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Abstract— Autonomous navigation in outdoor environments
with vegetation is difficult because available sensors make very
indirect measurements on quantities of interest such as the
supporting ground height and the location of obstacles. We
introduce a terrain model that includes spatial constraints on
these quantities to exploit structure found in outdoor domains
and use available sensor data more effectively. The model consists
of a latent variable that establishes a prior that favors vegetation
of a similar height, plus multiple Markov random fields that
incorporate neighborhood interactions and impose a prior on
smooth ground and class continuity. These Markov random fields
interact through a hidden semi-Markov model that enforces a
prior on the vertical structure of elements in the environment.
The system runs in real-time and has been trained and tested
using real data from an agricultural setting. Results show that
exploiting the 3D structure inherent in outdoor domains signifi-
cantly improves ground height estimates and obstacle detection
accuracy.

I. INTRODUCTION

Outdoor environments such as those encountered in agricul-

ture, mining, and the exploration of hazardous environments

are often viewed as being “unstructured”. This absence of

structured features, such as road markers, straight walls and

a flat ground plane has often been cited as one of the

reasons navigating within these environments is considered

to be challenging [1] [2] [3]. However, such environments do

possess a great deal of structure that humans frequently exploit

in the performance of tasks we wish to automate. For example,

consider a vehicle navigating through a field of vegetation or

crop. We can use the knowledge that the ground is generally

smooth and the vegetation has approximately constant height

to infer the ground height and allow navigation even through

areas where the ground is not directly observed. The challenge

lies in expressing this type of structure in a way that can be

made useful in autonomous navigation tasks.

Local autonomous navigation in outdoor environments is

often performed in a model predictive control framework that

searches over dynamically feasible control arcs for a safe

trajectory [2]. In this framework, a terrain model with obstacles

and the supporting surface is used in combination with a

model of the vehicle to find a dynamic trajectory that avoids

obstacles while protecting against roll-over, body collisions,

high-centering, and other safety conditions [4]. While faithful

models of vehicle dynamics are often available, acquiring an

Fig. 1. Tractor test platform

accurate terrain model that includes a description of the load-

bearing surface and any obstacles in the local environment is

a considerable challenge.

Early work in terrain perception assumed smooth terrain

with discrete obstacles [1] [2], and achieved good results in

these domains by looking at the height of the sensor readings

from individual grid cells. More recent work has included

cluttered environments with vegetation that are much more

difficult because the range points from sensors do not generally

give the load-bearing surface. To handle these challenging

domains, researchers have tried to model various parts of the

problem. A common approach is to model how a range sensor

penetrates vegetation to discriminate between vegetation and

solid objects [3] [5] [6]. Another approach begins with a cloud

of range points and looks for various features or structure at

a local level [7] [8]. We have used online learning methods to

automatically learn the ground height in vegetation from fea-

tures [4]. A common characteristic among these approaches is

that they make the strong assumption of independence between

patches of terrain for estimating ground height or class. We

hope to achieve better results by relaxing this independence

assumption through the inclusion of spatial correlations.

Spatial correlations in images have often been expressed

using Markov random fields [9] [10] and these techniques

have been used for vision problems such as the segmentation

of various land types in satellite images [11], but these

approaches use only 2D image data instead of the 3D data

that is generally available to an off-road robotic system.



In this paper, we describe a generative, probabilistic ap-

proach to modeling terrain. We exploit 3D spatial structure in-

herent in off-road domains and an array of noisy but abundant

sensor data to jointly produce better estimates of the ground

height and more accurate classification of obstacles and other

areas of interest, even in dense non-penetrable vegetation.

Our terrain model consists of two distinct but interacting

Markov random field models (MRFs) and a latent variable for

common vegetation height. One MRF models ground height

and enforces our assumption that ground height is smoothly

varying. The second MRF encodes our assumption that class

patches of space tend to cluster (for example, patches of

vegetation of a single type tend to be found together). The

latent variable for common vegetation height enforces our

assumption that vegetation of the same type generally has

a similar height. These three components interact through a

hidden semi-Markov model (HSMM) that enforces vertical

structural assumptions such as the understanding that vege-

tation grows on top of ground.

