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Abstract. We formalise the constructive content of an essential fea-
ture of quantum mechanics: the interaction of complementary quantum
observables, and information flow mediated by them. Using a general
categorical formulation, we show that pairs of mutually unbiased quan-
tum observables form bialgebra-like structures. We also provide an ab-
stract account on the quantum data encoded in complex phases, and
prove a normal form theorem for it. Together these enable us to describe
all observables of finite dimensional Hilbert space quantum mechanics.
The resulting equations suffice to perform computations with elemen-
tary quantum gates, translate between distinct quantum computational
models, establish the equivalence of entangled quantum states, and sim-
ulate quantum algorithms such as the quantum Fourier transform. All
these computations moreover happen within an intuitive diagrammatic
calculus.

1 Introduction

Complementary quantum observables such as position and momentum cannot
be assigned sharp values at the same time. This fact constitutes the heart of
quantum physics. That the self-adjoint operators which characterise these don’t
commute, motivated the study of non-commutative C∗-algebras, and that their
propositional lattices are not distributive resulted in Birkhoff-von Neumann
quantum logic. Neither of these axiomatic approaches unveils the true capabilities
which these complementary observables provide. They merely involve weakening
the commutativity/distributivity equation, rendering them essentially useless for
any quantum informatic purpose. In this paper we provide an axiomatic account
of complementary quantum observables which enables us to tackle problems of
actual interest to quantum informatics: algorithm design, identifying the ca-
pabilities of multi-partite entanglement, translation between distinct quantum
computational models etc. Our starting point is the axiomatisation of quantum
observables proposed by Pavlovic and one of the authors in [5] which substan-
tially relied on Carboni and Walters’ cartesian bicategories [2]. This notion of
quantum observable strongly improves on the one due to Abramsky and one of
the authors in [1], the paper which initiated categorical quantum axiomatics, in
that it axiomatises quantum observables in terms of dagger symmetric monoidal
structure only, allowing for an operational interpretation, a diagrammatic cal-
culus, as well as the ‘necessary’ higher level of abstraction.1

1 For a detailed discussion of this necessity see [3,12].
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Somewhat ironically, while classical structures were crafted to reason about
classical control, this paper shows that considering a pair of interacting classical
structures—corresponding to complementary quantum observables—are a pow-
erful vehicle to specify and reason about pure quantum states and operations,
with many applications. We formalise this notion of complementarity through
a set of equations which axiomatise copyability of classical states and the infor-
mation flow through incompatible classical structures. Surprisingly the relevant
equations are almost exactly those of a bialgebra [13], differing only by scalar
factors. We show that the axioms of this structure, a scaled bialgebra, express
the essential features of quantum mechanics in very direct yet usable fashion.

2 Categories of Quantum States and Processes

A †-symmetric monoidal category (†-SMC) [12] is a symmetric monoidal category
(C, ⊗, I) together with an identity-on-objects contravariant endofunctor † : C →
C which preserves the monoidal structure. An elementary account of †-SMCs
and their graphical representations is in [12]. Well known examples include Rel,
the category of sets and relations, and FdHilb, the category of finite dimensional
Hilbert spaces and linear maps.

However quantum states are not vectors in a Hilbert space: they are
one-dimensional subspaces. To articulate this fact we will use the word state ex-
clusively to refer to such one-dimensional subspaces. Similarly, a non-degenerate
observable does not correspond to a basis, but rather a maximal family of mutu-
ally orthogonal states. The move from a linear to a projective setting is formalised
using a pair of categories, FdHilbp and FdHilbwp. The category FdHilbp

has the same objects as FdHilb but its morphisms are equivalence classes of
FdHilb-morphisms for the congruence

f ∼ g ⇔ ∃c ∈ C \ {0} s.t. f = c · g.

