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Abstract

We study a dynamic pricing problem for a class of products with stable consumption patterns (e.g.,

household items, staple foods). Consumers may stock up the product at current prices for future

consumption, but they incur inventory holding costs. We model this situation as a dynamic game over

an infinite time horizon: in each period, the seller sets a price, and each consumer chooses how many

units to buy. We develop a solution methodology based on rational expectations. By endowing each

player with beliefs, we decouple the dynamic game into individual dynamic programs for each player.

We solve for the rational expectations equilibrium, where all players make optimal dynamic decisions

given correct beliefs about others’ behavior. In equilibrium, the seller may either charge a constant

fixed price or offer periodic price promotions at predictable time intervals. We show that promotions

are useful when frequent shoppers are willing to pay more than occasional shoppers for the product.

We also develop several model extensions to study the impact of consumer stockpiling on the seller’s

inventory, production, and rationing strategies.

June 2009

1



Electronic copy available at: http://ssrn.com/abstract=1010808

1 Introduction

In this paper, we study a dynamic pricing problem in the context of consumer goods. Unlike traditional

revenue management settings (e.g., airlines), consumer goods exhibit two important differences. First,

they can be purchased in bulk and inventoried for future use. Second, demand is relatively stable,

so consumers can predict their usage over time. Consequently, stockpiling behavior often arises as a

strategic response to price promotions: when the price is low, consumers will plan ahead and stock up

for future consumption. Such strategic behavior generates new challenges for revenue management of

consumer products. The goal of this paper is to study the seller’s optimal dynamic pricing strategies

and consumers’ optimal stockpiling strategies.

In our model, there is a monopolist selling to a market of consumers over an infinite time

horizon. We formulate a dynamic game between the seller and consumers: during each time period,

the seller sets a price for the product, and consumers choose how many units to buy. The product is

consumed at a steady rate. Consumers may forward buy for future consumption, but they incur in-

ventory holding costs. There is also a fixed cost associated with making any purchase. The population

is heterogeneous, so different types of consumers will make different decisions. We assume that the

seller wishes to maximize long-run average profits and consumers wish to maximize long-run average

utility.

To study this dynamic game, we introduce a methodology based on rational expectations. Our

fundamental premise is that players form expectations over others’ behavior. These expectations allow

us to decouple the dynamic game into dynamic programs for single agents. Given beliefs over consumer

behavior, the seller’s pricing problem becomes a Markov decision process. Similarly, given beliefs over

the seller’s pricing strategy and others’ purchase behavior, each consumer’s inventory problem can

also be decoupled. We introduce the notion of a rational expectations (RE) equilibrium, in which

consumers behave optimally given their beliefs, the seller prices optimally given consumer demand,

and beliefs are consistent with actual outcomes. We demonstrate the existence of a RE equilibrium.

Moreover, using duality theory, we show that an optimal dynamic strategy (or policy) can be mapped

into a cycle of price/inventory states, with transitions through this cycle of states being driven by

optimal pricing and stocking decisions. Based on this graph-theoretic analogy, we show that the RE

equilibrium involves cyclical outcomes. In particular, there will be price cycles that repeat over time.
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Our results provide several managerial insights on pricing strategies for consumer products that

may be stockpiled. First, our model sheds some light on optimal pricing formats. When is it optimal

to offer promotions and when is it preferable to charge “everyday-low-prices”? Interestingly, our model

admits both types of pricing strategies in equilibrium. We show that periodic promotions should be

used when frequent shoppers are willing to pay more for the product, compared to occasional shoppers.

In such cases, promotions are a useful price discrimination device: occasional shoppers stockpile on

promotion and frequent shoppers are willing to pay the regular price during their off-promotion visits.

From the classic Economic Order Quantity (EOQ) model, note that frequent shoppers are likely the

consumers with high holding costs, low fixed costs, and high consumption rates. Therefore, our results

also suggest that promotions are effective for products where consumers with high holding costs (or

low fixed costs or high consumption rates) also have higher valuations for the product. In addition,

we derive comparative results on how the depth and frequency of promotions depend on market

characteristics. Our results also illustrate how consumer stockpiling can generate the “post-promotion

dip” phenomenon: immediately after a promotion, there is a significant slump in quantities sold.

We then study several model extensions and the key findings are summarized here. First, we

consider how consumer stockpiling affects the seller’s inventory strategies. We find that the optimal

inventory policy, in contrast to standard EOQ-type results, may involve different order quantities

at variable time intervals. This observation suggests that stockpiling behavior on the consumer end

can initiate the bullwhip effect in supply chains. Second, we study the seller’s production planning

strategies. We find that the capacitated seller may sometimes need to produce in advance because

consumer stockpiling during promotions can lead to demand spikes. This generates increased inventory

costs and thus makes promotional pricing less attractive. Finally, we consider inventory rationing

strategies (i.e., intentionally limiting quantities sold) and show that they can improve the profitability

of price promotions. This is because the threat of stockouts during promotions may induce consumers

to buy off-promotion at regular prices.

The remainder of the paper is structured as follows. We present a literature review in Section

2. We describe our model in Section 3, and present the problem formulation and technical analysis in

Section 4. This is followed by a numerical study in Section 5. In Section 6, we analyze a special case

that yields explicit solutions and practical insights. In Section 7, we study several model extensions.

Finally, we offer concluding remarks in Section 8. All proofs are presented in the Appendix.
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2 Literature Review

Revenue Management

This paper is closely related to the recent stream of literature on optimal dynamic pricing of

finite inventories to strategic customers who form rational expectations of future prices. Representa-

tive papers, each adopting different modeling approaches, include Aviv and Pazgal (2008), Gallego,

Phillips, Sahin (2008), Liu and van Ryzin (2008a), Su (2007), Gallien (2006), Elmaghraby, Gulcu,

Keskinocak (2008), Xu and Hopp (2005), Ovchinnikov and Milner (2005), Levin, McGill, Nediak

(2008), Zhou, Cho, Fan (2005), Yin, Aviv, Pazgal and Tang (2009). The book by Talluri and van

Ryzin (2005) provides a comprehensive survey of the field of revenue management, and the survey by

Shen and Su (2007) reviews emerging work in this area related to strategic purchasing behavior. In

particular, Yin, Aviv, Pazgal and Tang (2009) is the most closely related to the current work. The

authors also utilize the rational expectations approach in their equilibrium analysis. Another closely

related paper is by Liu and van Ryzin (2008b), who show that rational expectations can emerge from

an adaptive learning process. While the papers above consider inventory on the seller side, we focus

on consumer inventory, which drives stockpiling decisions. We adopt a similar modeling approach

and study strategic consumers who are active decision-makers. Through this common paradigm, this

paper introduces consumer stockpiling behavior into the revenue management literature.

Consumer Response to Promotions

There is a large empirical marketing literature that studies consumer response to price promo-

tions. Consistent with consumer stockpiling, during promotions, there should be increases in purchase

quantity as well as duration till the next purchase. Empirical evidence for such “purchase accelera-

tion” is provided by Shoemaker (1979) and Ward and Davis (1978), two of the earliest studies (see

also Blattberg, Eppen and Lieberman, 1981; Neslin, Henderson and Quelch, 1985; Hendel and Nevo,

2006a). Another group of papers, Gupta (1988), Chiang (1991), Chintagunta (1993), and Bell, Chiang

and Padmanabhan (1999), attempt to separate the primary demand effects (brand switching) from

the secondary demand effects (purchase acceleration and stockpiling) of promotions. They do so by

incorporating consumer brand choice decisions. All these studies find that the secondary demand

effect is larger than the primary demand effect. There is another set of papers (see Gonul and Srini-
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vasan, 1996; Erdem, Imai, and Keane, 2003; and Hendel and Nevo, 2006b) that structurally estimate

a dynamic forward-looking model in which consumers form expectations of future prices. Broadly

speaking, these papers demonstrate that consumer expectations have a significant impact on purchase

decisions. These results motivate our rational expectations approach, whereby we posit that consumer

stockpiling is influenced by their future price beliefs.

There are several theoretical models that characterize optimal consumer stockpiling strategies.

In these models, the firms’s prices are exogenously specified. Meyer and Assuncao (1990) study the

consumer’s purchase problem in response to random prices that are i.i.d. over time. Their analysis

is based on Golabi’s (1985) inventory control model, applied to consumer inventories. Krishna (1992)

extend the Golabi model to the case of multiple brands. Assuncao and Meyer (1993) further extend

this line of work by incorporating consumption decisions; they also consider prices that follow a first-

order stochastic process. Krishna (1994) allows for an arbitrary distribution for the inter-arrival time

between deals and characterizes the consumer’s optimal purchasing policy. Ho, Tang, and Bell (1998)

derive the optimal purchasing policy when consumers face fixed shopping costs. They show that under

i.i.d. prices, the consumer’s optimal purchase quantity is linear in the difference between current price

and average price. The papers above assume that the seller’s prices follow an exogenous stochastic

process (e.g., i.i.d. or first-order Markov). Our paper adopts a different approach: we endogenously

derive the seller’s optimal pricing strategies in a rational expectations framework. In fact, we show

that price cycles (significantly different from i.i.d. or first-order Markov prices) emerge in equilibrium.

