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ABSTRACT The world of network science is fascinating and filled with complex phenomena that
we aspire to understand. One of them is the dynamics of spreading processes over complex networked
structures. Building the knowledge-base in the field where we can face more than one spreading process
propagating over a network that has more than one layer is a challenging task, as the complexity comes
both from the environment in which the spread happens and from characteristics and interplay of spreads’
propagation. As this cross-disciplinary field bringing together computer science, network science, biology
and physics has rapidly grown over the last decade, there is a need to comprehensively review the current
state-of-the-art and offer to the research community a roadmap that helps to organise the future research in
this area. Thus, this survey is a first attempt to present the current landscape of the multi-processes spread
over multilayer networks and to suggest the potential ways forward.

INDEX TERMS complex networks, information diffusion, multilayer networks, spreading processes

I. INTRODUCTION

Dynamical processes over complex networks cover a variety
of phenomena from phase transitions and synchronisation
in networks, through walking and searching on networks,
to epidemics spread and collective behaviour covering so-
cial influence, rumour and information spread as well as
opinion formation [1], [2], [3]. Spread over the networks,
its characteristics and dynamics were always one of those
research avenues that attracted a lot of attention [4]. Epi-
demiology was the area where first attempts to understand
the spread were made and the first spread models, such as
SIS or SIR, were developed [5]. The predominant reason
for that was the huge impact the spread of epidemics has
on the connected society. Understanding how the contagion
propagates in the population is crucial from the perspective of
our lives and development of effective preventive measures.
The consequences of epidemics in the modern, connected
world can be very serious and we continuously get reports
about new outbreaks [6]. So imagine the situation where we
can clearly predict any epidemic before it occurs. This would
mean that we are able to eliminate epidemics all together.

Thus, there is a wealth of work done in the direction of
understanding disease propagation and variety of computer
science approaches were developed in this space [7], [4], [8].

Epidemiology, although an important area where spread
phenomenon is considered, is not the only one. In recent
years, with the development of online world that led to the
availability of huge social data, we gained more understand-
ing about the rumours [9], (dis-)information spread [10] and
how the opinions are formed [11]. Also, analysis of spread
in financial networks in the context of cascades triggered by
some initial shocks and robustness of the system has recently
attracted a lot of attention [12], [13], [14]. Another field,
where spread analysis over a network is widely investigated
are the computer networks [15] and infrastructure networks
in general [16]. Also, cybersecurity is a very popular area
where researchers aim at understanding how the computer
viruses and malware spread through computer networks [17],
[18]. All these areas, next to epidemics, became research
fields on their own where analysing propagation characteris-
tics and its dynamics is of pivotal importance to comprehen-
sive understanding of both human and systems behaviour.
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Spread analysis is a cross-disciplinary field that has grown
over the last few decades and is now strongly established
in the computer science community [19], [17], [10], [18],
[20], [21]. If you search Scopus database for papers in-
cluding spreading processes and networks you will find that
among 2,093 papers 1,455 of them are from the computer
science subject area1. One of the main reasons for that is
the computational complexity of the spread modelling that
cannot be tackled by any other research domain apart from
computer science. Both simulation approaches, together with
data-driven techniques from computer science, are the key
ways to model the spread over networks.

There are two main components when it comes to the
spread analysis over networked systems. One is the model
of spread and another is structure over which the propa-
gation takes place. Plethora of spread models exists such
as susceptible-infected (SI) susceptible-infected-susceptible
(SIS), susceptible-infected-recovered (SIR) or threshold-
based models and they were widely studied and surveyed be-
fore [22], [4], [23], [24], [25], [26] together with theoretical
analysis behind them including mean field theory, Markov
chains and other approaches [27].

When it comes to network models used in the spread mod-
elling the focus is on three main models: (i) Barabási-Albert
model for the scale-free network [28], (ii) Watts-Strogatz
small-world model for the small-world network [29], and
(iii) Erdős-Rényi model for the random graph network [30],
[31], [32], [33]. For the review of those and other network
models please see [34] and [2] Since it was already done in
many review and research papers, we will not cover those
models in detail in this work. Instead, if needed, we would
like to refer the readers to the abovementioned literature to
gain a better understanding of the basic spread and network
models.

The landscape of the research in spreading processes over
networks can be divided into four groups as presented in
Figure 1. There are two main elements that contribute to the
complexity of the analysis, i.e. (i) the number of spreading
processes that are analysed and (ii) the structure over which
the diffusion happens. Thus, to group the existing research,
we use two dimensions, naming (i) Spread Complexity and
(ii) Network Complexity expressed by a number of spreads
propagating and a number of layers in the network respec-
tively.

To be able to analyse such complex phenomenon, at first
researchers used formalism where one spread propagated
over a network describing one type of relationship between
nodes (bottom, left corner of the Figure 1). The efforts
focused mainly on how disease spreads in populations [35].
Another avenues, embedded in the computer science commu-
nity, that developed later on, are the information spread [10]
and rumour propagation [36].

Although the concept may seem to be simple and the field

1The Scopus query used "KEY ( spreading ) AND KEY ( network )", as
of 30/09/2019
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FIGURE 1. Landscape of research in the area of spreading processes in

networks.

is well researched, the problem is far from being trivial with
many challenges arising as we gain more understanding in
this area [37].

In the next phase of research, the community tried to
understand how the system behaviour’s changes if we include
two or more spreads in the one layer network, e.g. [38],
[39], [40] (bottom, right corner of the Figure 1). Academics
and practitioners looked into, e.g. how one disease can
strengthen/weaken the impact of another one [41] or how the
disease can be inhibited by information [42] and information-
driven vaccination [43]. An effort was also made to anal-
yse, e.g. how different opinions influence/compete with each
other [44] or how the spread of truthful information can
help to overcome the propagation of misinformation/gossip
[45]. Another studies investigated competing viruses and
ideas on fair-play networks [46], viral marketing perfor-
mance for multiple products [47], competitive influence in a
social network [48], competing opinions over evolving social
networks [49] and mechanics of competing information in
a group-based population [50]. This gave insight into the
area of competition/cooperation in the context of propagation
processes, but the limiting factor was that all spreads happen
through the same network.

Research into multispreading processes over a one layer
networks enabled to increase the complexity in modelling the
propagation phenomenon but left the structure over which
the spread happens relatively simple. This was the natural
extension – to look into single spread but over much more
complex, multilayer networks (top, left corner of the Fig-
ure 1). Each layer in multilayer structure represents one type
of relationship, e.g. one layer can be the physical contact
layer and another online contact layer. Different layers can
also denote different types of relations, e.g. friendship on one
layer and family ties on another [51]. Additional complexity
is brought into the equation if different types of relationships
(layers) are weighted depending on how close they are with
higher weights assigned to closer relationships [52]. One

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Id
e

n
ti

fi
ca

ti
o

n

Records identified through database searching

(Scopus, Web of Science, and Google Scholar)

(n = 474)

S
cr

e
e

n
in

g Records screened

(n = 474)

Records excluded

(n = 105)

E
li

g
ib

il
it

y
In

cl
u

d
e

d

Studies included in quantitative synthesis (meta-analysis)

(n = 58)

Studies included in qualitative synthesis

(n = 58)

Full-text articles assessed 

for eligibility

(n = 369)

Full-text articles excluded, 

with reasons

(n = 311)

FIGURE 2. Process of the searching for the most relevant literature for the

systematic review.

of the first attempts to look at a single spread that could
propagate over many layers was done in [51]. From then
on, the field rapidly expanded [53], [26], covering many
different, seemingly not connected, fields like epidemiology
[51], financial markets [54], [55], [56], games [57] or social
media [58]. Single spread over multilayer structure can be
interpreted as a special case of multispread over multilayer
network where contagions on different layers are of the same
type and have the same parameters.

So, the very much needed next step to complete the picture
and create a bigger whole is to research multispread over
multilayer network. We presented that in the top, right corner
of the Figure 1. This is the ultimate case that enables to con-
sider the complexity resulting from both the propagation pro-
cess and the structure over which it spreads. Multispread over
multilayer networked structure is a relatively new research
direction that due to its high complexity, which is brought
into the equation by both heterogeneity of the multirelational
networks and non-linear dynamics of the spread of multiple
processes, is still in its infancy.

First attempts to investigate multiple spreads in multilayer
networked environment were done around 2006 where a
spread of immunisation competed with the disease and the
model used multiplex network [59]. From then, there were
0–2 papers a year till 2013–2014 when the field started
growing and the number of research outputs rapidly increased
showing more and more interest in developing this research
direction (see Figure 3). It is not surprising as understanding
this complex phenomenon is pivotal to building a proper
knowledge about how such critical processes as disease,
awareness, immunisation, (mis-)information, gossip, opin-
ion, or behaviour spread in societies. Societies that in the face
of digital transformation develop more and more diverse and
complex structures of interactions.
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FIGURE 3. Number of papers published per year.

The goal of this study is a critical and comprehensive
review of existing research in the area of multiple spreading
processes in multilayer networks, having two or more layers.
As a result of the analysis, we present challenges arising from
the limitations of the current approaches. Those challenges
guided and enabled us to develop a road map that shows
future directions in this exciting field of study.

The rest of our manuscript is structured as follows. First, in
section II the approach to the literature review is presented.
We employed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses methodology [60] to select the
most relevant research papers. After that, we present the basic
statistics about the chosen papers and how the research land-
scape changed over the last 10 years. In section III, to help the
reader to understand various aspects of interacting/multiple
spreading processes in multilayer networks, we have decided
to ask four fundamental questions - what?, where?, how? and
why?. Step by step we explore the existing research from
the following perspectives: (i) what spreads and (ii) where
(in what type of network), (iii) how individual spreading
processes and the interaction between them are modelled,
and finally (iv) why the spread happens in a way it happens.
After that, in section IV, we synthesize the areas on which
the future research should focus to progress the work in the
area of multispread over multilayer networks. In the final
section V, we sum up our work and offer the final summary.

II. APPROACH TO LITERATURE REVIEW
Creating comprehensive literature review starts with broad
search of the relevant research. To achieve best possible
result and to be able to consistently search the existing pub-
lications we decided to adopt Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) method-
ology [60] for meta-analysis. Our search for literature can be
summarised in the Figure 2 where we present the numbers
of reviewed publication and the filtering process that we
followed.

During the search for relevant sources, we used the most
popular search engines: Scopus, Web of Science, and Google
Scholar and started with search for multispreading processes
over multilayer networks. We started from more generic
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keywords, to make sure that we do not oversee any re-
search. We used the following set of keywords (i) to de-
scribe the spread: spread, propagation, diffusion, spread-
ing, propagation, diffusion processes, multi(-)spread, mul-
tiple spread, competing, interacting, supporting, suppress-
ing spreading processes, disease/epidemic/information/ be-
haviour/opinion/meme/gossip/fake news spread, (ii) to de-
scribe the networks: multi(-)layer, multi(-)dimensional, mul-
tiplex, multi(-)relational, complex networks, networked sys-
tems. We also used the combination of words describing
the spreading process and the network structure to grasp all
possible cases.

The search through the databases gave us well over 400
papers, and after the initial screening, we had 369 papers
that qualified to the eligibility check. The initial screening
excluded papers where based on the title alone we were able
to say that they do not fall in the "multispread in multilayer
network" category.

During the eligibility test we discarded further 311 papers
that fell outside the "multispread in multilayer network"
category, but this we did by looking through the abstract and
the main text of the paper. For each paper that passed the
eligibility check we checked its references (past-cross-check)
and papers that cited a given paper (future-cross-check) to
see if any of those papers qualify to be included in the final
meta-analysis. After that, we reached 58 publications that we
included in the final review. See Figure 3 for the number
of relevant selected papers published each year since 2006.
As mentioned before, we see a growing interest in the field
of multispread over multilayer networks that is vivid when
we look at a growing trend of a number of papers annually
published in this space. Please note that in our analysis below,
in some cases, it may look that there are more papers than
58. This is because, if one paper considers few scenarios or
cases it may be counted few times e.g. in Table 3 we have
5 papers doing experiments on real data and 56 on synthetic
data which give us 63 papers in total, however five papers
[61], [62] [63], [64] and [65] are counted twice since authors
use both real and synthetic data in their experiments.

