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In natural systems, many processes can be represented as the result of the interaction of self-
sustained oscillators on top of complex topological wirings of connections. We review some of
the main results on the setting of collective (synchronized) behaviors in globally and locally
identical coupled oscillators, and then discuss in more detail the main formalism that gives the
necessary condition for the stability of a synchronous motion. Finally, we also briefly describe a
case of a growing network of nonidentical oscillators, where the growth process is entirely guided
by dynamical rules, and where the final synchronized state is accompanied with the emergence
of a specific statistical feature (the scale-free property) in the network’s degree distribution.
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1. Introduction: Coupled Oscillators

in Lattices and Regular Networks

The recent years have witnessed an increasing inter-
est from the scientific community toward the study
of the dynamics in complex networks, i.e. ensembles
of interacting dynamical elements whose connec-
tivity structure is irregular, complex and possibly
evolving in time [Albert & Barabási, 2002; New-
man, 2003; Boccaletti et al., 2006].

A massive analysis of networks from the real
world has allowed to unravel a series of unifying
principles and statistical properties common to such
connecting topologies. Probably, the most impor-
tant of them is the scaling of their degree distribu-
tion. The degree distribution, P (k), defined as the
probability that a node chosen uniformly at random

has degree k, has been found to ubiquitously and
significantly deviate from the Poisson or Gaussian
distributions expected from random graphs and, in
many cases, to exhibit a power law (scale-free, SF)
tail (i.e. P (k) ∼ k−γ) with an exponent γ taking
a value between 2 and 3. Together with this, real
world networks are generally characterized by the
small world property, implying that their average
shortest path (the average distance of two nodes
of the network along their shortest path) scales at
most logaritmically with the system size.

Later, attention has been diverted to under-
stand the intimate relationship between the topo-
logical structure displayed by a graph, and the
mechanisms leading to the arousal of a collec-
tive behavior (as e.g. the synchronization of all
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the network’s nodes into a common dynamical
behavior).

Here, we discuss some results about the emer-
gence of such synchronized behavior in complex
networks of interacting self-oscillatory systems, and
particularly its intimate relationship with the emer-
gence of those specific topological structures that
are, indeed, encountered in most of the natural net-
working systems.

When the study of interacting self-sustained
oscillators was first approached, three main cou-
pling configurations were considered, namely global

coupling, when each unit interacts with all the oth-
ers; local coupling, when elements interact only with
their neighbors (defined by a given metric); and
nonlocal or intermediate couplings.

In an ensemble of globally coupled oscilla-
tors, each individual unit is generally considered as
influenced by the global dynamics through an inter-
action of mean-field type. In these kinds of configu-
rations, for both limit-cycle and chaotic oscillators
with slightly different oscillation modes, a phase
transition associated to a collective and coherent
behavior was observed as the result of an increase in
the coupling strength [Kuramoto, 1984; Kuramoto
& Shinomoto, 1985; Pikovsky et al., 1996; Kiss
et al., 2002].

However, a global coupling architecture is not
always able to properly describe a real situation,
especially when the units are embedded in a phys-
ical array, or when the space dimension is a rele-
vant feature of the system that one wants to model.
For instance, in some situations, such as neural net-
works or power supply networks, one should con-
sider that long range connections (necessary to the
all-to-all interactions) may imply a high cost in
terms of energy.

In a series of complimentary approaches, the
oscillatory interacting systems were embedded in
D-dimensional lattices. Not always though this lat-
ter approach allows for its rigorous analysis [Stro-
gatz, 2000; Strogatz & Mirollo, 1988; Matthews
et al., 1991], different collective regimes were
observed (global or partial synchronization, anti-
phase synchronization, phase clustering, etc.) in
large ensembles of coupled chaotic or periodic ele-
ments. In almost all cases, such cooperative dynam-
ics are strongly dependent on the size and dimen-
sion of the lattices, as well as on the distribution
of the eigenfrequencies of each oscillator [Sakaguchi
et al., 1987; Klevecz et al., 1992; Osipov et al.,
1997; Zheng et al., 1998; Belykh et al., 2000; Zhang

et al., 2001; Liu et al., 2001; Zhou & Kurths,
2002].

