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Abstract-Under the umbrella of the Computational Intelligence 

(CI) the performance of a two algorithms: Particle swarm 

Optimization (PSO) and Bacterial Foraging Optimization 

(BFO), when used for inter-turn short circuit stator winding 

fault of induction machine, is investigated in this paper. The 

proposed condition monitoring technique uses time domain 

terminal data in conjunction with the optimization algorithm 

and an induction machine model to indicate the presence of a 

fault and provide information about its nature and location. The 

proposed technique is evaluated using experimental data 

obtained from a 1.5 kW wound rotor three -phase induction 

machine. PSO and BFO are shown to be effective in identifying 

the type and location of the fault without the need for prior 

knowledge of various fault signatures. 

Index Terms-- Induction machine, computational intelligence , 

condition monitoring. 

I.  INTRODUCTION 

Induction motors are the most widely used form of electric 
machines due to their reliability and simplicity of 
construction. The condition monitoring of the motor is 

essential to detect any developing fault at an early stage, 
reducing the risks of severe motor faults. Faults can then be 
treated before completely damaging the motor, thus 
decreasing the maintenance cost and shutdown time. 
Therefore, there is an increasing need for a simple and 
reliable technique to detect incipient motor faults. Traditional 

induction machine condition monitoring techniques [1] 
usually involve the use of sensors embedded in the machine 
to measure, for example, temperature or vibration [2]. There 
has also been considerable interest in detecting windings and 
other machine faults by examination of terminal current 
waveforms [3] using data gathered under steady-state 

operating condition. This may involve the calculation of 
quantities such as input power [4] or negative sequence 
components [5]. Recent trends in condition monitoring 
include the detection of machine faults using data acquired 
during speed transients [6] and the estimation of machine 
parameters [7-11]. Winding faults such as turn-to-turn, phase-

to-phase, coil-to-coil and coil-to-ground faults are examples 
of electrical faults in IM. In squirrel cage rotor machines, bars 
crack and bad connections with the end rings can also occur. 
Furthermore, short circuit of rotor laminations is a common 
fault in both squirrel cage and wound rotor machines. Stator 
faults of IM are some of the most commonly reported faults 

with 38% of all reported faults being related to stator [18, 17, 
16]. Stator inter-turn faults are one of the more prevalent and 

potentially destructive in IM, these faults start as small shorts 
between a few turns in the same winding producing high 
current which causes severe localized heating and the fault 
rapidly spreads to a larger part of the winding leading to 
further progressive degradation that may mature into a more 
severe turn-to-ground fault. Failure of the insulation between 

winding and ground can cause a large ground current, which 
potentially can damage the core of the machine permanently. 
The stator is subjected to various stresses due to high 
temperature, movement of laminations and coils. These 
factors usually lead to insulation failure, which eventually 
produce different types of stator faults. Conventional stator 

insulation failure protection in an industrial environment is by 
ground fault relays and negative-sequence or phase current 
balance relays. However, with unbalanced line voltages 
negative-sequence relays would cause nuisance trips. Ground 
fault relays would not be effective for early fault detection 
purposes [19, 20].  

A new fault identification technique using machine terminal 
data and rotor position information has been recently 
proposed by the authors [8-10]. In this method, a 
computational intelligence search algorithm is implemented 
to estimate the values of machine parameters which give the 
best possible match between the performance of the faulty 

experimental machine and its mathematical model, thus 
identifying both the location and nature of the winding fault. 
Figure 1 shows a schematic diagram of the fault identification 
technique.  
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Fig. 1 Block diagram of the stochastic search based fault identification 

technique 
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Stator currents are calculated from an induction motor 
dynamic model and compared to the actual measured currents 
to produce a set of current errors that are integrated then 
summed to give an overall error function. When the machine 
is in its healthy state, there is a high correlation between its 

effective parameters and the model parameters resulting in a 
small calculation error. If a fault develops in the machine, its 
electrical parameters are of course modified and when the 
measured currents are compared with calculated currents 
there will be a large calculation error giving a fast indication 
that a fault of some type is present. Fault identification is 

carried out by continuously adjusting the induction machine 
model parameters off-line, using a stochastic search method, 
to achieve the minimum error between the measured and 
calculated stator currents. The new set of model parameters 
then defines the nature and location of the fault. In this paper 
two stochastic optimization techniques will be used and 

compared, Particle Swarm Optimization (PSO) and Bacterial 
Foraging Optimization (BFO). Unlike many other methods, it 
should be noted here that the new stochastic search based 
approach does not require any expert prior knowledge of the 
type of fault or its location; both are identified as an integral 
part of the optimisation process. 