Optimal Pricing and Consumer Stockpiling

There are only a few papers that study both the seller’s pricing decisions and consumers’

stocking decisions as we do. Blattberg, Eppen, and Lieberman (1981) introduces a model in which the

seller offers periodic promotions to two types of consumers, with low or high holding costs. Low-cost

consumers forward buy during promotions and thus alleviate the seller’s burden of holding inventory,

while high-cost consumers pay the full price. This suggests that offering periodic promotions is an

effective way to transfer inventory carrying costs from the seller to the consumer. In their model, the

seller is assumed to offer periodic promotions; the decision variables are the depth and frequency of

promotions. In contrast, we endogenously derive the optimal temporal price structure and show that

similar promotion patterns will arise in equilibrium.
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In another paper, Jeuland and Narasimhan (1985) also assume that the seller offers periodic

promotions. They also consider two groups of consumers with high or low holding cost, but they

assume that high-cost consumers face a higher demand curve. Since high-cost consumers do not

stockpile, offering promotions effective separately these two groups across time. This illustrates that

periodic promotions serve as a price discrimination device. In our paper, we extend these insights by

considering two additional dimensions of consumer heterogeneity. Apart from different holding costs,

consumers may also have different consumption rates and different fixed shopping costs. We show

that promotions are an effective price discrimination device when consumers with high holding cost,

low fixed costs or high consumption rates also have higher valuations.

Several other papers study the competitive pricing strategies of multiple firms facing consumers

who stockpile. For simplicity, many of these papers assume that consumers may hold at most one unit

of inventory. Salop and Stiglitz (1982) show that consumer stockpiling generates price dispersion in a

mixed strategy equilibrium. During each period, some firms offer discounts to generate additional sales

to consumers who stockpile, while others keep prices high. The equilibrium price distributions involve

only two different prices and are i.i.d. across periods. Bell, Iyer, and Padmanabhan (2002) incorporate

flexible consumption into the Salop and Stiglitz model and obtain similar equilibrium results. Hong,

McAfee, and Nayyar (2002) extend the models of Varian (1980) and Narasimhan (1988) by allowing

consumers to carry inventory. They show that equilibrium prices depend on consumer inventories and

thus display negative serial correlation. In a vertical channel setup, Lal, Little and Villas-Boas (1996)

analyze forward buying at the retailer level. There are two manufacturers, one retailer, and “loyals and

switchers” at the consumer level. The authors find that allowing the retailer to forward buy decreases

price competition between manufacturers. However, Anton and Das Varma (2005) obtain different

conclusions when they study forward buying at the consumer level. Using a two-period duopoly model,

they find that strategic stockpiling intensifies competition as firms attempt to capture future market

share from rivals. Guo and Villas-Boas (2007) consider product differentiation using a two-period

Hotelling setup. In their model, high-valuation consumers have a higher propensity to stockpile.

Hence, stockpiling leads to a lower degree of differentiation and more intense price competition in

future periods. In the papers described above, equilibrium prices are either i.i.d. across time or first-

order Markov in a binary state space (since consumer inventory is either zero or one). We add to this

literature by exploring a richer state space and hence a wider class of pricing strategies.

6



3 Model

There is a monopolist seller and a mass of consumers in the market. These players interact at discrete

time periods over an infinite horizon. In each period, the seller sets a price for the product, and each

consumer chooses the number of units to purchase. Units that are not consumed immediately may be

inventoried for future use. However, there is an inventory holding cost. For the seller, production cost

is normalized to zero without loss of generality. In this environment, the seller faces a infinite-horizon

dynamic pricing problem, and individual consumers face a infinite-horizon inventory problem.

In our model, we allow for n different consumer types. Let θ ∈ Θ ≡ {1, . . . , n} denote consumer

type. Each consumer type is parameterized by four values, Rθ, vθ,Kθ, hθ, which we describe below.

The consumption rate Rθ denotes the maximum number of units that may be consumed in each period.

The valuation vθ is the positive utility derived from each unit that is consumed. The fixed cost Kθ

is incurred whenever the consumer makes a purchase. The holding cost hθ is the cost of carrying one

unit of the product over one unit of time. Let πθ denote the proportion of type-θ consumers, so these

proportions sum to one over all n types.

Consumer utility depends on three components: purchasing cost, valuation, and holding cost.

Consider a type-θ consumer. First, we consider purchasing cost. Let Dθt denote the number of

units purchased at price pt in period t by the type-θ consumer. Then, the total purchasing cost is

Kθ · 1{Dθt>0} + ptDθt. We assume that all units purchased enter the consumer’s inventory at the start

of the period and thus can be consumed within the same period. Next, we consider consumption. Let

Eθt ∈ [0, Rθ] denote the number of units consumed in period t. Then, this consumer derives positive

consumption utility of vθ · Eθt. We assume that consumption is spread evenly within the period.

Finally, we consider holding cost. Let Iθt denote the number of units held by the type-θ consumer at

the end of period t. Then, the total holding cost for this period is hθ · (Iθt +Eθt/2). Note that the last

term arises due to uniform consumption within the period, so on average, holding cost is incurred on

half the units that were consumed. In summary, the type-θ consumer’s utility accrued in period t is

given by

Uθt = vθ · Eθt −Kθ · 1{Dθt>0} − pt ·Dθt − hθ · (Iθt + Eθt/2). (1)

In each time period t, the following chronology of events occurs.

1. First, the seller sets prices pt.
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2. Then, consumers make purchase decisions. Each type-θ consumer buys Dθt units and the total

demand is Dt ≡
∑n

θ=1 πθDθt.

3. Consumption occurs. Each type-θ consumer chooses the number of units Eθt to consume. Note

that the optimal consumption decisions E∗
θt = min{Rθ, Iθ,t−1 + Dθt} are easy to obtain. Since

consumers incur holding costs on leftover units, they prefer immediate consumption over delayed

consumption. Hence, they will always consume whatever is available up to Rθ units.

4. Consumer inventory is updated by adding units purchased and subtracting units consumed,

according to Iθt = Iθ,t−1 +Dθt−Eθt. By the same reasoning above, we have Iθt = [Iθ,t−1 +Dθt−

Rθ]+.

5. The seller accrues profits in this period, as given by Πt = ptDt.

6. Each consumer accrues utility Uθt in this period according to (1) above.

Therefore, over the infinite horizon t = 1, 2, . . ., the seller makes pricing decisions and consumers

make purchase and inventory decisions. We assume that the seller wishes to maximize long-run

average profit Π ≡ limT→∞
PT

t=1 Πt

T and individual consumers seek to maximize long-run average

utility Uθ ≡ limT→∞
PT

t=1 Uθt

T . Although a similar analysis can be conducted using the discounted

profit/utility criteria, we choose to use the long-run average profit/utility criteria in order to facilitate

comparisons with the classical EOQ model, which is based on average cost.

4 General Formulation and Analysis

In this section, we formulate the seller’s pricing problem, consumers’ purchasing problem, and define

our equilibrium concept for this dynamic game.

4.1 Seller’s Problem

The seller’s problem is to determine the optimal price in each period t, which depends on consumers’

on-hand inventory. Let It = {Iθ,t}θ∈Θ denote the vector of on-hand inventories kept by each consumer

type at the end of period t. Then, the optimal pricing strategy is a function P ∗(I) that yields the

optimal price p∗t = P ∗(It−1) in each period t.
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We begin by deriving the seller’s optimal pricing strategy, given his beliefs about consumer

behavior. Suppose the seller believes that the type-θ consumer’s demand function is D̂θ(I, p), and

thus the aggregate demand function is D̂(I, p) ≡
∑n

θ=1 πθD̂θ(I, p). In other words, during period t,

when the vector of consumer inventories carried from the previous period is It−1 and when the price is

pt, the seller believes that type-θ demand will be D̂θt = D̂θ(It−1, pt) and that aggregate demand will

be D̂t = D̂(It−1, pt) =
∑

θ πθD̂θ(It−1, pt). These beliefs D̂θ(I, p) are useful analytically as they allow

us to isolate the seller’s decisions and formulate the pricing problem as a dynamic program.

The seller’s goal is to find the pricing policy P (I) that maximizes the long-run average profit

Π ≡ limT→∞
PT

t=1 Πt

T . This is an average-reward-criterion dynamic programming problem, which can

be formulated as follows: Find λ, g(I) satisfying the Bellman equations

λ + g(I) = max
p
{pD̂(I, p) + g(I′(I, p))} ∀I. (2)

Here, I′(·, ·) is the state transition function. In other words, when the previous inventory state is

It−1 and the price pt is chosen, the seller anticipates that the state will transition to It = I′(It−1, pt)

based on the beliefs about consumer demand D̂(I, p) given above. Specifically, considering each type

separately, we have I ′θ(I, p) = [Iθ + D̂θ(I, p)− Rθ]+. For any pricing policy P (I), we may interpret λ

as the seller’s long-run average revenue under this policy and g(I) as a gain function, which captures

short-term fluctuations from the long-run average when currently at state I. In particular, at the

solution (λ∗, g∗(I)) to (2), we may interpret λ∗ as the seller’s optimal long-run average profit. Further,

at each state I, the maximizer p∗ in the Bellman equation (2) is the optimal price at that state, so

these maximizers collectively yield the desired pricing strategy P ∗(I).

In summary, given beliefs D̂(I, p) about how demand will respond to price p in each inventory

state I, the seller’s optimal pricing policy P ∗(I) can be obtained by solving the dynamic program (2).