This quotient reduces the scalar monoid to a two-element set, hence the capacity
for probabilistic reasoning is lost. The solution consists of enriching FdHilbp

with probabilistic weights i.e. to consider morphisms of the form r · f where
r ∈ R+ and f a morphism in FdHilbp. Therefore, let FdHilbwp be the category
whose objects are those of FdHilb and whose morphisms are equivalence classes
of FdHilb-morphisms for the congruence

f ∼ g ⇔ ∃α ∈ [0, 2π) s.t. f = eiα · g.

We regain the absolute values of the inner-product, and thus the probabilistic
distance between states.2 These three categories are related via inclusions:

FdHilbp

��
⊂

r∈R
+
� FdHilbwp

��
⊂

α∈[0,2π)
� FdHilb

2 A detailed categorical account on FdHilbwp is in [3]; in particular, neither FdHilbp

nor FdHilbwp has biproducts, so the approach to measurements taken in [1] will
not work here.
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We write |ψ〉 (or rarely ψ) to denote vectors; ||ψ〉〉 denotes a state spanned by
this vector. Similarly, |

∑
i ci| i 〉〉 is the state spanned by vector

∑
i ci| i 〉. We take

as given a canonical basis for the Hilbert space Cn, which we write {| i 〉}i. This
basis then fixes a canonical observable given by the states {|| i 〉〉}i. The hom-set
FdHilbp(C, C2)—that is, the space of linear maps C → C2— corresponds to
the the points of the Bloch sphere.3 The unitaries in FdHilbp(C, C2), i.e. those
maps U satisfying UU † = U †U = 1 correspond to rotations of the Bloch sphere.

3 Classical Structures and the Spider Theorem

A classical structure [5] in a †-SMC is an internal cocommutative comonoid
(A, δ : A → A ⊗ A, ε : A → I) with δ both isometric and Frobenius, that is,

δ† ◦ δ = 1A and δ ◦ δ† = (δ† ⊗ 1A) ◦ (1A ⊗ δ),

respectively. The unit object I canonically comes with classical structure λI : I 

I ⊗ I and 1I. An orthonormal base {ψi}i for Hilbert space H induces

δ : H → H ⊗ H :: ψi �→ ψi ⊗ ψi and ε : H → C :: ψi �→ 1 (1)

as a classical structure. Conversely, each classical structure in FdHilb arises in
this way [6]. Hence, classical structure axiomatises the concept of (orthonormal)
base in a Hilbert space. Obviously, these classical structures are inherited by
FdHilbwp, and passing to FdHilbwp clarifies what the data which specify a
classical structure represent. A state ||ψ〉〉 is unbiased for some observable {||φi〉〉}i

if for all i we have that |〈ψ | φi〉|2 = 1/ dim(H) whenever ψ and φi are unit
vectors. Two observables {||ψi〉〉}i and {||φi〉〉}i are complementary whenever ||ψi〉〉
is unbiased for {||φj〉〉}j for all i.

Proposition 1. In FdHilbwp each pair consisting of an observable {||ψi〉〉}i on
a Hilbert space H and another state ||ε〉〉 of H which is unbiased for {||ψi〉〉}i

defines a unique classical structure by setting, for all i,

δ(||ψi〉〉) = ||ψi ⊗ ψi〉〉 and |ε(−)| = |〈ε, −〉|

Conversely, all classical structures in FdHilbwp arise in this way.

The crux to this result is the fact that a set of n base ‘vectors’ {|ψi〉}i of a
Hilbert space, up to a common global phase, is faithfully represented by the n+1
‘states’ {||ψi〉〉}i ∪ {||

∑
i ψi〉〉}. On the Bloch sphere an observable {||ψ0〉〉, ||ψ1〉〉},

e.g. {||0〉〉, ||1〉〉}, comprises two antipodal points, while ||ε〉〉, e.g. ||+〉〉, lies on the
corresponding equator, together making up a T-shape:

3 In any monoidal category maps of the type I → A are called points.
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It is standard to interpret the eigenstates ||ψi〉〉 for an observable {||ψi〉〉}i as
classical data. Hence, in FdHilbwp, the operation δ of a classical structure copies
the eigenstates ||ψi〉〉 of the observable it is associated with. We can interpret
||ε〉〉 as the state which uniformly deletes these eigenstates: by unbiasedness the
probabilistic distance of each eigenstate ||ψi〉〉 to ||ε〉〉 is equal. Therefore we will
refer to δ as (classical) copying and to ε as (classical) erasing. A crucial point
here is that given an observable there is a choice involved in picking ε.

