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Abstract

This thesis addresses situated, embodied agents interacting in complex domains. It
focuses on two problems: 1) synthesis and analysis of intelligent group behavior, and
2) learning in complex group environments.

Basic behaviors, control laws that cluster constraints to achieve particular goals
and have the appropriate compositional properties, are proposed as e�ective primi-
tives for control and learning. The thesis describes the process of selecting such basic
behaviors, formally specifying them, algorithmically implementing them, and empir-
ically evaluating them. All of the proposed ideas are validated with a group of up to
20 mobile robots using a basic behavior set consisting of: safe{wandering, following,
aggregation, dispersion, and homing. The set of basic behaviors acts as a substrate for
achieving more complex high{level goals and tasks. Two behavior combination oper-
ators are introduced, and veri�ed by combining subsets of the above basic behavior
set to implement collective ocking, foraging, and docking.

A methodology is introduced for automatically constructing higher{level behav-
iors by learning to select among the basic behavior set. A novel formulation of
reinforcement learning is proposed that makes behavior selection learnable in noisy,
uncertain multi{agent environments with stochastic dynamics. It consists of using
conditions and behaviors for more robust control and minimized state{spaces, and
a reinforcement shaping methodology that enables principled embedding of domain
knowledge with two types of shaping functions: heterogeneous reward functions

and progress estimators. The methodology is validated on a collection of robots
learning to forage. The generality of the approach makes it compatible with the ex-
isting reinforcement learning algorithms, allowing it to accelerate learning in a variety
of domains and applications.

The presented methodologies and results are aimed at extending our understand-
ing of synthesis, analysis, and learning of group behavior.

Thesis Supervisor: Rodney A. Brooks
Title: Professor of Computer Science and Engineering
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Chapter 1

Overview of the Thesis

One of the main goals of Arti�cial Intelligence (AI) is to gain insight into natural

intelligence through a synthetic approach, by generating and analyzing arti�cial in-

telligent behavior. In order to glean an understanding of a phenomenon as complex

as natural intelligence, we need to study complex behavior in complex environments.

Traditionally, AI has concerned itself with complex agents in relatively simple

environments, simple in the sense that they could be precisely modeled and involved

little or no noise and uncertainty. In contrast to traditional systems, reactive and

behavior{based systems have placed agents with low levels of cognitive complexity

into complex, noisy and uncertain environments. This thesis describes work that

attempts to simultaneously scale up along both dimensions. The environmental com-

plexity is scaled up by introducing other agents, and cognitive complexity is scaled

up by introducing learning capabilities into each of the agents (Figure 1-1).

This thesis addresses two problems:

1. synthesis and analysis of intelligent group behavior

2. learning in complex group environments

Our ideas are based on the notion of basic behaviors, a means for combining

constraints from the agent, such as its mechanical and sensory characteristics, and

the constraints for the environment, such as the types of interactions and sensory

information the agent can obtain, in order to construct an appropriate abstraction

for structuring primitives for control.

We will present a methodology that uses basic behaviors to generate various robust

group behaviors, including following, homing, and ocking (Figure 1-2). We will also

introduce a formulation of reinforcement learning based on behaviors as the unit of

representation that allows a group of agents to learn complex tasks such as foraging

1
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Figure 1-1: Traditional AI has addressed complex agents in simple environments while
reactive and behavior{based approaches have dealt with simple agents in noisy and
uncertain worlds. This work attempts to scale up along both dimensions simultane-
ously, by addressing synthesis and learning of complex group behavior.
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Figure 1-2: This �gure shows examples of real robot data for three di�erent group
behaviors: following, homing, and ocking. The robots, physically 12 inches long,
are scaled down and plotted as black rectangles, with white arrows indicating their
heading. The dark robots in the row of rectangles at the bottom shows the robots
that were used in the experiment. Boxes on the lower right indicate frame numbers
and the elapsed time in seconds for each of the runs.
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Figure 1-3: An example of the foraging behavior of 7 robots, shown after 13.7 minutes
of running. About eight pucks have been delivered to the home region, marked with
a grey box. The two robots near home are following each other on the way to the
drop-o�. Other robots are wandering in search of additional pucks.

(Figure 1-3). Finally, we will validate the proposed approaches with experiments on

homogeneous groups of mobile robots.

This chapter gives a brief summary of the novel approaches, of the experimental

data, and of the implications of the thesis. The organization of the thesis is outlined

at the end of the chapter.

1.1 Synthesis and Analysis of Group Behavior

This thesis is based on the belief that intelligent collective behavior in a decentralized

system results from local interactions based on simple rules. Basic behaviors are

proposed as a methodology for structuring those rules through a principled process of

synthesis and evaluation. A behavior is a control law that clusters a set of constraints

in order to achieve and maintain a goal. For example, safe{wandering is a behavior

that maintains the goal of avoiding collisions while the agent is moving.

We postulate that, for each domain, a set of behaviors can be found that are

basic in that they are required for generating other behaviors, as well as being a

minimal set the agent needs to reach its goal repertoire. The process of choosing the

set of basic behaviors for a domain is dually constrained. From the bottom{up, the
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process is constrained by the dynamics of the agent and the environment. From the

top{down, the process is constrained by the agent's goals as speci�ed by the task.

The combination of the two types of constraints helps to prune the agent's behavior

space.