4.2 Consumer’s Problem

The consumer’s problem in each period t is to determine how many units to purchase Dθ,t, based on

price pt, on-hand inventory Iθ,t−1, as well as inferences over others’ inventories Î−θ,t−1 (which may

affect future price). We assume that consumers form inferences over the inventories of other types,

based on their beliefs of others’ purchasing behavior (as described below). Hence we may express the

consumer’s optimal purchasing strategy D∗
θ(I, p) as a function of inventories I and the price p. In
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the consumer’s problem, we use I = (Iθ, Î−θ) to denote the vector of own inventory and inferences of

others’ inventories. The optimal purchasing strategy yields the optimal quantity D∗
θ,t = D∗

θ(It−1, pt)

in each period t.

As above, we begin by endowing the consumer with beliefs. Suppose all consumers believe that

the seller sets price according to the function P̂ (I). In addition, suppose that type-θ consumers are

believed (by other types) to purchase according to the function D̂θ(I, p). In other words, at the end of

period t, all consumers anticipate the next period’s price to be p̂t+1 = P̂ (It) and that given this price,

type-θ consumers will buy D̂θ,t+1 = D̂θ(It, p̂t+1) units in the next period. Therefore, all consumers

share the same beliefs P̂ (I) over the seller’s actions as well as the same beliefs D̂θ(I, p) and Îθ over the

actions and inventories of other types θ.

Given the beliefs above, the optimal purchasing policy D∗
θ(I, p) that maximizes the type-θ

consumer’s long-run average utility Uθ ≡ limT→∞

PT
t=1 Uθ,t

T can be obtained by solving an average-

reward dynamic program. The formulation is as follows: Find µθ, fθ(I, p) satisfying the Bellman

equations

µθ + fθ(I, p) = max
Dθ

{Uθ(Iθ, p,Dθ) + fθ(I′(I, p,Dθ), P ′(I, p,Dθ))} ∀I, p. (3)

Here, similar to (1),

Uθ(Iθ, p,Dθ) = vθ · Eθ(Iθ, Dθ)−Kθ · 1{Dθ>0} − p ·Dθ − hθ · (I ′θ(Iθ, p,Dθ) + Eθ(Iθ, Dθ)/2) (4)

is the per-period utility function, where Eθ(Iθ, Dθ) = min{Rθ, Iθ + Dθ} is the quantity consumed.

Next, I′(·, ·, ·) and P ′(·, ·, ·) are the state transition functions. In particular, for I′(·, ·, ·), we have

I ′θ(I, p,Dθ) = [Iθ + Dθ − Rθ]+ for type θ and I ′−θ(I, p,Dθ) = [Î−θ + D̂−θ(I, p) − R−θ]+ for other

types. Next, for the other transition function P ′(·, ·, ·), we have P ′(I, p,Dθ) = P̂ (I′(I, p,Dθ)). At the

solution (µ∗, f∗θ (I, p)) to (3), we may interpret µ∗ as the consumer’s optimal long-run average utility

and f∗θ (I, p) as a gain function, which represents short-term fluctuations from the optimal long-run

average when currently facing inventories I and price p. At each state (I, p), the maximizer D∗
θ in the

Bellman equation (3) is the optimal purchase quantity at that state, so these maximizers collectively

yield the desired purchasing strategy D∗
θ(I, p).

Here, we have formulated a dynamic program that yields the type-θ consumer’s optimal pur-

chasing policy D∗
θ(I, p). This policy is optimal under common beliefs over the seller’s pricing policy

P̂ (I) as well as common beliefs over other types’ purchasing policies D̂−θ(I, p).
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4.3 Rational Expectations Equilibrium

We seek a rational expectations (RE) equilibrium in the game between the seller and the consumers.

The basic requirements of our equilibrium concept is that each player (seller or consumer) forms beliefs

over others’ strategies and optimizes individual payoffs given these beliefs (as described in the previous

subsections), and that these beliefs must be accurate. The definition of our RE equilibrium is provided

next.

Definition 1 A rational expectations (RE) equilibrium consists of a pricing policy P ∗(I) and pur-

chasing policies D∗
θ(I, p) satisfying the following three conditions.

1. (Seller optimality) Given beliefs over consumer demand D̂θ(I, p) for each type θ, the seller’s

pricing policy P ∗(I) maximizes long-run average profits Π.

2. (Consumer optimality) Given beliefs over the seller’s pricing policy P̂ (I) and other types’ pur-

chasing policies D̂−θ(I, p), each type-θ consumer’s purchasing policy D∗
θ(I, p) maximizes long-run

average utility Uθ.

3. (Dynamic consistency) All beliefs are consistent with outcomes in all states and over all time.

Specifically, P̂ (I) = P ∗(I), D̂(I, p) =
∑n

θ=1 D∗
θ(I, p), D̂θ(I, p) = D∗

θ(I, p), and Îθt = Iθt.

Before proceeding, we state two technical assumptions. First, we assume that the seller’s set

of allowable prices is bounded. This is not restrictive since the upper bound can be set as the highest

per-unit consumer valuation without loss of optimality. Second, we assume that consumers may stock

up for at most τ future periods. Again, this assumption is not restrictive since consumers incur holding

costs; then, it is never optimal for the consumer to stock beyond some finite time point in the future.

This assumption can also be interpreted as an expiration date for the product (e.g., perishable items)

or a physical holding capacity (e.g., for bulky consumer products).

The following theorem guarantees the existence of a RE equilibrium in our model.

Theorem 1 There exists an RE equilibrium {P ∗(I);D∗
θ(I, p)} satisfying seller optimality, consumer

optimality, and dynamic consistency.

The proof appears in the appendix. The key idea is to consider a static version of the game between the

seller and the consumers, in which the seller makes a one-shot choice of a pricing policy P (I) and the
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consumers also makes a one-shot choice of purchasing policies Dθ(I, p), and the corresponding payoff

functions are the long-run average payoffs Π and Uθ. Observe that a pure-strategy Nash equilibrium

in this static game satisfies the conditions for our RE equilibrium defined above. Thus, the proof

proceeds by establishing the existence of a pure-strategy equilibrium in this static game.

There is another useful structural property of the RE equilibrium. The next theorem indicates

that in any RE equilibrium outcome, there will be price cycles.

Theorem 2

(i) Given any beliefs over consumer demand D̂θ(I, p), the seller’s optimal pricing policy P ∗(I) follows

a cyclic pattern. That is, there are prices {p̃i}m
i=1 such that the seller chooses price pt = p̃t mod m

for every t.

(ii) Given any beliefs over the seller’s pricing policy P̂ (I) and other types’ purchasing policies D̂−θ(I, p),

each type-θ consumer’s optimal purchasing policy D∗
θ(I, p) generates inventory levels that follow

a cyclic pattern. That is, there are inventory levels {Ĩi}m
i=1 such that the inventory level is

It = Ĩt mod m for every t.

(iii) In particular, in any RE equilibrium, the seller’s prices and the consumers’ inventory levels

follow a cyclic pattern.

The proof is presented in the appendix and is based on a graphical argument. Here, we sketch

the basic ideas. The seller’s and consumers’ problems described in Sections 4.1 and 4.2, which are

dynamic programs, can be formulated as linear programs. We show that the dual solutions of these

linear programs have a useful interpretation. They correspond to the cyclical trajectory of states that

the system goes through (over time) as the seller sets prices optimally and consumers make purchases

optimally in each period. Consequently, equilibrium outcomes must follow a periodic pattern. As we

traverse the cycle of states, all outcomes (prices and inventory) fluctuate in a predictable manner that

repeats itself over each cycle. The reader is referred to Appendix A for more details.

This result also provides a useful equivalence between dynamic pricing policies P (I) and price

cycles. With the latter interpretation, we may directly calculate the seller’s long-run average revenue

and the consumers’ long-run average utility corresponding to any arbitrary cycle of prices and inven-

tories. Although solving dynamic programming problems is computationally feasible, in some cases,
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it may be analytically more convenient to look for equilibria over price cycles. This approach will be

useful later.

5 Computational Study

The numerical study in this section proceeds as follows. As a starting point, we randomly generate

a variety of hypothetical model scenarios. For each scenario, we computationally characterize the RE

equilibrium using the theoretical results developed in the preceding section. With these results, we

provide insights on how the seller’s optimal pricing strategies may be driven by model input parameters.

Finally, we demonstrate that it is important to recognize consumer stockpiling by contrasting our

computational results to a benchmark in which the seller neglects such behavior.

First, we describe our sample selection procedure. We simulate a total of 2000 model scenarios.

In each model scenario, the seller sells to a market consisting of 4 equal-sized consumer segments. As

described in Section 3, the market size is normalized to 1 and each consumer segment i = 1, . . . , 4 is fully

characterized by the parameters vi, Ri, hi,Ki. The valuation vi is drawn from a normal distribution

with mean $5.00 and standard deviation $1.00. The per-period consumption rate Ri is either 1 unit

(with probability 0.75) or 2 units (with probability 0.25). The per-period, per-unit holding cost hi

and the fixed cost Ki are both exponentially distributed with means $1.50 and $3.00 respectively. All

random realizations above are independent across consumer segments and across scenarios. To simplify

the state and action spaces, we assume that the seller charges integral unit prices and consumers

purchase units in integral quantities.