Within graphical calculus for †-SMCs (see [12]) we depict the morphisms δ

and ε by and , and their adjoints, δ† and ε† by and , When taking
the monoidal structure to be strict—which we will do throughout this paper—
classical structures obey the following remarkable theorem [4].4

Theorem 1. Let f, g : A⊗n → A⊗m be two morphisms generated from classical
structure (A, δ, ε) and the dagger symmetric monoidal structure. If the graphical
representation both of f and g is connected then f = g.

Hence, such a morphism only depends on the object A and the number of inputs
and outputs. We represent this morphism as an n + m-legged spider

.

Theorem 1 allows the dots representing δ, ε, δ† and ε† to ‘fuse’ into a single
dot, provided all the dots are connected. Note that, conversely, the axioms of
classical structure are consequences of this fusing principle.

Classical structure refines the †-compact structure which was used in [1,12],
provided the latter is self-dual. Graphical reasoning in compact structure by
‘yanking’ is subsumed by reasoning in terms of the above ‘spider theorem’. This
will become clear in the first example of §6.3. We can define the conjugate f∗ :
A → B of a morphism f : A → B relative to classical structures (A, δA, εA) and
(B, δB, εB) to be f∗ := (1B ⊗η†

A)◦(1B ⊗f †⊗1A)◦(ηB ⊗1A) where ηX := δX ◦ε†X .
In FdHilb the linear function f∗ is obtained by conjugating the entries of the
matrix of f when expressed in the classical structure bases. The dimension of A
is dim(A) := η†

A ◦ ηA represented graphically by a circle.

4 A Generalised Spider Theorem and Abstract Phase
Data

Let (A, δ, ε) be a classical structure in a †-SMC. On points ψ, φ : I → A we
define

ψ � φ = δ† ◦ (ψ ⊗ φ) i.e. .

4 Similar results are known for concrete dagger Frobenius algebras, e.g. 2D topological
quantum field theories, as well as in more abstract categorical settings [11].
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Since (A, δ†, ε†) forms a commutative monoid, this operation is immediately
associative and commutative, with unit ε†. Now define

Λ : C(I, A) → C(A, A) :: ψ �→ δ† ◦ (ψ ⊗ 1A) i.e. .

From the properties of δ† it immediately follows that Λ is a homomorphism of
monoids, and that for every ψ

Λ(ψ) ◦ δ† = δ† ◦ (1A ⊗ Λ(ψ)) = δ† ◦ (Λ(ψ) ⊗ 1A) i.e. .

Since � is commutative, we also have

Λ(ψ) ◦ Λ(φ) = Λ(φ) ◦ Λ(ψ) i.e. .

and since Λ(ψ)† = (ψ† ⊗ 1A) ◦ δ, the spider theorem yields Λ(ψ)† = Λ(ψ∗).
Now let δn : A → A⊗n be defined by the recursion δ0 = ε, δ1 = 1A and
δn = δ ◦ (δn−1 ⊗ 1A).

Theorem 2. Let f : A⊗n → A⊗m be a morphism generated from classical struc-
ture (A, δ, ε), points ψi : I → A (not necessarily all distinct), and dagger sym-
metric monoidal structure. If the graphical representation of f is connected then

f = δm ◦ Λ
(⊙

i

ψi

)
◦ δ†n . (2)

This is a strict generalisation of Theorem 1: besides the number of inputs and
outputs there is now also the product of all points which distinguishes classes of
equal diagrams. We obtain a decorated spider:

In graphical terms, Theorem 2 allows arbitrary decorated dots of the same colour
to ‘fuse’ together provided we ‘multiply their decorations’.

