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ABSTRACT

In human-computer interaction, as in conversation,
neither partner is omniscient.  To facilitate repairs when
problems arise, an interface needs to enable both user
and system to coordinate their separate knowledge
states.  We present a conversational feedback model for
human-computer interaction, based on a collaborative
theory of human communication (Clark & Schaefer,
1989) and use this model to systematically provide
context-sensitive feedback messages from an
application-independent spoken language system.  We
then describe a simulation, an informal user study, and a
working prototype that use this model in a telephone
agent application that allows dialing by voice.

TOWARD A MORE ROBUST
SPEECH INTERFACE

Traditional approaches to improving the performance
of spoken language systems have focused on improving
the accuracy of the underlying speech recognition and
natural language processing technology.  The
assumption is that if a system can translate exactly
what the user said into text and then map this onto an
application command, speech will be a successful input
technique.  With this approach, improving speech
recognition accuracy requires asymptotic effort that
ultimately is reflected in the cost of the technology.

We argue that perfect performance by a speech
recognizer is simply not possible, nor should it be the
goal.  There are limiting factors that are difficult or
impossible to control, such as variability in the
acoustic environment.  Moreover, many words and
phrases in English are homophones of other words and
phrases, so in some situations, both human and
machine listeners find them ambiguous.  People
frequently have trouble discerning, remembering, or
guessing the grammar and vocabulary that a system
expects and then limiting themselves to it - this has
been dubbed "the vocabulary problem" by Furnas,
Landauer, Gomez, and Dumais, 1987.  In addition,
ambiguous input is a problem on the syntactic,
semantic, and pragmatic levels.  Finally, because people

have many other demands on them while they are
speaking such as performing tasks, planning what to
say next and monitoring their listeners and the
environment, they frequently do not produce the kind of
fluent but constrained speech that a speech recognizer
has been trained to process.  Human utterances
frequently contain speech errors, and yet this is rarely a
problem for human listeners.  The intrinsic limits on
the well-formedness of utterances and on the accuracy of
speech recognition technology suggest that to solve the
problem, we must first redefine it.  Let us start by
considering how people handle these problems in
conversation.

THE COLLABORATIVE THEORY OF
CONVERSATION

Having a conversation is not simply the encoding and
decoding of well-formed messages.  Conversation is
collaborative.  When there is a misunderstanding, both
conversational partners participate in repairing it, and in
doing so, they try to expend the least collaborative
effort (Clark & Wilkes-Gibbs, 1986).  That is, one
partner often puts in extra effort in order to minimize
the effort both partners expend collectively.  In addition,
shared meanings in conversation are constructed
incrementally.  People coordinate their individual
knowledge states moment by moment, by
systematically seeking and providing evidence about
what has been said and understood; this is the process of
grounding (Brennan, 1990; Clark & Brennan, 1991;
Clark & Schaefer, 1987; 1989; Clark & Wilkes-Gibbs,
1986).  The amount of effort that both partners expend
at one point in a conversation before moving on is
governed by their grounding criteria (Clark & Wilkes-
Gibbs, 1986).  The higher the grounding criteria, the
more evidence conversational partners will require before
concluding that an utterance is indeed part of their shared
knowledge or common ground.  For example, a speaker
expects more explicit evidence about what a listener
understands when they are discussing something
important and less evidence when the purpose is casual.

Recognizing and repairing problems in
communication requires the right kind of evidence at the
right moment.  It is important for a conversational
partner to provide evidence when she notices that
something is amiss; we will call this negative evidence
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of understanding.  Many approaches to modeling
language use have assumed that negative evidence is
sufficient to keep a conversation on track (see, for
instance, Steedman & Johnson-Laird, 1980).  But
evidence of what has been understood — positive
evidence — is necessary as well (Brennan, 1990; Clark
& Brennan, 1991).  Positive evidence in human
conversation includes precisely timed short utterances
that lack what is typically considered propositional
content of their own, such as "uh huh," "hm," and other
backchannels (Yngve, 1970), explicit acceptances such
as "ok," clarification questions, relevant next turns (as
well as relevant actions), and even continued eye
contact.  Positive evidence is necessary because in a
dialog neither partner is omniscient.  At any moment, a
speaker and a listener are likely to have different takes
on what has just been said.  It is possible that the
addressee didn't hear the utterance, or that he didn't parse
or interpret it as the speaker intended, or that he didn't
even realize he was being addressed.  Part of the work of
repairing a misunderstanding or ambiguity is in
recognizing that one has occurred.  A misunderstanding
or ambiguity cannot be reliably identified unless
conversational partners seek and provide positive
evidence (when things are going smoothly) as well as
negative evidence (when a partner recognizes a problem
or potential problem).