Next, we describe how we compute the RE equilibrium for each model scenario. As explained

in Section 4.3, the RE equilibrium can be viewed as a pure-strategy Nash equilibrium in the space of

dynamic policies. That is, each player’s equilibrium strategy must be a best response to the dynamic

policies adopted by all other players. We compute the equilibrium using the alternating-move Cournot

adjustment process, which is an iterative algorithm used to compute Nash equilibria in games (see

Fudenberg and Tirole, 1991). At each step in this process, one of the players (i.e., the seller or consumer

segments 1, 2, 3, or 4, in turn) updates his current strategy to the optimal policy in response to current

choices of other players (i.e, current beliefs). Each updating step requires us to solve either the dynamic

program (2) for the seller or (3) for the consumer; we employ the value iteration algorithm here (see
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Puterman, 1994). The computational procedure described above does not converge in 108 (i.e., 5.4%)

of our simulated scenarios. Therefore, in our analysis below, we are left with a sample size of N = 1892

scenarios.

For each scenario, we are interested in the following quantities as they shed some light on the

structure of the seller’s optimal pricing policy: (i) the seller’s average price in each period, (ii) the

standard deviation of prices over each price cycle, (iii) the number of different prices offered, (iv) the

price range, (v) the length of each price cycle, and (vi) the length of each cycle of inventory states.

Note that when the seller charges a single fixed price, the standard deviation and price range are both

zero, and each price “cycle” has length 1. However, the inventory-state cycle is generally longer than

the price cycle because the former may have length exceeding 1 as a result of consumer stockpiling,

even when the seller charges a fixed price. Finally, for each simulated scenario, we are also interested

in the seller’s average profit per period. Table 1 provides summary statistics of the above quantities

of interest, displaying the mean, standard deviation, and range of each quantity over our sample of

observations.

Table 1: Summary statistics for our sample of observations.

What are some key market characteristics that shape the structure of the seller’s optimal pric-

ing strategy? For example, under what market conditions should the seller charge higher average prices

or more variable prices? When should the seller charge a fixed price? What factors influence the price

range and the length of the price cycle? We shall address these questions using our computational

results. In our sample, there is a large number of variables (i.e., 4 simulated parameters, vi, Ri, hi,Ki,

for each of the 4 consumer segments). From this pool of variables, we identify potential predictors that

might be of practical significance. For example, for each consumer attribute (e.g., the vector of fixed

costs (K1,K2,K3,K4) for the 4 consumer segments), we consider the mean, standard deviation, and
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range as possible predictors. Another set of potential predictors are correlations between each pair

of consumer attributes. Having identified these potential predictors, we proceed to look for system-

atic relationships between them and the quantities of interest described in the preceding paragraph.

Treating each quantity of interest (e.g., length of each price cycle) as a separate response variable,

we run a simple linear regression with our predictors above. (For binary response variables, we fit a

logistic regression model instead.) The results are summarized in Table 2. Each column represents a

separate regression, and significant coefficients suggest a systematic relationship.

Table 2: Regression results. Each column displays the estimated coefficients of a separate regression

model. The dependent variable is shown at the top of the column, and independent variables are

displayed on the leftmost column. Statistical significance at the 5% and 1% levels are respectively

marked by * and **.

We highlight three key observations.

1. The first two columns of Table 2 identify the main factors affecting the seller’s profit and average

prices. Our results show that profits and prices generally depend on the means of all four

consumer attributes. Specifically, prices and profits are higher as average valuations increase
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(since the coefficients 0.8531 and 0.76 are positive and significant), as average consumption rates

increase, as average holding costs decrease, and as average fixed costs decrease. These effects

match our intuition. Furthermore, note that prices and profits also depend heavily on each

pairwise correlation between consumer attributes.

2. The next three columns study various measures of price variation: standard deviation of prices,

number of unique prices offered, and whether the seller prefers variable over fixed pricing. Our

results suggest that consumer fixed costs have a large role to play. In our sample, optimal prices

appear to be more variable as average fixed costs increase (note that the coefficients 0.0517,

0.0803, 0.4054 are all highly significant and positive). In addition, our results also show that

variable pricing becomes more attractive as consumer valuations and fixed costs become more

negatively correlated (coefficient of -0.4478), as consumption rates and holding costs become

more positively correlated (coefficient of 0.7264), and as holding costs and fixed costs become

more negatively correlated (coefficient of -0.314).

3. The final two columns present regression results using a restricted sample consisting only of

observations in which the seller uses variable pricing. We are interested in asking: when the

seller varies prices over time, what factors affect the depth of discounts (reflected in the price

range) and the time intervals between them (i.e., the price cycle length)? Our results suggest

that these are more elusive questions. Compared to before, these regression models appear to

have a smaller number of significant coefficients. The only predictor that is significant for both

columns is the correlation between consumer valuations and fixed costs. As this correlation

becomes more positive, our results suggest that the seller should offer smaller discounts (since

−0.129 < 0) that are spaced between larger time intervals (since 0.8657 > 0).

For the remainder of our numerical study, we estimate the benefits of using our model by

comparing results against a benchmark. In this benchmark, the seller ignores consumer stockpiling

and assumes that consumers make purchases every period as long as the price is sufficiently attrac-

tive. Thus, the seller’s problem reduces to a standard monopoly pricing problem: the lower the price,

the more consumers will buy. For each sample observation, given the randomly generated consumer

attributes, we calculate the seller’s preferred price and his corresponding profit when he ignores stock-

piling. Since the seller fails to consider dynamic pricing, his profit will be lower in our benchmark
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calculations. For each of our sample observations, we compute the percentage profit loss that the seller

suffers when he neglects consumer stockpiling. This percentage difference can be interpreted as the

benefit of using our model.

It is instructive to divide our sample observations into three categories and consider the benefits

of our model for each of them. In the first category, the RE equilibrium involves a fixed price and no

consumers stockpile. Observe that in these instances, the seller loses nothing by ignoring consumer

stockpiling since it does not arise in equilibrium anyway. In the second category, the RE equilibrium

involves a fixed price but some consumers do stockpile. For such cases, stockpiling allows consumers

to exploit scale economies and reduce costs. When the seller fails to recognize this fact, he may

underestimate willingness-to-pay and end up with a suboptimal price. (Certainly, there may also

be scenarios in which the seller correctly chooses the optimal price even when he neglects consumer

stockpiling.) Finally, in our third category of model scenarios, the seller’s prices vary dynamically and

some consumers stockpile. In these cases, our model is used to derive the optimal price cycle, so the

seller may suffer some losses when he ignores consumer stockpiling.

Table 3 presents statistics summarizing the seller’s percentage profit loss as a result of neglecting

consumer stockpiling. The results are shown for each of the three category of observations and also for

the entire sample. Note that each of the three categories, i.e., fixed-pricing-without-stockpiling, fixed-

pricing-with-stockpiling, and variable-pricing-with-stockpiling, arises with frequencies 22%, 57%, and

21% respectively. For each category of observations (on separate rows), we show the average percentage

loss as well as the standard deviation and the median. We also present these statistics for the subset

of observations in which adopting our model yields a positive gain (i.e., the seller’s profit is strictly

lower when he ignores consumer stockpiling).

Table 3: Seller’s percentage profit loss as a result of neglecting consumer stockpiling.
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We draw three conclusions from these results.

1. In our sample, more than half of the observations involve a fixed price and consumer stockpiling.

For these cases, the median profit loss from ignoring consumer stockpiling is zero, implying

that very often, the seller can correctly obtain the optimal price without the aid of our model.

Nevertheless, when our model does matter, the seller’s percentage loss averages 35.67% and

exceeds one-third about half the time. These are rather significant proportions.

2. Next, consider the subset of observations in which the optimal pricing policy is cyclic and con-

sumers stockpile. In these cases, when the seller neglects consumer stockpiling, the percentage

losses have a mean of 15.14% and a standard deviation of 16.09%. Also, the seller’s loss exceeds

10% about half the time.

3. Finally, considering the entire sample of observations, our results show that the seller who ignores

consumer stockpiling may lose about 11.46% of his profits (on average). Note that the standard

deviation of 18.71% is rather high because there is a sizable mass point at 0 (since our model,

admittedly, makes no difference for a significant proportion of the observations, e.g., when there

is no stockpiling in equilibrium).

6 Practical Implications

In order to derive additional insights, we now consider a special case with two types of consumers. This

special case of our model can be solved analytically. We characterize the RE equilibrium explicitly

below. Then, we discuss practical implications of our results. Specifically, we: (i) discuss factors

influencing the optimal choice of pricing formats, (ii) study how the frequency and depth of discounts

depend on model parameters, and (iii) describe how equilibrium sales and inventory levels evolve over

time.

We begin with some notation and terminology for the two-type special case. For each consumer

type θ, it follows from the standard EOQ model that under constant prices, the consumer wishes to

make purchases every Tθ periods, where Tθ =
√

2Kθ
hθRθ

. We can interpret Tθ as the natural shopping

frequency, which minimizes holding and fixed costs, when prices are constant. This motivates the

following terminology for our two-type model. We shall refer to our two types as frequent shoppers
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and occasional shoppers, where the former shops more frequently under constant prices, i.e. Tf =√
2Kf

hf Rf
<
√

2Ko
hoRo

= To. Without loss of generality, we normalize time units so that Tf ≡ 1. In other

words, the length of one time period in our discrete-time model can be interpreted as the natural

shopping frequency of frequent shoppers; under constant prices, they visit the seller every period.