When we look at the authors of the reviewed papers and
their co-authorship networks, the picture shows clearly how
the field has developed and evolved since the first paper was
published in 2006, see Figure 4.

There are two groups that consistently work on the topic
of multispread in multilayer networks for the last five years.
Other than that, we have several small groups that have
started working in the field only recently, publishing one or
two papers over the past couple of years. This shows the
rapidly growing interest in the field that is also clearly visible
in the Figure 3. In addition, few groups can be spotted that
conducted some research when the area first appeared on the
research map (2006–2010) but then discontinued their work.

Looking at how quickly this research theme expanded over
the last decade, we can anticipate that this field will attract
even more attention in the following years. Furthermore,
looking at the plethora of challenges identified and described

in Section IV, there is no doubt that those coming years will
be full of exciting developments.

III. CRITICAL ANALYSIS OF WHAT, WHERE, HOW AND
WHY
The key element in any literature review, next to selecting
all relevant sources, is to decide how to organise the existing
knowledge in a meaningful way that would enable us to tell
the whole story about the current developments in a given
field. To assist the reader in understanding various aspects
of interacting/multiple spreading processes in multilayer net-
works we have decided to ask four fundamental questions -
what?, where?, how? and why?.

What spreads? – describes the phenomena/medium, like
virus, awareness, opinion or meme, that propagates over
the network. Where it spreads? – denotes the environment
and multilayer networks, with their features and topologies,
on which the spreading processes are interacting. How it

spreads? – indicates developed and employed spreading
models together with their characteristics as well as provides
information about the types of interactions between spread-
ing processes. Why it spreads in that way? – tries to answer
fundamental questions about why things happen in the way
they happen. We are looking here at various aspects and
features of both spreading and multilayer networks which
affects the behaviour of interacting spreading processes.

Revolving the discussion around those four questions en-
abled us to identify drawbacks of the current approaches
that, in turn, gave the foundations for defining the future
research directions in this fascinating field of multispread in
mulitlayer networks.

After this brief introduction, we want to invite you to read
the story about how beautiful the complexity of diffusion
processes over the heterogeneous networked structures is. So,
let us begin the journey and immerse ourselves in the world
of networks.

A. WHAT SPREADS?

Answering the question about what spreads? sets the scene
for the rest of our review. Analysing what researchers focus
on in terms of what processes spread over the complex net-
works enables us to understand the landscape of the research
in the field of multispread over multilayer structures.

In the real-world, there are many situations in which we
see spreading phenomena in action, from the social and
behavioural perspective where the propagation of informa-
tion, opinion, or certain behaviour spreads to epidemiolog-
ical cases of disease, virus and/or awareness spread. But
it is fair to say that the most critical and vastly discussed
phenomenon in the literature on multispread over multilayer
networks is the spread of multiple diseases or disease vs
awareness scenarios. It covers 85% of all reviewed studies
where two processes spread over two layer networks (note
that this constitutes 95% of all literature that investigates
multispread over multilayer networks). Out of this 85%,
almost 62% are the studies where virus/disease compete with
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FIGURE 4. Co-authorship network of reviewed papers. Edge colour indicates publication year of the paper.

awareness/information, and over 23% constitutes literature
where two viruses/diseases interact with each other.

Another group, although much smaller, constitutes opin-
ion/meme spread where we can have two memes [61] and
[62] or opinion [90] spreading over the multilayer network.
Other variations are where on one layer spreads opinion and
on another (i) virus [92] [114], (ii) decision making process
[116], or (iii) adoption of green behaviour [115]. This whole
group is represented by 11.67% of all reviewed literature.

In their paper Velśquez-Rojas and Vazquez [92] present
unique approach to model coupled opinion-disease system,
where if two individuals have the same opinion the disease

spreads with certain probability. However, if they have dif-
ferent opinions the probability of infection is much lower.
This represents lower chance of contact between people
with different opinions. Similarly, if both nodes are in the
same disease state (both are Susceptible or Infected), the
probability that they change their opinion is 1. However, if
the nodes are in different disease states the probability is
lower than 1, which represent lower chance of a sick (healthy)
person to contact and influence the opinion of a healthy (sick)
person.

In [114], authors show how and to what level the decision
about the vaccination can be affected social influences. The
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virus awareness meme opinion synchronisation social contagion
virus 23.33% 61.67% 0.00% 3.33% 0.00% 0.00%
meme 0.00% 0.00% 3.33% 0.00% 0.00% 0.00%
opinion 0.00% 0.00% 0.00% 1.67% 0.00% 0.00%
decision making 0.00% 0.00% 0.00% 1.67% 0.00% 0.00%
nutrition 0.00% 0.00% 0.00% 0.00% 1.67% 0.00%
green behaviour 0.00% 0.00% 0.00% 1.67% 0.00% 0.00%
social contagion 0.00% 0.00% 0.00% 0.00% 0.00% 1.67%

TABLE 1. What spreads? – % of reviewed literature where given two processes spread on two layer network

What spreads on each layer? References
virus virus [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79]
virus awareness [80] [81] [82] [83] [84] [85] [86] [87] [88] [72] [89] [90] [91] [92] [93]

[94] [95] [96] [97] [98] [64] [99] [100] [101] [102] [103] [104] [65]
[105] [106] [107] [108] [109] [110] [111] [112] [113]

virus opinion [92] [114]
meme meme [61] [62]
opinion opinion [90]
opinion green behaviour [115]
opinion decision making [116]
nutrition synchronisation [95]
social contagion social contagion [117]

TABLE 2. What spreads? – references to the literature where given two processes spread on 2–layered network.

opinion about the effectiveness of vaccination, influences de-
cision about whether to vaccinate or not, and this influences
spread of the disease. A similar concept is presented in [115]
where spread of the negative opinion about green behaviour
influences the adoption level of such behaviour. Another
similar approach, where the process of the opinion formation
and spread within the society influences the decision making
process among the officials, is the focus of research presented
in [116].

Quite unique approach is presented in [90], where the
authors simulate spreading of the same opinion with two
competitive mechanisms: (i) threshold model (complex adop-
tion process) and SIS model (simple adoption process).

Some studies investigate the spread of other phenomena.
For example in [95], authors investigate a system "where
neural dynamics and nutrient transport are bidirectionally
coupled in such a way that the allocation of the transport
process at one layer depends on the degree of synchronization
at the other layer, and vice versa", i.e., more nutritions (food)
is supplied by transport system the faster is neuron syn-
chronization, less nutritions is available in transport system
the slower the synchronization. In [117] authors analyse
social contagion which explains types of collective behaviour
through social contact in the areas of marketing, innovation
diffusion, medicine, rumour, information spreading, emotion
and others.

For exact percentages regarding what phenomena are anal-
ysed in different studies please see Table 1, and for list of
associated references see Table 2.

Out of all reviewed papers, only 5% looks at more than two
layer networks. however, also in those cases, although more
than two processes are considered, authors analyse spread

and interactions between multiple viruses [67], [76] or virus–
awareness situation [63] where on each out of three layers,
both virus and awareness spread. So those studies contribute
to the biggest group of virus/virus or virus/awareness spread.

To gain a better understanding of the environment in
which those different processes are implemented and how
they interact with each other we need to answer questions
where? and how?. To find answers to those please see Sec-
tions III-B and III-C .

B. WHERE IT SPREADS?

The second important element of the entire process is where

the multiple processes are spreading. As outlined in the
introduction, we focus on a structure that is now commonly
known as a multilayer network [118], [119]. In this section,
we consider several characteristics of the network and the
environment in which the propagation takes place. To enable
comprehensive review, which takes into account all elements
considered by different authors, we split our analysis into fol-
lowing sections (i) network topology, (ii) number of layers,
(iii) multiplex vs multilayer approach, (iv) existence of edges
between layers, and (v) type of potential external influence.

1) Network Topology

As the experiments in the world of network science can
be broadly divided into two main categories: (i) data-driven
and (ii) simulation-based approaches, we expected more or
less equal number of studies (i) where real-world networks
where used and (ii) where models of networks where utilised
to run simulation analysis. The very surprising finding that
stroke us is that there is no reported research that looks into
real-world multilayer networks with real multiple spreading

6 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Network data No. of papers References
Real data 5 (8%) [62] [61] [65] [64] [63]
Synthetic 58 (92%) [88] [66] [72] [80] [81] [67] [68] [69] [82] [83] [84] [85] [70] [116] [86] [115] [71] [87] [109] [79] [110]

[111] [111] [117] [113] [76] [104] [77] [65] [78] [105] [106] [107] [108] [59] [114] [89] [73] [74] [90] [75]
[91] [92] [93] [94] [95] [63] [96] [97] [98] [64] [99] [100] [101] [102] [103] [61] [62]

TABLE 3. Type of network data used in the experiments

processes propagating on them. This is especially interesting
in the context of the newest publications as some appropriate
datasets exist for a few years now [120].

Only few researchers use real-world multilayer networks
for simulations of various spreads models (see [62], [61],
[65], [64], [63]), and although the spread used is still mod-
elled using one of the traditional, not data-driven approaches,
this setting is the closest to the real-world scenario. In [62]
and [61] the authors used "Real-world enterprise composite

network", i.e. phone calls and text messages communication
to create two layer network. Unfortunately, the dataset is
not publicly available. To validate simulations results Wang
et. al. [65] have used a Brightkite (location-based social
networking service) dataset presented originally in [121] and
available for download on Stanford Large Network Dataset
Collection2. Based on this dataset, two layer network was
built. The first layer (online communication network) was
extracted based on the friendship in the Brightkite, and the
second one (physical contact network) based on geographical
proximity of two people (two people are connected in the
physical contact network if they are within 200m from each
other). In [64] the results of simulations are validated on the
HIV1 network, which is built based on various genetic inter-
actions for organisms. The dataset is available on CoMuNe
Lab repository3 and was originally presented in [122]. The
original network has five layers but in [64] only two of them
were used (Physical association and Direct interaction). Fi-
nally, authors of [63], to validate the simulations results, have
used the part of "machine classification dataset for suicide-

related communication" presented in [123]. This dataset is
not publicly available.

The vast majority of analysed papers performs experi-
ments on artificially generated networks using existing mod-
els. For detailed list please see Table 3. Most of them, to
generate network layers, use well-defined network models
such as Erdos–Renyi (ER) or Barabasi–Albert (BA). How-
ever, some of the studies use very unconventional methods
to create network layers. Structures created in this way do
not fit any model, their properties are unknown, and no
explanation in regards to how they fit the reality is given.
Most profound example, presented e.g. in [89] [80] [100]
[106] [115], is where authors generate one layer according to
a selected existing model and then create a second layer by
randomly adding 400 or 800 new links. Besides the fact that
the new layer has unknown properties, this situation is hardly

2https://snap.stanford.edu/data/
3https://comunelab.fbk.eu/data.php

a reflection of a real-world scenario. The only reason to use
such approach seems to be that authors want to create as big
overlap between layers’ edges as possible. Nevertheless, it
is neither clear nor justified why such network generation
process was employed.

Among the models used for the two layer network gener-
ation the most popular combinations are Scale Free – Scale
Free networks 33% of papers), ER – ER networks 24% and
Scale Free – ER networks (17%) (see Tables 4 and 5 for
details).