We will use the example of group interactions between situated, embodied agents

to illustrate the process of selecting a basic behavior set. The agents are mobile robots,

embodied and endowed with speci�c mechanical, sensory, and e�ector constraints. We

de�ne the high{level goals of the system as consisting of collectively moving objects

(pucks) in the environment in an e�cient fashion. In this work, e�ciency is de�ned in

terms of minimizing energy by minimizing the amount of time required to complete

a task or the number of moves required for each of the agents.

An e�ective set of basic behaviors in the spatial domain should enable the agents

to employ a variety of exible strategies for puck manipulation, collection, and distri-

bution. The e�ectiveness of such strategies depends on maximizing synergy between

agents: achieving the necessary goals while minimizing inter{agent interference.

We propose the following set of basic behaviors:

� safe{wandering { minimizes collisions between agents and environment

� following { minimizes interference by structuring movement of any two agents

� aggregation { gathers the agents

� dispersion { dissipates the agents

� homing { enables the agent to proceed to a particular location

According to our de�nition, the above behavior set is minimal or basic in that

its members are not further reducible to each other. Additionally, we will show that

they are su�cient for achieving the set of pre{speci�ed goals. The described basic

behaviors are de�ned with respect to the group. Other utility behaviors, such as

grasping and dropping, can also be a part of an agent's repertoire.

The basic behavior set is evaluated by giving a formal speci�cation of each of the

behaviors, and comparing the collection of those speci�cations to a formal speci�ca-

tion of the set of global tasks required for the group.

Once a basic behavior set is established, it can be implemented with a variety

of algorithms. The �rst step in the veri�cation of basic behavior algorithms is a

comparison between the formal behavior speci�cation and the formal correctness of

the algorithm. We will argue that it is di�cult to prove properties of the exact

behavior of individual agents within a group, but it is possible to evaluate and predict

the behavior of the ensemble as a whole. Using the notion of ensemble behavior, we
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Figure 1-4: The simulator environment called the Interaction Monitor was used to
validate the methodologies for synthesizing and analyzing group behavior described
in the thesis. The agents are shown as black circles, with white markers indicating
their heading. The large rectangle represents the agents' workspace.

will propose group behavior algorithms that utilize a centroid operator that averages

the inputs from multiple agents. This operator has statistical properties that allow

analyzing and making predictions about the behavior of the group.

This thesis provides detailed speci�cations and algorithms for each of the basic

behaviors. Instead of analytical proofs, it provides empirical evaluations of the per-

formance of each of the algorithms, based on the following criteria:

� repeatability: how consistent is the behavior over di�erent trials?

� stability: does the behavior oscillate under any conditions?

� robustness: how robust is the behavior in the presence of sensor and e�ector

error and noise?

� scalability: how is the behavior e�ected by increased and decreased group sizes?

The above criteria were applied to the data obtained by performing at least 50

trials of each basic behavior. The experiments were performed on two di�erent multi{

agent environments, in order to minimize domain biases. The �rst environment was a

multi{agent simulator (the Interaction Monitor) featuring up to 50 agents with local

sensing and distributed, local control (Figure1-4).

The second environment was a collection of 20 physical mobile robots equipped

with local sensors and local control (Figure 1-5). Each of the robots is equipped

with a suite of infra{red sensors for collision avoidance, puck detection, and stacking,

and with micro switches and bump sensors for contact detection. In addition to the

6



Figure 1-5: Some of the 20 mobile robots used to validate the group behavior method-
ologies described in the thesis. These robots demonstrated group safe{wandering,
following, aggregation, dispersion, ocking, and foraging.

local sensors, the robots are equipped with radios and sonars for triangulating their

position relative to two stationary beacons, and for broadcasting that position within

a limited radius. The radios are used to detect other robots and gather data for local

centroid computations.

The basic behaviors, each consisting of one rule or a small set of simple rules,

generated robust group behaviors that met the prespeci�ed evaluation criteria. A

small subset of the data is shown here, using the Real Time Viewer1, a software

package for displaying and replaying each of the robots runs, plotting their positions

over time, and displaying each frame and the elapsed time for each experiment. The

�gures show following (Figure 1-6), dispersion (Figure 1-7), and homing (Figure 1-8).

More of the data, the algorithms, the speci�cations, and a detailed evaluation can be

found in Chapter 4.

Basic behaviors are intended as building blocks for achieving higher{level goals.

The behaviors are embedded in an architecture that allows two types of combination:

direct, by summation, and temporal, by switching (see �gure 1-9). Both types of

combination operators were tested empirically. A simple and robust ocking behavior

was generated by summing the outputs of safe{wandering, aggregation, and homing

(Figure 1-10). A more complex foraging behavior that involves �nding and collecting

pucks, was implemented by switching between safe{wandering, dispersion, following,

1Written by Matthew Marjanovi�c.
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Figure 1-6: Continuous following behavior of 3 robots. The entire time history of the
robots' positions is plotted.
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Figure 1-7: Dispersion behaviors of 3 robots.
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Figure 1-8: Homing behaviors of 5 robots. Four of the �ve robots reach home quickly
and the �fth joints them about 60 second later.
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Figure 1-9: The control architecture for generating group behaviors consists of direct
and temporal combinations (i.e. sums and switches) of subsets from a �xed basic
behavior set. Direct combinations are marked with

L
, temporal combinations withN

.
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Figure 1-10: Flocking behavior of 5 robots. The robots are started out in a nearly
linear dispersed state. They quickly establish a ock and maintain it as the positions
of the individual robots within the ock uctuate over time.
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Figure 1-11: An example of the foraging behavior of 6 robots. About eight pucks
have been delivered to the home region, marked with a grey box. Two of the robots
are dropping o� pucks while the others are wandering in search of additional pucks
to pick up and deliver home.
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and homing (Figure 1-11).