Similarly, we assume that the natural shopping frequency of occasional shoppers is a positive integer,

i.e. To ∈ Z+. In other words, while frequent shoppers prefer to shop every period, occasional shoppers

prefer to shop every To periods, given constant prices.

Next, we characterize the willingness-to-pay of each consumer type. For each consumer type

θ ∈ {f, o}, recall from the EOQ model that the optimal (lowest) shopping cost is
√

2hθKθRθ per unit

time, which is equivalent to
√

2hθKθ
Rθ

per unit. (Note that this lowest cost is achieved only at the

optimal shopping frequency.) Since per-unit valuation is vθ, each type-θ consumer will never pay more

than vθ −
√

2hθKθ
Rθ

for each unit of the product. We introduce the notation

WTPf ≡ vf −

√
2hfKf

Rf
,

WTPo ≡ vo −
√

2hoKo

Ro
,

for the willingness-to-pay of frequent and occasional shoppers, respectively. Further, we denote

WTPL ≡ min{WTPf ,WTPo}, WTPH ≡ max{WTPf ,WTPo}, and ∆ ≡ WTPH −WTPL.

Now, we are ready to characterize the RE equilibrium outcomes. Depending on model pa-

rameters, there are three possible types of equilibrium. We call them everyday-low-price (EDLP),

everyday-high-price (EDHP), and promotional pricing (HILO). Under EDLP and EDHP, the seller

sets a constant price at WTPL and WTPH respectively. Under HILO, the regular price is WTPH

and a sale price of WTPL is offered periodically (i.e., the discount is ∆). The following proposition

characterizes conditions under which each type of equilibrium arises.

Proposition 1 (i) Suppose WTPf > WTPo. Then, only HILO or EDHP may arise in equilibrium.

• Under HILO, the low price WTPo is offered once every To periods and the high price WTPf

is offered in other periods. Occasional shoppers buy only on sale, i.e., once every To periods.

Frequent shoppers stock up for min{∆/hf , (To− 1)} future periods when there is a sale and after

this inventory runs out, they shop every period until the next sale.

• Under EDHP, the seller charges WTPf every period and only frequent shoppers buy.
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(ii) Suppose WTPo > WTPf . Then, only EDLP or EDHP may arise in equilibrium.

• Under EDLP, the seller charges WTPf every period. Frequent shoppers buy every period and

occasional shoppers buy once every To periods.

• Under EDHP, the seller charges WTPo every period. Only occasional shoppers buy and they

shop once every To periods.

The proof is provided in the appendix. In the next few subsections, we shall proceed to discuss the

practical implications of our equilibrium results in Proposition 1.

6.1 Optimal Pricing Format

We first discuss the seller’s choice of an optimal pricing format. In practice, periodic promotions

(HILO) and constant prices (EDLP or EDHP) are both viable pricing formats. Within the boundary

of our model, our results may offer some insight on when each pricing format is preferred. In fact,

Proposition 1 clearly states that price promotions should be used only when frequent shoppers have a

higher willingness-to-pay. Otherwise, it is optimal for the seller to offer fixed prices.

Intuitively, the “frequent shoppers spend more” condition implies that periodic promotions are

an effective price discrimination device. By definition, occasional shoppers shop less frequently and

thus they are likely to stock up for longer time horizons during promotions. On the other hand, frequent

shoppers continue to visit the store even when there is no promotion. When frequent shoppers have

a higher willingness-to-pay, the seller can then extract their entire surplus during these off-promotion

visits, without losing sales to occasional shoppers (who have stocked up during promotions). Therefore,

strategic stockpiling by occasional shoppers enables the seller to price discriminate and charge a higher

off-promotion price to frequent shoppers.

When is this “frequent shoppers spend more” condition more likely to hold? Clearly, as frequent

shoppers’ valuation vf increases, this condition is more likely to hold. Recall that frequent shoppers

are so defined because their optimal shopping interval Tf =
√

2Kf

hf Rf
is short. In practice, consumers

with high holding costs h, high consumption rates R, and low fixed costs K are likely to be frequent

shoppers. If these consumers also have high valuations, the “frequent shoppers spend more” condition

is more likely to hold, and price promotions thus become more attractive for the seller. We state this

result as a corollary to Proposition 1.
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Corollary 1 Suppose the seller wishes to sell to both consumer segments. Then, all else equal, pro-

motional pricing is the optimal pricing format when:

(i) consumers with higher holding costs have sufficiently high valuations,

(ii) consumers with higher consumption rates have sufficiently high valuations,

(iii) consumers with lower fixed costs have sufficiently high valuations.

In practice, our model parameters h, K,R are closely related to demographic factors. For many

household products (e.g., detergent), consumption rates R depend heavily on household size; hence,

Corollary 1 suggests that promotions are preferred when larger households (with higher R) have higher

valuations. In fact, even when all consumers have the same valuation (i.e., vf = vo), heterogeneity in

consumption rates alone (i.e., Rf > Ro but Kf = Ko, hf = ho) already implies that price promotions

are optimal (since it follows that frequent shoppers have a higher willingness to pay). Next, note that

holding costs h are influenced by income (when we consider financial holding cost) as well as house

size (a larger house stores more products), especially for relatively heavy or bulky items (e.g., bottled

water). In the case of canned or frozen foods, if high-holding-cost consumers (from lower income

households or with smaller homes) have higher valuations, then Corollary 1 suggests that promotions

are optimal. Finally, fixed shopping costs K are often incurred through traveling to the store and are

thus related to consumers’ location relative to the store. For a particular seller, Corollary 1 suggests

that promotions are optimal when the consumers living close-by (with low K) have higher valuations.

Note that our specialized model in this subsection does have some limitations. We have assumed

that the natural shopping frequencies To and Tf = 1 are integers, so the difference between consumer

types must be rather significant for To > Tf to hold. (For example, Ko must be at least 4 times as large

as Kf , if all other parameters are the same between the two types.) Nevertheless, the numerical results

of the previous section suggest that our conclusions do extend to more general cases. For example,

Table 2 shows that the seller is more likely to prefer the HILO pricing format over fixed prices as

the correlation between consumer valuations and fixed costs becomes more negative (i.e., significant

coefficient of -0.4478); this is in agreement with our finding in Corollary 1(iii) above. Similarly, the

other two coefficients corresponding to Corollary 1(i) and (ii) appear to have the correct sign (i.e.,

0.0533 and 0.0555), although they are not statistically significant.
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6.2 Frequency and Depth of Promotions

The previous subsection examines factors that influence the seller’s optimal choice of pricing formats.

Here, focussing on situations where the seller prefers promotional pricing, we study how the optimal

frequency and depth of promotions vary with market characteristics.

Recall from Proposition 1 that under HILO pricing, the optimal discount (depth of promotion)

is ∆ = WTPf −WTPo and the optimal time interval between promotions (frequency of promotions)

is To, as given below:

∆ = (vf − vo) +
√

2hoKo

Ro
−

√
2hfKf

Rf
,

To =
√

2Ko

hoRo
.

It is natural to ask how these quantities of interest vary with consumer attributes along all three dimen-

sions: holding cost, fixed cost, and consumption rate. In particular, as consumer attributes become

more dispersed along each dimension (in the sense of a mean-preserving spread), how do the optimal

promotional depth and frequency change? Our results below provide guidance for sellers operating in

different markets, in which customers are primarily differentiated along different dimensions.

Proposition 2

(i) Suppose consumer holding costs go through a mean-preserving spread (i.e., hf increases and ho

decreases). Then, the seller should offer smaller discounts and do so less frequently.

(ii) Suppose consumer fixed costs go through a mean-preserving spread (i.e., Kf decreases and Ko

increases). Then, the seller should offer larger discounts and do so less frequently.

(iii) Suppose consumption rates go through a mean-preserving spread (i.e., Rf increases and Ro de-

creases). Then, the seller should offer larger discounts and do so less frequently.

In summary, Proposition 2 indicates that a mean-preserving spread along any of the three di-

mensions will induce the seller to offer less frequent promotions. However, its impact on the magnitude

of the discount is less clear cut. We find that mean-preserving spreads in consumption rates and in

fixed costs both lead to deeper discounts. In contrast, a mean-preserving spread in holding costs leads

to smaller discounts because an increase in hf and a decrease in ho will hamper the seller’s ability to

price discriminate against the frequent shoppers.
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6.3 Inventory and Sales

So far, we have focused mainly on price outcomes, i.e., how prices should be adjusted over time. Now

we turn attention to other measure of interest, such as quantities that are sold over time and consumer

inventory levels over time. As above, we focus on the case where the RE equilibrium involves price

promotions.

Figure 1: Inventory levels of frequent shoppers (solid line) and occasional shoppers (dashed line) over

time.

Figure 1 shows an example of how consumer inventory levels fluctuate over time when the

seller uses promotional pricing. In this example, promotions occur once every five periods. Occasional

shoppers (represented by the dashed line) buy only on promotion and they stock up for consumption

over all five periods. Frequent shoppers (represented by the solid line), on the other hand, stockpile

for three periods when there is a promotion. Consequently, over the next two periods following the

promotion, they do not visit the seller. In the fourth and fifth periods, frequent shoppers make

purchases because they have run out of inventory. This cycle repeats itself every five periods.