This lack or very limited explanation of why certain
networks are used poses a very important questions in the
context of the future research – (i) how can we systematically
explore different structures in the context of multiple spreads
and (ii) how to ensure that the networks we used are repre-
sentative in the context of specific research questions and at
the same time can be generalized to be used to benchmark
different approaches. These and others challenges are further
explored in Section IV.

2) Full multilayer or just multiplex

Multilayer networks are those where both nodes and edges
can vary between the layers. Multiplex structures are a
special instance of multilayer networks where only edges
between layers can vary and the set of nodes remains the
same for each layer [118], [119]. The former ones are better
reflection of real-life social networks, whereas the latter ones
are useful representation used to limit the number of degrees
of freedom when modelling complex networks and spread
over them.

Out of all analysed papers only five (9%) of them is using
full multilayer networks [69] [116] [78] [90] [102]. This
shows than the vast majority of the studies considers less
complex case – multiplex networks, or to be more specific
node-aligned multiplex networks [118] [125]. In Table 6
we present which studies used which network type when
modelling the multispread.

In reality, only a few networks are full multiplexes, and as
multiplex networks are a simplification of multilayer case,
they are not representative of a real-world scenario. For
example, when one analyses the character of interaction
between awareness and disease, one must consider that some
people in the human contact network might not be present on
the information network (e.g. Facebook). Additionally, some
nodes which might be essential for spreading the information
on the information network might not be present on contact
network because for example they live in different geograph-

VOLUME 4, 2016 7

https://snap.stanford.edu/data/
https://comunelab.fbk.eu/data.php


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Poisson (ER) Exponetial Small World Scale Free Regular Other*
Poisson (ER) 23.81% 1.19% 0.00% 16.67% 1.19% 0.00%
Exponetial 1.19% 0.00% 1.19% 1.19% 0.00%
Small World 5.95% 1.19% 0.00% 0.00%
Scale Free 33.33% 1.19% 1.19%
Regular 7.14% 0.00%
Other* 3.57%

* For details please see Table 5

TABLE 4. Network types combinations for two layer networks used

Network models References
Poisson (ER) Poisson (ER) [109] [79] [113] [107] [108] [114] [73] [90] [75] [93] [103] [88] [72] [67] [68] [69] [82] [70] [71] [64]
Poisson (ER) Exponetial [82]
Poisson (ER) Scale Free [65] [105] [76] [74] [91] [95] [64] [99] [61] [62] [72] [82] [86] [66]
Poisson (ER) Regular [82]
Exponetial Exponetial [82]
Exponetial Scale Free [82]
Exponetial Regular [82]
Small World Small World [79] [78] [97] [70] [115]
Small World Scale Free [59]
Scale Free Scale Free [109] [79] [110] [111] [112] [113] [77] [106] [107] [108] [89] [73] [94] [96] [97] [98] [64] [99] [100] [101]

[102] [80] [82] [83] [85] [70] [115] [87]
Scale Free Regular [82]
Scale Free Other [84] - the information layer is generated using activity driven model.
Regular Regular [109] [117] [108] [81] [82] [116]
Other Other [92] – firstly authors generate random links correlated between for both layers at the same time and secondly

they randomly create uncorrelated links on each layer separately. [62] [61] – authors generated synthetic social
networks using the Forest Fire, Random Walk, and Nearest Neighbor graph generation models proposed in [124]
to resemble real-world networks. In all cases there is no information on the resulting network topology.

TABLE 5. Network types combinations for two layer networks used in each paper.

Network type No. of papers Reference
Multiplex 53 (91%) [61] [62] [88] [66] [72] [80] [81] [67] [68] [82] [83] [84] [85] [70] [86] [115] [71] [87] [109] [79] [110] [111]

[111] [117] [113] [76] [104] [77] [65] [105] [106] [107] [108] [59] [114] [89] [73] [74] [75] [91] [92] [93] [94]
[95] [63] [96] [97] [98] [64] [99] [100] [101] [103]

Multilayer 5 (9%) [69] [116] [78] [90] [102]

TABLE 6. Type of network used in the experiments

ical location or are bots forwarding the news and messages.
All in all, modelling the system as multiplex network is a big
assumption that should be dropped in future research.

3) Number of Layers

To thoroughly investigate the composition of the structures
used in the reviewed literature, we have decided to perform
an analysis of the gathered information from two distinct
perspectives. The first one focused on checking for how
many layers the theoretical model of interactive spreading
was proposed. The second one was to investigate on how
many layers the model was tested during the experimental
validation.

The vast majority (90%) of introduced models were de-
signed to work only on simple two layers networks. The only
model designed for three layers networks was introduced in
[63].

There is quite few papers [88] [66] [76] [73] [95], which

are introducing a general theoretical frameworks which are
able to work on network with any number of layers. However,
for experimental validation only three papers [67] [76] [63]
are using three layers networks while the rest of them is
limited to two layers networks (for details see Table 7).

Extending the number of layers in the experiments builds
the complexity but at the same time is "a must–have" to
fully understand the mechanisms behind multispread over
multilayer networks.

4) Edges between layers

Another element, which builds the complexity of the topic,
is the existence of the edges between layers. In most cases,
researchers do not consider additional interlayer edges, what
most probably is a result of using multiplex networks where
those edges are not needed since each node is present on all
layers. However, some papers [116] [78] [90], propose mod-
els for, and perform experiments on, full multilayer networks
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Number of layers
Theory Experiments

2 3 n 2 3
53 (88%) 1 (2%) 6 (10%) 56 (95%) 3 (5%)
[61] [62] [88] [66] [72] [80] [81] [68] [69] [82]

[83] [84] [85] [70] [116] [86] [115] [71] [87]
[109] [79] [110] [111] [111] [117] [113] [104]
[77] [65] [78] [105] [106] [107] [108] [59] [114]
[89] [74] [90] [75] [91] [92] [93] [94] [96] [97]
[98] [64] [99] [100] [101] [102] [103]

[63] [88]
[66] [67]
[76] [73]
[95]

[61] [62] [88] [66] [72] [80] [81] [67] [68] [69]
[82] [83] [84] [85] [70] [116] [86] [115] [71] [87]
[109] [79] [110] [111] [111] [117] [113] [104]
[77] [65] [78] [105] [106] [107] [108] [59] [114]
[89] [73] [74] [90] [75] [91] [92] [93] [94] [95]
[96] [97] [98] [64] [99] [100] [101] [102] [103]

[67]
[76] [63]

TABLE 7. The number of layers in the multilayer networks used in each paper

Interlayer edges considered?
Yes No
3 (4%) 55 (95%)

[116]
[78]
[90]

[61] [62] [88] [66] [72] [80] [81] [67] [69] [82] [83] [84] [85] [70] [86] [115] [71] [87] [68] [109] [79] [110]
[111] [117] [113] [76] [104] [77] [65] [78] [105] [106] [107] [108] [59] [114] [89] [73] [74] [75] [91] [92]
[93] [94] [95] [63] [96] [97] [98] [64] [99] [100] [101] [102] [103]

TABLE 8. Usage of the interlayer edges

with interlayer edges (see Table 8 for papers falling in respec-
tive categories in regards to the existence of interlayer edges).
In [90], authors propose to have M interlayer edges between
two layers that randomly connect nodes between two layers.
Thus, the change in the node opinion is affected both by
the neighbours in its layer and by the neighbours in the
other layer. Wei [78] connects two homogeneous networks
with random interlayer links without degree correlations.
Nodes in the first layer can be infected by connected infected
neighbours from the second layer. Similarly to Wei, authors
in [116] create interlayer edges connecting each vertex in one
layer to one vertex which is selected randomly from the other
layer. Those connections enable nodes from layer where the
opinion is formed to influence the nodes on the second layer
where the decision–making process is formed.

As in the case of network type (multiplex vs multilayer)
used in the reviewed studies, also the existence of interlayer
edges, researchers tend to go for the option that reduces
the complexity of the problem. While this is an obvious
and reasonable approach to start with, the natural next and
very much needed step is to investigate also more complex
settings.

5) External influence

In any complex system, one of the biggest challenges is to
understand and model the interaction with, and the influence
of, the external environment. Multispread over multilayer
networks is no different in this respect, as it is a classic
example of a complex process propagating over a complex
system.

Most of the reviewed studies assume that the system where
the spreading process takes place is isolated and there is no
interaction between the system and the external environment
(see Table 9 for the comprehensive list of relevant papers)).
This is inline with the observations from the previous sec-

tions – researchers reduce the complexity of the multispread
over multilayer networks problem, which is relatively new
altogether. This is a natural inclination, as we first need to
learn to walk before we run.

Having said that, some researchers [80] [87] [79] [104]
[114] [99] enrich their models by taking into account such
external factors as the influence of the media or global im-
munizations strategies. For example, in [80] and [99] authors
simulate the influence of media by creating, in the informa-
tion layer, an artificial node which is connected to every other
node in that layer. In regular time intervals, this node sends
information about the disease to all nodes that belong to
the information layer and because of that message, informed
nodes, with certain low probability, can alter their state from
being unaware to aware. A similar approach can be found
in [87] where mass media influences the awareness level
depending on how many people are infected. The individual
probability of becoming self-aware increases if more people
around is infected.

Zhou [79] simulates the external influence in the form of
immunization of important nodes in the network. Another
research shows that combined self–protection with external
information is an effective strategy to decrease epidemic
spreading [104]. Government information campaigns fo-
cused on vaccination can be represented in simulations by
activation of a fraction of nodes with initial opinion [114].

External environment and its influence on the diffusion
process plays a pivotal role in how different, multiple phe-
nomena propagate over multilayer networks, and it cannot be
neglected in the future research in this field.

C. HOW IT SPREADS?

The discussion about the system in which the spread takes
place and how the external environment can influence the
spread showed how complex the problem is. However, the
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Is external environment considered?
Yes No
7 (12%) 52 (88%)

[80] [87] [79]
[104] [107]
[114] [99]

[87] [61] [62] [88] [66] [126] [72] [81] [67] [68] [69] [82] [83] [84] [85] [70] [116] [86] [115] [71]
[109] [110] [111] [112] [117] [113] [76] [77] [65] [78] [105] [106] [108] [59] [89] [73] [74] [90] [75]
[91] [92] [93] [94] [95] [63] [96] [97] [98] [64] [100] [101] [102] [103]

TABLE 9. The number of papers which considered the external environmente

complexity is not only built by the medium where the dif-
fusion happens, but also by the processes and interactions
between them. Thus, the next element that we investigate
answers the question "how?". We focus on how individual
spreading processes and the interaction between them are
modelled.

1) Spread models

The first element to look at is what spreading models are used
when more than one spread takes place in multilayer net-
work. Not surprisingly, analysed papers mainly focus on epi-
demic models previously used in the context of a single virus
spreading within single layer. Most of the papers consider
simple epidemic models like SIR (Susceptible-Infectious-
Recovered) and SIS (Susceptible-Infectious-Susceptible) and
their variations with the same model used on all layers (see
Table 11 for details). Note that, 41% of them consider the SIS
model on both layers. In case of papers related to epidemics
and awareness, the layer with awareness adopts SIS but is
interpreted as Unaware-Aware-Unaware (UAU) model. Since
it maintains the core characteristics of the SIS model, we
treat it as the same class of models. The SIR model is used
in 16% of papers in both layers. Similarly, to SIS, SIR
also has been adopted for awareness propagation and named
Unaware-Aware-Faded (UAF) which we treat as SIR model
for the same reason as we treat UAU as SIS model.

9% of papers use on both layers extension of SIS model
towards multiple contagions in a form of SI1SI2S model
and 7% of papers use Threshold models (TM). Only single
papers use other models, such as Independent Cascade Model
(ICM) [101], opinion formation model [114], Random Walk
[95], Kuramoto model [95], Voter model [92] and Contact
Process (asynchronous SIS model) [92]. Apart from pre-
sented approaches other models like GACS [107], LACS
[113] and M-model [116] are used in 5% of papers.