In addition to empirical testing of the behaviors and their combinations, the pro-

posed methodology for generating decentralized group behavior was compared to a

centralized, \total knowledge" approach. The experimental results showed that the

simple, fully distributed strategies, applied to dispersion and aggregation tasks, con-

verged only a constant factor slower than the centralized approach.

1.2 Learning in Complex Group Environments

The �rst part of the thesis introduces basic behaviors as a methodology for structuring

simple rules into exible and e�ective repertoires of group behavior. It also presents

combination operators that allow for constructing and achieving higher{level goals.

The second part of the thesis, starting with Chapter 6, describes a methodology for

automatically combining basic behaviors into higher{level ones, though unsupervised

reinforcement learning based on the agents' interactions with the environment.

In reinforcement learning (RL) approaches the agent learns from external scalar

reward and punishment. RL has been successfully applied to a variety of domains

that have largely been modeled as Markovian, where the agent{environment inter-

action can be described as a Markov Decision Process (MDP). However, the MDP

assumption does not directly apply to the noisy and uncertain multi{agent environ-

ments addressed in this work. Nonetheless, since external and internal feedback are

the most natural sources of information for learning in situated agents, methods for

applying RL to such complex domains are needed.

The traditional formulation of RL problems in terms of states, actions, and rein-

forcement required a reformulation in order to be applied to our domain. The notion

of state as a monolithic descriptor of the agent and the environment did not scale

up to the multi{agent domain used here, given the continuous and discrete aspects

describing the agent (e.g., velocity, IR sensors, radio data), and the existence of many

other agents in the environment. Furthermore, the most commonly used notion of

actions was inappropriate since atomic actions were too low level and had e�ect too

unpredictable and noisy to be useful to a learning algorithm. Finally, delayed rein-

forcement and reward discounting were insu�cient for learning in our domain.

To make learning possible we propose a reformulation that elevates the level of

system description from states and actions to conditions and behaviors. Behaviors

are control laws that achieve goals but hide low{level control details. Using the notion

of basic behaviors, a small basis set can be de�ned as used as a substrate for learning.

When actions are replaced with behaviors, states can be replaced with conditions,

the necessary and su�cient subsets of state required for triggering the behavior set.
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Figure 1-12: The mobile robots used to validate the group behavior and learning
methodologies described in this thesis. These robots demonstrated learning to forage
by using group safe{wandering, following, and resting behaviors.

Conditions are many fewer than states, thus greatly diminishing the agent's learning

space and speeding up any RL algorithm.

In addition to the use of behaviors and conditions, we propose two ways of shaping

the reinforcement function in order to aid the learner in a nondeterministic, noisy, and

dynamic environment. We introduced heterogeneous reward functions that partition

the task into subgoals, thus providing more immediate reinforcement. Within a single

behavior (i.e., a single goal), we introduced progress estimators, functions associated

with particular conditions that provided some metric of the learner's performance.

Progress estimators, or internal critics, decrease the learner's sensitivity to noise,

minimize thrashing, and minimize the e�ect of fortuitous rewards by correlating some

domain knowledge about progress with appropriate behaviors the agent has taken in

the past. The details of the reformulation are given in Chapter 7.

The proposed formulation was validated on the task of learning to associate the

conditions and behaviors for group foraging with a collection of robots. The behaviors

included the foraging subset of basic behaviors: safe{wandering, dispersion, and hom-

ing, augmented with grasping and dropping, as well as with resting, a new behavior

triggered by an internal \day{time night{time" clock. By clustering, the condition

set was reduced to the power set of the following predicates: have-puck?, at-home?,

night-time?, and near-intruder?.

A smaller group of robots with more reliable hardware was used for the learning

experiments. In terms of sensors and e�ectors, the robots were functionally identical

to the �rst set (Figure 1-12), and the implemented basic behaviors and combinations

were directly portable.

Three learning algorithms were implemented and tested on the foraging task. The
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Figure 1-13: The performance of the three reinforcement strategies on learning to
forage. The x-axis shows the three reinforcement strategies. The y-axis maps the
percent of the correct policy the agents learned, averaged over twenty trials.

�rst was standard Q-learning, while the other two simply summed the reinforcement

received over time.

Q-learning received a reward whenever a robot dropped a puck in the home region.

The second algorithm was based on the reinforcement received from heterogeneous

reward functions based on reaching subgoals including grasping and dropping pucks,

and reaching home. The third algorithm used reinforcement both from the heteroge-

neous reward functions and from two progress estimators: one monitoring progress

in getting away from an intruder, and the other monitoring progress toward home.

The two progress estimators were found to be su�cient for making the given learning

task possible and for consistent and complete learning performance. The absence of

either one disabled the robots from learning the complete policy.