Later, a series of nonlocal coupling schemes
were proposed to take into account the natural
decay of the information content with the dis-
tance, especially to model the dependence of the
spatial correlation on the range of nonlocal cou-
pling [Kuramoto, 1995; Kuramoto & Nakao, 1996,
1997; Rogister et al., 2004]. In real physical systems,
moreover, a certain degree of randomness usually
exists not only in the intrinsic properties of each
unit, but also in the connections between them, and
these natural disorders (mismatch of parameters)
may strongly affect the collective behaviors in both
global or local coupling schemes.

Most studies on coupled oscillators consid-
ered N coupled phase oscillators, derived from the
Kuramoto model [Kuramoto, 1984]:

φ̇i = ωi − σ

N
∑

j=1

Cij sin[φj − φi], i = 1, . . . , N,

(1)

where φi denotes the phase of the ith oscillator,
ωi its natural frequency, σ is the coupling strength
parameter, and Cij = 1 if nodes i,j are connected,
and Cij = 0 otherwise (i.e. Cij are the elements of the
so-called adjacency matrix associated to the net-
work of the interacting oscillators).

In general, the order parameter to monitor the
appearance of a synchronized motion in Eq. (1) is
the so-called r parameter, defined by

r(t) =
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which gives the time dependent value of the ensem-
ble average of all vectors corresponding to the unit
circle representation of the oscillators’ phases. The
parameter, therefore has a value close to 0 when-
ever the network is phase incoherent, and equal to
1 when it is phase synchronized.

The original Kuramoto model [Kuramoto,
1984] corresponds to the simplest case of glob-
ally coupled (full connected graph) with equally
weighted oscillators, where Cij=1, ∀ i �= j. In the
original approach, the coupling strength was taken
to be σ = ε/N (with ε > 0, i.e. it was a cou-
pling parameter normalized to the system size)
in order to warrant the smoothness of the model
behavior also in the thermodynamic limit N → ∞
[Kuramoto, 1984; Strogatz, 2000]. It was pointed
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out that, in this case, the onset of synchronization
of the oscillators’ phases and frequencies occurs at
a specific critical value of the coupling strength.

As for locally coupled oscillators, [Niebur et al.,
1991] considered the phase locking process in a lat-
tice array for different topologies: regular nearest
neighbors coupling, random-local coupling (where
the weights of connections Cij were randomly
drawn from a Gaussian distribution), and long-
range sparse connections. The main observation was
that, at the same overall coupling strength, long-
range interactions produce a faster and more robust
synchronization than local coupling topologies.

Among the pioneering studies conducted on
the effects of synchronization of oscillators in com-
plex networks, we mention the numerical analysis
of the Kuramoto model on top of small-world net-
works [Watts, 1999], and the study of the analytical
conditions for complete synchronization of chaotic
systems on different kinds of graphs [Barahona &
Pecora, 2002].

These first attempts were aimed to give a suit-
able representation to a series of situations, for
instance in biology, where it is useful to consider
the nodes of a given network as oscillatory sys-
tems. Examples are ensembles of coupled and pulse-
coupled oscillators with and without time delay,
widely used because of their relevance to natural
systems such as chirping crickets and flashing fire-
flies, among others [Yeung & Strogatz, 1999; Timme
et al., 2002].

Later, several groups turned to investigate the
synchronization phenomena of the Kuramoto model
in complex wirings. In particular, Moreno et al.

[Moreno & Pacheco, 2004; Moreno et al., 2004]
studied numerically the conditions for the onset of
synchronization in scale-free networks, and on top
of motifs (small subgraphs) that were relevant in
different biological and social networks, with the
aim of inspecting the critical point associated to
the onset of synchronization. The main result of
these studies was to show that the onset of synchro-
nization for scale-free networks occurs at a small,
though nonzero, value of the coupling strength,
and that such a critical point does not depend
on the system size N . Several other authors [Lee,
2005; Ichinomiya, 2004] investigated the same prob-
lem from a theoretical perspective, as well as with
numerical simulations. The same qualitative behav-
ior was reported in [Ichinomiya, 2004], where a
mean field theory [Lee, 2005; Ichinomiya, 2004] pre-
dicted that the critical point is determined by the

all-to-all Kuramoto value, σ0, rescaled by the ratio
between the first two moments of the degree distri-
bution, σmf = σ0(〈k〉/〈k2〉).

