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Abstract Interacting and annealing are two powerful strate-

gies that are applied in different areas of stochastic mod-

elling and data analysis. Interacting particle systems approx-

imate a distribution of interest by a finite number of particles

where the particles interact between the time steps. In com-

puter vision, they are commonly known as particle filters.

Simulated annealing, on the other hand, is a global opti-

mization method derived from statistical mechanics. A re-

cent heuristic approach to fuse these two techniques for mo-

tion capturing has become known as annealed particle filter.

In order to analyze these techniques, we rigorously derive in

this paper two algorithms with annealing properties based

on the mathematical theory of interacting particle systems.

Convergence results and sufficient parameter restrictions en-

able us to point out limitations of the annealed particle filter.

Moreover, we evaluate the impact of the parameters on the

performance in various experiments, including the tracking

of articulated bodies from noisy measurements. Our results

provide a general guidance on suitable parameter choices for

different applications.
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1 Introduction

1.1 Motivation

Many real-world applications require the estimation of an

unknown state of a system from given observations at each

time step. An example from signal processing is shown on

the left in Fig. 1 where the solid line represents the true sig-

nal and the crosses represent the measurements. The classi-

cal filtering problem consists in estimating the unknown sig-

nal from the observed measurements under some assump-

tions on the signal and on the observations. In computer

vision the observations are usually image sequences cap-

tured by one or more cameras, and the discrete time steps

are given by the frame rate of the cameras. In human motion

capturing for example, one estimates the state parameters

such as joint angles and position of the human body in a

given image sequence. The estimated state is displayed by a

mesh model of the body as depicted in Fig. 2.

During the last years, particle filters have become very

popular for solving these problems. Reasons for their pop-

ularity include that they are easy to implement and they do

not assume that the signal and observations can be well ap-

proximated by linear or Gaussian models like other filters [1,

16–18]. For an overview and numerous applications we refer

the interested reader to [8].

While the mathematical fundamentals including conver-

gence results have been developed further by Pierre del

Moral in [25, 26, 29], a number of improved particle fil-

ters [8] have been proposed. A heuristically justified modi-

fication, the annealed particle filter (APF), was introduced

for articulated body motion tracking by Jonathan Deutscher

et al. [6]. They demonstrated superior performance in exper-

iments but, in view of the mathematical theory, did not gain
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Fig. 1 Filtering problem. Left:

Observations (crosses) of an

unknown signal (solid line).

Right: Estimation error of the

signal by a generic particle filter

(GPF) and an annealed particle

filter (APF). The root mean

square errors are given by the

horizontal lines. The GPF (solid

line) outperforms the APF

(dash-dot line)

Fig. 2 Motion capturing. Left:

Estimate by a GPF with 2750

particles. Right: Estimate by an

APF with 250 particles. The

APF outperforms the GPF

further insight into bounds of the quality of estimates or re-

strictions necessary for the stability of the algorithm. As a

result, it is not clear if the convergence results as stated in

the survey [3] are valid for the APF. Such results, however,

would be helpful for further improvements, simplifying the

parameter choice in applications, and for comparisons with

alternative approaches.

Further motivation to relate the design of particle filters to

the available mathematical theory is provided by two repre-

sentative experimental results: While the APF outperforms

a basic particle filter (defined in Sect. 2.2) in the domain of

motion tracking as illustrated in Fig. 2, the APF falls short of

the particle filter for a filtering problem as shown in Fig. 1.

1.2 Related Work and Contribution

Particle filters [8] are recursive Bayesian filters that are

based on Monte Carlo simulations [13]. They provide a

convenient approach to approximate the distribution of in-

terest. This technique is known as bootstrap filtering [12],

condensation [15], Monte Carlo filters [21], survival of the

fittest [19], and interacting particle approximations [26], de-

pending on the area of research.

Convergence results have been established by Pierre Del

Moral using discrete Feynman–Kac models [26]. These

Feynman–Kac modelling techniques are powerful tools that

can be applied in various domains of research.

Motivated by the experiments and the need for a math-

ematical discussion of the heuristics based on the particle

filter, we combine these heuristics developed for computer

vision tasks with Feynman–Kac models known from applied

probability and quantum theory. In the present paper, we re-

strict ourselves to two models with annealing properties that

are related to the annealed particle filter (APF) [7]. The first

model uses a principle similar to simulated annealing [20]

which is a Markov process based method for optimization.

The second model is inspired by annealed importance sam-

pling [31]. It is an importance sampling method [13] that

uses a sequence of densities for interpolation between a pro-

posal density and the density of a complex target distrib-

ution. According to these models, we derive the two algo-
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rithms interacting simulated annealing (ISA) and interact-

ing annealing sampling (IAS).

Though the algorithms are very similar, they have differ-

ent mathematical properties and are therefore suitable for

different applications, namely optimization and sampling,

respectively. Indeed, we show that the APF integrates a spe-

cial case of ISA into a generic particle filter and that the APF

converges under some assumptions to the global maximum

for each time step as the number of iterations goes to infin-

ity. Since ISA cannot be used for sampling from a posterior

distribution in contrast to ISA, the APF is applicable to op-

timization problems but not to filtering problems, while a

generic particle filter solves filtering problems but not opti-

mization problems. This novel result has a significant impact

on applications as motion tracking as we show in our exper-

iments. We reveal that regarding visual tracking as an opti-

mization problem that is solved by ISA gives better results

than regarding it as a filtering problem and solving it with

a generic particle filter. Moreover, our detailed experimen-

tal comparisons provide information for suitable parameter

settings for motion capturing and show the robustness in the

presence of noise.

1.3 Outline

We begin with the fundamentals of particle filters and dis-

cuss convergence results under various assumptions as well

as their impact on applications, particularly on motion cap-

turing. Section 3 reveals the coherence between Feynman–

Kac models and the annealed particle filter and explains the

results shown in Figs. 1 and 2.

Specifically, the flows of the Feynman–Kac distributions

and a particle approximation of these flows by the inter-

acting annealing algorithm are given in Sect. 3.1. We state

convergence properties of the algorithm in Sect. 3.2. While

Sect. 3.3 presents an interacting version of simulated anneal-

ing that converges to the regions of global minima, an inter-

acting version of annealed importance sampling is derived in

Sect. 3.4. We validate the conclusions from the theory and

assess their impact on applications in Sect. 4 using a track-

ing and a filtering example, respectively. We conclude with

a discussion and indicate further work in Sect. 5.

2 Particle Filter

In this section, we introduce a basic particle filter for solv-

ing a filtering problem as described in [8], Chap. 2 and [4].

Furthermore, we discuss its mathematical properties and ex-

plain the poor performance in the human motion capturing

experiment, see Fig. 2.

2.1 Notations

Let (E, τ) be a topological space, and let B(E) denote its

Borel σ -algebra. B(E), Cb(E) and P(E) denote the set of

bounded measurable functions, bounded continuous func-

tions and probability measures, respectively. δx is the Dirac

measure concentrated in x ∈ E, and ‖ · ‖∞ is the supre-

mum norm. Let f ∈ B(E), μ ∈ P(E), and let K be a

Markov kernel on E. We write 〈μ,f 〉 =
∫

E
f (x)μ(dx),

〈K,f 〉(x) =
∫

E
f (y)K(x, dy) for x ∈ E and 〈μ,K〉(B) =

∫

E
K(x,B)μ(dx) for B ∈ B(E). The Dobrushin contrac-

tion coefficient [10] is defined by

β(K) := sup
x1,x2∈E

sup
B∈B(E)

|K(x1,B) − K(x2,B)|.