The performance of each of the three algorithms was averaged over 20 trials (Fig-

ure 1-13). The analysis of the learning performance showed that the parts that were

not learned by the �rst two algorithms relied on the progress estimators and were

successfully learned in the third case. Detailed analysis of the results is given in

Chapter 8.

1.3 Thesis Outline

The preceding sections briey summarized the contributions of the thesis. This sec-

tion outlines the structure of the thesis and summarizes each of the chapters.

Chapters 2 through 5 deal with synthesizing and analyzing group behavior. Chap-

ters 6 through 8 address learning in multi{agent domains. Readers interested in mov-
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ing directly to the details of the basic behavior approach should skip to Chapter 4.

Those interested in going directly to the learning part of the thesis should skip to

Chapter 6. All newly introduced, ambiguous, or frequently used terms are de�ned in

Appendix B. The following are summaries of the chapter contents.

Chapter 2 describes the biological, sociological, and pragmatic motivation behind

this work. It describes the key issues in individual and multi agent control, and

introduces and de�nes the main concepts of the thesis.

Chapter 3 presents an overview of related work in Robotics, Simulation, Arti�cial

Life, Distributed AI, and analysis of behavior.

Chapter 4 introduces the basic behavior approach, describes the methodology for

selecting basic behaviors, and illustrates the process by de�ning the basic behaviors

for a collection of mobile agents interacting in the plane. The chapter describes

the experimental environments, basic behavior speci�cations and algorithms, and the

empirical data and the criteria for evaluating the performance of each of the behaviors

as well as their e�cacy relative to centralized alternatives.

Chapter 5 describes two methodologies for combining basic behaviors into more

complex, higher{level behaviors. The methodologies are demonstrated by combining

the basic behaviors described in Chapter 4 to generate three di�erent kinds of higher{

level behaviors and evaluate their performance. This chapter also discusses methods

for minimizing interference between behaviors within an agent.

Chapter 6 motivates learning in situated agents and reviews the existing learning

work based on the type of information being acquired by the agent. It then de�nes

the group learning problem discussed in the thesis as an instance of reinforcement

learning (RL) and overviews existing RL models and algorithms as applied to the

situated agent domain.

Chapter 7 describes a formulation of RL that enables and facilitates learning in

our complex situated multi{agent domain. It introduces the use of behaviors and

their conditions in place of actions and states, and describes a method for shaping

the learning process through the use of heterogeneous reward functions and progress

estimators.

Chapter 8 presents the experimental robot environment and the learning task used

to validate the methodologies proposed in Chapter 7. It describes the experimental

design, the three learning algorithms that were implemented and compared, and

discusses the results. In conclusion, the chapter addresses extensions of the presented

work including the problem of learning social rules and multiple concurrent tasks.

Chapter 9 summarizes the thesis.
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Chapter 2

Motivation and Issues in Agent

Control

Why study multiple agents?

The motivation for this work comes from two quite di�erent but complementary

directions: the desire to understand and analyze natural systems and the need to

design and synthesize arti�cial ones.

2.1 Biological and Sociological Motivation

Intelligence is a social phenomenon. Most intelligent animals live, obey the rules, and

reap the bene�ts of a society of kin. Societies vary in size and complexity, but have

a key common property: they provide and maintain a shared culture (Gould 1982).

Culture is both a result and a cause of intelligent behavior. Intelligent creatures

create and re�ne social rules in order to perpetuate the society. These rules constitute

a culture which is communicated and shared by the society, and has important e�ects

on its individual members (Gould 1982, McFarland 1987).

Culture allows for genetic parsimony. Social interaction is used to transfer in-

formation across generations, though social learning (McFarland 1985). Thus, less

genetic investment is necessary, as fewer abilities need to be innate. Interestingly, as

culture adapts, the growing complexity of social rules makes increased demands on

individual intelligence, speci�cally on the ability to absorb and adapt to the culture.

Humans are an extreme example of cultural complexity, requiring the longest learning

and training developmental period of all animals (Gould 1982).

Culture allows for faster adaptation. As an alternative to evolution, culture al-
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lows for testing and adapting social behaviors at a much shorter time scale. Social

interactions can be created and destroyed within a single generation. For example,

elephants have been shown to learn to avoid humans even if no harm was inicted

for generations, based on a distant cultural memory of past abuse (Gould 1982).

Culture allows for Lamarckian evolution. It enables the direct transfer of learned

information to future generations. A single individual's discovery can be adopted by

an entire population and passed on. For example, an individual Japanese macaque

monkey discovered washing of sweet potatoes. The practice was transmitted cultur-

ally through the society and on to later generations (Gould 1982).

Culture makes up for genetic de�ciencies. Social interactions can compensate

for individual limitations, both in terms of physical and cognitive capabilities. For

example, group organizations, such as herds and packs, allow animals to attack larger

prey, share information, and increase the chance of mating and survival (McFarland

1985).

In order to be understood, individual intelligence must be observed and analyzed

within its social and therefore cultural context. In contrast to traditional AI, which

addresses intelligence as an individual phenomenon, this work is based on the belief

that intelligent behavior is inextricably tied to its cultural context and cannot be

understood in isolation. The emphasis is similar to the principles of ethology, the

study of animal behavior. Unlike the behaviorist branch of biology, which studies

animals in controlled laboratory settings, ethology observes animals in their natural

habitats. This research attempts to study intelligent behavior in its natural habitat:

situated within a society.