We have organized the paper as follows. In the
first part we will discuss some results concerning
the stability of the synchronous state in a network
of interacting identical oscillators, and, in partic-
ular, we will concentrate on the formalism called
the Master Stability Function, which gives neces-
sary conditions to establish a synchronous motion
in an arbitrary network of coupled identical oscilla-
tory systems.

In the second part, instead, we will consider a
network of nonidentical phase oscillators to show
how the emergence of a synchronous behavior is
accompanied with the setting of a specific statistics
in the degree distribution, when the network is ini-
tially set in a unsynchronized state, and later grown
by means of subsequent links (established following
a purely dynamical rule) to an external pacemaker
that has the role of entraining the pristine nodes’
phases.

2. Identical Oscillators in Complex

Networks: The Master Stability

Function

In this first section, we consider the case of a net-
work of identical oscillators, and we illustrate the
so-called Master Stability Function approach. The
method, that was originally introduced for arrays
of coupled oscillators [Pecora & Carroll, 1998; Fink
et al., 2000], has been, indeed, later extended to
complex networks with arbitrary topologies [Bara-
hona & Pecora, 2002; Chen et al., 2003; Hu et al.,
1998; Zhan et al., 2000; Belykh et al., 2004].

In order to do so, we will consider a generic
network of N coupled oscillators. The state of the
ith oscillator is represented by a m-dimensional vec-
tor field xi ∈ R

m, whose evolution is ruled by an
ordinary differential equation ẋi = Fi(xi), being
Fi(x) : R

m → R
m a function that governs the local

(uncoupled) dynamics of the ith oscillator. Then,
the resulting equation of motion when the oscilla-
tors are coupled reads:

ẋi = Fi(xi) − σ

N
∑

j=1

LijH(xj), i = 1, . . . , N.

(3)

Here H(x) : R
m → R

m is a generic vectorial output
function giving the signal that is transmitted from
an oscillator to the other in the network, σ is the
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coupling strength, and Lij ∈ R are the elements of
a zero row-sum (

∑

j Lij = 0, ∀ i) N × N symmet-
ric matrix L with strictly positive diagonal terms
(Lii > 0, ∀ i), that specifies the strength and topol-
ogy of the underlying connection wiring.

A rigorous analytic treatment of Eq. (3)
requires a series of assumptions. The first is that
the network is made of identical oscillators, i.e. the
evolution function Fi in Eq. (3) is the same for all
network nodes (Fi(xi) ≡ F(xi), ∀ i).

Such an assumption is, indeed, crucial to ensure
the existence of an invariant set xs(t) in which
xi(t) = xs(t),∀ i, representing the complete syn-
chronization manifold S, whose stability will be the
object of the subsequent analysis.

The invariance of the synchronization manifold
S (i.e. the fact that it does not depend on σ) is
warranted by the zero row-sum condition of the
coupling matrix L as well as by the identity of the
coupling function H(x) for all network’s oscillators.
These two properties, indeed, cause the coupling
term to vanish exactly on S for all values of the
coupling strength, and therefore stability of the syn-
chronous state reduces to take care of the system’s
dynamical properties along all directions in phase
space that are transverse to this manifold.

For the sake of clarity, let us start by focusing
the attention to the case of symmetric (thus diago-
nalizable) matrices L.

In this case, the set λi of real eigenvalues asso-
ciated to the orthonormal eigenvectors vi that diag-
onalize the coupling matrix, verifies

Lvi = λivi

and

v
T
j · vi = δij .