In Cn, consider |ψ〉 =
∑

i ci| i 〉; when written in the basis fixed by (δ, ε), Λ(ψ)
consists of the diagonal n × n matrix with c1, . . . , cn on the diagonal. Hence,
Λ(ψ) is unitary, upto a normalisation factor, if and only if ||ψ〉〉 is unbiased for
{||1〉〉, . . . , ||n〉〉}. This fact admits generalisation to arbitrary †-SMCs.

Definition 1. We call ψ : I → A unbiased relative to δ if Λ(ψ) is unitary.

Proposition 2. The set of points which are unbiased relative to a classical
structure forms a group under � with (−)∗ as the inverse.

For ψ unbiased relative to δ, by Theorem 2 and Proposition 2, we have

=
(
Λ(ψ) ⊗ Λ(ψ)

)
◦ δ ◦ Λ(ψ)† and = ε ◦ Λ(ψ)†
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and again by the generalised spider theorem it then follows that these morphisms
define a classical structure. We call it a phase shift of (A, δ, ε). In C2, these phased
variants to the classical structure {||0〉〉, ||1〉〉, ||+〉〉} (cf. Proposition 1) are those
obtained by varying the choice of ||ε〉〉 on the equator of the Bloch sphere:

.

The states which are unbiased relative to {||0〉〉, ||1〉〉} are of the form ||+θ〉〉 :=∣
∣|0〉 + eiθ|1〉

〉
so form a family parameterised by a phase θ. In particular, we have

||+θ1〉〉 � ||+θ2〉〉 = ||+θ1+θ2〉〉, that is, the operation � boils down to adding up
phases modulo 2π, which is an abelian group with minus as inverse.

5 Complementary Observables as Scaled Bialgebras

The goal of this section is to show that each pair of complementary observables
in FdHilbwp defines a scaled bialgebra. In the next section we will then use this
scaled algebra structure together with the generalised spider theorem for phase
data to reason about quantum informatics. First we define and study an abstract
notion of complementary observables. We then derive a general scaled bialgebra
law in categories with ‘enough points’ such as FdHilb. This result then carries
over to FdHilbwp where it takes a much simpler form.

5.1 Complementary Classical Structures (CCSs)

In eq.(1) we described classical structures in FdHilb as maps which copy base
vectors, and hence also the corresponding states in FdHilbwp. We introduce an
abstract counterpart to these ‘copy-able’ points. We assume as given a classical
structure (A, δ, ε) in a †-SMC.

Recall that if a †-SMC has a classical structure on an object A then the
monoidal subcategory generated by A is †-compact, and hence we can define the
dimension of A by dim(A) = ε ◦ δ† ◦ δ ◦ ε†.5 For brevity, we define D = dim(A).
We will, in addition, assume the existence of a self-adjoint scalar

√
D, which we

we denote graphically as . As the notation suggests,
√

D satisfies
√

D ⊗
√

D = D = dim(A) or, graphically: .

Notation. We represent all the points a : I → A which are unbiased with
respect to (A, δ, ε) by dots of the same green (light grey) colour used before.
Those points which are ‘copied’ by δ in the sense of the definition below we
mark by a different colour, here red, or darker grey. Any other points are marked
in black. In light of the special role played by unbiased points, we will use the
spider notation only for these.
5 One can show that dim(A) does not depend on the choice of classical structure.
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Definition 2. We call a point ai : I → A classical relative to (A, δ, ε) if both√
D = ε ◦ ai and

√
D · (δ ◦ ai) = ai ⊗ ai hold, that is, graphically,

and .

The classical points for a classical structure in FdHilbwp are of course the states
{||ψi〉〉}i of Proposition 1.

The abstract conception of a classical point allows the concrete notion of
unbiasedness to be derived from the abstract formulation of Definition 1:

Lemma 1. If ai : I → A is classical and α : I → A unbiased for (A, δ, ε) then

(α† ◦ ai) · (α† ◦ ai)† = D i.e. .

The classical points are “eigenvectors” in a suitable sense:

Lemma 2. If ai : I → A is classical for (A, δ, ε) and ψ : I → A arbitrary then

√
D · (Λ(ψ) ◦ ai) = (ψ†

∗ ◦ ai) · ai i.e. .