The complexity of culture results from the interactions among individuals. This

research will focus on exploring simple social interactions which result in purposive

group behaviors, with the goal of:

1. understanding social and group behavior in nature, and

2. developing a methodology for principled design of group behavior in arti�cial

systems.

The study of social agents and culture as a basis and structure of intelligent

behavior is exploratory. Thus, the part of the thesis that addresses that domain is

phenomenological, but hopefully also scienti�c in its attempt to understand natural

phenomena and explain them in principled terms.
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2.2 Pragmatic Motivation

While nature o�ers challenges for analysis, engineering demands synthesis. In particu-

lar, it strives for e�cient, automated, reliable, and repeatable methods of synthesizing

useful systems.

Discoveries about systems of multiple interacting agents can be applied to many

parallelizable problems. The idea of applying multiple computational (or physical)

agents to a variety of distributed domains, from terrain exploration and mapping, to

�re �ghting, harvesting, and micro surgery, has been around for many years. How-

ever, in spite of the potentially numerous applications, the distributed, multi{agent

approach is an exception rather than the rule in most domains.

Parallel, decentralized, non{hierarchical computation requires a paradigm shift

(Resnick 1992). Regardless of the domain of application, this approach raises a num-

ber of di�cult issues. The particular few that motivate this research and are addressed

in this thesis are:

� What common properties and principles of organization are shared among dif-

ferent domains of application of multi{agent systems?

� How do the interactions of the individuals a�ect the behavior of the group?

� How does the group get the job done?

� How much does each individual need to know about the group, the task, the

environment, and the other agents?

� How much does each individual need to communicate with others in order to

get the job done?

� What are the simplest agents and rules we can use to generate complex and

useful group behaviors?

This research is aimed at �nding common properties across various domains of

multi{agent interaction. Identifying these properties allows for classifying group be-

haviors into common categories and thus simpli�es the process of both design and

analysis.

The next section de�nes key terms.
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2.3 Key Issues, Terms, and De�nitions

2.3.1 Behaviors and Goals

The notion of behavior is the main building block of this work. In the last few years the

use of behaviors has been popularized in the AI, control, and learning communities.

Approaches labeled \behavior{based AI" and \behavior{based control" are becoming

mainstream, but behavior is yet to be cleanly de�ned and circumscribed.

We de�ne behavior to be a control law for reaching and/or maintaining a particular

goal. For example, in the robot domain, following is a control law that takes inputs

from an agent's sensors and uses them to generate actions which will keep the agent

moving within a �xed region behind another moving object. In our work, a behavior

is based on the sensory input vector only, and does not use internal state. We do not,

however, exclude the use of state in the behavior de�nition, but reserve it for tasks

where it is needed.

The above de�nition of behavior speci�es that a behavior is a type of an operator

that guarantees a particular goal. In order to serve as general building blocks, basic

behaviors must be capable of dealing with both attaining and maintaining goals.

Attainment goals are terminal states; having reached a goal, the agent is �nished.

Such goals include reaching a home region and picking up an object. Maintenance

goals persist in time, and are not always representable with terminal states, but

rather with dynamic equilibria that must be maintained. Examples include avoiding

obstacles and minimizing interference. Maintenance goals can usually be expressed

as sequences of achievement goals but may require �ne granularity of description.

Situated agents can have multiple concurrent goals, including at least one attainment

goal, and one or more maintenance goals.

This thesis will attempt to show that behaviors are a natural, convenient, and

e�cient abstraction for control, planning, and learning for situated agents. Behaviors

hide the low{level details of control that deal with precise control parameters. They

allow for specifying robot tasks and goals in terms of higher{level primitives that cut

down on the state space and are more intuitive for the user. Finally, they are a good

basis for learning in noisy and uncertain situated domains.

Ensemble, collective or group behavior is an observer{de�ned temporal pattern of

interactions between multiple agents. Of the innumerably many possible such behav-

iors for a given domain, only a small subset is relevant and desirable for achieving the

agents' goals.
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2.3.2 Interaction

Interaction is another foundational concept in this work. Typically, interaction is

viewed as any inuence that a�ects an agent's behavior. By this de�nition, an agent

interacts with everything it can sense or be a�ected by, since all of its external (ob-

servable) and internal state can have an impact on its actions.

This work is largely concerned with the interaction that takes place between

agents. Thus we propose a stricter de�nition: interaction is mutual inuence on

behavior. Consequently, objects in the world do not interact with agents, although

they may a�ect their behavior. The presence of an object a�ects the agent, but

the agent does not a�ect the object since objects, by de�nition, do not behave, only

agents do.

2.3.3 Domain Description

Having de�ned the key concepts of the thesis, behavior and interaction, we turn to

the speci�cation of the domain being addressed.

In order to focus and constrain the study of group behavior, this work focuses on

interactions among situated, embodied agents. Some key constraints were imposed

on the experimental domain in order to structure the exploration while still provid-

ing su�cient variety of behaviors to study. The following are the key constraining

properties:

� Agents are homogeneous.

� Agents do not use explicit models of each other.

� Agents do not use directed communication or explicit cooperation.

The reasons for and implications of each of the constraints are described and

discussed in the following sections.

