality of the group template produced by either
pipeline, a snap hot of the resulting mean image or template
is displayed in Figure 5. Compared to the proposed direct
method, the mean image (across all subjects) from the indirect
T1-based pipeline is blurry and has “ripples” on the cortical
surface, indicative of residual mismatch between subjects after
registration. The across-subject mean image post-registration
with our direct EPI-based pipeline is the sharpest, showing that
the subjects have been matched extremely well. Also, one notices

FIGURE 3 | Normalized Mutual Information—NMI (higher values are better).

Each point (x, y) on the plots such that x is the NMI of a given pair of subjects

registered using the pipeline on the abscissa and y is the NMI of the same pair

of subjects registered using the pipeline on the ordinate. From the one-sided

We see that our proposed direct EPI-based pipeline significantly outperforms

the classical indirect T1-based pipeline.

that the mean image from the indirect T1-based pipeline still has
some residual distortion (here in the left-to-right direction), even
though distortion correction was done as part of both pipelines.

5.4. Group-Level Statistics Maps and
Resting-State Networks
As regards group-level GLM scores, we see from Figure 6 that
our proposed method performs as well as the classical indirect
T1-based pipeline. This is remarkable, as the former pipeline does
not use any anatomical data. However, as noted in Thirion et al.
(2007) and Thyreau et al. (2012), the inter-subject variability in
statistical maps results is not mainly due to misregistration, but
to intrinsic subject differences that are manifested in amplitude
differences: the response of subjects to the same stimulus/task is
modulated differently, which is reflected in effect size fluctuations
instead of position. This is confirmed in the curves in Figure 6,
where we can see that the spatial across-subject activation profiles
are very similar between the compared registration methods,
except for the already noted slight improvement of the peakmean
activation pattern obtained by our proposed method.

Finally, Figure 7 compares the functional brain networks
obtained by running ICA on the images registered with each
pipeline, and shows essentially the same network patterns. The
absence of a difference between these maps can be explained by
the fact that resting state networks are less focal than task-based
activation-patterns, and so the former are less sensitive to the
quality of the underlying registration procedure.

6. DISCUSSION

Classical inter-subject registration pipelines use the T1 scan of
a subject to estimate the subject-to-template warp. An obvious
issue is that high-quality T1 scans are not always available, but
more generally, it is not always possible to completely align the
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FIGURE 4 | Residual inter-subject variability after registration. (Top) Histograms of relative variance [smaller is better, refer to Equation (4) for definition] for both

pipelines. We see that our proposed method reduces the inter-subject variability by a much larger margin, indicative of improved subject-to-subject alignment.

(Bottom) Log10 of ratio of the relative variance for indirect T1-based pipeline/direct EPI-based. Again, we see clearly that the gain of our proposed method is most

pronounced along the cortical surface.

FIGURE 5 | Mean EPI image across all subjects after registration (aka estimated population templates). Patches on the images have been zoomed to highlight details.

The mean image from the indirect T1-based pipeline (Left) is more blurry (as seen here in the cerebellum), compared to our direct EPI-based pipeline post-registration

across-subject mean image (Right) which is much sharper, indicative of a better inter-subject registration. Also the mean image from the T1-based pipeline has

ripples on the cortical surface indicative of residual registration problems, that can be attributed to residual EPI-distortions not captured by coregistration.

EPI images of a subject to their T1 image via coregistration.
Added to this is the possibility that such an intermediate
registration step is a potential source of interpolation artifacts.
One should mention that surface-based methods are known to
produce improved alignment of cortical landmarks over volume-
based ones like the one produced here (e.g., Ghosh et al., 2010;
Waehnert et al., 2016), but are orders of magnitude slower

than volumetric methods, since the former involves intricate
delineation of the geometry of cortical structures, and costly
optimization over non-Cartesian grids (cortical meshes).