The monoid multiplication on points carries over to scalars:

Lemma 3. Let ai : I → A be classical and ψ, φ : I → A arbitrary then

√
D · (a†

i ◦ (ψ � φ)) = (a†
i ◦ ψ) · (a† ◦ φ) i.e. .

Remark 1. The reader may find the scalar factors in the above equations mys-
terious, not to say vexing. But recall that in FdHilb the equation

∣
∣ε†

∣
∣ =

√
D is

required to satisfy the comonoid laws; this scalar factor reappears here.6

Definition 3. Two classical structures (A, δX , εX) and (A, δZ , εZ) in a †-SMC
are called complementary if they obey the following rules:

– whenever zi : I → A is classical for (δX , εX) it is unbiased for (δZ , εZ);
– whenever xj : I → A is classical for (δZ , εZ) it is unbiased for (δX , εX);
– ε†X is classical for (δZ , εZ) and ε†Z is classical for (δX , εX).

We abbreviate complementary classical structure as CCS.

Notation. The reason that we refer to the classical points of (A, δX , εX) by zi,
and vice versa, is because zi is unbiased to (δZ , εZ) and hence can participate in
the generalised spider theorem for the classical structure (δZ , εZ).

For any non-degenerate quantum observable we can find a pair of complementary
classical structures in FdHilbwp merely by picking ||ε〉〉 for one observable from
among the eigenstates of the other observable.
6 An alternative would be to replace (ε ⊗ 1H) ◦ δ = 1H with (ε ⊗ 1H) ◦ δ = 1√

D
1H.



Interacting Quantum Observables 305

5.2 Derivation of the Scaled Bialgebra Law from Abstract Bases

Definition 4. A set of points {ai}i is a basis for an object A if for all f, g :
A → B, if f ◦ ai = g ◦ ai for all ai, then f = g. A basis is classical, or unbiased,
with respect to some classical structure (A, δ, ε) if its elements are respectively
classical, or unbiased, with respect to this structure. An unbiased basis is called
closed if for all ai, aj there exists ak such that ai � aj = ak and a0 = ε†. We
say that a †-SMC has monoidal bases when, for each basis {ai}i for A, and each
basis {bj}j for B, the set {ai ⊗ bj}ij is a basis for A ⊗ B.

An immediate consequence of this definition is that whenever b is an element
of a closed unbiased basis {bi}i, then Λ(b) is a permutation on the set {bi}i.
Further, by Lemma 2 every classical point is an eigenvector of Λ(b).

Lemma 4. Let {ai}i be a classical basis for A suppose p : A → A acts as a
permutation on this set; then

(p ⊗ p) ◦ δ = δ ◦ p i.e. .

Lemma 5. Let (δX , εX), (δZ , εZ) be CCSs, let x be in a closed classical basis of
(δZ , εZ) and let z be unbiased for (δZ , εZ), then

√
D · (ΛX(x) ◦ ΛZ(z)) = (x† ◦ z) · (ΛZ(z) ◦ ΛX(x)) i.e. .

The Pauli matrices provide an example of these commutation relations.

Lemma 6. Let (δZ , εZ) and (δX , εX) be CCSs and let UZ denote all the unbiased
points and CZ a basis of classical points for (δZ , εZ). Suppose x ∈ CZ and let
X = ΛX(x). If CZ is closed under �X then:

– X is a permutation on CZ ;
– X is an automorphism on UZ such that

X◦ (α�Z β) = (X◦α)�Z (X◦β); , X◦ ε†Z = ε†Z and (X◦α)−1= X†◦α−1.

Corollary 1. (CZ , �X) is an abelian group with a group action on UZ defined
by (x, z) �→ ΛX(x) ◦ z.