Implications of Homogeneity

This work focuses on groups of agents that are homogeneous in that they are situated

in the same world and have the same goal structure (in our case translating into

the same behavior set)1. Homogeneous agents will also be referred to as similar,

1Furthermore, the agents in this work are embodied with similar dynamics. While the dynamics
of simulated agents can be made identical, those of physical robots often vary enough to signi�cantly
a�ect their group behavior. The section on hardware limitations explains this in detail. The terms
homogeneous and similar will be used interchangeably.
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as distinct from identical, a property that can be ascribed to SIMD{style agents.

Homogeneity has some important implications.

Predictability

The fact that all agents are similar makes their behavior predictable to one another

in that they do not require internal explicit models of each other. This predictability

can be used explicitly, by allowing agents to infer other agents' actions and use that

information to make individual decisions, or implicitly, to simplify the control of each

individual. This work focuses on the latter approach. For example, identical control

laws can take advantage of inherent symmetries in spatial and more abstract domains.

Homogeneity minimizes goal{related conicts and resulting strategies such as de-

serting and cheating. Furthermore, homogeneity allows for leaving much of the infor-

mation about the world implicit. Although the agents in this work do not use explicit

expectations about other agents' behavior, their decision process implicitly takes that

information into account.

Given their similarity, agents do not need identities and thus do not require abil-

ities for identi�cation. This presents a signi�cant cognitive savings. As homogeneity

and similarity greatly reduce individual cognitive requirements, they can be used for

simplifying the synthesis and understanding of group behavior.

Finally, homogeneity can result in increased global robustness through redun-

dancy. Failure of any subset of agents should not seriously a�ect the system, since

the agents are similar and thus interchangeable, and no particular agent or group of

agents is critical for the accomplishment of the task. To preserve robustness, no spe-

ci�c roles, such as leaders and followers are designated a priori. However, temporally

(and spatially) local, replaceable leaders may emerge in various situations.

2.3.4 Recognition of Kin

Taking advantage of homogeneity depends on a critical property: the agents must be

able to recognize other similar agents. We postulate that the ability to distinguish

the agents with whom one is interacting from everything else in the environment is

a necessary condition for intelligent interaction and group behavior. This ability is

innate and ubiquitous in nature, and enables almost all creatures to distinguish others

of their own kind, and more speci�cally to recognize kin from others (McFarland

1985, McFarland 1987).

It is important to note that species and kin recognition need not be explicit, i.e.,

the agent need not \know" or \be aware" that the other agent being recognized is

kin, as long as its response to it is kin{speci�c. For example, slime mold bases its
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behavior on the concentration of slime produced by its kin. It cannot be said that

it actively \recognizes" kin but it does act in species{speci�c ways which result in

complex group behavior such as the construction of multi{cellular organisms (Kessin

& Campagne 1992). Similarly, ants cannot be presumed to \know" that pheromones

they sense are produced by their conspeci�cs. However, the appropriate responses

to those pheromones result in the formation of trails and other complex structures

(Franks 1989).

Besides being biologically inspired, the ability to recognize kin is pragmatic as it

allows even the simplest of rules to produce purposive collective behavior.

2.3.5 Mental Models and Theory of Mind

A dominant school of thought in cognitive psychology and AI is based on the premise

that social interaction requires a theory of mind (Premack&Woodru� 1978). Namely,

in order to engage in social discourse, agents need to have mental models of each

other, attribute mental states to each other, understand each other's intentions, and

maintain beliefs about each other (Dennett 1987, Cheney & Seyfarth 1990). Indeed,

an entire �eld of theory of the mind rests on the necessity of inferring the internal

workings of the mind of the agent(s) with whom one is interacting (Read & Miller

1993).

Maintaining a theory of mind is a complex task and requires a high computational

and cognitive overhead (Gasser & Huhns 1989, Rosenschein & Genesereth 1985, Axel-

rod 1984). Further, controversy surrounds its necessity, as work in both developmental

psychology and ethology indicates that theory of mind is not necessary for a large

repertoire of complex social interactions (Tomasello, Kruger & Rather 1992, Cheney

& Seyfarth 1990, McFarland 1987, Gould 1982, Rosenthal & Zimmerman 1978).

Research in developmental psychology has shown that young children engage in

various forms of social interaction even before attaining the sense of self{awareness, a

necessary component of constructing a theory of mind. Prior to this stage, occurring

around the age of two, children are incapable of separating the internal and external

perception of the world (Piaget 1962, Bandura & Walters 1963, Bandura 1971). Even

after achieving self{awareness, as determined with the typical dot{and{mirror test

(Asendorpf & Baudonniere 1993), around the age of two, children require a number

of years before reaching the adult ability to form theories of mind (Bandura 1977,

Abravanel & Gingold 1985).

Much research has been aimed at testing whether primates have theories of mind.

It has recently been demonstrated that certain species of monkeys, while involved in

complex social and cooperative interactions, apparently do not form theories of mind
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at all (Cheney & Seyfarth 1990, Cheney & Seyfarth 1991). In contrast, chimps appear

to have more complex abilities and are indeed able to infer goals of their conspeci�cs

(Cheney & Seyfarth 1990, McFarland 1987). How the internal models are represented

and whether they are based on explicit or internal representations, remains open for

further study (Gomez 1991).