Note that β(K) ∈ [0,1], and β(K1K2) ≤ β(K1)β(K2).

A family of transition kernels (Kt )t∈N0
is said to satisfy

the Feller property [33] if 〈Kt , f 〉 ∈ Cb(E) for all t and

f ∈ Cb(E).

2.2 Definition

Let X = (Xt )t∈N0
be an R

d -valued Markov process, called

signal process, with a family of transition kernels (Kt )t∈N0

satisfying the Feller property and initial distribution η0. Let

Y = (Yt )t∈N0
be an R

m-valued stochastic process, called ob-

servation process, defined as

Yt = ht (Xt ) + Wt for t > 0, Y0 = 0,

where for each t ∈ N, ht : R
d → R

m is a continuous

function, (Wt , t ∈ N) are independent m-dimensional ran-

dom vectors and their distributions possess densities gt ∈
Cb(R

m), t ∈ N. The filtering problem consists in computing

the conditional distribution

ηt (B) := P(Xt ∈ B | Yt , . . . , Y0), (2.1)

for all B ∈ B(Rd) or, alternatively, 〈ηt , ϕ〉 = E[ϕ(Xt ) |
Yt , . . . , Y0] for all ϕ ∈ B(Rd).

Algorithm 1 Generic particle filter

Requires: number of particles n, η0, (Kt )t∈N0
, (gt )t∈N,

(ht )t∈N, and observations (yt )t∈N

1. Initialization

• Sample x
(i)
0 from η0 ∀i

2. Prediction

• Sample x̄
(i)
t+1 from Kt (x

(i)
t , ·) ∀i

3. Updating

• Set π
(i)
t+1 ← gt+1(yt+1 − ht+1(x̄

(i)
t+1)) ∀i
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• Set π
(i)
t+1 ← π

(i)
t+1

∑n
j=1 π

(j)

t+1

∀i

4. Resampling

• Set x
(i)
t+1 ← x̄

(j)

t+1 with probability π
(j)

t+1 ∀i and go to

step 2

The generic particle filter (GPF) is a commonly used

particle filter for the solution of the filtering problem, which

provides a basis for further developments and modifications

for other applications. The algorithm consists of the four

steps “Initialization”, “Prediction”, “Updating” and “Re-

sampling”. During the initialization, we sample n times

from the initial distribution η0. By saying that we sample

x(i) from a distribution μ, we mean that we simulate n inde-

pendent random samples, also named particles, according to

μ. Hence, the n random variables (X
(i)
0 ) are independent and

identically distributed (i.i.d.) according to η0. Afterwards,

the values of the particles are predicted for the next time

step according to the dynamics of the signal process. During

the “Updating” step, each predicted particle is weighted by

the likelihood function gt (yt − ht (·)), which is determined

by the observation yt . The resampling is done by drawing n

times with replacement from the set (x̄
(j)

t+1)j=1,...,n accord-

ing to the probabilities π
(j)

t+1.

For the particle filter also other “Resampling” steps than

the one described in Algorithm 1 have been employed, e.g.

branching procedures [4, 5, 8]. A detailed discussion can

be found in [26], Chap. 11.8. The particle system is also

called interacting particle system [25] since the particles are

(obviously) not independent after resampling.

For the case of a one-dimensional signal process, the

operation of the algorithm is illustrated in Fig. 3, where

the grey circles represent the unweighted particles after

the “Prediction” step and the black circles represent the

weighted particles after the “Updating” step. While the hor-

izontal positions of the particles indicate their values in the

state space of the signal process, the diameters of the black

circles indicate the particle weights, that is the larger the di-

ameter the greater the weight. As illustrated, the particles

with large weight generate more offsprings than particles

with lower weight during the “Resampling” step. In order

to discuss the mathematical properties of the algorithm, we

use the following notions (cf. also [22]).

Definition 2.1 A weighted particle is a pair (x,π) where

x ∈ R
d and π ∈ [0,1]. A weighted particle set S is a

sequence of finite sets of random variables whose val-

ues are weighted particles: the nth member of the se-

quence is a set of n random variables S(n) = {(X(1),	(1)),

. . . , (X(n),	(n))}, where
∑n

i=1 	
(n)
i = 1.

It is clear that every weighted particle set determines a

sequence of random probability measures by

n
∑

i=1

	(i)δX(i) for n ∈ N.

The idea now is to approximate the conditional distribu-

tion ηt (2.1) by the distribution of an appropriate weighted

particle set. We note that each step of the generic particle

filter defines a particle set and consequently a random prob-

ability measure:

η̂n
t := 1

n

n
∑

i=1

δ
X̄

(i)
t

; η̄n
t :=

n
∑

i=1

	
(i)
t δ

X̄
(i)
t

;

ηn
t := 1

n

n
∑

i=1

δ
X

(i)
t

.

With this notation, the algorithm is illustrated by the three

separate steps

ηn
t

Prediction−−−−−−→ η̂n
t+1

Updating−−−−−−→ η̄n
t+1

Resampling−−−−−−→ ηn
t+1. (2.2)

2.3 Convergence

The proof of the following convergence result can be found

in [24].

Theorem 2.2 For all t ∈ N0, there exists ct independent of

n such that

E
[

(〈ηn
t , ϕ〉 − 〈ηt , ϕ〉)2

]

≤ ct

‖ϕ‖2
∞

n
∀ϕ ∈ B(Rd). (2.3)

Inequality (2.3) shows that the rate of convergence of the

mean square error is of order 1/n. However, ct depends on

t and, without any additional assumption, ct actually in-

creases over time. This is not very satisfactory in applica-

tions as this implies that one needs an increasingly larger

number of particles as time t increases to ensure a given

precision. We will state below a recent convergence result

(Theorem 2.6) which is uniform in time under additional as-

sumptions on the filtering problem. The idea of preventing

an increasing error is to ensure that any error is forgotten

fast enough. For this purpose, we define a so-called mixing

condition in accordance with [11] and [28].

Definition 2.3 A kernel on E is called mixing if there exists

a constant 0 < ε ≤ 1 and a measure μ on E such that

εμ(B) ≤ K(x,B) ≤ 1

ε
μ(B) ∀x ∈ E,B ∈ B(E). (2.4)
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Fig. 3 Operation of the generic

particle filter

This strong assumption means that the measure K(x, ·)
depends only “weakly” on x. It can typically only be es-

tablished when E ⊂ R
d is a bounded subset—which, how-

ever, is the case in many applications. We give two examples

where the kernels are not mixing.

Example 2.4 Let E = {a, b} and K(x,B) := δx(B). As-

sume that K is mixing. From inequality (2.4) we get the

following contradiction

K(a, {b}) = δa({b}) = 0 ⇒ μ({b}) = 0,

K(b, {b}) = δb({b}) = 1 ⇒ μ({b}) > 0.

Example 2.5 Let E = R and

K(x,B) := 1√
2π

∫

B

exp

(−(x − y)2

2

)

dy.

Suppose there exists an ε > 0 and a measure μ such that

the inequality (2.4) is satisfied. Note that for all x ∈ R and

all intervals I = [a, b], a < b, we have K(x, I ) > 0. Our

assumption entails that μ(I) > 0. But then εμ(I) < K(x, I )

cannot hold for all x ∈ R, since K(x, I ) → 0 as |x| → +∞.