Furthermore, due to the zero-row sum condi-
tion, one has that:

(i) the spectrum is entirely semi-positive, i.e. λi ≥
0, ∀ i, thus they can be ordered as 0 = λ1 ≤
λ2 ≤ · · · ≤ λN ;

(ii) λ1 = 0 with associated eigenvector

v1 =
±1√
N

{1, 1, . . . , 1}T

that entirely defines the synchronization
manifold S, and

(iii) all the other eigenvalues λi (i = 2, . . . , N)
have associated eigenvectors vi spanning all
the other directions of the m×N -dimensional
phase-space transverse to S.

The necessary condition for the stability of the
synchronization manifold is that the set of (N −1)∗
m Lyapunov exponents that corresponds to phase
space directions transverse to the m-dimensional
hyperplane

x1 = x2 = · · · = xN = xs

be all negative values.
Let, therefore

δxi(t) = xi(t) − xs(t) = (δxi,1(t), . . . , δxi,m(t))

be the deviation of the ith vector state from the
synchronization manifold, and consider the m × N
column vectors

X = (x1,x2, . . . ,xN )T

and

δX = (δx1, . . . , δxN )T .

Then one has

δẊ = [IN ⊗ JF(xs) − σL ⊗ JH(xs)]δX, (4)

where ⊗ stands for the direct product between
matrices, J denotes the Jacobian operator, and IN

is the identity matrix.
One notices that the arbitrary state δX can be

written as

δX =

N
∑

i=1

vi ⊗ ζi(t)

with ζi(t) ∈ R
m = (ζ1,i, . . . , ζm,i). Then, by apply-

ing v
T
j to the left side of each term in Eq. (4), one

finally obtains a set of N variational equations for
the vectors ζi(t) that read

dζj

dt
= Kjζj , j = 1, . . . , N (5)

being

Kj = JF(xs) − σλjJH(xs)

specific evolution kernels.
Each equation in (5) yields a set of m condi-

tional Lyapunov exponents. We already discussed
that the eigenvalue λ1 = 0 has a corresponding
eigenmode that lies entirely within the synchroniza-
tion manifold. Therefore, the corresponding m con-
ditional Lyapunov exponents will be those of the
single uncoupled system ẋ = F(x) and no condi-
tions on them have to be imposed.
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Replacing σλi by ν in Eq. (5), one can write a
parametric variational m-dimensional equation:

ζ̇ = Kνζ = [JF(xs) − νJH(xs)] ζ, (6)

from which one can extract all m conditional Lya-
punov exponents at each value of the parameter ν.

The parametrical behavior of the largest of such
exponents, Λ(ν), is called Master Stability Function.

For ν > 0, one has to distinguish between three
possible behaviors of Λ(ν) that define three possible
classes for the choice of a local function F(x) and a
coupling function H(x):

(I) Λ(ν) is a monotonically increasing function,
(II) Λ(ν) is a monotonically decreasing function

that intercepts the abscissa at some νc ≥ 0,
and

(III) Λ(ν) is a V-shaped function admitting nega-
tive values in some range 0 ≤ ν1 < ν2.

Let us now discuss the relevant properties in
these three cases.

Case I corresponds to a choice of F(x) and
H(x) such that one never achieves synchronization
in a network. Indeed, for all possible values of σ
and for all possible eigenvalues’ distributions (these
last ones reflect possible topological arrangements
of the wiring connection of the network), the prod-
uct σλi always leads to a positive maximum Lya-
punov exponent, and therefore the synchronization
manifold S is always transversally unstable.

The very opposite situation arises for functions
F(x) and H(x) giving Master Stability curves of
class II. In these cases, indeed, the network admits
synchronization always for a large enough coupling
strength, regardless of the topology of the coupling
configuration: given any eigenvalue distribution it
is indeed sufficient to select σ > νc/λ2 (where νc is
the intersection point of the Master Stability Func-
tion with the ν axis) to warrant that all transverse
directions to S have associated negative Lyapunov
exponents.

In class II, therefore, the effect of the connec-
tion topology is to rescale (by means of the second
smallest eigenvalue λ2 of the coupling matrix L) the
threshold for the appearance of a synchronous state.

A nontrivial and interesting situation is class
III. Here, Λ(ν) is negative in a finite parameter
interval (ν1, ν2) (with ν1 = 0 when F(x) supports
a periodic motion). The stability condition is then
met for some σ when λN/λ2 < ν2/ν1.