The structure in the terrain model is combined with informa-

tion from multiple sensors on the vehicle using sensor models

that are automatically learned from training data. Obstacles are

treated as having uncertain attributes so obstacle appearance

does not need to be explicitly trained.

Joint inference of ground height, class height and class

identity over the whole model results in more accurate esti-

mation of each quantity. For example, inferring the vegetation

height allows for an improved estimate of the height of the

underlying ground. Similarly, knowing the ground height helps

disambiguate solid obstacles from the ground surface.

Our approach allows us to model 3D structure in a rea-

sonably efficient inference scheme. Gibbs sampling over the

MRF structures lets us perform exact inference in the HSMM

models using an efficient dynamic programming algorithm.

This substantially reduces computation time over a fully 3D

MRF model, and allows our system to run in real-time.

II. VEHICLE PLATFORM AND DATA REPRESENTATION

Our project team has automated a John Deere 6410 trac-

tor (see figure 1) and equipped it with many sensors for

localization and perception [4]. The vehicle has a high-

resolution stereo pair of digital cameras, an infrared camera,

and two SICK laser range-finders (ladar) mounted on custom

actively-controlled scanning mounts. The first scanning ladar

is mounted on the roof to get range data over a large area

in front of the vehicle, and the second scanning ladar is

mounted on the bumper to get high density measurements of

nearby terrain and better penetrate upcoming vegetation. The

cameras and scanned ladars are precisely calibrated and tightly

synchronized with an accurate global vehicle pose estimate.

The basic representational structure of our terrain model is

the voxel: a 15cm3 box-shaped region of 3 dimensional space.

We represent the vehicle’s local spatial environment as a voxel

lattice of size I x J x K, where the ijkth voxel is in the ijth

position of a horizontal 2D grid and the kth position above an

arbitrary subterranean origin.

Accurate global vehicle pose allows us to assign ladar

points corresponding to the same region of space to the

same voxel. Exploiting the precise synchronization of the

sensors, we project ladar points into the most recent color and

infrared images, so that each ladar point results in a vector

of appearance measurements for that voxel, including laser

remission (reflectance), infrared temperature, and color.1

The voxel representation also allows us to maintain a

density estimate throughout space by comparing how many

ladar rays pass through each voxel (pass-throughs) with the

number of ladar rays that hit something in that voxel (hits).

Density information is valuable when trying to separate sparse

vegetation that contains a mixture of hits and pass-throughs

from solid objects that contain a majority of hits and only a

few pass-throughs due to sensor noise [3] [4].

III. TERRAIN MODEL

Although our data representation is based on the voxel,

vehicle navigation is generally performed on a 2D surface,

so our ground height estimates and classification results are

made in terms of voxel columns. In our model, the ijth

voxel column class is described with a multinomial dis-

tributed random variable Cij taking on values related to the

possible contents of the column, Cij = c with e.g. c ∈
{ground , vegetation, obstacle}.

Associated with the kth voxel in the ijth voxel column is

the voxel state Xk
ij , a multinomial distributed random variable

that describes the nature of the material inside the voxel,

Xk
ij ∈ {ground , c, free-space}, where c is the class of the ijth

voxel column.2 The ijkth voxel is also associated with the

observation vector Y
k
ij = [Yden , Yrem , Yir , Ycol ], containing

vectors of N ladar hit and pass-through density measurements

of which the M hits include laser remission values, infrared

temperatures and color data (i.e. Yden = [Y 1
den , . . . , Y N

den ],
Yrem = [Y 1

rem , . . . , Y M
rem ]).

A. Observation Models

We assume that voxels form the smallest indistinguishable

element of space, occupied completely by one (and only

one) voxel state. Each voxel state maintains a distribution

over material properties including density, remission, infrared

temperature, and color that describe the characteristics of that

state, but the material inside a single voxel is assumed to be

uniform. For example, the vegetation state may include a range

of colors, and therefore different voxels in vegetation may have

different colors, but we assume that the color of the vegetation

within each voxel is uniform.

The measurement vector, Yk
ij contains a variable number of

noisy measurements of the material properties. The graphical

1The ladar scans come in at a much higher rate than the image data so
multiple scans are projected into the same image. However, the high pixel
density of the images means that we collect approximately 100 pixels for
every ladar point. This coupled with the continual movement of the scanning
ladars makes it unlikely that a single pixel is used more than once, so we treat
each color and infrared tagged ladar point as an independent measurement.