When the situation involves delegating an action to
an agent, it is especially important that the speaker have
evidence about whether the action was successful.  This
feedback is just as necessary when the currency of
interaction is speech, textual natural language, or a
command language as it is when the currency is icons,
desktops, and windows.  The collaborative view of
human language use has been used as a basis for
modeling structure and feedback in human-computer
dialog for natural language interfaces (Brennan & Cahn,
1994) and for menu-based graphical interfaces (Payne,
1990).

When two partners interact, neither has direct access
to the other's beliefs or mental state.  A speaker may
start by expressing an intention that she expects a
listener to recognize (Grice, 1967).  Upon hearing the
utterance, the listener displays evidence about his
intentions or mental state for the speaker to interpret.
The speaker depends on such evidence from the listener
to hypothesize that she has been understood, and will
seek such evidence if the listener doesn't provide it
spontaneously (Brennan, 1990).  In a model of
collaborative contributions to conversation proposed by
Clark and Schaefer (1987, 1989), there are four possible
states that an addressee, B, can inhabit with respect to a
speaker, A, and an utterance, u:

State 0: B didn't notice that A uttered any u
State 1: B noticed that A uttered some u

(but wasn't in State 2)
State 2: B correctly heard u

(but wasn't in State 3)

State 3: B understood what A meant by u

The need for conversational repair arises either when a
listener believes he has failed to reach one of the
successive states, or when he believes he has reached a
particular state, but the positive evidence he provides
leads the speaker to conclude that he hasn't.  In the first
case, a listener may recognize there is a problem and
initiate a repair himself.  In the second case, the speaker
may notice the problem first and initiate a repair if the
evidence the listener provides is not what she was
expecting.  In the examples of speech interaction with a
spoken language system that follow, we are concerned
with both of these situations.

A MODEL OF GROUNDING WITH A
SPOKEN LANGUAGE SYSTEM

Most spoken language systems provide some
feedback to users, but in a rather ad hoc way.  For
instance, a system can echo a user's input or ask for
confirmation of a command.  But users find this
cumbersome if it happens all the time.  In addition,
informative error messages can be produced when certain
kinds of processing errors occur.  But this is no
guarantee that, in the absence of an error message, the
user won't be left wondering whether she has been
understood.  Our goal is to address these problems in a
more adaptive, context-sensitive, and systematic way.
To do this, we have extended Clark and Schaefer's
(1987) model in order to specify an adaptive feedback
model for a spoken language system to which a user can
delegate actions.

Here is an ordered list of system states, labeled from
the perspective of the user:

State 0: Not attending.  The system isn't listening
or doesn't notice that the user has spoken.

State 1: Attending.  The system has noticed that
the user has said something, but it hasn't
interpreted the words.

State 2: Hearing.  The system was able to identify
some of the user's words, but hasn't parsed
the entire utterance

State 3: Parsing.  The system received what seems
to be a well-formed utterance, but hasn't
mapped it onto any plausible interpretation.

State 4: Interpreting.  The system reached an
interpretation, but hasn't mapped the
utterance onto an application command.

State 5: Intending.  The system has mapped the
user's input onto a command in its
application domain, but hasn't acted yet.

State 6: Acting.  The system attempts to carry out
the command. It is not known yet whether
the attempt will have the desired outcome.

State 7: Reporting.  The system may or may not
have been able to carry out the user's
command, and reports any evidence
available from the application domain.

Our States 0-2 correspond to Clark and Schaefer's.
We have divided Clark and Schaefer's State 3 into our
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States 3 and 4, since some modular language-processing
systems can break down distinctly in their syntactic or
semantic modules (see, for instance, Brennan, 1988).
States 5-7 are necessary extensions for dialogs
involving delegation to an agent.  Studies of grounding
in task-oriented human conversation (e.g., Brennan,
1990; Clark & Schaefer, 1989; Schober & Clark, 1989)
lead us to forecast that feedback at these states would be
useful in speech interaction with a machine; these states
are intended to mirror the points where human speech
processing and action can break down.  However, not
every language interface and every application will
require distinctive or meaningful feedback at all these
states.  For instance, a text-based natural language
interface would not need a state corresponding to State
2, hearing.  Likewise, a spoken language system
without a parser (one that simply maps a pattern onto a
command) would not distinguish States 2 and 3, hearing
and parsing.  For an application that doesn't involve
delegation (such as a question-answering system),
feedback at States 5 and 6 would probably not be
interesting (nor would feedback at these states be
provided, as we shall see).  The states of the model can
be adapted to the particular spoken language system so
that only feedback that is potentially useful to the user
is provided.