Systems belonging to class III Master Stabil-
ity Function are therefore extremely sensitive to

specific topological arrangements. It makes sense
then to introduce the network capability to give
rise to a synchronized dynamics as the ratio λN/λ2

between the largest and the second smallest eigen-
values in the spectrum of the coupling matrix. The
more packed the eigenvalues of L are, the higher is
the chance of having all Lyapunov exponents into
the stability range for some σ [Barahona & Pecora,
2002].

The situation is a bit more complicated when
the coupling matrix L is asymmetric (but still
diagonalizable). In this case, the spectrum of L
is contained in the complex plane (λ1 = 0; λl =
λr

l + iλi
l, l = 2, . . . , N), and one has to study the

parametric equation (6) for complex values of the
parameter ν = νr + iνi.

An ordering of L’s eigenvalues can still be done
for increasing real parts. The Gerschgorin’s circle
theorem [Gerschgorin, 1931; Bell, 1965] asserts that
L’s spectrum in the complex plane is fully con-
tained within the union of disks D(ci, ri) having as
centers ci the diagonal elements of L (ci = Lii),
and as radii ri the sums of the absolute values of
the other elements in the corresponding rows (ri =
∑

i�=j |Lij |)

{λl}l=1,...,N ⊂
⋃

i

D



Lii,
∑

j �=i

| Lij |



 .

Mathematically, since L is a zero row-sum
matrix, and

Lii =
∑

j �=i

|Lij|

because of the extra assumption that all nonzero
off diagonal elements are negative, we can assume
that in all cases and for all network sizes the L’s
spectrum is fully contained within the unit circle
centered at 1 on the real axis (|λl − 1| ≤ 1, ∀ l),
giving the following inequalities: (i) 0 < λr

2 ≤ · · · ≤
λr

N ≤ 2, and (ii) | λi
l |≤ 1, ∀ l.

By calling R the bounded region in the com-
plex plane where the master stability function Λ(ν)
provides a negative Lyapunov exponent, the stabil-
ity condition for the synchronous state is that the
set {σλl}l=2,...,N be entirely contained in R for a
given σ.

This is best accomplished for connection
topologies that make both the ratio

λr
N

λr
2
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and

max
l≥2

{|λi
l |}

as small as possible, to simultaneously avoid possi-
ble instabilities due to either the real or the imagi-
nary part of some eigenvalues lying out of R.

Master stability function arguments are cur-
rently used as a challenging framework for the study
of synchronized behaviors in complex networks,
especially for understanding the interplay between
complexity in the overall topology and local dynam-
ical properties of the coupled units.

Recent applications of the Master Stability
Function for both symmetric and asymmetric cou-
pling matrices [Motter et al., 2005; Chavez et al.,
2005; Hwang et al., 2005] have shown that suit-
ably weighted network architectures are, indeed,
able to greatly enhance the stability of the syn-
chronization manifold, thus providing a direct way
to investigate how the properties of the connection
wiring influence the efficiency and robustness of the
system.

3. Nonidentical Oscillators in Complex

Networks: Synchronization,

Entrainment and Selection

of Topology

The above described formalism is a powerful tool
for analyzing the stability of synchronous states in
a network, but it explicitly requires that the units
are identical to assure the existence of a complete
synchronization manifold.

Real systems, however, hardly meet such a
condition, as they are typically inhomogeneous.
Consequently, any model that wants to furnish a
reliable description of these situations, must neces-
sarily include some degree of randomness.

As soon as nonidenticity in the networking ele-
ments is considered, however, there is no choice
but to restrict oneself to numerical simulations on
synchronization and control processes of complex
networks [Moreno & Pacheco, 2004; McGraw &
Menzinger, 2005; Leyva et al., 2006].