2In our implementation, the possibility of a voxel column simultaneously
containing obstacle and vegetation is excluded, though its inclusion is a trivial
extension of the model we present.



rem

col

ir

den

Yrem
M

Yden
N

Yrem
1

Yir
M

Yir
1

Yden
1

Ycol
1

Ycol
M

Xij
k

(a) Voxel model

C  = Vegetation

G
ro

un
d

Ve
ge

ta
tio

n

F
re

e-
Sp

ac
e

Yij
5

Xij
1

Xij
2

Xij
3

ijC  = Groundij

Xij
4

Xij
5

Xij
6

Xij
k

Xij
K

Yij
1

Yij
2

Yij
3

Yij
4

Yij
6

Yij
k

Yij
K

Yij
5

Yij
1

Yij
2

Yij
3

Yij
4

Yij
6

Yij
k

Yij
K

Xij
1

Xij
2

Xij
3

Xij
4

Xij
5

Xij
6

Xij
k

Xij
K

C  = Obstacle

Yij
5

Xij
1

Xij
2

Xij
3

ij

Xij
4

Xij
5

Xij
6

Xij
k

Xij
K

Yij
1

Yij
2

Yij
3

Yij
4

Yij
6

Yij
k

Yij
K

F
re

e-
Sp

ac
e

F
re

e-
Sp

ac
e

G
ro

un
d

O
bs

ta
cl

e
G

ro
un

d

Hij
c

Hij
g

(b) HSMM models

Yij

Cij

Xij

Hij
cH c

Hij
g

CNij

CNijCNij

CNij

HNij
g

HNij
g

HNij
g

HNij
g

(c) MRF model

Fig. 2. A graphical description of the model showing (a) the voxel, (b) the voxel column, and (c) the connections between voxel columns. For each voxel
column ij, the model contains voxel states Xk

ij , observations Y k
ij , and a class Cij , class height Hc

ij , and ground height H
g
ij that interact with neighbors Nij

and the common class height Hc

model in Figure 2(a) illustrates the conditional independencies

between the voxel state Xk
ij , the material property random

variables den , rem , ir and col , and the measurements. Con-

ditional on Xk
ij , the material properties are independent, and

conditional on the material properties, the measurements are

independent. The voxel material properties are not directly

observed, and we are not concerned with their values beyond

what they reveal about the state. Thus material properties con-

stitute nuisance variables that we remove from the observation

models through marginalization.

Density values range from empty space (den = 0) to

completely solid (den = 1), and we use a beta distribution

B(ax, bx) to describe the density values of each state x. The

measurements of density Y n
den are binary (ladar hit or pass-

through), so we use a binomial distribution to describe the

number of hits M =
∑N

n=1
Y n
den out of N total rays. When

we integrate over the nuisance parameter den, we recover the

beta-binomial distribution as the marginal likelihood observa-

tion model.

P (M = m | Xk
ij = x)

=

∫

P (m | den)p(den | Xk
ij = x) d(den)

=

(

N

M

)

B(ax + M, bx + N − M)

B(ax, bx)

(1)

The distributions over the voxel appearance properties,

including infrared temperature, laser remission and color, are

all inherently multi-modal and thus not well described by a

simple parametric distribution. For example, remission values

in vegetation are either high because of the strong reflectivity

of chlorophyll, or very low due to small cross-sectional area.

We resort to a mixture of Gaussians to describe the distribution

of the material properties within a state.