Further, as noted in Yamada et al. (2014), distortions cannot
be fully removed with registration-based techniques, that are
compensatory operations. Indeed, as shown by our experiments
on the HCP dataset (Van Essen et al., 2012) (Figure 1), residual
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FIGURE 6 | Qualitative comparison of pipelines via GLM results. For each task contrast, and for each registration pipeline (indicated in the legends), we plot

across-subject mean activation maps of Z-scores. We also plot corresponding curves showing the variability of subject-specific activation Z-scores at brain locations

within a 50 mm radius of x, y, and z coordinates of the group activation peaks. The figure reveals that the activation peaks across the different subjects are highly

variable both in amplitude and spatial location. We see that our proposed direct EPI-based registration scheme leads to slightly higher activation peaks.

distortions persist even after correction. Consequently, efficient
distortion correction for EPI data remains an open question.
Our work proposes a direct EPI-based inter-subject registration
pipeline that to some extent evades these bottlenecks.

We have proposed a computationally cheap EPI-based
pipeline for direct inter-subject non-linear registration of
functional data. Our method has been empirically validated on
the HCP dataset (Van Essen et al., 2012), where we have shown
that we obtain registered subject images with less inter-subject
variability. Such direct EPI-based methods should replace the
well-accepted classical T1-based strategy. Results on the HCP
dataset (Van Essen et al., 2012) show that the proposed pipeline

outperforms the classical T1-based indirect registration strategy,
according to several quality metrics: NMI (Figure 3), residual
inter-subject variance (Figure 4), and quality of estimated group
template (Figure 5), without compromising the quality of post-
registration statistical analyses results (GLM, ICA, etc.). These
results replicate the findings of Grabner et al. (2014) and Huang
et al. (2010) on a larger dataset with n = 110 subjects [compared
to 10 subjects for Grabner et al. (2014) and 16 subjects for
Huang et al. (2010)] at a much lower resolution of 2 mm
isotropic [compared to 1.1 mm isotropic in Grabner et al. (2014)
and 1 mm isotropic in Huang et al. (2010)]. Still using an
EPI-based strategy, the work (Calhoun et al., 2017) has shown
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FIGURE 7 | Comparing functional brain networks from subject fMRI images registered with both pipelines, namely the classical indirect T1-based method, and our

proposed direct EPI-based method. Shown here are group-level unthresholded sub-component maps of the Default Mode Network (DMN) (Raichle et al., 2001),

using MNI coordinates reported in Table 1 of Watanabe et al. (2013).
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similar results as ours on the ABIDE dataset (Di Martino et al.,
2014).

Our experiments show that according to low-level QAmetrics
like NMI (Figure 3), residual inter-subject spatial variability
(Figure 4), and the quality of across-subject mean registered EPI
image (Figure 5), our proposedmethod outperforms the classical
indirect T1-based registration. It is well known that volume-
based registration strategies fail to match precisely many cortical
areas. Surface-based methods (Hinds et al., 2008; Tucholka et al.,
2012; Renvall et al., 2016) partly solve this problem and could
potentially help reduce the variance for indirect T1w-based
pipeline, yet with a potential increase in computation time.

In terms of more high-level metrics like group-level GLM
statistics, these gains are still present, though not as pronounced
(refer to Figure 6). Indeed, as noted in Thirion et al. (2007),
Thyreau et al. (2012), and Xu et al. (2009) the inter-subject
variability in brain maps is not primarily due to misregistration,
but to between subject differences in the magnitude and precise
shape of activation patterns. They will not be reduced by
improved anatomical alignment. Indeed Tavor et al. (2016)
showed that resting-state fMRI data alone (no anatomical
features like brain tissue maps, etc.) can be used to predict the
activation maps of a subject to a task, well above chance. This
proved, amongst other things, that task-based brain activations
are largely physiological—in contrast to being driven by subjects’
brain morphological differences—and can be predicted from
resting state fMRI data.

In a separate work (Dohmatob et al., 2016), we have
considered the possibility to model explicitly this physiology
differences by estimating latent factors of variability across-
subjects in a data-driven way using dictionary-learning. The

motivating idea behind such a model, is that activation would
be governed by the same generative model (the latent model),
and modulated at the individual level by subject-specific
physiology.
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