We adopt the simplifying assumption that a state
depends on the states numbered below it.  There are of
course exceptions to this; if an agent discovers that the
goal it intends to act on has already been achieved, or if
it guesses or predicts a user's intention without having
correctly heard the user's command, then the agent need
not pass through these states in sequence.  Ideally,
however, evidence of success at a particular level
obviates the need for evidence at lower levels, with
exceptions that we discuss later.

Next we will walk through the model and show how
it performs in principle, using as an example an
application consisting of a remotely accessible
telephone agent.  We will demonstrate feedback for each
state in the model through a series of examples.  Then
we will describe two prototypes that we have built in
order to test the model.

FEEDBACK AT DIFFERENT STATES

The model assumes that positive evidence is just as
important as negative evidence.  To illustrate each state,
we will begin with examples of negative evidence a
system gives when it recognizes itself to be in that state
but unable to proceed to the next state.  Then, we
discuss how and when a system should give positive
evidence of having reached a state.  Many user interfaces
provide negative evidence (error messages) when a
problem is identified.  But without positive evidence, it
is much harder for users to identify problems that the
system cannot.

State 0: Not Attending

While our telephone agent is processing an utterance,
it briefly stops attending to input from the user.  Since
it cannot identify the "error" that occurs if the user tries
to address it when it's not attending, there is no error
message associated with this state.

In user studies of spoken language systems that we
and others have conducted at Apple, we have discovered
that users sometimes have trouble knowing when to
speak.  This can happen even when the system is used
in a push-button-to-talk mode.  We are currently
investigating the use of audible cues (such as an
unobtrusive ambient sound) to give positive evidence
whenever the system is not attending (or alternatively,
when it is attending)

Example of State 1: Attending

When the agent detects sound but cannot recognize an
utterance, it asks the user to repeat.

User: "Call Susan."
System: "What was that again?"

When the system is attending but fails to hear any
speech, it can provide a prompt (after a time-out) such
as: "I'm still listening."  Since repeated prompts can be
annoying, it is better to convey the system's attentional
state with ambient cues.  For instance, the PlainTalkTM

speech interface available on the Macintosh Quadra
660AV and 840AV machines provides several different
styles of continuously present graphical cues that the
system is listening (Strong, 1993; Apple Computer,
Inc., 1993).

Example of State 2: Hearing

User: "Call Lewis."
System: "Sorry, I didn't get that - call who?"

The important thing about providing feedback about
this state is to make it clear to the user what part of an
utterance has been detected and what part is missing.
By responding "Call who?" the system clearly specifies
that it got the command "Call;" the system uses the
type of the missing argument to fill in an appropriate
wh-word.  In the context of a repair initiated by a State
2 error message, the system can accept either a repeat of
the whole utterance or an elliptical response ("Lewis").
In a non-repair context, the utterance "Lewis" would
elicit a different State 2 error message, e.g.. "What was
that about Lewis?"  Error messages like this were used
in an early spoken language interface called "Put That
There," developed at M.I.T. (Schmandt & Hulteen,
1982).  With very little trouble, users were able to help
that system repair utterances that it had partially
recognized.

Note that the style of the messages provided by this
feedback model need not be anthropomorphic.  "Still
listening" or "ready for input" may be preferable to "I'm
still listening."  Here, we have chosen to emulate the



4

ways in which human conversationalists typically mark
problems at different stages of language processing.
See Brennan and Ohaeri (1994) for an empirical
comparison of anthropomorphic, non-anthropomorphic,
and telegraphic message styles in language interfaces.

Examples of State 3: Parsing

User: "Call Eric."
System: "Do you mean Eric Hulteen or Eric Stubbs?"

When the system receives a well-formed utterance that
it can't interpret unambiguously, it initiates a repair by
expressing the alternative interpretations as a spoken
menu of choices.  Another problem that calls for
negative evidence at this state is when the user asks it
to call a person it doesn't have any number for:

User: "Call Eric."
System: "sorry, Eric isn't in my directory."