We develop the marginal distribution for the remission

values, but the infrared and color data are determined analo-

gously. The true material property rem for state x is modeled

as a mixture of Gaussians with individual mixture means remi,

variances σ2
i , and mixing coefficients P (i).

p(rem|Xk
ij = x) =

R
∑

i=1

P (i)
1

√

2πσ2
i

exp

(

−
(rem − remi)

2

2σ2
i

)

(2)

Conditional on the true material property rem , the mea-

surements ym
rem are assumed to be normally distributed,

ym
rem ∼ N (rem, σ2

y). As with the density, we integrate out

the nuisance variable rem to get the marginal likelihood for

all the remission data yrem = [y1
rem , . . . , yM

rem ], resulting in a

mixture of Gaussians that is a function of the data mean ȳrem .

p(yrem |Xk
ij = x) =

∫

p(yrem | rem)p(rem |Xk
ij = x) d(rem)

=
R

∑

i=1

P (i)

∫ M
∏

m=1

p(ym
rem | rem)p(rem | remi) d(rem)

=
R

∑

i=1

P (i)
1

√

2π
(

σ2
i +

σ2
y

M

)

exp



−
(ȳrem − remi)

2

2
(

σ2
i +

σ2
y

M

)





(3)



Equation 3 shows that the marginal appearance distributions

become more broad when there are few data points (M is

small), reflecting the increased uncertainty in the material

property and hence the state.

The free-space state does not possess any meaningful ma-

terial properties beyond density den . Ladar hits occurring

in free-space are generally the result of noise so we model

the non-density material properties as matching the material

properties of the states in contact with free-space.

Although we expect obstacles to generally have a fairly high

density den , we cannot hope to build an accurate observation

model for the appearance of each of the innumerable obstacles

one might encounter in outdoor environments, so we simply

use a single obstacle state with a corresponding uniform

distribution over the observable range of material appearance

properties. We rely on accurately modeling the features of the

trained states to detect obstacles as a default option when none

of the other states are consistent.

B. Mixture of Hidden Semi-Markov Chains of Voxel Columns

When moving from lower to higher voxels within a column,

we expect to move from ground to vegetation, or perhaps

ground to obstacle, and eventually to free-space. We never

expect free-space to be found below ground, nor do we expect

vegetation to be suspended above free-space.

This type of structure is naturally imposed by introducing a

Markov dependency between voxel states that restricts vertical

transitions, thus defining a hidden Markov model within each

voxel column. However, the duration of states such as ground

and vegetation are not well modeled as states in a Markov

chain which would induce a geometric distribution on the

duration of states. We resort instead to a hidden semi-Markov

model (HSMM) [12] over voxel states, which explicitly rep-

resents a state duration (or height distribution) over voxels for

each state value.

As shown in figure 2(b), we associate a single HSMM

chain structure with each column class Cij , which makes the

resulting column model a mixture of HSMMs. The durations

of the ground and class states describe the height of those

terrain elements and are given by Hg
ij and Hc

ij .

C. Markov Random Field Model of Interacting Voxel Columns

The HSMM column models capture the vertical structure

between the states, but there are also significant horizontal

dependencies between neighboring columns. As shown in

Figure 2(c), we model these dependencies using two distinct

but interacting Markov random fields (MRFs) [10] for class

Cij and ground height Hg
ij , each dependent on the values

of their respective neighbors, and a latent variable for the

common class height Hc across all columns. These variables

interact through the HSMM column models by imposing a

prior on the state durations associated with Hc
ij and Hg

ij and

imposing a prior over HSMM class models Cij .

The neighborhood dependency of Cij reflects the prior

assumption that class identities are positively correlated with

their neighbors so voxel columns tend to cluster in contiguous

groups of the same class. We express this preference using the

conditional MRF distribution

P (Cij = c | CNij
) ∝ exp

(

−λC

∑

{s,t}∈Nij

(c 6= cst)
)

(4)

where Nij is the set of neighboring indices and CNij
is the

set of classes in the neighborhood of the ijth voxel column.

Ground height varies smoothly from one patch of ground

to the next, so we expect that Hg
ij will be tightly correlated

with nearby values. We express this belief using a Gaussian

Markov random field

P (Hg
ij = h | Hg

Nij
) ∝ exp

(

−
1

2σ2
G

(

h −
1

|Nij |

∑

{s,t}∈Nij

hg
st

)2)

(5)

where |Nij | is the size of the neighborhood.

We expect that vegetation of the same class c has a similar

height Hc with some variation. This assumption may not be

valid for obstacles, so we only apply it to vegetation classes.