The uniform convergence of the generic particle filter

with respect to the time parameter was first proved by Del

Moral and Miclo [29] assuming that the mixing condition

for (Kt )t∈N0
is satisfied. Le Gland and Oudjane [11] showed

also the uniform convergence (Theorem 2.6) by using the

mixing condition for the family of random kernels

Rt (x,B) :=
∫

B

gt+1(Yt+1 − ht+1(y))Kt (x, dy).

Theorem 2.6 If the family of random kernels (Rt )t∈N0
is

mixing with εt ≥ ε > 0, then there exists a constant c(ε)

independent of n such that

E
[

(〈ηn
t , ϕ〉 − 〈ηt , ϕ〉)2

]

≤ c(ε)
‖ϕ‖2

∞
n

∀t ∈ N0, ϕ ∈ B(Rd).

This means that as long as the mixing condition (2.4) is

satisfied there exists an upper bound of the error that is in-

dependent of the time parameter. Hence, the number of par-

ticles, that ensures a given precision in an application, does

not increase over time. An example that demonstrates the

impact of the condition is given in Sect. 4.2. The mixing

condition can furthermore be relaxed such that the density

dK(x, ·)/dμ is not μ-almost surely greater than or equal to

ε > 0 but may vanish on a part of the state space, as shown

in [2].

It is important to note that the results above are only valid

when the signal and the observation process are known and

satisfy the assumptions stated at the beginning. Since this

is rarely the case for applications, good approximations are

needed. In applications like motion capture, it is very diffi-

cult to model the noise of the observation process in an ap-

propriate way whereas a weight function gt , which measures

the “quality” of a particle based on some image features, can

be easily designed such that the maximum is attained for the

true value of the signal. In this case particle filters perform

poorly as we will show in Sect. 4 and as illustrated in Fig. 2.

3 Interaction and Annealing

Before we go into detail, we sketch the idea of annealing. As

seen in the top left image of Fig. 4, it may happen that the

predicted particles differ significantly from the “true” state

resulting in a poor estimate for the signal. This could be

caused by a rare event in the context of the filtering prob-

lem or by a fast movement of the observed object in the
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Fig. 4 Left: without an

annealing effect, the particles

get stuck in the local maximum.

Right: the annealing effect

ensures that the particles escape

from the local maximum

context of tracking. In order to obtain a better estimate in

this situation, the idea is to move the particles towards the

global maximum of the weight function. One approach is to

repeat the procedure for each observation or for each frame,

that means to let the particles undergo diffusion, to attribute

weights to the particles, and to resample several times before

the next time step. However as seen on the left hand side

of Fig. 4, the particles might get stuck near a local maxi-

mum. To avoid this misbehavior, the particles are previously

weighted by smoothed versions of the weighting function,

where the influence of the local maxima is reduced first but

increases gradually. This approach helps to overcome the

problem with the local maxima, as depicted on the right

hand side of Fig. 4. In the following sections, we discuss

Feynman–Kac models with annealing properties and reveal

relations to the annealed particle filter [7] that also relies on

this annealing effect. Note that from now on, we do not re-

strict ourselves to a filtering problem as in the previous sec-

tion but consider also an optimization problem. Moreover,

the two algorithms for optimization and sampling, which

are introduced in Sects. 3.3 and 3.4, apply only for one time

step. Therefore, we use more general terms. Kt and gt are

not necessarily given by a signal and observation process

and we regard t as an iteration parameter and not anymore

as a time parameter.

3.1 Feynman–Kac Model

Let (Xt )t∈N0
be an E-valued Markov process with family

of transition kernels (Kt )t∈N0
and initial distribution η0. We

denote by Pη0
the distribution of the Markov process, i.e.,

for t ∈ N0,

Pη0
(dx0 × dx1 × · · · × dxt )

= Kt−1(xt−1, dxt ) · · ·K0(x0, dx1)η0(dx0),

and by Eη0
[·] the expectation with respect to Pη0

. Moreover,

let (gt )t∈N0
be a family of nonnegative, bounded measurable

functions such that

Eη0

[

t
∏

s=0

gs(Xs)

]

> 0 ∀t ∈ N0.
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Definition 3.1 The sequence of distributions (ηt )t∈N0
on E

defined for any ϕ ∈ B(E) as

〈ηt , ϕ〉 := 〈γt , ϕ〉
〈γt ,1〉 , 〈γt , ϕ〉 := Eη0

[

ϕ(Xt )

t−1
∏

s=0

gs(Xs)

]

∀t ∈ N0, (3.1)

is called the Feynman–Kac model associated with the pair

(gt ,Kt ).

Example 3.2 Since we regard only models with anneal-

ing properties, the functions (gt )t∈N0
are unnormalized

Boltzmann–Gibbs measures gt (x) = exp(−βtVt (x)). In sta-

tistical mechanics, V ≥ 0 is interpreted as energy and βt ≥ 0

as inverse temperature. These measures are used for simu-

lated annealing [20] to obtain the global minimum of V ,

where βt is slowly increased with respect to t . Equation (3.1)

then becomes

〈γt , ϕ〉 := Eη0

[

ϕ(Xt ) exp

(

−
t−1
∑

s=0

βsV (Xs)

)]

.

It is straightforward to check that the Feynman–Kac

model as defined above satisfies the recursion relation

ηt+1 = 〈�t (ηt ),Kt 〉, (3.2)

where the Boltzmann–Gibbs transformation �t is defined by

�t (ηt )(dxt ) := 1

〈ηt , gt 〉
gt (xt )ηt (dxt ). (3.3)

The particle approximation of the flow (3.2) depends on a

chosen family of Markov transition kernels (Kt,ηt )t∈N0
sat-

isfying the compatibility condition

〈�t t (ηt ),Kt 〉 = 〈ηt ,Kt,ηt 〉.

The family (Kt,ηt )t∈N0
of kernels is not uniquely determined

by these conditions. For example, we can choose, as in [26],

Sect. 2.5.3,

Kt,ηt = St,ηt Kt , (3.4)

where

St,ηt (xt , dyt ) = ǫtgt (xt )δxt (dyt )

+ (1 − ǫtgt (xt ))�t (ηt )(dyt ), (3.5)

with ǫt ≥ 0 and ǫt‖gt‖∞ ≤ 1. It is interesting to remark that

the parameters ǫt are allowed to depend on the current dis-

tribution ηt .

Example 3.3 We continue Example 3.2. The selection ker-

nel becomes

St,ηt (xt , dyt ) = ǫt exp(−βtVt (xt ))δxt (dyt )

+ (1 − ǫt exp(−βtVt (xt )))�t (ηt )(dyt ),

where

�t (ηt )(dyt ) =
Eη0

[

exp
(

−
∑t−1

s=0 βsV (Xs)
)]

Eη0

[

exp
(

−
∑t

s=0 βsV (Xs)
)]

× exp(−βtVt (yt ))ηt (dyt ).