If the telephone agent were to include the ability to
add new entries to its directory, the system's could take
more initiative for the repair: "Do you want to create a
new entry for Eric?"

Positive evidence of parsing is provided by echoing
the user's input.  In the next example, the system
provides positive evidence of appearing to find itself in
State 3, while the user recognizes that it has heard part
but not all of the intended utterance (so the system is
actually in State 2):

User: "Call Lisa."
System: "I heard you say call Lewis."
User: "No!  I said, call Lisa."

When the speech recognizer has been misrecognizing
many of a user's utterances, it is particularly useful to
provide positive evidence at State 3.  We track this need
by keeping a record of repairs in the discourse history.
Informative feedback provided at an earlier state gives
the user more time to interrupt and initiate a repair.
Interrupting can be done in a variety of ways; with our
system, the user interrupts by pressing a key on a
keyboard or telephone keypad designated for this
purpose.  The user may be able to interrupt vocally if
the speech recognizer is always listening for input.
Positive evidence at State 3 has turned out to be
particularly crucial for our telephone agent application.

Examples of State 4: Interpreting

User: "Find Chris."
System: "Sorry, I don't know how to find Chris."

Here, the user's utterance has been heard, parsed, and
mapped onto an interpretation.  In this case, the system
cannot map its interpretation onto a command that it
can perform.  It is possible that when the system gives
an error message at this state, the actual problem was at
an earlier state (the utterance may have been
misrecognized).  Giving explicit feedback in the error

message about exactly what was interpreted enables the
user to recognize a problem that the system cannot.

If it is critical to avoid errors in a particular task
operation, then the system can check its interpretations
explicitly by asking for confirmation:

User: "Call Lisa."
System: "Do you want me to call Lewis?"

We have chosen to express positive evidence at this
state as an explicit request for confirmation since
expressing it as a statement ("You want me to call
Lewis") is an implicit request.  Requests for
confirmation can be tedious, but they do ensure that the
system will not place any embarrassing calls.  In
general, State 4 feedback should be provided sparingly,
only for those task operations that are potentially
problematic - that is, when there is significant potential
cost to misinterpreting what the user intends, and when
there is significant likelihood of misinterpretation.
This amounts to the system adopting a higher
grounding criterion than it does with operations that can
be undone, that are not destructive, or that don't have
social consequences.  State 4 feedback should reflect
information from the recent discourse history about
misrecognized commands.  For instance, if the system
reached State 5 in processing a recent command, but
was interrupted by the user before placing a call, it
should give positive evidence at State 4 (ask for
confirmation) the next time it interprets a command to
call.  This kind of explicit feedback about a system's
interpretation is typically given in both command and
direct manipulation interfaces, e.g. when users are asked
to confirm before quitting or before a file is deleted.

Examples of State 5: Intending

Negative evidence for State 5 is necessary when the
user asks the agent to perform an interpretable action
that it cannot carry out, often because the application is
in an incompatible state.  Our telephone agent provides
negative evidence for State 5 when the user's two-line
telephone already has two calls on hold and no line is
available for making a third call.

User: "Call Lisa."
System: "I can't call Lisa - there is no available line."

Positive evidence that the system is about to act but
has not yet acted is important whenever a user's
command is potentially destructive or has the potential
to involve other people.  So our system often provides
positive evidence of reaching State 5, even when it is
not arrested at this state.  Here is an example of positive
evidence:

User: "Call Lisa."
System: "Ok, I'll call Lisa."

With this response, the system tells the user it is
about to act on her command; it also explicitly repeats
her command as part of the message.  A similar strategy
was employed to give users feedback about how a
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natural language interface had interpreted pronouns
(Brennan, 1988).  A State 5 message implies that the
system has also passed through States 0-4 successfully
(attending, hearing, parsing, and interpreting) and that
the system is confident about its performance so far.  If
the command is what the user intended, the user need
not respond.  But consider this exchange:

User: "Call Lisa."
System: "Ok, I'll call Lewis."
User: "No!  I said call Lisa."

Even with experienced users and a state-of-the-art
speech recognizer, the system may have misrecognized
all or part an utterance.  Here, the evidence the system
provides shows that it identifies itself to be in State 5,
but the user can tell by this evidence that in fact it is
not.  Without positive evidence of what the system
understands at this point, the user will not recognize
that there is a problem until she gets the wrong person
on the phone.  Again, positive evidence gives the user
time to interrupt and repair the problem.