Experimental tests based on a 1.5 kW wound rotor three 
phase induction machine have been carried out to validate the 
proposed fault identification algorithm with stator and rotor 
faults considered. Results confirm the capability of PSO and 
BFO to identify and locate the fault without the need for a 
previous knowledge of different fault current signatures.  

II.  INDUCTION MACHINE MATHEMATICAL MODEL 

The mathematical ABCabc model of an induction motor is 

developed using Simulink software and used with PSO and 

BFO to identify inter-turn short circuit winding faults. This 

ABCabc model is obtained from the standard machine voltage 

equations and represented by (1): 

























































































rcI

rbI

raI

sCI

sBI

sAI

rcV

rbV

raV

sCV

sBV

sAV

rrpLrcRrrpMrrpMrsrpMrsrpMrsrpM

rrpMrrpLrbRrrpMrsrpMrsrpMrsrpM

rrpMrrpMrrpLraRrsrpMrsrpMrsrpM

rsrpMrsrpMrsrpMsspLsCRsspMsspM

rsrpMrsrpMrsrpMsspMsspLsBRsspM

rsrpMrsrpMrsrpMsspMsspMsspLsAR













cos1cos2cos

2coscos1cos

1cos2coscos

cos2cos1cos

1coscos2cos

2cos1coscos

(1) 

where (VsA, VsB, VsC) ,(IsA, IsB, IsC) are the stator winding 

voltages and currents, (Vra, Vrb, Vrc), (Ira, Irb, Irc) are the rotor 

winding voltages and currents, (RsA, RsB, RsC), (Rra, Rrb, Rrc) 

are the stator and rotor winding resistances respectively, Lss 

and Lrr are the stator and rotor winding self-inductances 

respectively, Mss and Mrr are the mutual inductance between 

pairs of stator and rotor windings respectively, Msr is the peak 

value of the rotor position dependent mutual inductance 

between stator and rotor winding pairs, r is the rotor position 

angle, r1=r+23, r2=r+43 and p is the differential 

operator.  

   

III.  PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimisation (PSO) is an iterative 
optimisation technique inspired by the biological behaviour of 
a swarm of birds or bees [14]. Unlike evolutionary 
optimization techniques such as Genetic Algorithms, it is not 
based on the idea of the survival of the fittest. Instead, it is a 
collective method in which members of the population 

cooperate to find a global optimum in a partially random way 
and without any selection. Members of the population with 
the lower fitness functions are not discarded but do survive 
and can potentially be the future successful members of the 
swarm, this technique has been explained in more details by 
the authors in previous papers [8, 9]. 

IV.  BACTERIAL FORAGING OPTIMIZATION 

Bacterial Foraging Optimization (BFO) was introduced in 

2002 by Passino [13]. The BFO is a stochastic search and 
optimization technique based on the foraging behaviour of 
Escherichia coli (E. coli) bacteria which takes advantage of a 
variety of bacterial swarming and social foraging behaviours. 
Unlike PSO the bacterial foraging is based on the idea of the 
survival of the fittest. In contrast, PSO is a collective method 

in which members of the population work together to find a 
global optimum or near optimum to a degree of random way 
and without any selection. BFO algorithm has been applied 
previously by the authors using the same technique for IM 
stator and rotor winding fault identification in [10].  