Algorithm 2 Interacting annealing algorithm

Requires: parameters (ǫt )t∈N0
, number of particles n, initial

distribution η0, weighting functions (gt )t∈N0
and transitions

(Kt )t∈N0

1. Initialization

• Sample x
(i)
0 from η0 ∀i

2. Selection

• Set π
(i)
t ← gt (x

(i)
t ) ∀i

• For i from 1 to n:

Sample κ from U [0,1]
If κ ≤ ǫtπ

(i)
t then

⋆ Set x̌
(i)
t ← x

(i)
t

Else

⋆ Set x̌
(i)
t ← x

(j)
t with probability

π
(j)
t

∑n
k=1 π

(k)
t

3. Mutation

• Sample x
(i)
t+1 from Kt (x̌

(i)
t , ·) ∀i and go to step 2

The interacting annealing algorithm (IAA) describes

the approximation by a particle set using (3.4). The particle

system is initialized by n i.i.d. random variables X
(i)
0 with

common law η0 determining the random probability mea-

sure ηn
0 :=

∑n
i=1 δ

X
(i)
0

/n. Since Kt,ηt can be regarded as the

composition of a pair of selection and mutation Markov ker-

nels, we split the transitions into the following two steps

ηn
t

Selection−−−−−−→ η̌n
t

Mutation−−−−−−→ ηn
t+1, (3.6)

where

ηn
t (ω) := 1

n

n
∑

i=1

δ
X

(i)
t (ω)

, η̌n
t (ω) := 1

n

n
∑

i=1

δ
X̌

(i)
t (ω)

.

During the selection step each particle X
(i)
t evolves ac-

cording to the Markov transition kernel St,ηn
t
(X

(i)
t , ·). That

means X
(i)
t is accepted with probability ǫtgt (X

(i)
t ), and we

set X̌
(i)
t = X

(i)
t . Otherwise, X̌

(i)
t is randomly selected with
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distribution

n
∑

i=1

gt (X
(i)
t )

∑n
j=1 gt (X

(j)
t )

δ
X

(i)
t

.

The mutation step consists in letting each selected parti-

cle X̌
(i)
t evolve according to the Markov transition kernel

Kt (X̌
(i)
t , ·).

Algorithm 2 approximates generally any Feynman–Kac

model associated with a pair (gt ,Kt ). However, we regard

only models with annealing properties where the IAA ap-

proximates a flow that is suitable for global optimization or

for sampling depending on the choice of (gt ,Kt ) given in

Sects. 3.3 and 3.4.

3.2 Convergence

In this section the asymptotic behavior of the particle ap-

proximation model determined by the IAA is studied. Del

Moral established the following convergence theorem ([26],

Theorem 7.4.4).

Theorem 3.4 For any ϕ ∈ B(E),

Eη0
[|〈ηn

t+1, ϕ〉 − 〈ηt+1, ϕ〉|] ≤ 2 osc(ϕ)√
n

(

1 +
t

∑

s=0

rsβ(Ms)

)

,

where

rs := sup
x,y∈E

(
∏t

r=s gr(x)
∏t

r=s gr(y)

)

,

Ms := KsKs+1 · · ·Kt ,

for 0 ≤ s ≤ t . Moreover, osc(ϕ) := sup{|ϕ(x) − ϕ(y)| ;
x, y ∈ E}.

This theorem gives us a rough estimate for the number of

particles

n ≥ 4 osc(ϕ)2

δ2

(

1 +
t

∑

s=0

rsβ(Ms)

)2

(3.7)

needed to achieve a mean error less than a given δ > 0. In

order to evaluate the right hand side, we must calculate the

Dobrushin contraction coefficient of the Markov kernel M .

The coefficient lies in the range 0 to 1, and the more the

probability measure M(x, ·) “depends” on x ∈ E the higher

the coefficient will be. We will illustrate this property in the

following three examples where we always assume that E =
[0,1].

Example 3.5 If M(x, ·) := δx and x1, x2 ∈ E with x1 �= x2,

then we get supB∈B(E) |δx1
(B) − δx2

(B)| = 1. This yields

β(M) = 1.

Example 3.6 If M(x, ·) is independent of x, e.g., if it is

equal to the Lebesgue measure λ, we have β(M) = 0.

Example 3.7 Suppose that M := KsKs+1 · · ·Kt , where

(Kk)s≤k≤t are Markov kernels and s ≤ t . Furthermore, we

assume that there exists for all s ≤ k ≤ t some εk ∈ (0,1)

satisfying for all x1, x2 ∈ E

Kk(x1, ·) ≥ εkKk(x2, ·), (3.8)

i.e. the mixing condition (2.4). Let x1, x2 ∈ E and B ∈
B(E). Then we get |Kk(x1,B) − Kk(x2,B)| ≤ 1 − εk and

thus β(M) ≤
∏t

k=s(1 − εk).

Note that the right hand side of (3.7) is minimized if we

are able to choose Markov kernels Ks such that β(Ms) is

small. However, if we compare the examples, we see that

this can be interpreted as if we do not “trust the particles”.

In practice, it would be preferable to select the Markov ker-

nels by means of the “quality” of the particles in the previous

step. One approach is to select kernels that depend on a set

of parameters, for example Gaussian kernels with the entries

of the covariance matrix as parameters. The values of the pa-

rameters are then determined automatically by the particles,

e.g., the variance is set proportional to the sampling variance

of the particles. This can be realized by a dynamic variance

scheme as we will explain in Sect. 3.3.

It is worth to mention two special cases of the selec-

tion kernel (3.5) that defines the resampling procedure in

the interacting annealing algorithm. If ǫt = 0 for all t , we

get the resampling step of the generic particle filter. The

second special case occurs when we set the parameters

ǫt (ηt ) := ǫ′
t/〈ηt , gt 〉, where 0 < ǫ′

t ≤ 1/g and

g := sup
t∈N0

(

sup
x,y∈E

(

gt (x)

gt (y)

))

< ∞, (3.9)

as proposed in [27]. The selection kernel becomes

St,ηt (xt , ·) = ǫ′
t

gt (xt )

〈ηt , gt 〉
δxt +

(

1−ǫ′
t

gt (xt )

〈ηt , gt 〉

)

�t (ηt ). (3.10)

Note that the necessary condition ‖(ǫ′
t gt )/〈ηt , gt 〉‖∞ ≤ 1

is satisfied since gt/〈ηt , gt 〉 ≤ g. If we set the number of

particles n ≥ g, then we can choose ǫ′
t = 1/n. For some

random variables X
(i)
t and the random probability measure

ηn
t =

∑n
j=1 δ

X
(i)
t

/n, we thus have

ǫ′
t

gt (X
(i)
t )

〈ηn
t , gt 〉

= gt (X
(i)
t )

∑n
j=1 gt (X

(j)
t )

.

This means that the expression ǫtπ
(i)
t in Algorithm 2 is re-

placed by π
(i)
t /

∑n
k=1 π

(k)
t .
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Pierre del Moral showed in [26], Sect. 9.4 that for any

t ∈ N0 and ϕ ∈ B(E) the sequence of random variables

√
n(〈ηn

t , ϕ〉 − 〈ηt , ϕ〉)

converges in law to a Gaussian random variable W when

the selection kernel in (3.5) is used to approximate the flow

(3.2). It turns out that when we use ǫ′
t = 1/n, the variance

of W is strictly smaller than in the case with ǫt = 0. This

seems to indicate that it is preferable to use the selection

kernel (3.10).

3.3 Interacting Simulated Annealing Algorithm

In the preceding section, we discussed how a Feynman–

Kac model associated with a pair (gt ,Kt ) can be approxi-

mated by the IAA without giving details on gt and on Kt .

However, we already introduced unnormalized Boltzmann–

Gibbs measures exp(−βtV ) in Examples 3.2 and 3.3. In the

following we outline an interacting algorithm that can be

regarded as an interacting simulated annealing algorithm

(ISA).