Notice that periodic promotions induces inefficient stockpiling by the frequent shoppers. Their

optimal shopping frequency (which minimizes shopping costs) is once every period, but instead, they

choose to stock up during promotions and incur additional costs. Such stockpiling inefficiencies do

not arise when the seller charges a fixed price. Under a fixed price, all consumers buy at their natural

shopping frequency, which minimizes shopping costs.

Next, we look at how sales quantities fluctuate over time under promotional pricing. For the

same example above, Figure 2 plots the quantities sold in each period over the price cycle. The figure
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clearly demonstrates a phenomenon known as the post-promotional dip. Following the surge of sales

at the start of the price cycle (in response to the attractive promotional price), there is an interval

with no sales. During this time, consumers are comfortably stocked up and they have no incentive

to buy. Toward the end of each price cycle, sales start to trickle in but only from frequent shoppers.

At the next promotion, this cycle repeats itself. This type of sales pattern, characterized by a surge

followed by zero and then mild sales within each price cycle, arises only under promotional pricing,

strategic stockpiling, and consumer heterogeneity. All three elements are essential to generate the

post-promotion dip.

Figure 2: Quantities sold over time.

7 Extensions

Now, we turn to several extensions of our model. In these extensions, we study how consumer stock-

piling and the seller’s pricing decisions interact with other supply-side strategies. In particular, we

examine the seller’s inventory, production, and rationing strategies.

7.1 Inventory management

In the basic analysis, we have assumed that the seller does not carry any inventory. For example, the

seller may be a retailer who procures just enough units to meet consumer demand in every period.

However, in practice, retailers often place orders in batches, as there may be economies of scale due

to fixed ordering costs. In such cases, the seller needs to hold inventory between consecutive orders

in order to satisfy demand before the next order arrives. How should the seller manage inventory
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in the presence of consumer stockpiling? How do these inventory decisions interact with the pricing

strategies studied above? We shall develop a model extension to address these questions.

In this extension, similar to the EOQ model, the seller incurs a fixed ordering cost of Ks and

a per-unit inventory holding cost of hs in every period. Let M denote the total number of consumers

(i.e., market size). We build up on the two-type model introduced in Section 6. Recall that we have

occasional and frequent shoppers with natural shopping intervals of To and Tf respectively, and the

seller may choose between EDHP, EDLP, or HILO pricing strategies. Each of these pricing strategies

generate different demand patterns. Our goal is to understand how the seller can minimize inventory-

related costs while maintaining the required stock on hand to fulfill demand under each of the above

classes of pricing strategies.

First, we consider the EDHP pricing strategies (i.e., the seller sells only to a single type of

consumers). When the seller sells only to frequent shoppers, we have our basic EOQ model, which

serves as a useful benchmark. The demand rate from frequent shoppers is MπfRf . Therefore, the

seller’s optimal cycle length is T ∗
s =

√
2Ks

hs·Mπf Rf
. In other words, the seller places an order once every

T ∗
s periods and sells to frequent shoppers at a constant rate over the entire order cycle. Next, the

other alternative under EDHP is that the seller may sell only to occasional shoppers, who stock up

once every To periods. In this case, when the seller orders precisely at these time intervals, he incurs

no inventory cost because the entire stock is transferred to consumers at the start of each cycle.

Now, we consider the EDLP and HILO strategies (i.e., the seller sells to both consumer types).

In these cases, the pricing strategies generate complex demand patterns that repeat every To periods.

• Under EDLP, the seller sells MπoRoTo units to occasional shoppers (who stock up) once every

To periods, plus an additional MπfRf units to frequent shoppers every period. In other words,

the demand pattern is MπfRf units every period, except at the start of the cycle when the

demand is MπoRoTo + MπfRf units.

• Under HILO, occasional shoppers stock up for the entire cycle length of To periods but frequent

shoppers stock up for a shorter time. Let S denote the length of time at the end of each

cycle when frequent shoppers visit the seller. Then, the demand at the start of each cycle is

MπoRoTo + MπfRf (To − S) units, and the demand at each of the final S periods is MπfRf

units. In between, the seller faces zero demand since consumers are all comfortably stocked up.
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How should the seller manage inventory so that he has sufficient stock to fulfill the demand patterns

described above? For each cycle of To periods, we find the inventory policy that minimizes cost while

sustaining sales to consumers. Our results are summarized below.

Proposition 3 Let Ts =
√

2Ks
hs·Mπf Rf

.

(i) Under EDLP, the seller should divide each cycle of To periods into N segments whose lengths

τ1, τ2, . . . , τN differ by at most one. At the start of each i-th segment, the seller places an order

to fulfill all demand that arrives within that segment. Therefore, the seller orders MπoRoTo +

MπfRfτ1 units for the first segment and MπfRfτi units for each remaining segment, where

i = 2, . . . , N . The possible candidates for N are the two integers closest to To/Ts.

(ii) Under HILO, the seller places an order at the start of each cycle. In addition, the seller should

divide the final S periods into N segments whose lengths τ1, τ2, . . . , τN differ by at most one, and

place an order at the start of each segment. Therefore, the seller orders MπoRoTo+MπfRf (To−∑N
i=1 τi) units at the start of the cycle and MπfRfτi units for each remaining segment, where

i = 1, . . . , N . The possible candidates for N are zero and the two integers closest to S/Ts.

This result highlights some major effects of consumer stockpiling on the seller’s inventory

strategies. First and foremost, when the seller sells to heterogeneous consumers with a propensity to

stockpile, we show that the optimal inventory policy may involve different order quantities at possibly

variable time intervals. In contrast, the basic EOQ model (which neglects consumer stockpiling)

recommends placing equal-sized orders at regular intervals. We find that sellers may need to use

a combination of jumbo orders (to fulfill demand from stockpiling consumers) as well as additional

smaller regular orders. In addition, under HILO strategies, there may be a longer time lag after placing

a jumbo order before placing the next (regular) order. However, such a lag is not necessary under

EDLP pricing as all orders are still placed at regular intervals.

Another finding is that the optimal policy parameters depend heavily on the demand from

frequent shoppers. Note that Ts =
√

2Ks
hs·Mπf Rf

, which is based on frequent shopper demand, plays a

key role in the results of Proposition 3. Our model suggests that market studies focusing on aggregate

demand may not be sufficient. For inventory management purposes, it is also important to estimate

consumer stockpiling tendencies in order to distill the demand rates of frequent shoppers.
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Finally, our results suggest that consumer stockpiling can generate the well-known bullwhip

effect, even in EDLP environments. As shown in Proposition 3, every-day-low-pricing does not elimi-

nate consumer stockpiling, and the seller will find it optimal to place a jumbo order once in a while.

These jumbo orders introduce variability that may propagate upwards along the supply chain. While

price stability can help to control demand fluctuations, our model cautions that stockpiling on the

consumer end can continue to inject variability into the system.

7.2 Production planning

Now, we consider the seller’s production planning strategies. In the basic analysis, we have implicitly

assumed that the seller can instantaneously produce enough units to meet demand in each period.

However, in practice, the seller may face capacity constraints. For example, during a promotion, the

seller may not be able to produce enough units in the same period to meet all the demand. In such

cases, the seller may need to build up and carry inventory into the promotional period. As a result,

the seller incurs inventory holding costs, which may influence his choice of a pricing strategy.

Here, we continue to employ the two-type model analyzed in Section 6. Recall that when

frequent shoppers are willing to pay more, the seller chooses between HILO and EDHP, but in the

reverse case, the seller chooses between EDLP and EDHP. Here, we shall study how limited production

capacity and inventory holding costs will influence the seller’s choice between the two possible pricing

formats in each case. We shall assume that the production capacity is large enough, so that it is

feasible for the seller to fulfill total demand over the entire time horizon, although advance production

may be necessary.

Let Π(EDLP ),Π(EDHP ),Π(HILO) denote the seller’s long-run average profit under each

pricing format. We have the following result.

Proposition 4

(i) Suppose WTPf > WTPo (i.e., the seller chooses between HILO and EDHP). With limited

production capacity, the value of Π(EDHP )−Π(HILO) is increased.

(ii) Suppose WTPo > WTPf (i.e., the seller chooses between EDLP and EDHP). With limited

production capacity, the value of Π(EDHP )−Π(EDLP ) is increased.
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This result indicates that the seller is more inclined to choose EDHP when there is limited

production capacity. Intuitively, as a result of stockpiling behavior, selling to all consumers (via either

EDLP or HILO) involves periodic demand surges. To fulfill these periodic surges of high demand (e.g.,

in the case of HILO, when there is a promotion), the seller may need to build up inventory, which

incurs holding costs. Figure 3 shows an example of the capacitated seller’s inventory process under

HILO (dashed line) and under EDHP (solid line); holding costs are clearly higher in the former case.

As the capacity constraint becomes tighter, the seller has to begin production earlier and thus incurs

higher holding costs. It may even be worthwhile for the seller to reduce holding costs by offering

smaller and/or more frequent discounts so that the periodic demand surges become smaller. As long

as there is limited production capacity, our results suggest that the seller will have an incentive to

discourage consumer stockpiling.

Figure 3: Seller’s inventory level with production capacity constraint, under HILO (dashed line) and

EDHP (solid line).