In fact, some efforts have been made to extend
the Master Stability Function formalism to the case
of nonidentical oscillators. In particular, [Chavez
et al., 2005] numerically tested that, for a tiny
parameter mismatch, the network’s synchronous
state has almost the equivalent stability properties
predicted by a Master Stability Function approach
applied to a network of identical oscillators for an

average of the parameter distribution. Following
this study, [Hramov et al., 2008] later discussed
how the Master Stability Function formalism can
be extended to the case of a slightly dispersed dis-
tribution of parameters by noise addition. There,
it was shown that, for small enough noise in the
system, the calculation of the conditional largest
Lyapunov exponents in Eq. (6) can be performed
by considering as synchronization manifold the
solution of a stochastic differential equation asso-
ciated to the corresponding network of identical
units.

Another scenario where the Master Stability
Function approach has been extended is that of net-
works subject to pinning control [Sorrentino et al.,
2007]. There, the networking oscillators are iden-
tical, but they are further forced to follow a pre-
scribed dynamics by a pinning process. The authors
manage to define the network pinning controllabil-
ity by studying the stability of the imposed dynam-
ics in the N + 1 phase space by the eigenratio
λN+1/λ2 calculated for a suitably extended con-
nectivity matrix. The strategy to pin the network’
nodes is either at random or it is selective follow-
ing the node ranking given by some topological
properties.

In this section, instead, we introduce a compli-
mentary method to entrain a network of nonidenti-
cal oscillators, in which nodes are pinned depending
on their instantaneous distances from a given ref-
erence dynamics [Sendiña-Nadal et al., 2008]. The
main difference is, therefore, that the pinning rule is
here fully determined by the dynamical evolution of
the network, and not at all influenced by topological
properties of the system.

In order to substantiate this approach, we
consider a network G0 made of N bidirectionally
coupled Kuramoto phase oscillators [Kuramoto,
1984], in which each node is randomly connected
to the rest with probability p = ln(N)/N . On top
of this structure, an extra phase oscillator with
frequency ωp, acting as a pacemaker, grows an
evolving/adaptive network of unidirectional links to
nodes in G0, as seen in Fig. 1.

Precisely, the process that we will describe
below consists initially in selecting at time t = 0
a specific initial network configuration G0. At sub-
sequent times tk = k∆t, the external pacemaker
launches a new forcing connection to nodes in G0

(with a selecting rule that will be specified momen-
tarily), allowing for multiple forcing connection to
a single node.
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Fig. 1. Sketch of the growing process. The blue nodes and
links represent a pristine random network G0, the red node
is the external pacemaker at frequency ωp, and the red links
represent its unidirectional forcing connections with elements
of G0. Furthermore, the thickness of every red connection is
proportional to the weight associated with the forcing oper-
ated by the pacemaker on each specific element of G0.

The dynamics of the complete network is then
given by the equation:

φ̇i = ω0i +
ε

Wi(t)

N
∑

j=1

Aij sin(φj − φi)

+
εp

Wi(t)
Ci(t) sin(φp − φi), i = 1, . . . , N

(7)

φi are the phases of N oscillators in G0 (whose initial
frequencies ω0i are randomly chosen from a uniform
distribution within the range 0.5 ± 0.25), and φ̇p =
ωp is the frequency of the pacemaker.

ε and εp are suitable coupling parameters
describing, respectively, the strengths of the bidi-
rectional coupling among the elements of G0 and the
unidirectional forcing operated by the pacemaker on
the nodes of the pristine graph. In what follows, ε is
selected so, at time t = 0 the pristine graph G0 fea-
tures a unsynchronized motion, and the frequency
of the pacemaker is set to be ωp = 0.5.

The coefficients Aij , are the N × N elements
of the adjacency matrix A = (Aij), describing
the structure of the network of connections in G0

(Aij = 1 if the oscillators i and j are connected and
0 otherwise). The coefficients Ci(t) are the N com-
ponents of a time dependent vector C accounting
for the evolution in time of the connections of G0

with the pacemaker, with Ci(t) = 0 if the oscillator
i is disconnected from the pacemaker at time t, and
Ci(t) = ni ∈ N when the oscillator i has received
ni forcing connections with the pacemakers during
the time interval [0, t]. Notice that, in Eq. (7), these

coupling strengths are properly scaled by the corre-
sponding time dependent total link weight of each
node in G0, which is given by:

Wi(t) = Ci(t) +

N
∑

j=1

Aij (8)

As discussed above, the pinning process to
entrain the network G0 to the pacemaker frequency
is based on the dynamical state of the nodes rather
than on their topological properties. Specifically,
the selection criterion through which the pacemaker
establishes and weights the links to G0 is as fol-
lows: at fixed time intervals ∆t the pacemaker
searches for that node in G0 whose instantaneous
phase most accurately verifies an anti-phase condi-
tion with respect to its own.