One-third of papers use different spreading models on each
layer (Table 10). A combination of SIS and SIR model was
used for two layers spreading in 5% of works. SIS model
was used together with threshold models in 5% of papers
including [90] [98] [64] and in 2% of works together with
SIRV model [93].

Combination of SIR with SIRV was applied in 5% of
papers [85] [86] [91]. SIR was used together with ICM model
in [101] and with opinion spreading model [114]. Other
works combined random walk on first layer with Kuramoto
model on the second layer [95] and voter model with contact

process [92].
The analysis shows that there is a clear tendency that is

very similar to what we can see in the "where" section (III-B).
Researchers tend to simplify the problem and investigate the
interaction between processes using, in the majority of cases,
simple, epidemic models that are well understood in the one
layer scenario. While this is the right thing to do, there is
also a need to depart from those models and look more into
data-driven models that can adapt over time.

2) Spread switches layers

An important element when considering multiple spreads
in the multilayer networked environment is the ability for
spreads to switch layers. It is intriguing, especially in the
context of information/gossip and alike phenomena spreads,
as it shows the natural way in which the diffusion in social
systems happens, e.g. some things propagate over one system
(e.g. Twitter) and all of a sudden they jump into another (e.g.
Facebook).

Having said that, there is only limited analysis were
one spread can move from one layer to another (only 9%

of papers, see Table 13. Please note, that we differentiate
switching from coupling. We understand switching layers
as the ability of moving the contagion ("what?" from Sec-
tion III-A) from one layer to another. Coupling is not equal
to spread switching layers - coupling effectively means that
being subject to process (e.g. infected) on one layer can cause
that for this node the second process is triggered on the
other layer (e.g. node infected on the contact layer becomes
aware on the communication layer). In general, most of
works show separate layers and different types of content
is transmitted on each of them. For example, pathogen can
be transmitted only within real contacts network not within
information network based on electronic communication and
social media.

Switching layers is possible if the layers can transmit the
same content, for example information. In [61] and [62]
authors conduct cross-contamination experiment where, with
a certain probability, one meme can jump from one to the
other layer (from phone calls layer to SMS layer or vice
versa) and spreads there. Conceptually, similar approach is
presented in [76] and assumes that viral agent can be spread
by the infected node to its neighbours in all layers. Analo-
gous setup for two layers based on prevention and infection
networks assumed infection of susceptible nodes by infected
neighbours on any layer [59]. Another study analysed the role
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Is the same spreading model on all layers?
Yes – 39 papers (67%) No – 19 papers (33%)
[61] [62] [88] [66] [72] [80] [67] [68] [69] [82] [83] [84] [70] [87] [109]

[79] [110] [111] [112] [117] [113] [76] [104] [77] [65] [78] [105] [106]
[107] [108] [89] [73] [75] [94] [63] [96] [97] [100] [102]

[81] [85] [116] [86] [115] [71] [59]
[114] [74] [90] [91] [92] [93] [95]
[98] [64] [99] [101] [103]

TABLE 10. Papers which use the same model on all layers and those which use different model for each layer.

SIS (UAU) SIR (UAF) SI1SI2S TM Other*
SIS (UAU) 41.38% 5.17%% 0.00 5.17% 0.00
SIR (UAF) 0.00 15.52% 0.00 0.00 5.17%
SIRV 1.72% 5.17% 0.00 0.00 0.00
SI1SI2S 0.00 0.00 8.62% 0.00 0.00
TM 0.00 0.00 0.00 1.72% 0.00
Other* 0.00 0.00 0.00 0.00 10.34%

* - for details please see Table 12

TABLE 11. Spreading models used in the papers.

Spreading models References
SIS SIS [80] [67] [68] [82] [83] [84] [115] [71] [87] [89] [73] [96] [97] [100] [102]

[110] [112] [77] [65] [78] [105] [106] [108] [109]
SIS SIR [99] [103] [111]
SIS TM [90] [98] [64]
SIS SIRV [93]
SIR SIR [88] [72] [70] [73] [75] [94] [79] [104] [59]
SIR SIRV [85] [86] [91]
SIR ICM [101]
SIR Opinion [114]
SIR Awareness model [81]
SI1SI2S SI1SI2S [61] [62] [66] [69] [74]
Random Walk Kuramoto [95]
Voter Model Contact [92]
SI1S2 SI1S2 [76]
TM TM [117]
M-model M-model [116]
LACS LACS [113]
GACS GACS [107]

TABLE 12. Spreading models combinations used on two layer networks.

Are the processes able to switch layer?
Yes - 5 (9%) No - 53 (91%)
[61] [62] [76]

[78] [59]
[88] [66] [72] [80] [81] [67] [68] [69] [82] [83] [84] [85] [70] [116] [86] [115] [71] [87] [109] [79]

[110] [111] [112] [117] [113] [104] [77] [65] [105] [106] [107] [108] [114] [89] [73] [74] [75] [91]
[92] [93] [95] [96] [97] [98] [64] [99] [100] [101] [102] [103] [94] [90] [63]

TABLE 13. The papers in which the process is and is not able to switch between layers.

of interlayer correlations and interconnections for scenarios
when a single node in the susceptible state can be infected by
neighbours on different layers simultaneously [78]. Recovery
was modeled in the same way, and infected node can recover
on different layers with a certain probability.

Outstanding 91% of works assumes that spreading of each
"what" (see sec III-A) takes place only within one layer. The
fact that only 9% pf research considers the possibility for
the spread to switch layers, shows again the natural tendency
to simplify the problem and break it to more manageable
pieces. Yet again, the complexity that is brought into the

equation by the phenomena that can switch the layers cannot
be neglected.

3) Co-infection of nodes

Next element we analyse is the ability of nodes to be in
"activated" state at the same time by several processes. It
can be treated as inclusive adoption [117] which means that
a node can adopt many, different things/phenomena. For
example, if information is spreading within the network, a
single node can possess different, sometimes contradicting,
information at the same time. Similar situation happens when
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Is it possible that the node is affected by both processes at the same time?
Yes – 49 papers (80%) No – 13 papers (20%)
[88] [72] [80] [81] [67] [68] [82] [83] [84] [85] [70] [116] [86] [115] [71] [87] [109] [79]
[110] [111] [112] [117] [113] [104] [77] [65] [78] [105] [106] [107] [108] [89] [73] [75]
[91] [92] [93] [94] [95] [63] [96] [97] [98] [64] [99] [100] [101] [102] [103]

[61] [62] [88] [66] [72]
[67] [68] [69] [76] [59]
[114] [90] [74]

TABLE 14. The papers in which the node can and cannot be affected by more than one process at the time.

one node can be co-infected by several contagions. In most of
the cases (80% of papers) authors assumed that co-infection
is possible.

The most common scenario, when co-infection on nodes
is possible, is when epidemic spreads on one layer and
awareness on another. Then a node can be both aware of
and infected at the same time. The element that should be
emphasized is that in some cases there are three possible
states AI (aware-infected), AS (aware-susceptible), and US
(unaware-susceptible) [83] [84] and sometimes there are four
states with additional UI (unaware-infected) state [87]. In the
latter case, the fact that a node is infected does not necessarily
imply that it is aware at the same time.

There is also an option when co-infection can happen be-
cause the protective process does not give the full immunity
and a given node can be still infected [88] [72].

In cases when we have two epidemics spreading at the
same time, usually this means that a given node can be
infected only by one epidemic [88] [66] [126] [72]. Similar
case is when the memes spread - in [61] and [62] one node
can posses single meme at a time.

In papers where co-infection was not possible authors
assume that viral agent kills any other and node can be
activated by single content at the same time only [76], nodes
can be either in infected or in immune state [59], one physical
layer is based on children (diseases spread) and second is
based on parents and information network for awareness
spread) [114]. Also, in the case where each of the network
layers is modelled as a separate transmission channel of the
contagions, each node will be infected only by one spread at
a given time [66]. Others scenarios are analysed in [72] and
[90] where each node can be infected by only one spread at a
time, but both spreads are the same.

Apart from focus on a single approach, studies presented
in [67] [68] showed possible infection of a single node
by multiple contagions and compared it with competitive
version where co-infection was not possible.

4) Interaction between processes

Interactions between multiple contagions within networks
can mainly take a form of competition or supporting actions.
In the area of epidemiology, one disease can enhance or
inhibit spread of another one [70]. It can be observed in the
area of viral marketing and competing products, interactions
between awareness and infectious disease or suppression of
disease spread by the immunization process. Interactions can
be based on interdependency or cooperation and competition

or antagonism [68]. Processes can also be interdependent
and competitive simultaneously. For example, new similar hi-
tech products create demand for new services which shows
interdependence, but competition among them also takes
place.

Another possibility is to consider inclusive and exclusive
adoption with the ability to possess multiple information or
viruses by a single node at the same time or not respectively
[117]. Inclusive adoption can be observed at the market when
a consumer must adopt the first product prior to adopting the
second one. For exclusive adoption, the first product will be
replaced by the second one.

Several papers conduct experiments for both: (i) support-
ing and (ii) competing scenarios. A general framework for
interacting processes on multilayer networks was proposed
in [95]. It enables to define what kind of interaction there
is between both processes. A similar approach, where de-
pending on the setting different types of interactions between
processes can be defined, is propose in [68].

Apart from those few overarching studies, most of the re-
search focuses on experiments falling into one of the follow-
ing categories: (i) supporting, (ii) competing or (iii) mixed
approaches.

(i) Supporting/Collaborating/Cooperative approaches.

The review shows that 11% of the papers investigates sup-
porting processes. Cooperative spreading processes are pre-
sented by [78] with focus on role of layers structures and their
correlations. Interplay between processes is observed for
opinion formation and decision making, where the opinion
of public about certain issue is taken into account during the
decision making process that takes place at the higher level
[116]. Epidemics on multiplex networks can take cooperative
form [75]. As a result dynamics and coverage of one disease
can be increased by other diseases spreading on the same
network. One disease can be a consequence of being infected
with another one [73]. For example the number of people
with tuberculosis is much higher among people with HIV
[75]

(ii) Competing/Suppressing approaches. In 36% of the
papers competing processes are modelled and analysed.
Competition between processes was analysed for memes
[61] [62] and extended towards generalised models for other
content [74]. Protective spread like cure or immunity can
compete with virus or diseases and this scenario is explored
in [88] and [72]. Also, two competing viruses [66] [70] [67]
and coupling between both diffusion processes [73] were
analysed.
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Interaction type No. of papers References
Supporting 7 (11%) [68] [70] [116] [78] [75] [73] [95]
Competing 24 (36%) [61] [62] [88] [66] [72] [80] [67] [68] [69] [82] [70] [116] [115] [110] [107]

[114] [73] [74] [91] [92] [94] [95] [100]
Mixed 30 (46%) [81] [83] [84] [85] [86] [87] [109] [79] [111] [112] [113] [76] [104] [77]

[65] [105] [106] [108] [59] [103] [93] [89] [63] [96] [97] [98] [64] [99]
[102] [101]

None 5 (7%) [67] [68] [71] [117] [90]

TABLE 15. Types of interaction between spreading processes.

Another studies analyse competition of epidemics and
awareness [80] [82] [111] [112] [96] [97] [98] [100] [71].
Apart from generalised models they focus on awareness cas-
cades [113] and global awareness [107]. Competition takes
place also for information diffusion to prevent an epidemic
spreading [108] [91], for opinion formation [114] and the
impact of heterogeneity and awareness [94]. Information
spreading within network of parents with diseases was mod-
eled as competing process with opinion spreading [92].