7.3 Rationing strategies

In this extension, we consider the possibility that the seller may use inventory rationing to discourage

strategic consumer stockpiling. In some situations, it may be profitable for the seller to withhold

inventory and fulfill only a portion of available demand. We focus on rationing during price promotions

(HILO), since it is clearly suboptimal to do so when the seller charges a fixed price. By limiting

availability during a promotion, the seller encourages consumers to buy off-promotion and thus may
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improve profits.

Suppose the seller has a finite amount of inventory to sell during a promotional period. Within

this period, units are initially offered at the regular price and any remaining units are then put on sale

(cf. Liu and van Ryzin, 2008a, 2008b). Consumers who wait for the sale price may find the product

sold out. Note that consumers know when promotions will occur, but they do not know whether they

will find the product available on sale. Since there is a fixed shopping cost, some consumers may

opt to buy at the regular price and forego the chance of obtaining the product on promotion. Let ρ

denote the probability that the product is available at the promotional price. In equilibrium, the seller

can realize this probability by making the corresponding quantity available; that is, if the equilibrium

demand during the promotional period is Dregular and Dpromotion at the regular and promotional

price, the seller stocks Dregular + ρDpromotion units, so that after the regular-priced units are sold, the

availability probability is indeed ρ. Here, we assume proportional rationing; i.e., all consumers have

equal access to the product.

The following proposition shows that promotional pricing becomes more attractive when we

allow inventory rationing. Recall from Proposition 1(i) that when frequent shoppers have a higher

willingness-to-pay, the seller chooses between HILO and EDHP pricing formats. Now, if rationing is

allowed, the seller always prefers HILO.

Proposition 5 Suppose WTPf > WTPo. If inventory rationing is allowed, the seller always uses

HILO. The regular price is WTPf and the promotional price of WTPo is offered once every To periods

but only with an availability probability of ρ. The two possible candidates for this probability are ρ = 1

(i.e., no rationing) and ρ = ρ̃ < 1, where ρ̃ ≡ 1
/(

1 + ∆
hf

)2
. The latter is preferred if the proportion

of occasional shoppers πo is sufficiently small.

The intuition for the inventory rationing strategy proceeds as follows. The candidate availability

probability ρ̃ obtained above is the cutoff probability below which frequent shoppers will prefer to buy

at the regular price rather than wait for the discount and take the chance of not getting the product.

Under this probability ρ̃, frequent shoppers always buy at the regular (high) price. Consequently, this

inventory rationing strategy strictly dominates EDHP because, apart from regular sales to frequent

shoppers, there are also promotional sales to occasional shoppers. Therefore, the seller always uses

HILO and chooses between rationing (i.e., ρ = ρ̃) and no-rationing (i.e., ρ = 1). Here, the tradeoff
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is that under rationing, some sales are lost when occasional shoppers are rationed, but doing so is

essential to induce frequent shoppers to buy at the regular price. Therefore, inventory rationing is

viable when the proportion of occasional shoppers is small.

This discussion shows that inventory rationing increases the profitability of price promotions.

While periodic promotions allow the seller to practice inter-temporal price discrimination (i.e., across

time periods), inventory rationing additionally allows for price discrimination within a time period.

In practice, some retailers offer “while supplies last” promotions. At these promotions, although

prices are low, demand is not completely satisfied. Our results suggest that these promotions cater to

occasional shoppers with a relative low willingness-to-pay.

8 Conclusion

In this paper, we study the monopolist seller’s inter-temporal pricing problem when consumers strate-

gically stockpile for future consumption. We develop a solution methodology based on rational expec-

tations, and use it to provide a graphical interpretation of dynamic pricing policies in terms of cycles

in a directed graph. With this result, we show that the equilibrium may involve either fixed prices or

periodic promotions. Our findings shed light on the optimal choice of pricing formats. Specifically,

we show that periodic promotions are preferred when frequent shoppers are willing to pay more than

occasional shoppers for the product. We also use several model extensions to study the interaction

between consumer stockpiling and the seller’s inventory, production, and rationing strategies.

There are several limitations in this study that present additional research opportunities. First,

we have assumed an exogenous consumption rate for each consumer. For some product categories,

consumption is flexible and individuals may consume more when the price is low (see Ailawadi and

Neslin, 1998, and Bell, Iyer, and Padmanabhan, 2002). It would be useful to understand the effect

of flexible consumption on equilibrium pricing strategies studied here. Second, we have also assumed

that the seller charges a fixed price for every unit. It is conceivable that nonlinear pricing may

be used to influence stockpiling behavior. Then, should quantity discounts be offered, and if so,

when? Third, this analysis is also relevant in a supply chain setting. Instead of end-consumers,

downstream buyers in a supply chain may also stockpile when they anticipate price fluctuations. This

scenario is more complex because downstream buyers do not “consume” the products at a steady rate.

30



Instead, downstream buyers (e.g., retailers) sell to end-consumers who may also stockpile the product

themselves. It is interesting to study optimal stockpiling strategies, in response to price fluctuations,

at different locations along the supply chain. This brings us to our final suggested research direction:

the current analysis can be extended to a competitive setting. An oligopoly counter-part to the present

analysis serves to verify the robustness of our results. The models by Salop and Stiglitz (1982) and

Pesendorfer (2002) may provide useful starting points. We conjecture that with multiple sellers, the

equilibrium involves mixed strategies and randomized sales.

Appendix A: Graphical interpretation of equilibrium strategies

In this appendix, we provide an alternative linear programming formulation of the underlying Markov

decision processes in our model. These alternative formulations yield an intuitive graphical interpre-

tation of the equilibrium strategies.

Consider the seller’s problem in Section 4.1. There is an alternative formulation of the dynamic

programming problem in terms of a linear program. We call this the primal problem.

minλ,g(I) λ (5)

such that λ + g(I) ≥ pD̂(I, p) + g(I′(I, p)) ∀I, p. (6)

It is well-known that the solution to the primal problem also satisfies the Bellman equations (2). At

this point, it is convenient to write down the dual of the above linear program. We call this the dual

problem.

maxx(I,p)

∑
I

∑
p

pD̂(I, p)x(I, p) (7)

such that
∑

p

x(I, p)−
∑

{(I0,p0): I′(I0,p0)=I}

x(I0, p0) = 0 ∀I, (8)

∑
I

∑
p

x(I, p) = 1, (9)

x(I, p) ≥ 0 ∀I, p. (10)

The dual problem has a useful and intuitive representation. Let us visualize a directed graph

G where each node represents a particular inventory state I and each edge represents a transition out

of state I as a result of applying price p in that state. Thus, each dual variable x(I, p) is associated

with a particular directed edge in this graph. The dual problem is to find a distribution of positive
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weights x(I, p), summing to one, over all edges, so that the objective (7) is maximized. Notice that

the constraint (8) is a flow balance condition: the sum of all weights flowing out each state I, which

is the first summation, must equal the sum of all weights flowing in, which is the second summation.

The following result states that the optimal dual solution can be viewed as a cycle of states in the

graph G.

Lemma 1 There exists an optimal solution to the dual problem x∗(I, p) such that the edges corre-

sponding to all (I, p) for which x∗(I, p) > 0 form a cycle. Further, all such strictly positive dual

variables are equal.

Intuitively, the cycle corresponding to the optimal dual solution x∗(I, p) indicates the trajectory

of states that the system goes through over time. In other words, given that the ordered set of strictly

positive dual variables is {x∗(I1, p1), x∗(I2, p2), . . . , x∗(Im, pm)}, we know that the system will cycle over

the states I1 → I2 → · · · → Im → I1 → · · · by the seller applying price pi in state Ii. Therefore, the

seller’s prices also follow a cyclic pattern p1, p2, . . . , pm, p1, p2, . . ., and so on. Similarly, the consumer’s

problem described in Section 4.2 can also be formulated as a linear program, and the dual problem

has an analogous interpretation.

We stress that the dual formulation is important because it is the strictly positive variables

at the dual solution that highlight the cycle of states. In the primal problem, such visualization is

not possible because the primal solution yields the value functions for each state. In contrast, it is

the binary nature of the dual solutions (either zero or strictly positive) that picks out the price and

inventory cycles.

Appendix B: Proofs

Proof of Theorem 1 Consider the following static game between the seller and the consumers.

The seller chooses a pricing strategy P (I) and consumers choose a purchasing strategy Dθ(I, p). We

omit the state space for brevity and write P and Dθ. The corresponding payoff functions (which are

functions of the above pricing and purchasing strategies) are the long-run average payoffs Π(P ;Dθ)

for the seller and Uθ(Dθ;P,D−θ) for the type-θ consumer. In this static game, a pure-strategy Nash

equilibrium satisfies the conditions of our RE equilibrium in Definition 1. Therefore, it suffices to

demonstrate the existence of a pure-strategy Nash equilibrium in our static game.
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We proceed by studying the payoff functions Π(P ;Dθ) for the seller and Uθ(Dθ;P,D−θ) for

the type-θ consumer. Consider first the seller. Given Dθ, the seller’s best response P ∗ that maximizes

Π(P ;Dθ) can be solved via dynamic programming as described in Section 4.1, so choosing the pricing

strategy P is equivalent to choosing the value functions g(I) and objective value λ. Thus, we may also

write the payoff function as Π(λ, g(I);Dθ). As we show in Appendix A, the seller’s dynamic program

is equivalent to the linear program (5)-(6). It is well known (see Rockafellar, 1970) that the optimal

objective value in the above program is equal to that in its Lagragian relaxation below:

min
λ,g(I)

λ +
∑
I

∑
p

L(I, p)[λ + g(I)− pD(I, p)− g(I′(I, p))], (11)

where L(I, p) are some Lagrange multipliers. Therefore, we may express the seller’s payoff function as

Π(λ, g(I);Dθ) = −

{
λ +

∑
I

∑
p

L(I, p)[λ + g(I)− pD(I, p)− g(I′(I, p))]

}
, (12)

which is linear in the seller’s strategy λ and g(I). Using the same argument, we can show that the

consumer’s payoff function is also linear in the consumer’s own strategy. Since the payoff functions are

linear and hence quasi-concave in each corresponding player’s own strategy, and the strategy spaces

are compact and convex, it then follows (see Fudenberg and Tirole, 1994) that our static game has a

pure-strategy Nash equilibrium.