Example of State 6: Acting

Evidence is particularly informative during system
actions that take a noticeable length of time to carry
out, or during actions that contain intermediate steps
that can go awry.  We found that our telephone agent
didn't need an error message at State 6.  It does,
however, provide positive evidence of acting:

User: "Call Yin Yin."
System: (sounds of touch-tone dialing)

Positive evidence about this state informs the user
that the system is in the process of carrying out a
command.  At that point it is still possible to interrupt
the system.  Feedback at State 6 is not necessary when
the action is carried out instantaneously (faster than the
time it takes to display the feedback).  Feedback at State
6 is quite common in direct manipulation interfaces,
where there is immediate positive evidence of the effects
of a user's actions.  Direct manipulation systems
sometimes offer explicit opportunities to interrupt
during what we would call State 6; for instance, the
system may inform users of its progress at printing or
copying files, while providing a "Cancel" button
option.

Example of State 7: Reporting

User: "Call Lewis."
System: "I'm sorry, the line's busy.  Shall I keep

trying?"

In this case, the system has acted on the user's
command and it reports the outcome.  This state is
particularly important in an interface to which the user
can delegate actions that can either succeed or fail.  In
our telephone application, the agent evaluates whether
the outcome of its attempt to place a call is a success or
a failure; such an evaluation is not possible (or relevant)
in all tasks.  When that is the case, the system simply

reports whatever evidence is available from the
application, leaving it up to the user to conclude
success or failure.  Feedback about this state need not be
speech; for spoken language systems that control
graphical applications, the feedback can be a visual
result (Brennan, 1988).

KNOWLEDGE SOURCES

Our approach is intended to provide a systematic way
to specify feedback to the user while supporting both
domain-independence and a variety of system
architectures (from sequentially modular to blackboard-
style).  Three sources of knowledge - the dialog history,
the physical environment, and the task model - are used
to determine what kind of feedback messages to provide
and when to provide them.  These sources of knowledge
come together in a single parameter that is frequently
updated: the system's grounding criterion. The dialog
history is a data structure that is updated turn by turn,
every time the system or the user makes a contribution
to the dialog.  The dialog history has other uses in
addition to determining feedback, such as resolving
referring expressions.  The physical environment we
represent simply as two possibilities: a noisy or quiet
speech input line.  The task model lists the set of
commands available in the telephone agent application
and maps each of them onto an appropriate relative
adjustment to the grounding criterion that is triggered
when an utterance gets mapped onto a command (in
State 5, intending).

In the next section, we describe our initial scheme for
setting the system's grounding criterion, which in turn
determines the amount and placement of feedback.  It is
conceivable that additional parameters, rules, or decision
processes should also affect the grounding criterion, for
instance, in the generation of multimedia responses (see
Brennan, 1988; Hovy & Arens, 1993).  For a
discussion of how the grounding process differs
according to communication medium, see Clark &
Brennan, 1991.

HOW MUCH EVIDENCE TO PROVIDE?
ADAPTING FEEDBACK WITH THE
GROUNDING CRITERION

We have argued that a spoken language system needs
to give positive evidence of understanding.  But how
much evidence should it give, and when, exactly?
Consider this set of positive messages associated with
each state at which the system can be successful at
processing the user's utterance:

State 1: "I'm still listening."
State 2: "I heard something."
State 3: "I heard you say 'Call Lewis'."
State 4: "Do you want me to call Lewis?"
State 5: "OK, I'll call Lewis."
State 6: (telephone dialing sounds)
State 7: "Here's your call."
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Of course, it would be tiresome for a system to
provide evidence for every state that it passes through
successfully; for one thing, this would violate Grice's
maxim of quantity (Grice, 1967).  If we assume that
reaching a particular state presupposes that the lower-
numbered states have also been reached, then it may be
enough to simply provide positive evidence about the
most advanced state of processing that the system
appears to have reached.  This is what our system does
when its grounding criterion is low.

Next we give examples of how the grounding
criterion is adjusted according to information from the
three knowledge sources mentioned earlier: the task
model, the dialog history (which includes an implicit
model of the user), and a model of the physical
environment.