Competing processes were also explored in the context
of optimal resource allocation on multilayer networks when
each node can posses single process at a time [69]. It was
shown that resource diffusion in information layer can affect
epidemic spreading within physical contact layer, and it
changes phase transition [110]. Study showed that the exis-
tence of optimal resource diffusion is leading to maximized
disease suppression. Also, when looking at studies in the
space of opinion and decision making, we can find some
interesting approaches, e.g. (i) model that investigates to what
extent opinion formation and making decision processes can
influence each other [116] or (ii) model that enables to assess
the consequences that propagation of the negative informa-
tion may have on the adoption of the green behaviour [115].

(iii) Mixed approaches. In 46% of papers, mixed ap-
proaches are analysed with ability to model both competitive
and collaborative processes at the same time. For example,
authors in [76] analysed coexistence of collaborating and
competitive mechanism. Increase of collaboration rate in-
creases the ability to spread the content in all layers while
without collaboration layers are independent and each viral
agent spread only within one layer. At the same time, due
to competitive mechanism, only a single viral agent can be
assigned to the single node.

Different possibilities were analysed in [77] including both
cooperative and competing diffusion processes as well as a
hybrid combination of those two. Proposed model was pa-
rameterised with increased epidemic threshold for competing
spreading processes and decreased threshold for coopera-
tive interactions. Mixed approach was based on cooperation
within the first layer and competition on the second layer.
It represents situation when processes within the first layer
decrease spreading in the second layer, while the second layer
processes reinforce the first layer activity.

Very interesting effect can be observed in the case of
disease and awareness spreading where in some cases, infor-

mation/awareness spreading is suppressing disease spread-
ing, but at the same time disease spread promotes (infected
node becomes aware and is able to spread information about
the contagion) information/awareness spread [103] [93] [87]
[108]. It can be modelled as mixed model discussed in several
works [81] [111] [112] [104] [65] [105] [106]. Interaction
between awareness and epidemics spreading can be observed
and modelled with the use of activity driven model [84], risk
perceptions [79], or approach that also takes into account
individual behaviour where a node can decide whether to
communicate with nodes that are sources of information or
disease [83].

Similar scenario to ’disease supporting spread of aware-
ness and awareness suppressing disease’ was also explored
in the case of disease and immunization where spread of
diseases is modelled over multilayer structure and immu-
nization strategies can enhance them or impair [79] [109].
Immunization can compete with epidemics but, at the same
time, epidemics can enhance the dynamics of immunization
[59]. Similar mixed interaction can be observed for aware-
ness when vaccination is used in [85] [86].

(iv) No interaction. In 7% of papers there is no interac-
tions between processes. In [90] the processes are competing,
but they spread the same content, while in [67] contagions
neither compete nor collaborate and every node can be in-
fected by an arbitrary number of contagions.

5) Spread timeline

The vast majority of research proposed models where both
spreads are concurrent. There is very limited research into
more realistic modelling where the awareness/immunisation
reaction is delayed as in [72]. There is also small sub-area
where first the protection against the virus is spread, and
after that, the virus spreads over network that undergone
some immunisation process [88]. Other than those couple of
studies, once again we can see a tendency to simplify the
process and avoid the complexity connected with delaying
some of the processes as it is in the real-world.

D. WHERE? AND HOW?

The field of multispread in multilayer networks is big. There
is no question about it. There is a number of variables and
their ranges that can be considered, and many of them are
still uncharted territory. The characteristics common to all
reviewed papers are (i) the spread model and (ii) network
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Timeline No. of papers References
Sequential 1 (2%) [88]
Concurrent 55 (94%) [61] [62] [66] [72] [80] [81] [67] [68] [69] [82] [83] [84] [85] [70] [116] [86] [115] [71] [87] [109] [79]

[110] [111] [117] [113] [104] [77] [65] [78] [105] [106] [107] [108] [59] [114] [89] [73] [74] [90] [75] [91]
[92] [93] [94] [95] [63] [96] [97] [98] [64] [99] [100] [101] [102] [103]

Overlapping 1 (2%) [72]
Not specified 1 (2%) [76]

TABLE 16. The timeline of both processes.

Network models SIS SIS Other SIR SIR SI1SI2S
SI1SI2S

SIS SIR SIS TM SIR SIRV

Scale Free
Scale Free

[87] [102] [80]
[83] [115] [110]
[108] [112] [77]
[106] [89] [73]
[96] [97] [100]
[82] [109]

[107] [101]
[113]

[94] [73] [79]
[70]

[99] [111] [98] [85]

Poisson (ER)
Poisson (ER)

[73] [67] [68]
[71] [108] [82]
[109]

[113] [114]
[93] [76] [107]

[88] [72] [70]
[75] [79] [73]

[69] [103] [90] [64]

Poisson (ER)
Scale Free

[65] [105] [82] [95] [72] [74] [61] [62]
[66]

[99] [64] [91] [86]

Regular
Regular

[108] [82] [109] [117] [81]
[116]

Small World
Small World

[78] [97] [115] [70] [79]

Other
Other

[92] [104] [62] [61]

Small World
Scale Free

[59]

Poisson (ER)
Exponential

[82]

Poisson (ER)
Regular

[82]

Exponential
Exponential

[82]

Exponential
Scale Free

[82]

Exponential
Regular

[82]

Scale Free
Regular

[82]

Scale Free
Other

[84]

TABLE 17. Spreading models used for network types combinations

topology as they are cornerstones of any spread analysis over
the network.

In Table 17 we present which network and spread models
were most commonly used together. We look into two layer
and two-spread scenario as it is the most often explored set-
ting (see Table 7 where it is shown that 95% of studies used
two layer networks in their experiments). As with other anal-
yses presented above, we can see the tendency to simplify
the complex problem of multispread over multilayer network.
In most cases, researchers look at networks that follow the
same model and the same type of process spreads on both
layers. The biggest number of studies look into multilayer
network with both layers being Scale Free networks and SIS
process spreading over each layer. The popular settings are
also: (i) Poisson-Poisson network with SIS-SIS spread; (ii)

Poisson-Poisson network with SIR-SIR spread; (iii) Small
World-Small World network with SIS-SIS spread, and (iv)
Poisson-Scale Free network with SI1DI2S-SI1SI2S spread.
Please note that only the last setting has network composed of
two layers that are generated using two different models. The
others use traditional network models with the basic spread
models. This shows that we are yet to explore and understand
the multispread phenomenon over more complex, more real-
istic structures. Fig. 5 shows heatmap with representation
of number of papers published for specific spreading models
and network types combinations.
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FIGURE 5. Heatmap representation of papers published number for specific spreading models and network types.

E. WHY IT SPREADS IN THIS WAY? - KNOWLEDGE

SYNTHESIS

There are several characteristics that have been empirically
investigated and tested. Those analyses resulted in a variety
of conclusions that show a wide variety of experiments
conducted. When it comes to analysis and comparison of
findings from different studies, it is not possible as every
study uses its own settings. Thus the results are not directly
comparable. In this situation, we decided to present the main
conclusions and organise them in a way that is consistent
with what we presented in Sections III-B, and III-C. Thus,
we start with studies that looked into how the structure and
characteristics of multilayer network influence the spread.
We follow with discussion about how features of multispread
influence the propagation process. Finally, we present some
other, significant conclusions, not directly related to the pre-
vious points.

1) Influence of multilayer network’s features on the

spreading process

1) Networks diversity Diversity of a network and its
layers can be expressed in many ways, but the most
commonly analysed that we discuss below are (i) node
degree correlation and (ii) overlap between network
layers. What research shows is that epidemics on low
diversity networks depends on one layer while perfor-
mance in high diversity networks is more dependent
on collaboration [76]. We explore that statement in the
context of the reviewed literature.
* Node degree correlation

FINDINGS:

* Positive Correlation: One (stronger) spread is
more effective than another (competing, multiplex
scenario). Additionally when heterogeneity (vari-
ance in the degree distribution) is higher one of the
spreads is even more effective.
* Negative Correlation: Coexistence region for
processes is larger (competing, multiplex scenario)
* Low impact of correlation when spread cooper-

ate

* Ergo, low diversity means that one spread in-

fluences another one more than when diversity is

high

Results from reviewed studies show that in the case
of competing scenario, where disease spreads on one
layer and intervention on another, the positive degree
correlation between networks’ layers increases the
efficiency of the intervention [72] (disease spreads
over Poisson or SF network; intervention spreads
over SF network, SIR model for both layers), [88]
(Random-Random; SIR-SIR). Similarly, in [96] au-
thors show that if nodes degree in their two layer (SF-
SF) multiplex network are correlated the awareness
spread (UAU) has higher suppressing effect to the epi-
demic spreading (SIS). Additionally, protective effect
is stronger if there is more significant variance in the
degree distribution (higher heterogeneity) [88]. For no
correlation of nodes degree or negative one, increasing
the heterogeneity makes it more and more challenging
to contain the second spread which is epidemic that
follows awareness campaign (second spread is faster)
[88].
Positive degree correlation causes that it is easy to
remove the virus from the system in a scenario where
two viruses compete (survival threshold is larger for
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positively correlated layers) [66] (Random-SF; SI1I2S-
SI1I2S). On the other hand, the negative correlation,
for two competing viruses, makes survival for one virus
easier but, at the same time, it proves to be more chal-
lenging to remove the other contagion entirely [66].
For negatively correlated layers the coexistence region,
where both viruses exist, is bigger [66].
Similar findings were reported for both com-
peting scenarios: (i) virus-virus and (ii) virus-
protection/awareness. This shows that from the per-
spective of design both are alike. Indeed, SIS spread
model for virus is the same as UAU model for aware-
ness spread.
When analysed spreads cooperate/support each other,
researchers in [78] concluded that the epidemic thresh-
old is not significantly influenced by the interlayer
degree correlation and at the same time they noticed
that large interlayer degree correlation is resulting in
lower prevalence. Experiments based on SIS spreading
model were performed for randomly-correlated ho-
mogeneous network with two layers based on Small
World, for correlated heterogeneous networks with
Scale Free model on each layer and the same model
for uncorrelated networks.

* Network overlap

FINDINGS:

* Higher overlap between layers boosts one of the
spreads (dominant one) – e.g. awareness can spread
faster
* Small overlap means that awareness cannot influ-
ence the disease layer – hard to stop the disease
* Ergo, low diversity means that one spread in-

fluences another one more than when diversity is

high

* Role of overlap on awareness spreading is moder-
ated for low and high propagation probability