In other words, the chosen node is which that
holds more closely the phase condition:

min
i=1,...,N

{|π − ∆θi| mod 2π}

where ∆θi = φi(t)−φp(t). Then, the corresponding
element of the pacemaker adjacency vector updates
to Ci(t + tk) = Ci(t) + 1.

Our main goal is to inspect the changes in the
network topology induced by the entrainment pro-
cess. The way the forcing process couples dynamics
and topology leads, indeed, to some nontrivial fea-
tures in the structure. As explained in Sec. 1, the
appearance of a synchronized motion in a popula-
tion of phase oscillators can be followed with the
quantity introduced in Eq. (2).

To properly quantify the changes in the topol-
ogy associated with the arousal of synchronization,
we perform large trials of numerical simulations
with N = 1000, ε = 0.2, and a pacemaker fur-
nishing a total of 10 000 perturbations. We mon-
itor the time evolution of the total incoming link
weight distribution Pt(W ) of all nodes originally
belonging to G0 during the process of forcing. It
should be noted that the weighting of each link from
the pacemaker to a given node is equivalent to a
description in terms of having many identical pace-
makers attached to that node with weight equal to
one [Sendiña-Nadal et al., 2008]. In this sense, the
results obtained by monitoring the distribution of
the weights can be translated to the corresponding
in-degree distribution.

In fact, we here measure the cumulative link
weight distribution P c

t (W ), given by

P c
t (W ) =

∑

W ′>W

Pt(W
′).
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This is because the summing process of P (W )
smoothens the statistical fluctuations generally
present in the tail of the distribution. As a generic
property, it is important to remark that, if a power-
law scaling is observed in the behavior of P c(W )
(i.e. if P c(W ) ∼ W−γc), this implies that also
the degree distribution P (W ) is characterized by
a power law scaling P (W ) ∼ W−γ , with γ ∼ 1+γc.

Figure 2 reports how r(t) and P c
t (W ) evolve in

time in the two different coupling regimes: when εp is
small enough so that the forcing does not lead to any
entrainment [Figs. 2(a) and 2(b)], and for a process
that eventually leads to entrainment of G0 to the fre-
quency of the pacemaker [Figs. 2(c) and 2(d)].

One immediately realizes that in Fig. 2(b),
P c

t (W ) does not deviate significantly in shape from
its initial distribution P c

0 (W ) (� symbols), and the
only effect of the forcing on the weight distribu-
tion is to uniformly increase the mean weight. At
the same time, the evolution of the order parame-
ter shows [Fig. 2(a)] that the network is not able to
reach a synchronous behavior.

At variance, Fig. 2(d) shows that the entrain-
ment process (manifested by the evolution of r(t) to
1 in Fig. 2(c)) is accompanied by the convergence of
P c

t (W ) to an asymptotic distribution P c
fin(W ) (�

symbols) which features a power-law shape.
The difference in the final distributions for the

nonentrained and entrained networks, and the con-
vergence in this latter case of P c

t (W ) to a scale free
distribution P c

fin(W ) is a generic property of Eq. (7)