The Task Model

The grounding criterion is low when the system has
mapped the user's command onto an ordinary task.
Ordinary tasks include those that are not destructive, do
not involve other people, or can be undone.  For tasks
that have a high probability of error or that have
potentially destructive or embarrassing consequences,
the model allows for giving more feedback than usual
— that is, feedback about earlier states — by raising the
system's grounding criterion.  When the task at hand is
placing a call, the grounding criterion is incremented
with the result that additional feedback is provided at an
earlier state (as in the examples for State 5) to give the
user the opportunity to interrupt before the call goes
through.

Consider the situation where there are several phone
numbers associated with one individual:

User: "Call Chris."
System: "OK, I'll call Chris DiGiano at his office."

Here the agent provides explicit evidence of how it
has interpreted the command (in this case it has chosen
the number where the callee is most likely to be during
business hours).  If the agent has no heuristic for
choosing between several possibilities, it asks for more
information from the user in order to proceed from State
3 to State 4:

User: "Call Chris."
System: "Shall I call Chris DiGiano at home or at his

office?"

Of course, to implement this successfully requires
that the interface designer have a good idea of just what
can go wrong.  We acquired this information by
prototyping the telephone agent and observing people
trying to use it.

The Dialog History And User Model

The telephone agent adapts its feedback both to the
user and to how the dialog is going.  The grounding
criterion starts out high until the user and system have

managed several smooth exchanges in the dialog.  A
smooth exchange is counted when the system
recognizes an utterance of the user's and maps it onto an
interpretation, an intention, an act, and a report (e.g.,
reaches State 7), without having to initiate a repair and
without the user having to initiate a repair.  If the user
initiates a repair, the dialog history records that
exchange as having a repair nested in it; this record
includes whatever information is available about the
utterance's surface form and the type of command it was
mapped onto (see Brennan & Cahn, 1993).

Most repairs in our system are of misrecognitions;
these problems must be noticed and repaired by the user.
How does the system determine the appropriate feedback
to give?  Consider these options:

User: "Call Susan."
System: (One of these)

"I heard you say call Susan.  Do you want me
to call Susan?  (Highest criterion:
feedback at States 3 and 4)

"Do you want me to call Susan?"
(High criterion: State 4 feedback)

"OK, I'll call Susan."
(Medium criterion: State 5 feedback)

(telephone dialing sounds).
(Low criterion: State 6 feedback)

In this example, the system needs to give feedback at
a state earlier than State 7 because placing calls is a
high-criterion action.  If this exchange is early in a new
user's dialog with the system, the grounding criterion is
high and the system gives feedback at State 3 displaying
the utterance it parsed and at State 4 that requests
confirmation.  If the user's response to the request for
confirmation is "yes," then that interchange is recorded
as a smooth one in the dialog history and the grounding
criterion is lowered slightly.  After a second "yes" to a
request for confirmation, the criterion is lowered a bit
more; the consequence is that the next time this user
asks to place a call, the system will not ask for explicit
confirmation, but will provide feedback at State 5,
giving the user time to interrupt if she detects a
misrecognition.  Because placing a call is a high-
criterion action and the dialog history is seldom error-
free, the system would not normally lower its criterion
enough to provide only State 6 feedback for placing a
call (although it does this for low-risk actions).

At present, we use simple heuristics to adjust the
grounding criterion.  Currently the dialog history tracks
turns in which the user interrupts or corrects the system
(e.g., when a user responds "no" to a clarification
question that counts as State 4 feedback).  Then, when
the system arrives at an interpretation that contains a
command that has been problematic, it temporarily
adjusts the grounding criterion upward.  While we
intend the states and grounding criterion in our model to
be generalizable to other kinds of applications, we do
not yet have an algorithm for adapting the grounding
criterion that we believe is generalizable to all tasks and
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all users.  We plan to investigate this further as we try
out the model in other application domains.

Finally, some of our users have more trouble than
others in getting their utterances recognized by the
system (particularly if they speak English with a
foreign accent).  When the system detects unusually
frequent repairs of misrecognitions or is arrested
repeatedly in States 2 or 3, it uses a higher grounding
criterion and consistently asks for confirmation.

The Physical Environment

Sometimes there is noise in the user's environment or
in the audio input to the speech recognizer.  If the
system detects noisy input or frequent misrecognitions,
then it adopts a higher grounding criterion and gives
feedback both at State 3 (parsing) in addition to feedback
at a later state (in this example, State 4):

User: "Call Eric."
System: "I heard you say 'Call Eric'.