Given the common height of the vegetation in this area Hc,

we model the expected variation with a Gaussian

P (Hc
ij = h | Hc) ∝ exp

(

−
1

2σ2
Hc

(h − hc)2
)

(6)

IV. INFERENCE

The interacting Markov random fields of this model capture

important structure, but these dependencies prevent analytic

determination of the posterior distribution P (C,Hg,Hc | Y ).
The set of HSMMs that describe the data in each column

of voxels can efficiently produce distributions over the state

durations, which makes it easy to sample from the conditional

distribution

P (Cij ,H
g
ij ,H

c
ij | Yij , CNij

,Hg
Nij

,Hc) (7)

so we use Gibbs sampling [9] for approximate inference.

Algorithm 1 gives the application of Gibbs sampling to our

model. The HSMM column models require a distribution over

class heights which comes from the common class height

latent variable Hc, as shown in Figure 2(c). Samples of

the common class height are produced from its conditional

distribution given the current column class height samples hc
ij

P (Hc=h |Hc
ij∈IJ) ∝ exp

( −1

2σ2
Hc/Dc

(

h−
1

Dc

∑

ij∈IJ,cij=c

hc
ij

)2)

(8)

where Dc is the number of columns with class c.

Once the common class heights Hc have been sampled,

each voxel column is sampled. The first step of the sampling

procedure is to find the priors over class Cij , class height

Hc
ij and ground height Hg

ij from the neighbors, as given in

equations 4 and 5, and the common class heights Hc as given

in equation 6. The priors on Hc
ij and Hg

ij are then incorporated

into the HSMM model as priors over state durations and are

shown in the subsequent equations as P (Hc
ij = h | Hc) for

the class state x = c or P (Hg
ij = h | Hg

Nij
) for the ground

state x = g.



Algorithm 1 Gibbs sampling from the model

Sample common class heights hc from P (Hc | Hc
ij∈IJ)

using all the column class height samples of the same class

for all MRF voxel columns ij do

Find ground and class priors from neighbors:

P (Hg
ij | Hg

Nij
)

P (Cij | CNij
)

for all Classes c do

Find class height prior from common class height of

same class:

P (Hc
ij | Hc)

Use class HSMM to find probability of the data and

distributions over the ground and class height:

P (Yij | Cij = c,Hg
Nij

,Hc)

P (Hg
ij | Cij = c, Yij ,H

g
Nij

,Hc)

P (Hc
ij | Cij = c, Yij ,H

g
Nij

,Hc)
end for

Compute class distribution:

P (Cij | Yij , CNij
Hg

Nij
Hc)

∝ P (Yij | Cij ,H
g
Nij

Hc)P (Cij | CNij
)

Sample cij from P (Cij | Yij , CNij
,Hg

Nij
,Hc)

Sample hg
ij from P (Hg

ij | Cij = cij , Yij ,H
g
Nij

,Hc)

Sample hc
ij from P (Hc

ij | Cij = cij , Yij ,H
g
Nij

,Hc)
end for

Once the prior distributions are found, the class HSMM

structures are used to find the probability of the data and the

state duration probabilities for each class. HSMMs use a vari-

ant of the standard forward-backward dynamic programming

solution used for inference in regular HMMs [12]. As shown

in figure 2(b), an HSMM maintains durations (corresponding

to height in our case) so that a single state is active over a

number of spatial steps up the chain. This formalism is very

natural for finding ground height or class height because the

neighborhood information can be included as a prior on the

corresponding state duration.

The forward-backward computations are still performed

over the individual spatial steps Xk
ij as in an HMM, but an

HSMM must solve for the duration of each state, so in addition

to summing over possible state transitions x′, we also sum

over possible state durations h. Equations 9 and 10 give the

HSMM forward and backward probabilities αk
ij,c and βk

ij,c for

spatial step k of the class c chain in MRF voxel column ij.

We use the observation independencies and the deterministic

transitions of our chain structures to reduce the computational

complexity. We use the notation x− and x+ to refer to the

previous and next states in the chain of the current class.