We suppose that K is a Markov kernel satisfying the mix-

ing condition (3.8) for an ε ∈ (0,1) and osc(V ) < ∞. A time

mesh is defined by

t (n) := n(1 + ⌊c(ε)⌋),

c(ε) := (1 − ln(ε/2))/ε2 for n ∈ N0.
(3.11)

Let 0 ≤ β0 ≤ β1 ≤ · · · be an annealing scheme such that

βt = βt (n+1) is constant in the interval (t (n), t (n + 1)]. Fur-

thermore, we denote by η̌t the Feynman–Kac distribution

after the selection step, i.e. η̌t = �t (ηt ). According to [26],

Proposition 6.3.2, cf. also [30], we have

Theorem 3.8 Let b ∈ (0,1) and βt (n+1) = (n + 1)b . Then

for each δ > 0

lim
n→∞

η̌t (n)({x ∈ E; V (x) ≥ V⋆ + δ}) = 0,

where V⋆ = sup{v ≥ 0; V ≥ v a.e.}.

The rate of convergence is d/n(1−b) where d is increas-

ing with respect to b and c(ε) but does not depend on n as

given in [26], Theorem 6.3.1. This theorem establishes that

the flow of the Feynman–Kac distribution η̌t becomes con-

centrated in the region of global minima as t → +∞. The

flow can be approximated by the interacting annealing algo-

rithm with gt = exp(−βtV ) and Kt = K .

The mixing condition is not only essential for the con-

vergence result but also influences the time mesh by the pa-

rameter ε. When ε is small, c(ε) becomes large and thus

the intervals of the time mesh, where η̌t and n are constant,

are large according to (3.11). It entails that the convergence

with respect to t is slow, since it takes many iterations until

n is increased. Hence, kernels with ε close to 1 are prefer-

able, e.g. Gaussian kernels on a bounded set with a very high

variance as discussed in Sect. 2.3. However, we cannot sam-

ple from the measure η̌t directly, instead we approximate it

by n particles. Now the following problem arises. On one

hand the mass of the measure concentrates on a small re-

gion of E, and on the other hand the particles are spread

over E if ε is large. As a result we get a degenerated sys-

tem where the weights of most of the particles are zero and

thus the global minima are estimated inaccurately, particu-

larly for small n. If we choose a kernel with small ε in con-

trast, the convergence rate is very slow. Since neither of them

is suitable for applications, we suggest a dynamic variance

scheme instead of a fixed kernel K as already mentioned in

Sect. 3.2.

Let Kt be a family of Gaussian kernels on a bounded set

E with covariance matrices �t proportional to the sample

covariance after the “Resampling” step. That is, for a con-

stant c > 0,

�t := c

n − 1

n
∑

i=1

(x
(i)
t − μt )ρ(x

(i)
t − μt )

T
ρ ,

μt := 1

n

n
∑

i=1

x
(i)
t ,

(3.12)

where ((x)ρ)k = max(xk, ρ) for a ρ > 0. The value ρ en-

sures that the variance does not become zero. The elements

off the diagonal are usually set to zero, in order to reduce

computation time.

We remark that the APF is a particle filter where the “Up-

dating” and “Resampling” steps are replaced by the inter-

acting simulated annealing algorithm with ǫt = 0. The algo-

rithm is illustrated similarly as in (2.2) by

ηn
t

Prediction−−−−−−→ η̂n
t+1

ISA−−→ ηn
t+1. (3.13)

The ISA is initialized by the predicted particles X̂
(i)
t+1 and

performs M times the selection and mutation steps. After-

wards the particles X
(i)
t+1 are obtained by an additional se-

lection. This shows that the annealed particle filter uses a

simulated annealing principle to locate the global minimum

of a function V at each time step. Hence, it is suitable for

applications like motion capturing as illustrated in Fig. 2

and demonstrated in Sect. 4. However, it also reveals that

the conditional distribution (2.1) is no longer approximated

in the way of the generic particle filter, and therefore the

arguments in Sect. 2 cannot be applied without modifica-

tions. In the next section, we present a model that approxi-
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mates a given distribution by the interacting annealing algo-

rithm.

3.4 Interacting Annealed Sampling Algorithm

Our method can be regarded as an annealed importance sam-

pling [31] for particles. In contrast to annealed importance

sampling for a single particle, it allows additional interac-

tion of the particles during the steps and can be integrated

in an interacting particle system. The approach is motivated

by [8], Chap. 7 where the combination of annealed impor-

tance sampling with the generic particle filter is suggested.

Let us consider a finite sequence of Boltzmann–Gibbs mea-

sures

μt (dx) := 1

〈μ0, exp(−βtV )〉 exp(−βtV (x))μ0(dx) (3.14)

according to some schedule 0 = β0 < β1 < · · · < βT −1 <

βT = 1, where μ0 ∈ P(E). In contrast to simulated anneal-

ing and ISA that converge to the global minima of V , an-

nealed importance sampling approximates the distribution

μT .

We use a Feynman–Kac model associated with a pair

(gt ,Kt ) as introduced in Sect. 3.1 to describe the mathe-

matical framework. For any 0 ≤ t < T , we define

gt (xt ) := 〈μ0, exp(−βtV )〉
〈μ0, exp(−βt+1V )〉
× exp(−(βt+1 − βt )V (xt )). (3.15)

The Markov kernels (Kt )0≤t<T are chosen such that Kt

leaves the measure μt+1 invariant, i.e.,

μt+1(B) =
∫

E

Kt (xt ,B)μt+1(dxt ), (3.16)

for all B ∈ B(E). Metropolis–Hastings updates [14, 23,

32], for instance, are suitable choices for Markov transi-

tions that leave a measure invariant. The following lemma

reveals that (μt )0≤t≤T are the Feynman–Kac distributions

associated with the pair (gt ,Kt ).

Lemma 3.9 For any 0 ≤ t ≤ T , we have

Eμ0

[

ϕ(Xt )

t−1
∏

s=0

gs(Xs)

]

= 〈μt , ϕ〉 ∀ϕ ∈ B(E).

Proof Let ϕ ∈ B(E). From (3.15) and (3.16) we obtain

Eμ0

[

ϕ(Xt )

t−1
∏

s=0

gs(Xs)

]

=
∫

E

∫

E

· · ·
∫

E

ϕ(xt )

(

t−1
∏

s=0

Ks(xs, dxs+1)gs(xs)

)

μ0(dy0)

=
∫

E

· · ·
∫

E

ϕ(xt )

(

t−1
∏

s=1

Ks(xs, dxs+1)gs(xs)

)

×
∫

E

K0(x0, dx1)μ1(dx0)

=
∫

E

· · ·
∫

E

ϕ(xt )

(

t−1
∏

s=1

Ks(xs, dxs+1)gs(xs)

)

μ1(dx1)

...

=
∫

E

ϕ(xt )μt (dxt ). �

Note that the constant term of gt in (3.15) is unimpor-

tant for the algorithm since it is compensated by εt of the

selection kernel (3.5) and by the normalization factor of the

Boltzmann–Gibbs transformation (3.3). The resulting inter-

acting algorithm can be regarded as an interacting annealing

sampling algorithm (ISA) that converges to μT according to

Theorem 3.4.

In the context of filtering μ0 is the predicted conditional

distribution, exp(−V ) is the likelihood function, and μT is

the posterior distribution approximated by the weighted par-

ticle set. Hence, it would be desirable to combine ISA with

the generic particle filter as suggested in [8], Chap. 7. How-

ever, we must pay attention to the crucial assumption that

the transitions Kt leave the measures μt+1 invariant. This

means that the transitions depend on μ0 and thus on the un-

known signal. On account of this limitation of the ISA, we

believe that the ISA is more relevant for applications, par-

ticularly for motion capturing. We will therefore restrict the

evaluation in Sect. 4 to the ISA.