V.  EXPERIMENTAL RESULTS 

The experimental work was conducted on a 1.5kW, 50 Hz, 
240V, 2-pole wound rotor induction machine coupled to a 

3kW DC machine used as a generator to provide the 
necessary load torque. The induction motor has a star 
connected stator windings and a short circuited delta 
connected rotor winding. Standard tests (dc, no-load and 
locked rotor tests) [15] were carried out to determine the 
nominal values of the machine parameters, giving the 

following results in Table 1. Tests are carried out emulating 
stator inter-turn winding fault condition. In this test, the 
measured waveforms are the three terminal voltages, three 
stator currents and rotor speed. Voltage differential probes, 
current probe amplifier and a digital tachometer are used to 
measure these signals. Data are collected over a time window 

of 0.1 sec, with a sampling interval of 1ms. For this test, data 
was gathered from a loaded machine (applied load of 0.55 
kW) operating at a steady-state. It was not possible to obtain 
convergence when using the steady-state no-load test data or 
transient test data. The acquired data were then processed off-
line using  PSO and BFO algorithms to determine the 

effective parameters of the machine. The position of each 
particle/bacterium within the solution space Xi = (RsA, RsB, 
RsC, LsA, LsB, LsC, MAB ,MBC,MCA) is a potential solution which 
can be applied to the induction motor model to evaluate a set 
of stator currents. Each parameter value must lie within a pre-
defined search space and the overall calculation error; the 
Integral Absolute Error (IAE) as defined in (2). This error 



function is the cost function to be minimized by the 
algorithms. 

   TiiiiiiIAE sCcsCmsBcsBmsAcsAm
                        (2) 

where (
sAmi ,

sBmi ,
sCmi ) are the measured currents, 

(
sAci ,

sBci ,
sCci ) are the calculated currents and ΔT is the 

sampling period. 

TABLE 1 

INDUCTION MOTOR PARAMETERS   

 

INDUCTION MOTOR PARAMETERS  Values 

Stator resistances Rs = 5. 88 Ω 

Rotor resistances  Rr = 6.83 Ω 

Stator self-inductances  Lss = 0.729 H 

Rotor self-inductances  Lrr = 0.578 H 

Mutual inductances between the stator 

windings 
Mss = 0.25 H 

Mutual inductances between the rotor 

windings 
Mrr = 0.7 H 

Mutual inductance between stator and 

rotor winding pairs  

Msr = 0.769 H 

Mrs= Msr 

A. Stator winding inter-turn fault 

A developing stator inter-turn winding fault is emulated by 
short circuiting part of one stator phase winding (winding A) 
as shown in Fig. 2.  
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Fig. 2 developing stator winding inter-turn short circuit fault test circuit 

 
Asymmetrical inter-turn short circuit in stator windings is a 

type of fault which is common in induction motors. Normally, 
short-circuits in stator windings occur between turns of one 
phase, or between turns of two phases. In this case, winding A 
was partially short circuited by connecting a link across two 
adjacent stator winding terminals. The presence of the short-
circuit fault will have a substantial impact on the stator self 

and mutual inductances as well as the stator resistance values. 
A total of nine parameters, Xi = (RsA, RsB,  RsC, LsA, LsB, LsC, 
MAB, MBC, MCA), were found to be necessary in order to obtain 
convergence, with the other parameters kept constant at the 
nominal values identified in previous work [8-11]. The search 
space for the motor parameters was set as follows: 1 ≤ Rs ≤ 

25, 1 ≤ Rr ≤ 25, 0.05 ≤ Mss ≤ 2.5, 0.05 ≤ Mrr ≤ 2.5, 0.1 ≤ Lrr ≤ 

1.5 and 0.1 ≤ Lss ≤ 1.5. To make sure that the absence of rotor 
parameters from the optimisation process did not have any 
significant effect on the search result, a second investigation 
was carried out using rotor parameters Xi = (Rra, Rrb, Rrc, Lra, 
Lrb, Lrc, Mab, Mbc, Mca) as variables, maintaining all other 

parameters at the nominal values.  