The influence of layers overlap on the diffusion pro-
cesses is one of the popular elements investigated
in the reviewed field. It has been found that, in the
competing and mixed scenarios (e.g. awareness vs
disease spread), higher overlap between network layers
facilitates the invasion of the undesirable process (SIR-
SIR; SF/Poisson-SF; spread of two competing viral
agents or spread of disease vs spread of intervention)
[72]. It can also amplify the effect of awareness spread
[81] (regular graphs on both layers, SIR-awareness
enhanced SIR), [64] (SF–SF two layer multiplex, TM-
SIS), [91] (SF-ER two layer multiplex, SIRV-SIR),
and [103] (ER-ER two layer multiplex, UAU-SIR). In
general, both strands of research show the same: high
overlap contributes to the faster spread of a stronger
(dominant) process. The higher overlap between the
layer where disease spreads and layer in which people
exchange information and communicate also helps

to enhance the effect of locally spreading awareness
(defined as the behavioural response arising in the
region where disease outbreak). It is especially visible
in networks which have high clustering (awareness vs
epidemic) [81]. In such a case, the disease, as long as
its infection rate is below threshold, can be completely
stopped. The importance of the local risk of infection
information received from neighbours in information
layer that reduces the node susceptibility in contact
layer was also investigated and emphasized in [71].
Authors introduce the individual awareness element
(dependent on the number of infected nodes) that is
able to change the infection rate. The results show that
in the setup with two layer ER network where both
processes follow SIS model with individual awareness,
only the information from node’s neighbourhood that
overlap in two layers can have effect on the epidemic
threshold. The higher the overlap, the higher the epi-
demic threshold.
Another study with the use of uncorrelated two layer
network generated with configurational model and SIS
based spreading looks at resource diffusion strategies
(for example information campaign budget). It shows
that they can be adjusted to different levels of inter-
layer correlations between information and pathogen
layer with ability to maximally suppress diseases above
thresholds with maximum values [110].
In [74] authors are using SI1SI2S model to investigate
the interaction between two competing viruses on two
layer (ER-SF) multiplex network and show that it is
easier to remove a virus from the system when the
network layers are positively correlated. On the other
hand, when they are negatively correlated it is much
harder to remove a virus. Authors showed it using both
analytical and numerical methods.
It is also confirmed by [109] where authors with the use
SIS model on Scale Free, Small World and Random
networks show that increasing differences between
information (where awareness spreads) and contact
network (where disease spreads), makes the task of
stopping epidemics more difficult. In real systems it
can be observed for diseases developing in regions
with low access to the Internet meaning that overlap
between those networks is small [109].
There is also some research that the percentage of
overlapped links does not influence the spread but that
the percentage of susceptible nodes can have big effect
[70]. Authors tested it on the case of two interacting
diseases where each contagion spreads, using modified
SIR model, over one layer but both layers follow the
same network model for a given experimental setup
(Random, Small World or Scale Free). However, as au-
thors point out, this may be the effect of the experiment
setup where interplay between two contagions is nodes
based. It means that communication takes place if node
in state S for one disease is in the I or R state for the
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other disease.
Overlap can be computed for networks with differ-
ent nodes. For example [114] analyses the network
of communication and sharing opinion parents and
associated network of children where edges between
them can be similar like in the parents network. And
the similarity is the measure of overlap. In this case
parent’s opinion has stronger effect on suppressing dis-
ease spread between children when network of physi-
cal contacts between children has higher overlap with
information networks of parents. Authors generated
parents’ network by adding random links with prob-
ability dependent on separation distance. Kids network
was simplified and generated with assumption that
only one kid can be assigned to parents and the same
connections exist. Apart from used algorithm some
fraction of links was added randomly to both networks.
Disease transmission and recovery rate for kids was
used while for the parents opinion formation process
was modeled.
Apart from investigating the influence overlap, [82]
developed a toolbox of algorithms to that enables to
generate two layer multiplex network with given node
degree distributions and with a predefined overlap
coefficient (Jaccard index).

2) Edges between layers and spread switching layers

FINDINGS:

* The more interlayer connections in the multi-
layer networks, the easier for the spreading process
to affect all nodes.
* The spread with the higher probability of

switching the layers has an advantage over the
other one as it can easier spill over the other layer

In [90] authors analyse how the number and dis-
tribution of interlayer links affects spreading (phase
transitions/epidemic threshold) of the same disease
using threshold model and SIS model on two layer
(ER-ER) network. They found that "in the threshold
layer the critical value of the threshold increases with
the interlayer connectivity, whereas in the case of an
isolated single network it would decrease with average
connectivity" [90]. If the threshold in Threshold Model
is below the critical value all nodes become adopters
and if the threshold is above the critical threshold
only the initial nodes that belonged to the adopters set
remain as adopters and in consequence the spread of
adoption does not happen. In SIS layer, the interlayer
coupling seems to be the reason for the transition
between the situations where we observe small and
large percentage of nodes that become adopters. a new
transition between regions of low and large number
of adopters appears to be caused by the interlayer
coupling.
Also, authors in [116] (degree-regular random net-

works on both layers; M-model for opinion dynamics
and Abrams-Strogatz model for decision dynamics)
consider pairwise connections between layers. In their
model each vertex is connected to a single, randomly
selected vertex in the other layer. However, this is
treated as an element of the model and influence of
those links between layers is not investigated and left
for future work.
Interaction between the layers can be modelled not
only by adding edges between layers but simply by
enabling the spread to switch the layers. And while in
most papers spread of different medium takes place
only on separate layers, some works assumed that
content can spread through all layers. Spread switching
layers was observed for memes [62] and [61] (SI1I2S
spreads on both layers; different sythetic network
structures analysed) and for viral agent using all edges
in all layers with simple SI model and networks with a
Poisson degree distribution [76]. When layer switching
is possible infection of node can be initiated by neigh-
bours on different layers [78] as well as recovery is
possible at all layers with different probabilities [59].
In [62] and [61] authors show that the spread with
the higher probability of switching the layers has an
advantage over the other one as it can easier spill over
the other layer. This confirms the finding from [90] –
the more interaction between layers or the higher the
probability of jumping between the layers the easier
for a spread to affect all the nodes.

3) External influence

FINDINGS:

* Greater external influence on increasing aware-
ness – the epidemic threshold is larger
* Greater external influence on increasing aware-
ness – the onset of the epidemic is delayed

In section III-B5 we discussed how the external envi-
ronment can be taken into account. In majority of cases
it is "mass media" like approach where e.g. certain
percentage of population becomes aware of a disease.
It can be e.g. (i) a random process, where external node
representing the mass media connected to all nodes in
the information layer, regularly and randomly sends
information about the disease [80], (ii) model that
assumes that probability of being aware depends on the
global percentage of aware individuals [107], or (iii)
approach where mass media influences the awareness
level depending on how many people is infected [87].
In general, as one can expect, the tendency is that the
bigger mass media effect, the onset of the epidemic is
delayed [80] (SIS-UAU; layers being power law net-
works), [99] (SF-SF two layer multiplex, UAU-SIS),
[107] (two layer Scale Free network and SIS–UAU
model). So, the transmitting information about the dis-
ease is critical and highly influence the final outcome
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of the epidemics helping to control the spread.
Although some work has been done in considering
the external environment, it only accounts for scenario
where system awareness about the disease is increased
by making some of the nodes arbitrary aware of the
disease.

2) Influence of spread characteristics on the spreading

process

1) Interaction between processes

FINDINGS:

* Competing processes – epidemic thresholds in-
crease
* Cooperative processes – epidemic thresholds de-
crease
* Interacting processes – epidemic thresholds can
be increased or decreased by activity of processes in
other layers when compared to isolated layers

One of the most investigated elements in the mut-
lispread scenario is how the type of the interaction be-
tween processes influences the properties of the spread
(e.g. epidemic threshold). Research shows that in the
case of multiplex networks, epidemic thresholds can
be increased or decreased depending on the character
of the spreading processes and nature of the interaction
between them (e.g. competing, cooperative, mixed)
when compared to isolated layers [77]. In various
studies analysed in this review, we can see that, in gen-
eral, competing processes increase epidemic thresh-
olds while two cooperative ones decrease epidemic
thresholds. Below, we organise the description of the
interactions between processes according to ’what’
spreads over the network as this is the commonly
used taxonomy in the literature and in the same the
most intuitive way of presenting different types of
interactions between processes.

Disease-Disease spreads. Sanz et al. [73] observe the
interaction between two competing diseases on two
layer multiplex networks (Scale Free–Scale Free and
ER-ER) using SIS-SIS and SIR-SIR models. "The
results show that there are regions of the parameter
space in which the onset of a disease’s outbreak is con-
ditioned to the prevalence levels of the other disease"
[73]. Moreover, for the SIS-SIS scheme, they found
out that "under certain circumstances, finite and not
vanishing epidemic thresholds are found even for Scale
Free networks" [73]. Finally for SIS-SIS the secondary
threshold is different than for SIR-SIR scheme and this
is a consequence of how both diseases interact with
each other.
While Sanz has been analysing competing diseases, the
Azimi-Tafreshi in [75] has been evaluating how the
presence of one contagion can boost the diffusion of
the other infection when they support each other. They

found out that "cooperation of two diseases decreases
the network’s robustness against propagation of both
diseases, such that the epidemic threshold is shifted to
smaller values" [75]. The low cooperativity means that
the co-infected cluster (where all nodes are infected
with both diseases) "emerges continuously, however,
increasing the strength of cooperation, the type of
phase transition changes to hybrid and tricritical point
emerges" [75]. The experiments and analytical evalua-
tion were performed for two layer (ER-ER) multiplex
network with two SIR epidemic models. The fact that
two diseases helping each other weaken the human
immune system is also confirmed by [65] with the use
of different time scales for awareness and epidemic
spreading. Experiments were focused on two layer ER-
ER and Scale Free–Scale Free networks with the use
of SIS-UAU models. However, in this case, authors
emphasize that after recovery it is more difficult to
spread the disease again.
In [74] authors are using SI1SI2S model to investigate
the interaction between two competing viruses on
two layer (ER-SF) multiplex network and are able do
identify survival threshold and winning threshold i.e.
the conditions under which two compeering viruses are
(i) able to coexist and (ii) will lead to extinction of one
of them.

Epidemic-Awareness spreads. All reviewed papers
agree that information spreading slows down or even
stop the disease spreading however they differ on some
aspects of their models, experimental setup or elements
considered.
In [91] authors analyse interplay between disease
(SIRV) and information spreading (SIR) on two layer
(SF-ER) multiplex network. They show that "epidemic
outbreak on the contact layer can induce an outbreak on
the communication layer, and information spreading
can effectively raise the epidemic threshold, and when
structural correlation exists between the two layers
(layer overlap), the information threshold remains un-
changed but the epidemic threshold can be enhanced,
making the contact layer more resilient to epidemic
outbreak" [91]. Similar research was done in [93]
which shows that an optimal information transmission
rate can be identified for which the infection diffusion
can be effectively suppressed. The only difference was
that information was spreading with SIS model and
that both layers were ER networks. Scata et al. had
similar findings i.e. they show that awareness spreading
(UAF) can delay the outbreak of the infection spread
(SIR) and is capable of strengthening of the node’s
resilience in two layer (SF-SF) multiplex network [94]
and three layer (SF-SF-SF) weighted multiplex net-
work [63].The inhibition effect of information propa-
gation (SIR model) on the spread of the disease (SIRV
model) has been also shown by [85] when both layers
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are Scale Free networks. But they also noted that the
information spread becomes less effective when the
vaccination probability (as one of the states in SIRV
model) is positively correlated with individual’s degree
on the contact layer (where disease spreads). In such
a case only high degree nodes adopt the vaccination
behaviour. In a situation when the vaccination proba-
bility is negatively correlated with node’s degree then
the nodes with low degree will be vaccinated and, as
the experiments were run on Scale Free networks, this
results in a state where majority of the individuals are
vaccinated and in turn the information spread will be
even more effective.
In [97] researchers study how local and global in-
formation (UAU) affects epidemic (SIS). The results
show that, in two layer (SF-SF) multiplex network,
the percentage of infected individuals can decrease
due to contact-based precautions and this, in turn,
causes that the epidemic threshold increases. On the
other hand, "prevalence based precautions, regardless
of local or global information, can only decrease the
epidemic prevalence" [97]. Additionally, they found
that the altruistic behaviours of infected people are
a good way in suppressing the spread of the disease
what is in line with previous studies. Guo et al. [64]
challenge previous assumptions that the awareness
spreading affect all nodes in the same way and explore
the how the heterogeneity of nodes influences diffusion
of disease. Using the k-core and the degree measures,
they clustered the individuals into groups. Each node
in a given groups is characterised by the same local
awareness threshold or probability of being infected.
Next they observe interplay between between epidemic
(SIS) and awareness (TM) on two layer (SF-SF, ER-
ER, SF-ER) multiplex network and find that change in
the nodes heterogeneity significantly affects epidemic
threshold and final number increasing or decreasing it.
Pan et al. [98] takes it a step further and proposes three
types of heterogeneity to their model: (i) the hetero-
geneity resulting from the variety of types of responses
to epidemic outbreaks that people can come up with
and the influence heterogeneity that is present in (ii) the
disease layer and/or (iii) in the information layer. The
main goal of their research is to understand the impact
of the different heterogeneity types on the interaction
between disease and awareness. They perform the sim-
ulation in similar seating as in [64], i.e., epidermic
- SIS, awareness - TM, two layer (SF-SF) multiplex
network, and confirm that changing heterogeneity level
affects epidemic threshold. The individual behaviour,
where each person can make independent decision
whether to contact with those who are the sources of
information or disease, is also part of the spread of
disease-awareness (SIS-UAU) over multiplex network
(SF-SF) studies in [83]. Similarly to other research,
authors found that more reasonable people reactions