Another important consequence of this result is that the

annealed particle filter does not approximate the conditional

distribution (2.1), since it diffuses the particles by kernels

that do not satisfy (3.16). Hence, the APF is not suitable for

filtering problems as shown in Fig. 1.

4 Evaluation

In Sect. 3.3, we observed that the APF uses ISA for each

time step and thus performs well for motion capturing. For

an exhaustive experimental evaluation, we track an articu-

lated arm with less DOF than in the example given in Fig. 2.
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Fig. 5 Left: Pose of the arm is described by the vector x = (α,β, γ )T . Center: Varying α of the template. Right: Graph of gt over (α,β)

The aim of this section is not to find “the best” parame-

ters since these depend on the specific application. Rather,

we reveal the general impact of the parameters on the per-

formance using an experimental setting that is typical for

human motion capturing. The evaluation results provide a

general guidance and a good starting point for finding the

optimal setting for a particular application.

Furthermore, we compare the two selection kernels dis-

cussed in Sect. 3.2. The ISA with ǫt = 0 (3.5) is denoted

by ISA0 and with ǫ′
t = 1/n (3.10) by ISA1/n. In Sect. 4.2,

we demonstrate the influence of the mixing condition that is

essential for the convergence of the ISA (Theorem 3.8). Fi-

nally, the filtering example illustrated in Fig. 1 is discussed

in detail.

4.1 Motion Capturing

Experimental Set-up and Implementation Details The arm

consists of three limbs and three joints. The position of

the arm is described by xT = (α,β, γ ) ∈ E, where E :=
[−170,170] × [−125,125] × [−125,125] as depicted in

Fig. 5. For evaluating, a sequence of 201 synthetic images

is generated. X0 is uniformly distributed in E yielding an

unknown arm position at the beginning. The angles αt+1,

βt+1, and γt+1 are sampled from Gaussian distributions on

E with mean αt , βt , and γt and variance σα = 20, σβ = 40,

and σγ = 30, respectively. This sequence (Seq1) is difficult

for tracking since the velocity and the direction of the move-

ment may change from frame to frame. In a second sequence

(Seq2), the arm moves from position (−30,−80,−40)T to

(50,30,20)T and back with constant speed as illustrated in

Fig. 6. Moreover, we added some Gaussian noise to each

position vector.

For calculating the weighting functions gt , the image

is converted to a binary image by thresholding. This im-

age is compared with the silhouette of each arm template

that is determined by a particle x
(i)
t as shown in Fig. 6.

An error map is obtained by a pixelwise AND operation

Fig. 6 Left: Motion sequence Seq2. Right: Template’s silhouette (top).

Error map (bottom)

between the inverted binary image and the template’s sil-

houette. The weighting functions are then calculated by

gt := exp(−Ne/Np), where Np denotes the number of pix-

els of the template’s silhouette and Ne the sum of the pixel

values in the error map. The graph of the weighting function

is plotted in Fig. 5. We observed in our experiments that

g ≈ 40 (3.9). This means that the selection kernel (3.10) is

valid if the number of particles is greater than 40.

In the following, we evaluate the performance of the

ISA0 and ISA1/n in combination with different annealing

schemes, variance schemes, number of annealing runs, and

number of particles. The simulations for Seq1 and Seq2 were

repeated 50 and 40 times, respectively. The error of an es-

timate
∑

i π
(i)
t x

(i)
t was measured by 1 − gt . The averages

of the mean square errors (MSE) for each sequence indicate

the performance.

Since in real world applications the measurements are

noisy caused by clutter, film grain, bad lighting condi-

tions, CCD camera noise, etc., we also added strong noise

to the weighting functions by exp(−ϑ(Ne + W
(i)
t )/Np),

where ϑ(N) = max(0,min(N,Np)) and W
(i)
t are indepen-

dent zero-mean Gaussian random variables with variance

40000. For comparison, Np ≈ 4000.
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GPF vs. ISA We assumed that the dynamics for Seq1 were

known. Hence, the algorithms were initialized by the uni-

form distribution on E and the prediction step (3.13) was

performed according to the Gaussian transitions used for the

arm simulation. By contrast, we did not use the dynamical

model for tracking Seq2. The initial distribution was instead

the uniform distribution on [−20,−40] × [−60,−100] ×
[−20,−60] ⊂ E and the transitions kernels were the same

as for Seq1. In order to provide a fair comparison between

GPF with nT particles and ISA with various annealing

schemes, the number of particles is given by n = ⌊nT /T ⌋
where T denotes the number of annealing runs. The GPF

with nT = 250 produced a MSE of 0.04386 for Seq1 and

0.04481 for the noisy sequence. Seq2 was tracked with 225

particles and MSE of 0.01099 and 0.01157, respectively.

Annealing Schemes We evaluated the performance of var-

ious annealing schemes 0 ≤ β0 ≤ · · · ≤ βT −1 with fixed

length T = 5. While the particles were diffused between the

annealing steps for Seq1 by Gaussian kernels with σα = 20,

σβ = 40, and σγ = 30, we set σα = σβ = σγ = 5 for Seq2. In

Fig. 7, the MSE for the annealing schemes with decreasing

increments

βt =α(1 − c−(t+1)) (geometric),

βt =α ln(t + c)/ ln(T + c − 1) (logarithmic),

βt =α((t + 1)/T )c (polynomial)

are given. The schemes are normalized such that βT −1 =
α = 4. When c tends to infinity or to 0 in the case of a poly-

nomial scheme, βt → α for all 0 ≤ t < T .

The diagrams show that the geometric annealing schemes

are unstable in the sense that the curves of the MSE with re-

spect to c contain many local optima, particularly for Seq1.

It makes the optimization of the scheme for a particular ap-

plication quite difficult. The logarithmic schemes performed

best where the lowest MSE for Seq1, namely 0.01501, was

achieved by an ISA1/n with c = 10. In comparison, the errors

for Seq2 are significant lower and the scheme with βt = α

performs best since the motion is simple and local maxima

rarely occur. Furthermore, the difference between the two

selection kernels is small. The impact of noise on the results

is also minor when the dynamics are simple in contrast to

the more difficult sequence. The observation that the error

for Seq1 with noise significantly declines as c goes to infin-

ity indicates that the other parameters are not well chosen

for this noisy sequence. Providing some results for schemes

with constant or increasing increments in Table 1 reveals

that these schemes are outperformed by the schemes given

in Fig. 7. We use henceforth a polynomial annealing scheme

with c = 0.1 since both ISA0 and ISA1/n performed well for

the scheme.