An Alternative to the Theory of Mind

Exploring the existence and limits of theory of mind in biology is di�cult. The type

and amount of knowledge and representation that an animal brings to bear in its social

interactions is impossible to circumscribe. In an ideal scenario the experimenterwould

be able to control for the type and amount of this knowledge and test the resulting

behavior, in order to determine what is necessary and what is not.

Computational and robot experiments allow us to do just that. The agents being

experimented with are much simpler than those in nature, but it is exactly this

simplicity that allows us to focus on the speci�c question of internal social models.

In order to study the necessity of theory of mind, this work started from the bottom

up, by exploring agents which had none at all.

This work studies group behaviors resulting from the simplest interactions among

the simplest of agents. The agents have no explicit models of each other, expectations,

or intentions. The goal of this approach is to demonstrate what types of complex

interactions can be achieved with such simple basic abilities. The results demonstrate

that, particularly in homogeneous groups, signi�cant amount of information about an

individual's goals is reected in the observable external state and behavior, and can

be obtained with no direct communication (Cheney & Seyfarth 1990). Consequently,

a theory of mind is not necessary for a broad spectrum of behaviors, nor is direct

communication. More related issues in communication are discussed next.

2.3.6 Communication and Cooperation

Communication and cooperation have become popular topics in both abstract and

applied multi{agent work (for example see Yanco & Stein (1993), Dudek, Jenkin,

Milios & Wilkes (1993), Altenburg & Pavicic (1993), and others). Communication

is the most common means of interaction among intelligent agents. Any observable

behavior and its consequences can be interpreted as a form of communication so for

purposes of clarity, we propose some clarifying de�nitions.

Direct communication is a purely communicative act, one with the sole purpose of

transmitting information, such as a speech act, or a transmission of a radio message.

Even more speci�cally, directed communication is direct communication aimed at a
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particular receiver. Directed communication can be one{to{one or one{to{many, but

in both cases the receivers are identi�ed.

In contrast, indirect communication is based on the observed behavior, not com-

munication, of other agents, and its e�ects on the environment. This type of com-

munication is referred to as stigmergic in biological literature, where it refers to com-

munication based on modi�cations of the environment rather than direct message

passing.

Both direct and indirect communication are practiced by most species in nature.

For example, bees use signals, such as the waggle dance, with the sole purpose of

transmitting information and recruiting. In contrast, they also use cues, such as the

direction of their ight, which transmit hive information as a by{product of their

other behaviors (Seeley 1989).

Cooperation is a form of interaction, usually based on communication. Certain

types of cooperative behavior depend on directed communication. Speci�cally, any

cooperative behaviors that require negotiation between agents depend on directed

communication in order to assign particular tasks to the participants.

Analogously to communication, explicit cooperation is de�ned as a set of interac-

tions which involve exchanging information or performing actions in order to bene�t

another agent. In contrast, implicit cooperation consists of actions that are a part of

the agent's own goal{achieving behavior repertoire, but have e�ects in the world that

help other agents achieve their goals.

Having de�ned precise terminology, the communication and the resulting coop-

eration constraints imposed on the experimental domain can now be described. In

order to study the role of communication in a controlled fashion, and to explore how

much communication is needed for the group behaviors described here, a minimalist

approach was chosen.

No directed, one{to{one communication between the agents was used in any of

the experiments. Indirect communication was based on sensing the external state of

neighboring agents, as well as sensing their density, and the e�ects of their actions.

Direct communication was undirected, and limited to local broadcast: agents could

transmit messages that could be received by others. However, the agents did not have

the ability to choose the receivers of their messages, and thus to engage in directed

communication.

The undirected communication constraint a�ects the kinds of communication that

can be implemented or can emerge in a multi{agent system. This work focuses on

implicit cooperation without explicit task sharing. For example, instead of addressing

the task of moving a large object by many agents, this work deals with distributed

solutions to problems like moving numerous small objects, a task that can be solved
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by a single agent, but can bene�t from well{designed multi{agent solutions. For an

alternative perspective, see Parker (1994).

2.4 Issues in Agent Control

This section describes and speci�es the problem of controlling a multi{agent system

by �rst overviewing approaches to individual agent control, and then discussing their

extensions to multiple agents.

Multi{agent research covers a vast array of natural and arti�cial systems, ranging

from the brain to operating systems, and from bird ocks to collection of robots. For

the purposes of this work, an agent is a process capable of perception, computation,

and action within its world2. A multi{agent system consists of two or more such

agents.

The problem of multi{agent control can be viewed at the individual agent level

and the collective level. The two levels are interdependent and the design of one

is, or should be, strongly inuenced by the other. However, multi{agent control has

grown out of individual agent control, and this history is often reected in the control

strategies at the collective level. The next section describes the main approaches

to individual agent control and their extensions and applicability to multi{agent do-

mains.

2.4.1 Individual Agent Control

At one extreme of the agent control spectrum lie traditional top{down planner{based,

deliberative strategies that use a centralized world model for verifying sensory infor-

mation and generating actions in the world (Giralt, Chatila & Vaisset 1983, Chatila

& Laumond 1985, Moravec & Cho 1989, Laird & Rosenbloom 1990). The information

in the world model is used by the planner to produce the most appropriate sequence

of actions for the task at hand. These approaches allow for explicitly formulating the

task and goals of the system, and estimating the quality of the agent's performance.

However, uncertainly in sensing and action and changes in the environment can re-

quire frequent replanning the cost of which may be prohibitive for complex systems.