ad behaviour together with the propagation of the in-
formation is an effective way to reduce the epidemic
spread.
In [101] authors study how community structure affect
the coupled disease (SIR) awareness (IC) spreading in
two (SF-SF) layer multiplex network with and without
community structure, and find out that the diffusion of
the epidemic is significantly impacted by two elements:
(i) the number of groups and (ii) the level of the over-
lap between the groups on different network layers.
Another interesting work in this area was presented in
[102]. The results are similar as above i.e. awareness
spreading can slow down or even stop disease spread-
ing, but their experimental setup is unique. They in-
vestigate two layer (SF-SF) multilayer network where
one layer represent communication between parents
where the awareness (UAU) about the disease among
children is spreading. The second layer represent phys-
ical contacts between children where disease (SIS) is
spreading.
Another study identifies capacities and awareness dif-
fusion and self protection [104]. Presented approach
takes into account interplay between epidemic spread-
ing processes and self-protection ability of aware nodes
represented by lower infectivity. Study is based on SIR
and SIRI models and two network layers with the same
nodes but different topologies. Competing processes
where modeled with microscopic Markov chains and
self protection influencing infectivity. Results show
that increased capacities increase epidemic thresholds
and as a result the outbreak size is smaller. Authors
investigated targeted and random immunization what
showed much better performance of targeted immu-
nization focused on high degree nodes than random
approach. However, epidemic threshold and outbreak
size were not dependent on self-awareness assigned
to nodes within information layers after infection in
physical contact layer. Also, [87] confirms that self-
awareness cannot alter the epidemic threshold on two
layer Scale Free network (SF-SF) where SIS spread
model is deployed on both layers.
The research also shows that the awareness spreading
(following SIS or threshold model) can both increase
the threshold of the epidemic (SIS spread over static SF
network) and reduce the percentage of infected nodes
[84]. What is more important, authors also looked into
how the structure of the information network (gener-
ated using activity driven model) changes over time
and they concluded that those changes causes that the
awareness spread diminishes and this has a direct effect
on the epidemic threshold.
Not only the epidemic threshold was analysed but some
research – [89] [80] – also discovers the existence
of the metacritical point where the awareness spread
(UAU) can effectively control the epidemics outbreak
(SIS) on two layer (Scale Free–Scale Free) multiplex
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network.
Apart from typical epidemic thresholds modeling,
the local awareness ratio defined as a proportion of
aware neighbours to not aware ones can be utilised
in the process modeling interplay between diffusion
of awareness and epidemics [113]. Experiments based
on two layers SF-SF networks, microscopic Markov
chains and awareness controlled spreading (LACS)
showed that if awareness ratio is increased the outbreak
of epidemics is accelerated.

Epidemic-Opinion spreads. In [92] authors are in-
vestigating how diffusion of epidemics and formation
of opinion impacts each other in two layer multiplex
network (Poison-Poison). For the disease spreading
and Contact Process (asynchronous SIS model) was
used and for influence spreading the Voter model.
They found that the opinion dynamics influence sta-
tistical properties of spread of the disease. "The most
important is that the smooth (continuous) transition
from a healthy to an endemic phase observed in the
contact process, as the infection probability increases
beyond a threshold, becomes discontinuous in the two
layer network. Also, an endemic-healthy discontinuous
transition is found when the coupling overcomes a
threshold value. Furthermore, they found out that the
disease dynamics delays the opinion consensus" [92].
Similar situation was modelled in [114] for parents
and their kids network. Epidemic transmission within
physical contact network created for kids was parallel
to opinion formation within parents network. Influence
of information network on disease spreading process
was increasing together with the increase of similar-
ity between networks of parents and children. The
higher overlap between parents clusters not supporting
vaccination was resulting in emergence of children
clusters without protection. Support for vaccination
is increasing together with th number of infections in
parents’ neighbourhood.

2) Spread suppression and prevention techniques

FINDINGS:

* Suppression – removing the nodes with the high-
est node degree is the most effective topology-based
suppression technique
* Suppression – appropriate time scale for suppres-
sion mechanism is a key in finding the optimal way
to contain the disease
* Prevention – the stronger the immunisation effect,
the smaller number of infected nodes

Understanding how multiple processes, through com-
petition/cooperation or interaction mechanisms (pre-
sented above), influence the state of the system is a
key for developing spread suppression and prevention

techniques. Those techniques, in turn, enable to control
the spread. Both, prevention and suppression have the
same goal but the former one is pro-active and the latter
reactive behaviour. Thus, we consider them together.
Some researchers made attempts to assess the impact
of different suppression mechanisms by (i) suppress-
ing both spreads at the same time or (ii) unilaterally
suppressing a one of them and, at the same time, not
affecting the other spread [61] [62] (SI1I2S spreads
on both layers; different synthetic and real-world net-
works analysed). All the analyses, in their case, are
based on the eigenvalues of system matrices S =
(1 − γ) · I + A for adjacency matrices A1 and A2

representing layers one and two of a network, where
γ is a meme persistence and β is a meme strength.
Authors understand the suppression as pushing λ for
one (unilateral) or both (concurrent) memes below one.
They used variety of suppression techniques, including
(i) Random, (ii) Acquaintance (acquaintance immu-
nization, randomly select a node and using random
approach remove one of nodes connected to it), (iii)
Greedy (delete a vertex that results in the largest drop
in the eigenvalue of the system), (iv) Max Degree
(remove node with the highest degree), or (v) Social
Hierarchy. Authors showed that, in order to control the
spread, Max Degree approach is the most promising
approach.
Apart from designing targeted suppression techniques,
where nodes can be removed from the network, any
scenario where the awareness spreads over the net-
work, in order to limit the outbreak of another spread,
can be seen as a suppression technique. It is reactive ac-
tion, we inform people about the disease because there
were some reported cases of it. However, this topic
is covered in detail above, please see (1) Interaction
between processes – "Epidemic-Awareness spreads"
section, thus it is not further analysed in here. On the
other end of the spectrum, but similar in functioning,
is the negative information spread to suppress some
positive behaviour. Author in [115] shows that negative
messages about the green behaviour will reduce the
adoption level of green behaviour. This effect is visible
for both analysed set-ups: (i) Small World networks for
both layers and (ii) Scale Free networks for both layers.
In both cases SIS-like spread models are considered for
both layers.
One of the elements that can play the role in how
fast the outbreak can be contained are the time factors
related to speed of (i) information/awareness spread-
ing and forgetting as well as (ii) epidemics spreading
and recovering with the SIS-UAU model within two
layer ER-ER, SF-SF and real networks [65]. Research
showed that the epidemic mitigation effect is related
more to the time scale of the spread of information
rather than to the time scale of the diffusion of the
disease. Authors in [65] prove that selection of optimal
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mitigation strategy is possible when relative time scale
for information propagation is derived from awareness
spreading rate. Proper time scale selection is resulting
in low fraction of infected nodes. Study also shows that
too fast spreading of information reduces mitigation
effect and optimal time scale for information spread-
ing is not necessary infinite because performance is
also dependent on time from infection to aware state.
Proposed approach covers real situations when people
receive information within different contact networks,
use phone communication with different frequencies,
are forgetting information with different speed depend-
ing on source or form of message.
Researchers also looked into the prevention area where
the action is taken before the spread outbreak. And
although there is a fine line between suppression and
prevention, we classify here immunisation as a pre-
vention technique. The main reason for that is that in
the real-world the immunisation is treated as preventive
action – we do not have to have epidemic outbreak to
provide immunisation; we do it to prevent the outbreak
to occur.
Research shows that the degree of immunization (reg-
ulated as a certain probability), in the setting where
being informed and aware of a disease does not directly
translate into being entirely immune, affects the criti-
cal properties of the system. In general, the epidemic
incidence decreases and epidemic threshold increases
with the increase in the level of immunization [80] (SF-
SF, SIS-UAU), [86] (SF network and SIR model for
communication layer, ER network and SIRV model for
contact layer), or [85] (SF network and SIR model for
communication layer, SF network and SIRV model for
contact layer).
The vaccination is often modelled as one of the states
in the disease spread model, e.g. SIRV (susceptible-
infected-recovered-vaccinated) model [86] or [85]
where a given node becomes vaccinated with a certain
probability that depends on e.g. (i) receiving infor-
mation and the node degree [86] or (ii) the number
of times a node received the information about the
disease coupled with the social reinforcement effect
[85]. Immunization by prevention can be also per-
formed by assigning to nodes finite or infinite time
when nodes stay immune what was showed for SIS
model simulated on both layers of two layer SF-SF
network [59]. Approach based on finite prevention
period assumed that nodes are returning to susceptible
state when prevention period finishes. For large values
of infection probability prevention modeled in such
way increases spread of epidemics due to ability to
immediately infect nodes after they finish prevention
period. In another study, experiment based on random
networks with one layer representing parents and sec-
ond layer representing children, processes simulated
with opinion formation for information layer and trans-

mission rate for disease spreading, showed that non-
overlapping links can help to decrease the dynamics
of epidemics by vaccinations [114]. Different overlap
between two layers was represented by the fraction of
links between parents shared by children.

3) Proposed frameworks

Some of the studies proposed the overall frameworks
for analysis of multispread over multilayer networks
where the interaction between processes could be coopera-
tive/supporting or competitive depending on the framework
set-up [67], [68]. In those frameworks they investigate the
transmission rate depending on the parameters of the spread.
Sanz et al. [73] proposed a framework where they can
observe the interaction between two diseases on two layer
multiplex networks using any combination of SIS and SIR
models. Nicosia et al. [95] created more general framework
to intertwine spreading processes that propagate over multi-
layer networks with various network structures.

Apart from dedicated frameworks new approaches are pro-
posed as a methodological background for proposed models.
For example effective degree theory based on analysis of
surrounding nodes and counted number of nodes in S or I
state was presented in [108]. It delivered higher accuracy
than mean field theory within epidemic propagation network
for regular, random and Scale Free networks when compared
with theoretical analysis.

There have been also attempts to extend the competitive
multilayer processes to a set of heterogeneously parametrized
processes that spread over the generalized graph layers [69]
as that enables to conduct more comprehensive approach that
looks into set of different scenarios at the same time. Au-
thors provided a first step in analyzing competitive spreading
processes in multilayer environment by "finding necessary
and sufficient conditions for the exponential stability for any
equilibrium of the system in which one process extincts
exponentially quickly and the other survives in an endemic
state" [69]. They have proposed a whole optimization regime
for obtaining optimal-cost parameter distributions so they
lead to the desired equilibrium, and alternative one which
performs a heuristic design if the resources are limited.

Another framework is focused on modeling the spread of
epidemic and information within coupled multiplex networks
[111]. Nodes within information network are assigned to
aware and unaware classes with contact process spreading
mechanics used. Microscopic Markov chain model was used
to generate tree based on probabilities of switching between
modeled states. Attenuation factor is used to take into ac-
count different spreading abilities of aware nodes. Model
achieves results close to Monte Carlo simulations for higher
attenuation while accuracy drops for attenuation equal to zero
which represents situation when aware nodes are completely
immune.