Do you want me to call Eric?"

This level of feedback is reassuring in the face of
noise or repeated error, but is quite tedious when the
dialog is going smoothly.  Currently we lower the
grounding criterion after two smooth contributions to
the dialog history (e.g., when the users has responded
"yes" to two requests for confirmation and allowed the
system to proceed).  This results in feedback at States 3
(echoing the user's utterance) and 6 (dialing sounds).

TESTING THE FEEDBACK MODEL

We tested the feedback model initially by building
two prototype systems and conducting an informal user
study, consistent with the philosophy expressed as
"user-centered design" (Norman & Draper, 1986;
Gomoll, 1990; Hulteen, 1991).  User studies differ from
controlled laboratory experiments in that they try to get
as much information about usability as possible for the
least amount of time and effort invested, immediately
feeding back changes inspired by users to the prototypes
themselves.  Our goal at this stage was to test and
iteratively tune the system concept as a whole and to
discover any areas where implementation or use might
show our model to be problematic

The first prototype was a simulated speech interface
to a telephone agent that we studied using a "Wizard-of-
Oz" paradigm; the second was a working prototype of a
telephone agent.

Wizard-of-Oz Study

First, we developed a HyperCard-based simulation of
the telephone application to support a Wizard-of-Oz
study where we simulated the telephone agent with its
spoken language interface.  The simulation was
connected to a speech synthesizer and a text parser.  It
represented a two-line telephone system and provided the
experimenter with a control panel for generating

telephone sound effects and text-to-speech feedback.
Simple functions were supported, including: dialing by
name, dialing by number, holding, switching lines,
picking up calls, and hanging up.  Users were 12
employees of Apple Computer, Inc.  The users role-
played several telephone-based tasks.  They were
instructed to imagine calling their "phone agent," e.g.
the voice interface to their personal office telephone,
from a pay phone.  They were instructed to press the #
key when they wanted to address or interrupt the voice
interface and to speak into the telephone handset.  There
were no instructions about the kind of language the
agent would understand.  Subjects were aware that this
was a simulation.  As they spoke, the experimenter
rapidly typed their input into the text parser and used the
buttons on the control panel to provide appropriate
telephone sounds and synthesized speech messages from
the telephone agent in response.  The subjects' input
and the system's responses were logged for later review.
After the session, subjects filled out a questionnaire and
discussed their reactions with the experimenter.

The tasks included: calling a coworker, placing that
call on hold and calling another coworker, terminating
that call and returning to the first call, answering an
incoming call, and placing a call to someone at a car
phone.

For this brief initial test, we used a high grounding
criterion, since our users were inexperienced with the
speech recognizer.  This meant that after each of the
user's utterances, the system gave State 3 feedback ("I
heard you say...") in addition to feedback at a higher
level.  The tasks were planned so that most of the time
the user's utterances would be "understood" by the
system.  However, several errors were scripted into the
system's behavior during the task, to see if users could
use natural conversational strategies to get back on
track.  These errors included missing one word of the
user's command and completely misunderstanding the
user's command (that is, hearing a different command).
When the system missed one word of the user's
command, it gave feedback at State 2: "I heard you say
call somebody - who do you want to call?"  Most of the
users (83%) responded immediately with an elliptical
answer (e.g., "Susan"); the rest reissued the whole
command.  When the system got the wrong command,
it responded with feedback at States 3 and 6 ("I heard
you say call Joy; calling" [dialtones]).  Although all the
users had been instructed to interrupt the system when
necessary by using the # key on the handset, only two
thirds of them did so; the rest tried to interrupt verbally.
Even those who remembered to use the # key felt that it
would be more natural to interrupt verbally.

When the simulated speech recognizer was
consistently successful in recognizing utterances, many
users reported that messages from State 3 were
annoying.  On the other hand, after misrecognitions,
users reported that they found messages about this state
helpful and came to depend on them for evidence that
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their input had been interpreted as they intended.  This
preliminary study supports the prediction from the
model that feedback should be provided concerning the
highest possible state the system reaches, except when
it is error-prone at an earlier state.

Working prototype

We implemented a second prototype in LISP, for
demonstration purposes.  We used a custom-built state-
machine to track and control the telephone agent
application, speech recognizer, text-to-speech
synthesizer, and dialog history manager.