αk
ij,c(x) = P (state x ends at k, Y 1:k

ij | Cij = c,Hg
Nij

,Hc)

=
∑

x′

∑

h

P (Xk
ij =x, Xk−h

ij =x′,Hx
ij =h, Y 1:k

ij |Cij ,H
g
Nij

,Hc)

=
∑

h

k
∏

k′=k−h+1

P (Y k′

ij | x)P (Hx
ij = h | Hg

Nij
,Hc)αk−h

ij,c (x−)

(9)

βk
ij,c(x) = P (Y k+1:K

ij | state x ends at k,Cij = c,Hg
Nij

,Hc)

=
∑

x′

∑

h

P (Y k+1:K
ij |Xk

ij =x,Xk+h
ij =x′,Hx+

ij =h,Cij,H
g
Nij

,Hc)

=
∑

h

k+h
∏

k′=k+1

P (Y k′

ij | x+)P (Hx+

ij = h | Hg
Nij

,Hc)βk+h
ij,c (x+)

(10)

Since we know by assumption that the chain must end in

the final state x = free-space, the probability of the data for

class c is the final value of α in that state.

P (Yij | Cij = c,Hg
Nij

,Hc) = αK
ij,c(x = free-space) (11)

As described in Algorithm 1, this is combined with the class

prior P (Cij | CNij
) to find the distribution over classes, which

is used to sample a new class.

Finding the distribution over state durations involves com-

bining α and β.

ζx
ij,c(h) = P (state x has duration h | Yij , Cij = c,Hg

Nij
,Hc)

=
∑

k

P (Xk
ij = x, Xk−h

ij = x− | Yij , Cij ,H
g
Nij

,Hc)

=
∑

k

k
∏

k′=k−h+1

P (Y k′

ij |x)P (Hx
ij =h|Hg

Nij
,Hc)αk−h

ij,c (x−)βk
ij,c(x)

(12)

We know that in each chain, every state transition must occur

after some duration, so we can normalize by
∑

h ζx
ij,c(h) to

get the posterior on ground and class height conditional on the

neighbors. Samples are then drawn from these distributions.

P (Hg
ij = h | Cij = c, Yij ,H

g
Nij

,Hc) = ζx=ground
ij,c (h)

P (Hc
ij = h | Cij = c, Yij ,H

g
Nij

,Hc) = ζx=state c
ij,c (h)

(13)

The time complexity of HSMM calculations is greater than

an HMM because of the sum over possible durations, but the

observation likelihood products can be pre-computed and the

state durations to search over can be constrained based on the

priors to reduce the complexity to O(numVoxels∗numStates∗
maxDuration) for a single chain.

Although it is typically difficult to show that Gibbs sampling

has converged, we have found empirically that the model finds

a good estimate quickly, allowing for real-time execution.

V. LEARNING

The model described in section III incorporates prior knowl-

edge about the structure of the environment, but the specific

model parameters must be learned from training data. These

parameters include the sensor observation models for each

state and the neighborhood interactions for class, class height,

and ground height. The generative nature of our model allows

us to decouple the learning problems, and train each of these

observation and neighborhood interaction models individually,

thus greatly simplifying the learning task.



A. Observation Models

Collecting labeled training data is often expensive, es-

pecially in outdoor environments where there can be high

variation in sensor readings so that a large training set is

needed. We use an approach based on [4] to collect large

quantities of labeled training data to automatically train our

observation models. Specifically, we drive through represen-

tative terrain of a single class such as vegetation and store

the sensor measurements from the voxels of columns that we

drive over as training examples for that class. This process

is then repeated for other classes such as ground. Unlike

[4] which directly trains on the height of different types of

vegetation, we only train on the various material properties

of vegetation voxels, allowing us to remain general across

vegetation heights.

Each labeled voxel collected by driving through represen-

tative terrain is used as a training example for the observation

models in equations 1, 2, and 3. For appearance data such as

remission, infrared and color, the mean values from each voxel

are used to train the GMM observation models (i.e. remi, σ2
i ,

P (i) in equation 2) and the variance of measurements within

the voxels is used as the GMM measurement model variance

(σ2
y in equation 3).

Hit and pass-through data from the labeled training voxels

are used to find the maximum likelihood parameters of the

beta-binomial density model (ax and bx in equation 1) for

each class state x using a Newton-Raphson method[13]. This

handles class states like ground and vegetation, but the density

of obstacle and free-space states must also be trained. The free-

space density can be trained using data that includes insects

or dust that occasionally returns a ladar point, or it can just

be set manually to strongly favor empty space. Similarly, the

obstacle density can be trained using hit and pass-through data

from representative obstacles, or it can be set manually to favor

dense objects.