Proof of Theorem 2 This result follows from Lemma 1 and the derivations in Appendix A.

Proof of Lemma 1 By the flow balance constraint (8), the edges (I, p) with strictly positive weights

must form cycles. If there is more than one such cycle, we can redistribute the weights onto the single

cycle with maximal value, where the value of a cycle is defined by the sum
∑

pD̂(I, p)x(I, p) over edges

in that cycle. This implies that there must be an optimal dual solution with weights over a single

cycle. Finally, by flow balance, the weights over each edge along the cycle must be equal.

Proof of Proposition 1 (i) Suppose WTPf > WTPo. If the seller wishes to sell only to frequent

shoppers, it is clear that he will use EDHP as described. It remains to consider the case where the

seller wishes to sell to both types. In order to sell to occasional shoppers, there must be time periods

in which the price is WTPo or lower.
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We first show that the low price must be exactly WTPo. If it were lower, occasional shoppers

will still prefer to shop at their natural frequency (once every To periods), knowing that the seller will

prefer to offer a sale again whenever they run out of inventory (i.e. after To periods); thus, the seller

is worse off by lowering the sale price below WTPo.

Next, we show that the low prices WTPo are indeed offered once every To periods. If the time

between sales were longer, there would be time periods in which only frequent shoppers buy. If such

periods earned a higher average profit, the seller would prefer EDHP described above. Since the seller

does not prefer EDHP, such time periods (selling only to frequent shoppers) must earn a lower average

profit, and they can be eliminated by offering sales every To periods. Similarly, the interval can not

be shorter because occasional shoppers will not be willing to pay price WTPo at this more costly

shopping frequency.

Finally, we show that the price during all other periods must be WTPf . This holds because

only frequent shoppers are potential buyers and the seller will extract the entire surplus.

We have shown that the seller’s pricing strategy is the HILO strategy described in the propo-

sition. In this case, occasional shoppers buy only during a sale and they stock up for the entire To

periods. On the other hand, frequent shoppers purchase for z periods’ consumption during each sale,

and we determine z below. After z periods, they buy every period (only for current consumption)

until the next sale. To compute z, note that the frequent shopper’s cost in each price cycle, if he

stocks up for z periods during the sale, is(
Kf + z ·Rf ·WTPo +

hfRfz2

2

)
+ (To − z) ·Rf · vf . (13)

The first term captures the cost to cover consumption for the z periods after the sale, and the remaining

terms are the cost to cover consumption for the remaining (To − z) periods until the next sale (this

latter cost must equal the entire consumption valuation since the seller captures all surplus). To

minimize cost, we equivalently minimize the following expression over z:(
Kf + z ·Rf · (WTPo −WTPf ) +

hfRfz2

2

)
− z
√

2hfKfRf . (14)

The minimizer is

z∗ =

√
2Kf

hfRf
+

∆
hf

= 1 +
∆
hf

. (15)

Thus, during a sale, the frequent shopper stocks up for ∆/hf future periods (may be rounded up or

down), up to (To − 1) future periods, as stated in the proposition.
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(ii) Now, we consider the other case with WTPo > WTPf . If the seller wishes to sell to only

one consumer type, he will use EDHP as described and only occasional shoppers will buy at their

desired frequency. Next, if the seller wishes to sell to both types, there must be time periods in which

the price is at WTPf or lower. In any such period with the low price, suppose occasional shoppers

stock up for τo periods and frequent shoppers stock up for τf < τo periods. Then, during the τo − τf

periods in which only occasional shoppers still have inventory, the seller will optimally sell to frequent

shoppers at price WTPf (who buy every period). Thus, all consumption over these τo periods have

been purchased at prices not exceeding WTPf . The seller can simply use EDLP as described and

obtain at least as much profit. Under the constant price WTPf , frequent shoppers buy every period

and occasional shoppers buy once every To periods.

Proof of Corollary 1 From Proposition 1, when the seller wishes to sell to both types, the two

possible pricing formats are HILO and EDLP. If WTPf > WTPo, the former is more profitable;

otherwise, the latter is more profitable. When all other dimensions of heterogeneity are equal across

types, consumers with higher holding costs are the frequent shoppers. If they have sufficiently high

valuations (i.e. vf sufficiently large), the condition WTPf −WTPo > 0 holds and HILO is thus more

profitable. This shows (i), and a similar argument applies to (ii) and (iii).

Proof of Proposition 2 First, note that the optimal promotional depth is ∆ = (vf−vo)+
√

2hoKo
Ro

−√
2hf Kf

Rf
, which decreases as hf increases and ho decreases, but increases when Kf decreases and Ko

increases, as well as when Rf increases and Ro decreases. Next, note that the optimal time between

promotions is To =
√

2Ko
hoRo

, which increases as ho, Ro decreases and when Ko increases. A larger To

implies less frequent promotions.

Proof of Proposition 3 (i) The seller places an order at the start of each cycle to meet demand

from occasional shoppers who stock up. Suppose there are N orders within each cycle. These orders

must be evenly spaced since the holding cost incurred between consecutive orders is convex in the time

between consecutive orders. Therefore, their lengths τ1, . . . , τN may differ by at most one. Finally, the

candidate values for N must be the integers closest to To/Ts since these solutions generate inventory

cycle lengths that are closest to the EOQ solution Ts =
√

2Ks
hs·Mπf Rf

, which minimizes cost.
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(ii) The seller places an order at the start of each cycle to meet demand from occasional

shoppers who stock up. If there are no further orders within each cycle, then we have the case with

N = 0. If there are further orders, this should occur only during the final S periods because there

is no demand before then. These additional orders help fulfill demand from frequent shoppers during

the final S periods, and the optimal structure of these orders follows from the same argument as in

part (i) above.

Proof of Proposition 4 (i) It suffices to show that the holding costs incurred due to limited

production capacity is higher under HILO compared to EDHP. Consider the units sold to frequent

shoppers under HILO. The holding costs incurred as a result of producing only these units already

exceed the holding costs under EDHP, since the latter faces the same demand quantity but at a

constant rate. Thus, the total holding costs under HILO must be even higher.

(ii) Now, we need to show that holding costs incurred due to limited production capacity is

higher under EDLP compared to EDHP. The same argument above applies.

Proof of Proposition 5 Consider the HILO pricing strategy with rationing where the availability

probability is ρ. If the frequent shopper does not wait for the sale, his average utility is zero since

the seller extracts all surplus. If he waits for the sale, he incurs fixed cost Kf and then there is a

probability ρ of stocking up for z periods and the remaining probability 1− ρ of earning zero. Thus,

the expected utility from waiting is

Ũf = −Kf + ρ

(
zRf · vf − zRf ·WTPo −

hfRfz2

2

)
= −Kf + ρ

(
zRf · (vf −WTPo)−

hfRfz2

2

)
= −Kf + ρ

(
zRf ·

(
∆ +

√
2hfKf

Rf

)
−

hfRfz2

2

)

= −Kf + ρ

(
zhfRf ·

(
∆
hf

+

√
2Kf

hfRf

)
−

hfRfz2

2

)

= −Kf + ρ ·
hfRf z̃2

2
,

recalling from Proposition 1 that Tf =
√

2Kf

hf Rf
= 1 and the frequent shopper’s optimal choice of z

is z̃ = 1 + ∆/hf . Therefore, the shopper will not wait for the discount if and only if Ũf ≤ 0, or

equivalently, ρ ≤ 2Kf

hf Rf

/
z̃2 = 1/z̃2 = ρ̃, where ρ̃ = 1

/(
1 + ∆

hf

)2
as given in the proposition.
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To maximize profit, the seller will not use any ρ < ρ̃ (since this only reduces sales to occasional

shoppers) and will also not use any ρ ∈ (ρ̃, 1) (since frequent shoppers will wait anyway, it is more

profitable with ρ = 1). Notice also that EDHP is dominated by HILO with ρ = ρ̃ described above.

Therefore, to maximize profit, the seller always uses HILO and chooses between ρ = 1 (no rationing)

and ρ = ρ̃. Finally, observe that using ρ = 1 yields some consumer surplus to frequent shoppers

(when they stock up during the promotion) while using ρ = ρ̃ allows the seller to capture all surplus

from frequent shoppers. On the other hand, using ρ = 1 sells to all occasional shoppers while using

ρ = ρ̃ sells only to some of them. Therefore, using ρ = ρ̃ is preferred when the proportion of frequent

shoppers is large, or equivalently, when the proportion of occasional shoppers is small.
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