This prototype used PlainTalkTM, a speaker-
independent, connected-speech recognizer developed at
Apple Computer, Inc. (Lee, 1993).  This speech
recognizer uses a limited grammar and is remarkably
fast and successful at recognizing the utterances of users
who are experienced enough to conform to its
vocabulary and grammar.  But it performed considerably
less well with some of the inexperienced users of our
demonstration system, who had no idea of the
vocabulary or the grammar that had been defined for it.

In addition, as we expected after the Wizard-of-Oz
study, users of the working prototype had problems
determining when the system was listening for input.
We conclude from this that if a speech recognizer cannot
listen all the time for input, there needs to be some cue
(audible or graphical) about whether or not it is
listening.  Feedback from a spoken language system
need not be in the form of speech; we are currently
experimenting with sounds and graphics to be used
along with verbal messages.

Contributions of this and future work

The contribution of this work is to provide a general
solution to providing feedback for speech applications.
The data structures to support several of the states in
our feedback model have been incorporated into the
PlainTalkTM  speech interface that is part of the
Macintosh Quadra 660AV and 840AV machines
(Strong, 1993; see also Apple Computer, Inc., 1993).
This interface includes a feedback window with graphics
that are customizable via the "Speech Setup" control
panel.  Graphical feedback styles available via the
control panel include an ear icon, several
anthropomorphic characters, and some abstract colored
lights.  Positive evidence is presented visually using
these styles for three of the states we have described
here, corresponding to attending, hearing, and acting
(States 1, 2, and 6).  Negative evidence in the form of
an audible error message (e.g., "pardon me?") is
presented only when the system hears speech addressed
to it that it is unable to parse or interpret.  Graphical
feedback at State 7 is automatically provided by the
direct manipulation-style Macintosh desktop.

While that implementation is only partial, a fuller
version of the feedback model, tailored to specific
applications, is possible.  In future work, we plan to

build two more prototype applications that use the
PlainTalkTM speech recognizer with our feedback model
and test these prototypes with human subjects. For the
first application, we plan a set of the commands to an
"intelligent" hotel room that a user could communicate
with via speech over a telephone handset, in order to
retrieve information and request services (such as wake-
up calls).  The second application will be a scheduling
application.  We plan to carry out more controlled
experimentation to compare the adaptive feedback
approach to (a) a version of the system that provides
feedback consistently at the same state, and (b) a version
that provides only negative feedback.  We would also
like to incorporate information from the speech
recognizer about the confidence level of each recognition
match in setting the grounding criterion; these
prototypes will be better at conveying information
about their states to the user.  A response to an
utterance with a low confidence value will include more
explicit evidence about the system's interpretation than
will a response to an utterance with a high confidence
value.  When the system is in doubt, more of the
responsibility for identifying problems and initiating
repairs will shift to the user.  This flexible shifting of
responsibility, we believe, is the key to truly
collaborative interaction between people and systems.

CONCLUSIONS

Applying the collaborative view of conversation to
human-computer interaction provides a good theoretical
framework for generating feedback from a spoken
language system.  The approach we have taken here
enables us to take account of two important insights
about conversation.  First, because neither partner in a
dialog can read the other's mind, communication
problems tend to arise asymmetrically.  That is, one
partner realizes that there is a problem before the other
one does.  Second, to initiate a repair, a partner needs to
take different actions depending on where the problem
lies.

Conceptualizing understanding by both the system
and the user as a succession of states provides a
systematic way to design and program feedback that
adapts to the user, the task, and the discourse history.
While the behavior embodied in these prototypes could
probably be achieved by hand-tailoring each message to
a particular situation, a systematic approach is more
promising and generalizable.  Such an approach also
ensures that the user will receive the necessary positive
evidence about the system's state as well as the usual
error messages.  We should also emphasize the
importance of trying out the prototypes of these
systems on users.  Informal user studies have been, and
we expect will continue to be, extremely valuable in
tuning this feedback model.

In conclusion, spoken language systems can be
greatly improved by focusing on issues of dialog and
feedback, rather than by focusing exclusively on the
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accuracy of the underlying speech recognition
technology.  In fact, improvements to the technology
should be driven by the need to provide an adequate
technical basis for feedback and for enabling partial
interpretations and the incremental construction of
meanings.  Finally, to be considered a useful interface
technology, a speech interface should provide adaptive
feedback and makes use of the collaborative strategies
from human conversation that users bring with them to
human-computer interaction.
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