Lemma 7. Consider a †-SMC with monoidal bases and let σ be the monoidal
symmetry. Let (A, δX , εX) and (A, δZ , εZ) be CCSs with classical bases {zj}j and
{xi}i; {xi}i is closed if and only if

D · (δ†X⊗ δ†X)◦(1A⊗ σ ⊗ 1A)◦(δZ⊗ δZ) =
√

D · δZ◦δ†X i.e. .

Corollary 2. In the above situation {xi}i is closed if and only if {zi} is.

Theorem 3. Let (δX , εX) and (δZ , εZ) be CCSs with closed bases including the
points z and x respectively. Then, graphically,
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. (3)

We call the morphisms obeying eq.(3) a ‘scaled bialgebra’.

Proposition 3. If (δX , εX) and (δZ , εZ) form a scaled bialgebra then

i.e. it is a ‘scaled Hopf algebra’ with dim(A) · 1A as its ‘antipode’.

5.3 Complementary Classical Observables in FdHilbwp

Classical structures in FdHilb ‘are’ bases [6] so complementary pairs of bases
which satisfy the closedness condition of Definition 4 induce scaled bialgebras
in the sense of Theorem 3. These scaled bialgebra laws carry over to the CCSs
in FdHilbwp consisting of the states spanned by the basis vectors. Moreover, in
FdHilbwp, since all scalars are positive reals, all scalars in eqs.(3) coincide, so
cancellation simplifies eqs.(3) to

. (4)

Conversely, any pair of complementary observables yields a family of CCSs in
FdHilbwp mediated by a group of permutations on the respective sets of classical
states, and one can always construct a corresponding underlying family of CCSs
in FdHilb. What we so far failed to prove is that in general we can always
construct a corresponding underlying family of ‘closed’ CCSs. However: (i) CCSs
in FdHilb on C2 and C3 ‘are’ closed; (ii) CCSs can be chosen to be closed for
all (to us) known constructions of mutually unbiased bases (e.g. [10]); (iii) we
constructed closed CCSs on C

n in FdHilbwp for all n. Hence for all practical
situations involving complementary observables eq.(4) hold. We conjecture that
closed CCSs can be derived from any pair of mutually unbiased observables.7

6 Applications and Examples in Quantum Informatics

Inevitably, the examples from this field are constructed from the ubiquitous qubit
i.e. C2. Take the ‘green’ classical structure (δZ , εZ) as in eq.(1) for {| 0〉, | 1〉}.
The unbiased points for (δZ , εZ) are of the form |αZ〉 = |0〉+eiα |1〉, and |αZ〉�Z

7 The study of mutually unbiased bases is an active area of research; characterisation
of the maximal number of mutually unbiased bases is one of the important open
problems in quantum informatics.
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|βZ〉 = |α + βZ〉. Further, ΛZ(α) =
(

1 0
0 eiα

)

, in particular, ΛZ(π) = Z. Notice

that ε†Z = |0〉+ |1〉 and |πZ〉 = |0〉−|1〉 form a basis, which is closed and unbiased
with respect to (δZ , εZ) and define a complementary ‘red’ classical structure
(δX , εX). The unbiased points for (δX , εX) have the form |θX〉 =

√
2(cos θ

2 |0〉 +

sin θ
2 |1〉) and ΛX(θ) =

(
cos θ

2 sin θ
2

sin θ
2 cos θ

2

)

, in particular, ΛZ(π) = X. We have Z ◦

|θX〉 = |−θX〉, and, upto a global phase, X ◦ |αZ〉 = |−αZ〉. In the language of
Lemma 6 we have: if |CZ | = 2, then (CZ , �X) is the symmetric group S2, its
unique non-identity element X is self-adjoint, and for α ∈ UZ we have X◦α = α∗
i.e. X assigns the inverses for the group UZ .

For some of the examples below it will also be convenient to explicitly have the
unitary operation which changes the green dots into red dots, that is, concretely,
the unitary operation which establishes the corresponding change of basis. In the
case of (δZ , εZ) and (δX , εX) given above, the two structures are connected via
the familiar Hadamard map H . As well as being unitary, H = H† so this map is
particularly well behaved.We will introduce H into the graphical language with

the following equations , and .