B. Stator inter-turn winding fault identification using PSO 

The PSO algorithm is implemented to identify the presence of 
a developing stator winding inter-turn fault based on the 
experimental measurements. In this test values of c1=0.5 and 
cmax=1 were used, together with a total swarm population of 8 

particles (8 particles with nine dimensions for each particles). 
Fig. 3 and Fig. 4 show the estimated stator resistances and 
self-inductances, respectively. The error function 
corresponding to the existing best solution is shown in Fig. 5. 
In this test the final estimated values of the stator resistances 
and self-inductances are given in Table 2.  

 
TABLE 2 

FINAL VALUES OF STATOR WINDING PARAMETERS OBTAINED USING PSO 

WITH STATOR INTER-TURN FAULT  

RsA (Ω) RsB (Ω) RsC (Ω) LsA (H) LsB (H) LsC (H) 

2.4625 6.3847 6.5171 0.200603 0.46547 0.411652 

 
The PSO algorithm successfully identifies the presence of the 
stator inter-turn winding fault as indicated by the low value of 
RsA compared with RsB and RsC and the low value of LsA 
compared with LsB and LsC and MAB = 0.701989 H, MBC = 

0.793266 H, MCA = 0.65742 H (compared with a nominal 
value of 0.25151 H). Fig. 6 shows the measured stator 
currents  msCmsBmsA iii ,,  and the currents  csCcsBcsA iii ,,  

calculated using the final parameter values obtained by the 
PSO algorithm showing good agreement between the two 
current waveforms. The number of iterations required to 
obtain convergence of the data sets (stator resistance, self and 
mutual inductances) was 1560. The calculation error falls 
from a maximum value of 0.798721 A.s to 0.12 A.s.  The 

second investigation to optimize the rotor parameters 
identified that the rotor parameters are approximately at the 
same value, close to their nominal values identified in [8-11], 
confirming that rotor parameters are not affected by the 
presence of the stator fault. 
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Fig.3 Estimated stator resistances obtained by PSO with a stator inter-turn 

short circuit fault; steady state load conditions   
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Fig. 4 Estimated stator self-inductances obtained by PSO with a stator inter-

turn short circuit fault; steady state load conditions  
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Fig. 5 Current error using the estimated parameters obtained by PSO with 

stator inter-turn short circuit fault; steady state load conditions  

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
-12

0

12

 

 
isA c isA m

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
-9

0

9

M
e

a
s

u
re

d
 a

n
d

 c
a

lc
u

la
te

d
 s

ta
to

r 
c

u
rr

e
n

ts
 (

A
)

 

 
isB c isB m

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
-9

0

9

time (sec)

 

 
isC c isC m

 

Fig. 6 Measured  msCimsBimsAi ,,  and calculated  csCcsBcsA iii ,,  

stator current waveforms using the estimated parameters obtained by PSO 

with a stator inter-turn short circuit fault; steady state load conditions 

C. Stator inter-turn winding fault identification using BFO 

A process similar to that used with PSO will be implemented 

with the BFO for stator inter-turn short-circuits winding fault 
identification. As mentioned earlier it was necessary to 
introduce self and mutual inductances as variable parameters 
in the search process. The many trial runs carried out 
identified resistances and self and mutual inductances of a 

stator to be the most appropriate parameters combination to 
be used.  

The BFO parameters necessary for its implementation are 
first specified including the number of bacteria within the 
population (S = 8), the initial position of each bacterium 

within the solution space, the number of chemotactic steps 
(Nc = 10) taken during each bacterium lifetime, the maximum 
number of successive steps in any one swim sequence Ns = 4 
steps and the number of reproduction (Nre = 4) and 
elimination/ dispersal events (Ned = 2) that would occur 
during the BFO implementation. Fig. 7 and Fig. 8 show the 

BFO estimated stator resistances and self-inductances, 
respectively. The error function corresponding to the existing 
best solution is shown in Fig. 9. The stator resistances and 
self-inductances were estimated at the end of the optimization 
process are given in Table 3. 