B. Neighborhood Models

The priors given in equations 4 and 5 describe how class

and ground height depend on their neighbors, and the prior

in equation 6 describes how column class heights are related

to the common class height. Each of these priors contains a

parameter that gives the strength of the prior, and describes

how much classes tend to clump together, how smooth the

ground is, and how little class heights vary. As above, we

train these parameters by driving over representative terrain.

As we drive over an area, we record the ground heights

measured by the location of our wheels. We use these height

sequences to find the standard deviation σG of typical ground

height variation between voxel columns, which gives us the

maximum likelihood estimate of our Gaussian MRF ground

neighborhood prior.

Similarly, as we drive through vegetation, we get an approx-

imate vegetation height measurement by taking the highest

ladar hit and subtracting the known ground height (from the

wheel locations). Since we assume that vegetation heights are

independent given the common vegetation height in the area,

we can find the class prior standard deviation σHc directly

from this sequence of class heights.

The class interaction prior λC gives the probability that a

class transitions to a different class. This could be estimated

directly with class-labeled data over a large area that includes

many class transitions, but unlike the labeled data for the

observation models or the ground and class height interactions,

this type of training data is difficult to collect. However,

changing the class interaction prior affects the system output

in an intuitive way by controlling how much classes tend to

clump together, so this parameter can be set manually.

VI. RESULTS

We have tested this model in a nearby working farm and

an undeveloped area with tall weeds. The following three

examples demonstrate the improved performance gained from

using the structure we have built into our model.

In each case, after training the model on representative

terrain, we drive the vehicle through the test area, while letting

the Gibbs sampler run continuously. Running at 1Hz, the

system calculates observation likelihood products, computes

samples from the model, and updates the local terrain map

with the maximum a posteriori (MAP) class label, mean

ground height, and mean class height from the samples in

each column.

A. White shed

Figure 3 shows the view from the tractor as it approaches

a white shed. This is a large obstacle that could be reliably

detected in a variety of ways, but it will serve as a good

example of how the various pieces of our model interact

to produce the correct result. Figure 4 shows the output of

our model including the MAP class labels: obstacle (red),

vegetation (green), ground (gray), and the mean ground height

for driveable areas. Obstacle columns are shown at their class

height. The model produces a reasonable classification of the

scene and a smooth ground estimate that would work well for

vehicle navigation. It classifies the shed as an obstacle and

correctly captures the hill sloping down to the right despite

the presence of sparse vegetation.

This example is interesting because on a voxel basis the

ground class is much more likely than the broad uniform

obstacle class for the voxels from the shed. However, the MRF

and HSMM spatial constraints imposed on the ground surface

make it extremely unlikely that the ground height would have

a tall step discontinuity at the shed wall. Since the density and

appearance data are not well described by the vegetation class,

the shed is correctly classified as an obstacle.

Figure 5 shows the output of the system when the neigh-

borhood interactions are ignored and the columns are as-

sumed to be independent. Without neighborhood information,

classification is based solely on the data likelihood for each

column HSMM model. Lacking the smooth ground prior, the

wall is classified as a collection of tall columns of ground

voxels. Figure 5 also shows that without the ground and class

priors, the ground height estimates and classification labels are

generally more noisy.



Fig. 3. View from the tractor of a white shed Fig. 4. System output, including ground heights
and classification

Fig. 5. Independent voxel column output with
neighborhood interactions turned off, showing in-
correct classification of the shed

Fig. 6. View from tractor of tall weeds, low grass,
person, and small dirt mound

Fig. 7. System output, including ground heights
and classification

Fig. 8. Lowest hit or pass for ground height in
vegetation and independent classification, showing
poor ground height estimates and misclassifications

B. Tall vegetation

Figure 6 shows the view from the tractor in a challenging

scene: a camouflaged person in tall weeds with low grass and

a small dirt mound to the right. Both the person and the dirt

mound have high infrared temperature. We trained on the two

types of vegetation and bare ground. Figure 7 gives the mean

ground heights and MAP classification results. Inference over

the model results in the correct classification of the person

and the dirt mound, as well as the two types of vegetation.