[Sendiña-Nadal et al., 2008].
The mechanism that is responsible for the emer-

gence of such a weight distribution, is intimately
related to the way the external pacemaker locks the
oscillators in G0 in the course of the time, and in par-
ticular, on the relationship between the probability
for a given node of G0 to acquire connections dur-
ing the growth of the forcing network and its initial
frequency. Figure 3 reports the initial frequency
of each node pinned by the pacemaker Figs. 3(a)
and 3(b) for the two coupling regimes (nonentrain-
ment, εp = 0.2 and final entrainment, εp = 0.5), as
well as the corresponding histograms of the times a
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Fig. 2. Time evolution of the order parameter r(t) and of the cumulative weight distribution P
c(W ) in a log–log plot, for a

specific realization of the forcing process (parameters specified in the text). Panels (a) and (b) correspond to a nonentrained
network (εp = 0.2) and panels (c) and (d) to a entrained one (εp = 0.5). The time instants at which the distributions are
taken in (b) and (d) are indicated in (b). Notice that, in the entrained case, P

c
t (W ) converges to an asymptotic distribution

(�) which features a power-law shape.
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Fig. 3. (a) and (b) Initial frequency of the nodes pinned by the pacemaker as a function of time during the forcing period.
(a) refers to an unsuccessful entrainment, and (b) to a successful one. (c) and (d) Number of times that a given initial frequency
was chosen by the pacemaker for (c) an unsuccessful entrainment and (d) a successful one.

given initial frequency is hit by a connection from
the pacemaker Figs. 3(c) and 3(d).

A close inspection of the figures makes it evi-
dent that for the nonentrainment regime, any initial
frequency has almost the same probability of being
selected by the pacemaker during the forcing pro-
cess, whereas the successful entrainment case corre-
sponds to a sort of preferential attachment selection
which promotes more and more connections from
the pacemaker to those nodes in G0 whose initial
frequencies were more distant from that of the pace-
maker. A full description and explanation of this
mechanism is given in [Sendiña-Nadal et al., 2008].

4. Conclusions

In conclusion, we have described some results on
how topology and dynamics of a network of phase
oscillators interplay during the settings of collec-
tive synchronized behavior. In particular, we have
discussed how the stability of the synchroniza-
tion dynamics is affected by the topology of the
underlying wiring structure, and how dynamics and
topology of a network can be controlled at once by

means of a pinning mechanism which entrains the
phases of the oscillators to that of an external pace-
maker.

It has to be remarked that the very fact that a
purely dynamical mechanism can induce the emer-
gence of specific power-law degree distributions can
provide new insights on the fundamental processes
at the basis of the growth of some real world net-
works, that seem to ubiquitously feature such con-
nectivity distributions.

Acknowledgments

Work partly supported by EU contract 043309
GABA, and 2007-CET-1601.

References

Albert, R. & Barabási, A.-L. [2002] “Statistical mechan-
ics of complex networks,” Rev. Mod. Phys. 74, 47–97.

Barahona, M. & Pecora, L. M. [2002] “Synchronization
in small-world systems,” Phys. Rev. Lett. 89, 054101.

Bell, H. E. [1965] “Gerschgorin’s theorem and the zeros
of polynomials,” Amer. Math. Monthly 72, 292–295.



762 J. A. Almendral et al.

Belykh, V. N., Belykh, I. V. & Hasler, M. [2000] “Hierar-
chy and stability of partially synchronous oscillations
of diffusively coupled dynamical systems,” Phys. Rev.

E 62, 6332–6345.
Belykh, V. N., Belykh, I. V. & Hasler, M. [2004] “Con-

nection graph stability method for synchronized cou-
pled chaotic systems,” Phys. D: Nonlin. Phenom.

195, 159–187.
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. &

Hwang, D.-U. [2006] “Complex networks: Structure
and dynamics,” Phys. Rep. 424, 175–308.

Chavez, M., Hwang, D.-U., Amann, A., Hentschel,
H. G. E. & Boccaletti, S. [2005] “Synchronization is
enhanced in weighted complex networks,” Phys. Rev.

Lett. 94, 218701.
Chen, Y., Rangarajan, G. & Ding, M. [2003] “Gen-

eral stability analysis of synchronized dynam-
ics in coupled systems,” Phys. Rev. E 67,
026209.

Fink, K. S., Johnson, G., Carroll, T., Mar, D. & Pec-
ora, L. [2000] “Three coupled oscillators as a universal
probe of synchronization stability in coupled oscillator
arrays,” Phys. Rev. E 61, 5080–5090.
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