Below we disregard scalar factors which only distract from the essential point.

6.1 Quantum Gates, Circuits, and Algorithms

Above we introduced 1-qubit unitaries ΛZ(α) and ΛX(β) corresponding to ro-
tations in the X-Y and the Y -Z planes respectively; these suffice to represent
all 1-qubit unitaries, and their basic equational properties follow from the var-
ious lemmas introduced in the preceding sections. We demonstrate how to de-
fine the ∧X and ∧Z gates, and prove two elementary equations involving them.
The addition of these gates will provide a computationally universal set of
gates.

Example 1 (∧X gate). Setting one verifies by concrete cal-

culation that ∧X = . We can also give an abstract proof . Let |i〉 be a classical
point for the green classical structure; by evaluating it with an input to its con-

trol qubit (the green end) we have , which for |i〉 = |0X〉
is the identity, and in the binary case, for |i〉 = |1X〉, is the unique operation
X. By applying it three times, alternating the target and control input, we ob-

tain, , i.e. σ. while this is a well-known

property of ∧X, our proof uses only the bialgebra structure hence it will hold in
much greater generality than just for qubits.
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Example 2 (∧Z gate). One can derive the ∧Z from that of ∧X by augmenting

the target qubit of the ∧X with H gates i.e. . We have that

∧Z ◦ ∧Z = 1 since .

Example 3 (An algorithm : the quantum Fourier transform). The quantum
Fourier transform is one of the most important quantum algorithms, lying at
the centre of Shor’s famous factoring algorithm. The equations we have enable
this algorithm to be simulated in the diagrammatic language. Unlike the pre-
ceding examples, here we require the interaction between the two phase groups.

In our language the ∧Zα gate is and the circuit involving it

realises the quantum Fourier transform for 2 qubits. The algorithm can be sim-
ulated graphically, as shown below:

This example makes use of classical values coded as quantum states to control the
interference of phases: this is the archetypal behaviour of quantum algorithms.

6.2 Multi-partite Entanglement

In our graphical language, a quantum state is nothing more than a circuit with
no inputs; output edges correspond to the individual qubits making up the state.
The interior of the diagram, i.e. its graph structure, describes how these qubits
are related. Hence this notation is ideal for representing large entangled states.

Example 4. The cluster states used in measurement-based quantum comput-
ing, can be prepared in several ways; the graphical calculus provides short
proofs of their equivalence. For example, the original scheme describes a ∧Z
interaction between qubits initially prepared in the state |+〉; in our nota-

tion this is |0Z〉, or . So 1D cluster arises as where

the boxes delineate the individual |+〉 preparations and ∧Z operations. Al-
ternatively, the cluster state can be prepared by fusion of states of the form
|0+〉 + |1−〉. Our δ†Z is in fact this fusion operation, so a 1D cluster arises as
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. Using the spider theorem, these are equiva-

lent . Ongoing work seeks

to classify multipartite entangled states in terms of their graphical representa-
tives, and to formalises general matrix product states.

6.3 Properties of Quantum Computational Models

Our formalism axiomatises two key features of quantum mechanics: the underly-
ing monoidal structure and the interaction of complementary observables. Fur-
thermore it is a semantic, which is to say extensional, framework which makes
it ideal for unifying various approaches to quantum computation. E.g. we can
demonstrate equivalence between different quantum computational models.

Example 5 (Verifying one-way quantum computations). We show how to verify
some example programs for the one-way model, taken from [7], by translation to
equivalent quantum circuits. Post-selected qubit measurements8 can be repre-
sented by copoints such a . The spider theorem allows the post-selected one-way

program implementing a ∧X opera-

tion upon its inputs to be rewritten to a ∧X gate in no more than two steps
. Now recall that any single qubit unitary map U has an Euler decomposi-
tion as such that U = ZαXβZγ . In our notation this is Zα = ΛZ(α) and
Xα = ΛX(α). Again a sequence of simple rewrites shows that the one-way pro-

gram to compute such a uni-

tary indeed computes the desired map.
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