The area to the right of the person in the shadow of the tall

weeds is classified as ground. Although that area is actually

low grass, since the system has no data from the area, ground

is a reasonable estimate.

Using the model structure and the known ground height

under the vehicle allows the system to produce reasonable

estimates of the ground height even in areas where the ground

is hidden. In addition to providing a smoothing prior, neigh-

borhood interactions allow information to propagate. Fixing

the heights under the wheels affects the ground estimates in

the surrounding area. Columns with little or no data can still

produce useful estimates using their neighborhood. The system

can infer the common vegetation height of the tall weeds from

areas where it is observable, such as under the vehicle or the

transition to tall weeds behind the person. The assumption of

vegetation height similarity then allows the system to infer

the ground height in areas where the ground is not directly

observable. Knowing the ground height allows the model to

explain the dirt mound as a rise in the ground but the person

as an obstacle.

The range points do not penetrate the tall weeds in this

example, as shown in Figure 8, which uses the lowest hit

or pass-through in each vegetation column for ground height

and the MAP class labels when no neighborhood information

is used. Assuming independence prevents information from

propagating and the resulting ground height estimates are poor.

Also, both the person and the dirt mound contain a mixture

of obstacle and ground classes.

Figure 9 shows a plot of the quality of the ground height

estimates from Figures 7 and 8. After computing estimates

of the ground height using our model, we drove through

the scene toward the area between the person and the dirt

mound, and made measurements of the ground height using

our wheel locations. This trajectory is marked as “True height”

in Figure 9, and offers a comparison for the estimates produced

by the model and those using the lowest hit or pass-through in

each column. The model ground estimates are fairly smooth

and stay within approximately 20cm of the true value.

As another comparison, we show an approach that adjusts

the lowest hit in each column based on that column’s indepen-

dent classification. Instead of using spatial structure to infer the

vegetation height from the data as in our model, this approach

simply uses the average height of each class from the training

data for the offset. Figure 9 shows that this can work well when

the classification is correct and the actual vegetation height
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Fig. 9. Comparison between ground estimates of the area in Figures 7 & 8
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Fig. 10. Comparison between ground estimates for longer test path, showing
predictions made 6m in front of the vehicle as the vehicle drove

matches the training data, but it suffers from misclassification

and the lack of a smoothing prior.

C. Longer run through varied vegetation

Figure 10 shows ground height estimates for a longer test

set through varied vegetation. Unlike Figure 9, which presents

a snapshot of the predictions at different distances in front of

the vehicle at a given time, Figure 10 shows predictions 6m

in front of the vehicle over time as the vehicle drove. The

lowest hit line shows that the first 70m of the path contains

two sections of tall dense non-penetrable vegetation, and the

remainder of the path has low vegetation with various tall

sparse vegetation and a few small patches of dense vegetation

(e.g. 170m). The model output is generally smooth and closely

matches the true height, whereas the lowest hit rarely reaches

the ground, and the lowest hit with class offset is often

correct but very noisy because of misclassifications due to

its independence assumption.

VII. CONCLUSIONS AND FUTURE WORK

We have described a novel model structure that allows

multiple Markov random fields to interact through a hid-

den semi-Markov model for improved ground height estima-

tion and classification for outdoor navigation. This structure

enforces spatial constraints within a column and between

neighboring columns. The model provides a natural way of

combining different types of sensor data. It can find obstacles

without needing to explicitly model them or collect obstacle

appearance training data. It can infer vegetation height to

produce estimates of the supporting ground surface even when

the ground is hidden by dense vegetation. Except for the

class neighborhood prior, the sensor and interaction model

parameters can be easily trained by simply driving through

representative areas. The system runs in real-time on real

data and we showed that including the neighborhood structure

significantly improved both the ground height estimates and

the obstacle classification over an equivalent model without

neighborhood interactions.

We are currently working on several improvements to the

model. The system is set up essentially as a batch process,

even though data is continually coming in and the sampling

procedure continues over time. We would like to make it

a true online algorithm. We are experimenting with further

class models to handle hanging obstacles and holes. Finally,

we are looking into belief propagation and other approximate

inference schemes that might be less computationally intensive

than Gibbs sampling.
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