Variance Schemes During the mutation step of the ISA, the

particles were diffused according to a Gaussian distribution

Fig. 7 Performance for different annealing schemes with T = 5. Av-

erage of the MSE for the sequences Seq1 (top) and Seq2 (bottom)

with noisy measurements (dashed) and without noise (solid). Left:

βt = α(1 − c−(t+1)). Center: βt = α ln(t + c)/ ln(T + c − 1). Right:

βt = α((t + 1)/T )c . Top: The curves for the geometric annealing

schemes are unstable and the best result is obtained by ISA1/n with

a logarithmic scheme. Bottom: The error decreases when βt → α. The

impact of the selection kernel and noise is small



J Math Imaging Vis (2007) 28: 1–18 13

Table 1 MSE error for annealing schemes with constant and increasing increments (T = 5). The schemes are outperformed by the annealing

schemes given in Fig. 7

βt ISA0 ISA1/n ISA0 ISA1/n

Seq1 Seq1 with noise

α(t + 1)/T 0.03634 0.03029 0.03220 0.02809

α1.2t+1−T 0.02819 0.02302 0.03185 0.02609

α1.8t+1−T 0.04214 0.05128 0.03891 0.04452

Seq2 Seq2 with noise

α(t + 1)/T 0.01006 0.00948 0.00988 0.01026

α1.2(t+1−T ) 0.00818 0.00805 0.00827 0.00858

α1.8(t+1−T ) 0.01514 0.01501 0.01557 0.01543

Table 2 MSE error for constant variance schemes. The decreasing schemes perform better (Tables 3 and 4)

(σ 2
α σ 2

β σ 2
γ ) ISA0 ISA1/n ISA0 ISA1/n

Seq1 Seq1 with noise

(15 35 25) 0.02527 0.01985 0.02787 0.02573

(20 40 30) 0.02145 0.01756 0.02453 0.02213

(25 45 35) 0.02341 0.02011 0.02506 0.02357

(15 40 35) 0.02238 0.01891 0.02035 0.02510

(25 40 25) 0.02240 0.01905 0.02622 0.02345

Seq2 Seq2 with noise

(0.5 0.5 0.5) 0.00637 0.00631 0.00643 0.00664

(2 2 2) 0.00612 0.00627 0.00639 0.00652

(5 5 5) 0.00668 0.00648 0.00666 0.00702

(0.5 2 5) 0.00611 0.00626 0.00643 0.00629

(5 2 0.5) 0.00661 0.00674 0.00674 0.00695

Table 3 MSE error for deterministic variance schemes. The schemes are outperformed by dynamic variance schemes (Fig. 8)

(σ 2
α σ 2

β σ 2
γ ) Decreasing scheme ISA0 ISA1/n ISA0 ISA1/n

Seq1 Seq1 with noise

(32 49 36) (−4−3−2) 0.01997 0.01920 0.02437 0.02335

(32 58 54) (−4−6−8) 0.02243 0.02485 0.02480 0.02093

(32 70 54) (−4−10−8) 0.02048 0.02066 0.02332 0.02411

(32 52 42) (−4−4−4) 0.02193 0.01919 0.02489 0.01795

(29 52 45) (−3−4−5) 0.01989 0.01666 0.02029 0.02074

(23 47 35) × β3

α
β2

α
β1

α
β0

α
0.02230 0.01950 0.02654 0.02203

(27 47 37) −0 1.5 1.52 1.53 0.02187 0.02324 0.01807 0.02328

(27 47 37) −0 1.53 1.52 1.5 0.02048 0.02219 0.02398 0.02109

(48 97 73) ×0.8 0.82 0.83 0.84 0.02140 0.02030 0.02099 0.02326

(30 60 45) ×0.9 0.92 0.93 0.94 0.01907 0.01690 0.02470 0.02142

where the variance for each annealing step is defined by a

variance scheme. The errors for constant schemes are given

in Table 2, for deterministic schemes in Tables 3 and 4, and

for dynamic schemes (3.12) in Fig. 8. The first column of Ta-

bles 3 and 4 contains the reference variance that is reduced

for each annealing step by the decreasing scheme given
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Table 4 MSE error for deterministic variance schemes. The best dynamic variance schemes (Fig. 8) perform as well as the best deterministic

variance schemes

(σ 2
α σ 2

β σ 2
γ ) Decreasing scheme ISA0 ISA1/n ISA0 ISA1/n

Seq2 Seq2 with noise

(3.5 5 8) (−1−1−1) 0.00619 0.00632 0.00635 0.00629

(5 5 5) (−1.5−1.5−1.5) 0.00614 0.00623 0.00640 0.00656

(3.5 5 6.5) (−1−1.5−2) 0.00606 0.00626 0.00641 0.00642

(6.5 5 3.5) (−2−1.5−1) 0.00648 0.00654 0.00651 0.00656

(7.5 7.5 7.5) −0 1.5 1.52 1.53 0.00649 0.00657 0.00662 0.00662

(7.5 7.5 7.5) −0 1.53 1.52 1.5 0.00636 0.00638 0.00646 0.00657

(1.2 1.2 1.2) ×0.8 0.82 0.83 0.84 0.00622 0.00623 0.00649 0.00639

(.75 .75 .75) ×0.9 0.92 0.93 0.94 0.00631 0.00607 0.00636 0.00641

Fig. 8 Performance for dynamic variance schemes with different val-

ues of c in the presence of noise (dashed) and without noise (solid).

Left: MSE for Seq1. The error is significantly reduced in comparison to

deterministic schemes (Tables 2 and 3). The best result is obtained by

ISA1/n with c = 0.3. Right: MSE for Seq2. The best dynamic variance

schemes perform as well as the best deterministic variance schemes

(Tables 2 and 4)

in the second column. We give three examples where ι ∈
{α,β, γ }: (−dα −dβ −dγ ) means that σ 2

ι,t = σ 2
ι,t−1 −dι. The

decreasing scheme −0d1d2d3 gives the variance scheme

σ 2
ι,t = σ 2

ι,t−1 − d t . The scheme σ 2
ι,t = d t+1σ 2

ι is denoted by

×d1d2d3d4.

The dynamic variance schemes are not only easier to han-

dle since they depend only on one parameter c, but they also

outperform the deterministic schemes provided that an ap-

propriate parameter c is chosen. The best result for Seq1

with MSE 0.01175 was obtained by ISA1/n with parame-

ter c = 0.3. In comparison to the GPF, the MSE was re-

duced by more than 73%. We see that the error for Seq2 was

not significantly improved when comparing the best settings

for constant, deterministic, and dynamic schemes. It indi-

cates that the flow of Feynman–Kac distributions locates the

global minimum and that the error is mainly caused by the

particle approximation. Hence, an improvement is only ex-

pected by reducing the number of annealing runs yielding

more particles for approximation or by increasing nT .

Number of Annealing Runs and Particles The influence of

the number of annealing runs for different values of nT is

plotted in Figs. 9 and 10. Seq1 was tracked by ISA0 and

ISA1/n with a dynamic scheme with c = 0.2 and c = 0.3,

respectively. The parameters for Seq2 were 0.06 and 0.05,

respectively. The curves for ISA1/n are quite stable with

an unique optimal parameter T = 6 independent of nT and

noise, see Fig. 9. By contrast, the curves for ISA0 contain

deep local minima, in particular when the sequence was dis-

turbed by noise. Moreover, one can observe at T = 7 that the

error for ISA1/n increases significantly when the number of

particles is not clearly greater than g (3.9). This shows the

impact of the condition on the results. The MSEs for Seq2

are given in the diagram on the left hand side of Fig. 10.