Other framework designed for modelling co-evolution of
epidemics and awareness spreading uses as a key parameters
time variation of transmission rates [112]. Differential rate of
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transmission within epidemic layer is dependent on spread-
ing probabilities of related nodes within information layer
and the same for information layer in relation to epidemic
layer. Spreading awareness and disease was modeled with
the use of Monte Carlo Markov chain method. Second order
linear theory was used to describe processes in continuous
time in terms of coupled damped and driven oscillator equa-
tions. During simulations equilibrium state was identified
when prevalence of disease and awareness takes place and
transmission rates are at least equal to critical values.

IV. FUTURE CHALLENGES AND ROAD MAP
Although over the last decade, we have significantly im-
proved our understanding of the multiple spreading processes
over multilayer networks, we have still a long journey ahead
of us, before we can develop models that are capable of mim-
icking the real-world environments. Though the challenge is
big, we have to keep in mind that the more realistic represen-
tation of our world we can create, the more significant impact
our research will have. Only then our results can be translated
into knowledge useful in the real-world scenarios. However,
where to start? is a tricky and at the same time a crucial
question to answer. Thus, based on the review of the current
progress in the multispread over multilayer networks field,
we define a set of NEEDS that should drive our future work
in this area: (i) need for overarching and rigid methodology;
(ii) need for diversity that builds complexity; (iii) need for
data-driven approaches; (iv) need for dynamic and predictive
modelling. These NEEDS arise from the current research
gaps and form a road map that suggests steps that will help to
bring us from pure model-driven research to data-driven ap-
proaches mixed sensibly with model-based ones that enable
to reflect real-world situations with higher precision.

A. NEED FOR OVERARCHING AND RIGID

METHODOLOGY

When reviewing existing literature, we were struck by a very
fragmented approach to experiment setup, lack of justifica-
tion for the conducted experiments and the parameters’ val-
ues, and lack of comprehensive comparison of investigated
models with other similar approaches.

One of the underinvestigated elements is the approach to
selecting values for the plethora of parameters, both in the
network and spread models. Most of the experimental set-
tings are set arbitrary and with no discussion that would show
why these settings should be used (e.g. the type of model used
to generate the network). It shows a methodological issue to
be addressed – in research, we always need to justify our
decisions. Another methodological challenge we spotted is
silent assumption in regards to values of some parameters
– sometimes, they are simply not reported and this means
that the conducted experiments cannot be reproduced. Two
potential ways to address those issues can be employed:
either (i) we can use more realistic parameters that are data-
driven, e.g. based on the medical literature in case of the
disease spreading modelling, or (ii) to use the whole range

of parameters’ values and their combinations to provide
comparative and comprehensive approach to conducting the
experiments.

Another issue is resulting from the insufficient considera-
tion of technical parameters within experimental setup. For
example, different studies perform different number of rep-
etitions for Monte-Carlo simulations, use different propaga-
tion probability ranges and different number of seeds within
the network to initiate spreading processes. Presented papers
use various analytical methods based on the bifurcation the-
ory [4], effective degree theory [62], mean field theory [116]
[24] [87] [26] [94] [30] [77] [62], individual-based mean-
field approximation [73], percolation theory [75], Markov
Chains [10] [84], microscopic Markov Chains [83] [37]
[81] [81] [104] [105] [34] [82] [3] [7] [73] [76], dynamic
microscopic Markov Chains [112] [74] and simulations with
the use of agent based modeling and Monte Carlo method
[116] [37] [104] [34] [84] [82] [118] [97] [73] [94] [17] [78]
[76]. All the above makes the comparison of the results not
feasible.

From the evaluation perspective, each paper we reviewed,
performed analysis on different networks, either real or
generated using standard network models but with different
parameters for each research. This also contributes to the
issue connected with inability to properly compare different
approaches and also limited robustness of the results as
there is no guarantee that given findings will hold for other
structures than those tested. For example, in some cases,
authors randomly added some links to one layer to create the
second one but provided no justification why it was done. In
such a case, there is no way to assess the robustness of the
results.

All those issues put together shows that, although there
seems to be some standard in respect to what steps are needed
to run experiments in the space of multispread in multilayer
networks, there is no uniform and rigid methodology that
would enable comprehensive and comparative analysis be-
tween different experimental settings. Thus, there is a need
for an overarching scheme that would make such analysis
feasible.

We suggest, that for the sake of transparency and com-
pleteness, all research in the field should (1) include the
experiments on real data, (2) include the networks with
various number of layers, (et least networks with 2, 3, 5 and 7
layers) and networks with increasing number of nodes/edges
(100, 10,000, 100,000 and 1,000,000 of nodes/edges), (3)
enable repeating the experiments. In particular each paper
should be published together with (i) proper experiment
setup including justification for the arbitrary values selected
for each parameter, (ii) developed code for simulations and
experiments, (iii) networks used in the experiments (both
artificially generated and build based on real data), and (iv)
all results of analysis including the step-by-step simulation
outcomes. It this way we will contribute to open science and
make it more accessible.
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B. NEED FOR DIVERSITY THAT BUILDS COMPLEXITY

While all reviewed works discuss multispread in multilayer
networks, in the majority of studies, researchers focus on
only two layer (mostly multiplex) networks and two pro-
cesses. While this fits the problem description, it is the
simplest of possible scenarios. As the real-world interactive
spreading processes over multilayer networks are much more
complex, there is a great need for systematic work towards
understanding this complexity, and this involves acknowledg-
ing and accounting for the huge diversity in this space. Only
then, we will be able to push further the boundaries of our
knowledge and develop approaches that will generate impact
in the real-world.

Investigated structures and spreading processes should be
diversified and take into account a bigger range of scenar-
ios. Currently, though the research space is big, most of
the research focuses on random, Scale Free, Small World
networks with the use of synthetic datasets based on theo-
retical models. It creates space for usage of other models
and the need for real data collection is growing to better
address real-world challenges. Only few papers were using
real datasets. Additionally, experiments should be conducted
on multilayer networks with a higher number of layers than
2 or 3 and include more complex scenarios like directed and
weighted multilayer networks. Most of the papers use models
based on SIS and SIR and their extensions. Studies focused
on modeling single process or competing processes within
single networks use much wider range of models based
on random walk [127], linear threshold [128], independent
cascades [129], opinion formation models [130] and others.
It shows research gap and the area for further exploration.
The situation is similar to early–stage studies focused on
information spreading based on epidemiology models used
before more dedicated solutions were proposed.

Also, the current landscape of research, in respect to vari-
ety of applications considered, is rather homogeneous. There
is only small number of scientists who focus on problems
not related to disease spreading, like products competitions or
fake news. There is a need to diversify the field in this respect
as well. The potential future application should include, e.g.
critical infrastructures networks, financial networks or bio-
logical networks. This is a very important aspect as the bigger
the variety of applications, the more we can learn about
the characteristics of different processes involved. Different
applications areas bring more challenges but at the same time
enable to learn from each other.

Also, from the perspective of modelling, most of the
parameters are set at the global level, e.g. the probability
of infection, but we know that different people can respond
differently to a given spread. There is a natural diversity in
peoples’ behaviours; ergo, there is a need for some degree of
modelling at the local level.

Another element, which requires more attention, is the
spread timeline. For now, the timeline conditions, for major-
ity of analysed studies, are simplified – all processes start
propagating in the same point in time. We are all aware that

it would be hard to observe such situation in real systems,
but yet, there is very limited research into more realistic
modelling. Modifying the timeline of different processes
can strongly affect the results and obviously builds on di-
versity. For example, spreading awareness long time before
epidemics can be crucial for suppressing actions.

We also need to start consistently including in the equation
potential edges between layers and enable the processes to
switch between layers. This is what happens, e.g. in infor-
mation network, where spread switches between layers when
information is shared from one online platform to another.
Moreover, the external environment should be considered in
more systematic way. Including context of the system cannot
be neglected as there is no system that operates in a vacuum.

While we are very well aware that more diverse envi-
ronment increases the number of degrees of freedom of
the whole problem and in consequence dramatically builds
on the complexity, we are convinced that this is the only
way forward as it enables to fully understand real-world
spreading.

C. NEED FOR DATA-DRIVEN APPROACHES

To be able to create more realistic models, we need to depart
from purely model-driven spread analysis and focus more on
data-drive approaches. Few decades ago, access to data was
a luxury. Currently, more and more data is available and we
should take advantage of that.

Researchers should move more towards working with real-
world networks and not with networks that are small-scale,
very simple, not resembling real networks and based only
on theoretical models. Mobile technologies and Internet of
Things create not widely explored infrastructure for spread-
ing procesess monitoring and real data collection with the
use of sensors. There is a need for representative benchmark
datasets (including the real-world ones like [120]). Also,
the spreading models should better reflect the real-world
scenarios, e.g. by learning the values of certain parameters
from data.

While this need is easy to express, it is really challenging
to address. Thus, this is a whole new research area in the
context of multispread over multilayer networks.

D. NEED FOR DYNAMIC AND PREDICTIVE MODELLING

Spreading processes are dynamic in their nature, and this has
been explored by the community, but there is also a need to
analyse how the spread itself influences the dynamics of the
system, and how the dynamics of the system influences the
spread. This is a two-way interaction and this immensely in-
creases the diversity and, in turn, complexity of the problem.
It is considered in separation from the "need for diversity" as
it is a substantial topic on its own.

Almost all current approaches assume that the spreading
processes interact over static networks, with [84] being one
of the exceptions. This is a very crude simplification, as
the networks continuously evolve and the dynamics of this
evolution changes over time. Also, the propagation process
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influences the dynamics of the structure itself. At the local
level, currently, the dynamics of behaviour of nodes (people)
is not considered, and we need to develop approaches that
are able to incorporate those behavioural changes in spread
models. How to take the node and network evolution into
account when modelling the multispread is a big open ques-
tion and one of the biggest challenges yet. The first steps
to address the dynamics of the network could be looking
into how existing spread models behave if the underlying
network structure changes. The structure can be altered using
certain rules, e.g. (i) random appearance/disappearance of
the connextions/nodes; (ii) creation of links according to
“friend-of-a-friend is my friend” phenomenon or (iii) “rich
get richer” rule. Alternative is to use real-world networks
with their dynamics and overlay the spreading process on
top of it. Another, more holistic approach would be to use
multi-agent modelling to simulate both dynamics of and on
the networks.

Element tightly connected with the dynamics is the pre-
diction of the dynamics of spreading processes. Most of the
research focuses on spread analysis and there is just limited
research in the area of predictive analytics in this space [61],
[62]. Predicting how a given spread process will behave in
a given setting without running extensive simulations is an
interesting avenue to explore.

V. CONCLUSIONS

In this paper, we have investigated almost sixty papers about
multiple spreading processes in multilayer networks. Our
discussion and conclusions revolve around four fundamental
questions - what spreads?, where it spreads?, how it spreads?

and why it spreads in that way?. Our findings show that this
is still emerging field where the number of papers and studies
are increasing each year. At the same time, we found out
that the research focuses only on just a few variables and is
usually simplified to basic cases (only few network models
and few basic spread models).

A large fraction of papers focuses on disease spreading
of multiple viruses or epidemics competing with awareness
spread. Relatively low number of papers concentrates on
content like memes, opinion spreading processes, decision
making, and other behaviours. Research is done mainly on
synthetic two layer networks where each layer is generated
using some standard network model, while the processes
on those layers are simulated mainly by SIS and SIR like
models. We believe that it is time to depart from simple is

beautiful and start thinking that complexity is not a problem.

The presented review offers complete and up to date view
on an emerging area of multispread in multilayer networks.
It identifies both contributions and drawbacks of reviewed
works. We advocate that four NEEDS should drive the future
research in this area: (i) a need for overarching and rigid
methodology, (ii) a need for diversity, (iii) a need for data-
driven approaches and (iv) a need for dynamic and predictive
modelling.
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