TABLE 3 

FINAL VALUES OF STATOR WINDING PARAMETERS OBTAINED USING BFO 

WITH STATOR INTER-TURN FAULT  

RsA (Ω) RsB (Ω) RsC (Ω) LsA (H) LsB (H) LsC (H) 

4.4509 6.7316 6.50516 0.27264 0.57354 0.47457 

 

excluding the computational time out of consideration the 
BFO algorithm successfully identifies the presence of the 
stator short-circuit winding fault as indicated by the low value 
of RsA compared with RsB and RsC and the low value of LsA 
compared with LsB and LsC and MAB = 0.62103 H, MBC = 
0.736786 H, MCA = 0.615039 H (compared with a nominal 

value of 0.25151 H). Fig.10 shows the measured stator 
currents  msCmsBmsA iii ,,  and the currents  csCcsBcsA iii ,,  

calculated using the final parameter values obtained by the 

BFO algorithm showing good agreement between the two 
current waveforms. 

The number of investigations required to obtain convergence 
of the data sets (stator resistances and self and mutual 
inductances) was 1996. The calculation error falls from a 
maximum value of 0.753 A.s to 0.17123 A.s. The same code 

was used to investigate the rotor parameters verified that the 
rotor parameters are approximately at the same value, close to 
their nominal values, confirming that rotor parameters are not 
affected by the presence of the stator fault. 
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Fig. 7 Estimated stator resistances obtained by BFO with inter-turn stator 

short circuit fault; steady state load conditions  
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Fig. 8 Estimated stator self-inductances obtained by BFO with a stator inter-

turn short circuit fault; steady state load conditions  
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Fig. 9 Current error using the estimated parameters obtained by BFO with a 

stator inter-turn short circuit fault; steady state load conditions  
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Fig. 10 Measured  msCimsBimsAi ,,  and calculated  csCcsBcsA iii ,,  

stator current waveforms using the estimated parameters obtained by BFO 

with a stator inter-turn short circuit fault; steady state load conditions  

 

D. Comparison between PSO and BFO algorithms 

Due to the fact that including self-inductances in the search 
process will potentially increase the sensitivity of the cost 
function consequently more attention has to be taken to 
confine the search space to prevent particles/bacterium 
leaving the search space all together which will prevent 
currents to go to infinity. Table 4 shows a comparison of the 

PSO results with those obtained using the BFO algorithm. 
The PSO algorithm had a success rate of about 75% when 
used with the load measured current data compared with a 
success rate of about 60% for the BFO algorithm. PSO was 

also substantially faster than BFO which requires a much 
larger number of investigations to produce consistent values 
for the estimated stator resistances (the number of 
investigations when conducting a BFO search being 
noticeably larger than the number of accepted solutions). This 

demonstrates the robust nature of the PSO process and its 
suitability to this type of nonlinear multivariable optimization 
problem. Both algorithms showed estimated stator and rotor 
parameters to converge to similar values, confirming that 
there is fault in the machine's stator windings. 

 

TABLE 4 

ALGORITHM COMPARISIONS; STATOR SHORT -CIRCUIT WINDING FAULTS 

Stator fault 

Algorithm 
Computational 

time (sec) 

Current 

error 

(A) 

Number of 

evaluations 

Success 

Rate 
 

PSO 156 0.12 1560 
75% (120 

trials) 

BFO 199.6 0.17133 1996 
60% (120 

trials) 

Rotor Parameters (as variables) 

Algorithm 
Computational 

time (sec) 

Current 

error 

(A) 

Number of 

evaluations 

Success 

Rate 

PSO 28 0.5415 280 
70%(120 

trials) 

BFO 167.7 0.8358 1677 
60%(120 

trials) 

 

VI.  CONCLUSION 

The use of two computational intelligence algorithms (PSO 
and BFO) to detect a developing induction motor stator 
winding fault has been presented in this paper. The condition 

monitoring method is based on the comparison of measured 
machine stator currents with those obtained from a machine 
mathematical model, and then using the algorithms to 
minimise the resulting error function. The two algorithms 
have been shown to be effective in determining the winding 
fault type and location. However results show that the PSO 

algorithm is better suited for this type of application, 
achieving a success rate of about 70% compared with 60% for 
BFO algorithm with noticeably improved execution times 
because of the smaller number of function evaluations needed 
for convergence.  
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