The error was reduced by reducing the number of anneal-

ing runs and by increasing nT as expected whereas the dif-

ferences between ISA0 and ISA1/n were minimal. It also

demonstrates the robustness of ISA to noise. As compari-

son, the error of the GPF is hardly reduced by increasing

nT . The MSE was still above 0.043 and 0.01 for Seq1 and

Seq2, respectively.
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Fig. 9 Performance of ISA0

(triangles) and ISA1/n (circles)

for different numbers of

annealing runs T with

nT = 250, 300, and 400. The

curves for ISA1/n are more

stable with an unique optimal

parameter T = 6, but the error

increases at T = 7. More

annealing runs are required than

for Seq2 (Fig. 10). Left: MSE

for Seq1 without noise. Right:

MSE for Seq1 with noise

Fig. 10 Performance of ISA0 (triangles) and ISA1/n (circles) for dif-

ferent numbers of annealing runs T with nT = 225, 300, and 400. Left:

MSE for Seq2 with noisy measurements (dashed) and without noise

(solid). The error decreases with increasing nT whereas the differences

between ISA0 and ISA1/n are minimal. The error is only slightly af-

fected by noise. Center: Variance of MSE for Seq2 without noise. The

variance also decreases with increasing nT . The curves for ISA1/n are

more stable. Right: Variance with noise

Fig. 11 Tracking the lower part

of a human body during

walking. Left: The estimates

(projected mesh) by the APF

using a 3D model with 18 DOF

(4 of 180 frames). Right:

A comparison of the estimated

joint angles of the right and left

knee with a marker based

motion capture system reveals

the accuracy of ISA1/n

Real Sequences We applied ISA0 and ISA1/n also to hu-

man motion capturing as visualized in Fig. 11. The diagram

on the right hand side contains the estimated angles of the

left and the right knee where the values acquired from the

marker based system provide a ground truth. For the experi-

ments that are described in [9], 250 particles and a geometric

annealing scheme with T = 11 were used. We compared the

root mean square errors (RMSE) for both knees obtained

by ISA0 with c = 0.1 for the dynamic scheme and ISA1/n

with c = 0.12, where we repeated the simulations 25 times.

While the average of the RMSE was not significantly im-

proved by ISA1/n as expected from the previous results, the

variance was reduced by 19.8% compared to ISA0.

When we compare the result with our arm example in

Fig. 10, we find no evidence that the variance reduction

can be generalized. While the variance of the error is sig-

nificantly lower for ISA1/n with nT = 225, ISA0 performs

better with nT = 300, and the differences are marginal for

nT = 400. The diagrams, however, reveal that the curves for

ISA1/n are more stable and the variances are reduced by in-

creasing nT .

4.2 Mixing Condition

In this section, we illustrate the impact of the mixing con-

dition that is essential for the convergence results given in
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Fig. 12 When the mixing condition is not satisfied, the APF loses

track of the articulated arm after some time and is not able to recover.

From top left to bottom right: t = 1, 5, 158, 165

Sects. 2.3 and 3.3. For this purpose, we track a stiff arm, i.e.

x = α. We suppose that the arm movement is given by the

process Xt := Xt−1 + Vt , where X0 := 0 and Vt are i.i.d.

uniform random variables on [−10,10]. Let us examine the

events where Vt ∈ [9.75,10] for 1 ≤ t ≤ 400. Even though

the probability that this occurs is very small, it is strictly

greater than zero.

For the simulations, we used an APF with ISA0 and pa-

rameters n = 100, T = 2, β0 = 3.2. The initial distribution

was δ0 and the mutation kernels Kt (x, ·) were uniform dis-

tributions on [x − 2, x + 2]. When uniform kernels were

chosen for prediction in accordance with the process Xt ,

the APF was not capable of tracking the articulated arm as

shown in Fig. 12. The algorithm lost track of the arm af-

ter some time and was not able to recover afterwards. For

comparison, the uniform kernels were replaced by Gaussian

kernels with variance 100, which satisfy the mixing condi-

tion since the state space is bounded. In this case, the arm

was successfully tracked over a sequence of 400 images, see

Fig. 13. We carried out the simulations 25 times. This shows

that the APF may fail when the mixing condition is not sat-

isfied, even though the particles are correctly predicted ac-

cording to the dynamics.

4.3 Filtering Problem

We already mentioned that the GPF outperforms the APF

for the filtering problem since the latter does not approx-

imate the posterior distribution. An example is illustrated

Fig. 13 When the mixing condition is satisfied, the APF is able to

track the articulated arm. From top left to bottom right: t = 1, 5, 158,

165

in Fig. 1, where we applied the algorithms to a one-

dimensional nonlinear filtering problem. The signal and ob-

servation process are defined by

Xt = Xt−1

4
+ 5

Xt−1

1 + X2
t−1

+ 2 cos(1.2t) + Vt ,

Yt = X2
t

20
+ X3

t

100
+ Wt ,

(4.1)

where Vt and Wt are independent zero-mean Gaussian ran-

dom variables with variances 10 and 1, respectively. The

distribution of X0 is a standard normal distribution. This ex-

ample is similar to the studied problem in [12], where the

extended Kalman filter performs poorly.

We evaluated the APF with various parameter settings

as in the arm example and repeated each simulation with

200 time steps 100 times. The performance was measured

by the resulting root mean square error from the true signal,

where nT = 300 was fixed. The best result of the APF is

plotted in the diagram of Fig. 1 with RMSE of 2.7988. For

comparison, the error of GPF was only 2.6037.

5 Conclusions

We have proposed two algorithms, namely interacting sim-

ulated annealing (ISA) and interacting annealing sampling

(ISA), which combine interacting and annealing strategies.

Based on Feynman–Kac models, we provided convergence

results and conditions that are sufficient for convergence.



J Math Imaging Vis (2007) 28: 1–18 17

While ISA converges to the regions of global minima, ISA

approximates a given distribution.

We showed that the annealed particle filter (APF), which

performs an ISA for each time step, does not solve the fil-

tering problem since ISA does not approximate the posterior

distribution in contrast to ISA. This was confirmed by an ex-

ample where the generic particle filter (GPF) outperformed

the APF. For a tracking application, however, the models

for a filtering problem are often unknown whereas a fitness

function can be easily designed from the available image

features. In this case, ISA determines the global optimum of

the fitness function, which leads to a good performance of

the APF in contrast to GPF as we have demonstrated in our

experiments.

The ISA approximates a flow of Feynman–Kac distrib-

utions that converges to the regions of global minima. The

optimal parameters are therefore a trade-off between the ap-

proximation of the global minima by the flow and the ap-

proximation of the flow by particles. The first consequence

of this are the dynamic variance schemes that outperform

constant and deterministic variance schemes as we have

shown. It also influences the optimal number of annealing

runs provided that nT is fixed. When the global optimum is

easily determined by the flow, the error is mainly introduced

by the particle approximation. Increasing the number of par-

ticles n by reducing the number of annealing runs improves

the performance. More annealing runs, on the contrary, pro-

vide a better localization of the global optimum by the flow.

Based on two versions of the selection kernel, we com-

pared the algorithms ISA0 and ISA1/n where the latter gives

a better convergence result of the particle approximation if

n > g is satisfied. In our experiments, however, we found no

evidence that one kernel is better than the other. From the

practitioner’s point of view, the kernel can be selected as fol-

lows: When the number of particles is clearly greater than g,

we recommend to use ISA1/n for finding the optimal setting

since the error curves were more stable with respect to the

parameters. Afterwards, it is useful to apply the ISA0 with

the final setting as it cannot be guaranteed for very complex

weighting functions that the chosen parameters are optimal.

The kernel with the best results is then selected.

Furthermore, we demonstrated in our experiments that

the error declines by increasing nT and that the ISA is ro-

bust to noise. Since the piecewise constant annealing scheme

given in Theorem 3.8, which is sufficient for convergence, is

too slow for most applications, we compared various anneal-

ing schemes where the logarithmic schemes performed best.

Although we suspect that these schemes work well also for

more complex applications, the results do not provide evi-

dence for a general conclusion since the optimal annealing

scheme is likely to depend on the shape of the weighting

function and thus on the application. Hence, more experi-

ments for a wide range of applications would be necessary.

Finally, we gave an example that illustrates the impact

of the mixing condition on the APF, which is essential for

the uniform convergence of the GPF and the convergence

of the ISA.
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