Planner{based approaches have been criticized for scaling poorly with the complex-

ity of the problem and consequently not allowing for reaction in real{time (Brooks

1990b, Brooks 1991c).

2The world may or may not be physical.
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Various attempts at achieving real{time performance have been proposed. Per-

haps the most prominent are purely reactive bottom{up approaches which implement

the agent's control strategy as a collection of preprogrammed condition{action pairs

with minimal state (Brooks & Connell 1986, Agre & Chapman 1987, Connell 1990).

These systems maintain no internal models and perform no search, but simply look{

up and command the appropriate action for each set of sensor readings. They rely

on a direct coupling between sensing and action, and fast feedback from the envi-

ronment. Purely reactive strategies have proven e�ective for a variety of problems

that can be well de�ned at design{time, but are inexible at run{time due to their

inability to store information dynamically (Matari�c 1992a).

The division between reactive and deliberative strategies can be drawn based on

the type and amount of computation performed at run{time. Reactive, constant{time

run{time strategies can be derived from a planner, by computing all possible plans

o�{line in advance. For example, situated automata achieve real{time performance by

compiling all of the system's goals and the ways of their achievement into a language

that compiles into circuits with constant{time computation properties (Rosenschein &

Kaelbling 1986). In general, the entire control system of an agent can be precompiled

as a decision graph into a collection of reactive rules (\universal plans") (Schoppers

1987). While theoretically appealing, these strategies often scale poorly with the

complexity of the environment and the agent's control system.

Hybrid architectures attempt a compromise between purely reactive and deliber-

ative approaches, usually by employing a reactive system for low{level control, and

a planner for higher{level decision making. Hybrid systems span a large and diverse

body of research. It includes reactive planning or reactive execution used in Reac-

tive Action Packages (RAPs), higher{level primitives for planning which hide and

take care of the details of execution (Firby 1987), and PRS (Procedural Reason-

ing System), an architecture for exible control rule invocation (George� & Lansky

1987), Schemas (Arkin 1989), and several others (Payton 1990, Connell 1991). These

systems tend to separate the control system into two or more communicating but

otherwise independent parts. In most cases, the low{level reactive process takes care

of the immediate safety of the robot, while the higher level uses the planner to select

action sequences.

Behavior{based approaches are an extension of reactive systems that also fall be-

tween the purely reactive and the planner{based extremes (Brooks 1986, Maes 1989).

Although often confused in the literature, behavior{based strategies are strictly more

powerful than purely reactive approaches since they have no fundamental limitations

on internal state. While behavior{based systems embody some of the properties of

reactive systems, and usually contain reactive components, their computation is not
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limited to look{up. Other than centralized reasoning engine and representation, these

systems may use di�erent forms of distributed internal representations and perform

distributed computations on them in order to decide what e�ector action to take

(Matari�c 1992a).

A comparative classi�cation of above methodologies based on domains of appli-

cability has not yet been undertaken.

2.4.2 Multi{Agent Control

Having overviewed single{agent control, this section discusses how the described ap-

proaches scale to multi{agent problems.

Extending the planning paradigm3 from single{agent to multi{agent domains re-

quires expanding the global state space to include the state of each of the agents.

Such a global state space is exponential in the number of agents. Speci�cally, the size

of the global state space G is: jGj = sa where s is the size of the state space of each

agent, here assumed to be equal for all agents, or at worst the maximum for all agents,

and a is the number of agents. Exponential growth of the state space makes the prob-

lem of global on{line planning intractable for all but the smallest group sizes, unless

control is synchronized and has SIMD form4. Further, since global planning requires

communication between the agents and the controller, the bandwidth can grow with

the number of agents. Additionally, the uncertainty in perceiving state grows with

the increased complexity of the environment. Consequently, global planner{based ap-

proaches to control do not appear well suited for problems involving multiple agents

acting in real{time based on uncertain sensory information.

At the other end of the control spectrum, extending the reactive and behavior{

based approaches to multi{agent domain results in completely distributed systems

with no centralized controller. The systems are identical at the local and global levels:

at the global level the systems are a collection of reactive agents each executing task{

related rules relying only on local sensing and communication. Since all control in such

distributed systems is local, it scales well with the number of agents, does not require

global communication, and is more robust to sensor and e�ector errors. However,

global consequences of local interactions between agents are di�cult to predict.

The following table summarizes the properties of these two approaches to multi{

agent control:

3The planning paradigm includes includes traditional and hybrid systems. In terms of multi{
agent extensions, hybrid systems �t into the planner{based category since their collective behavior
is generally a result of a plan produced by a global controller.

4All agents perform the same behavior at the same time.
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centralized approaches distributed approaches

can optimize global parameters can only optimize locally

scale poorly scale well

require global sensing use local sensing

require global communication may not require communication

can have a computational bottleneck no computational bottleneck

impose hierarchical control use at control

not usually redundant are usually redundant

Table 2.1: A comparative summary of typical centralized and distributed approaches.

Centralized approaches have the advantage of potential theoretical analysis. In

contrast, parallel distributed systems typically do not lend themselves to traditional

analytical procedure.

2.4.3 Analysis of Behavior

This thesis focuses on fully distributed multi{agent systems, those in which the behav-

ior of each agent is determined by its own control system rather than by a centralized

controller. Such systems are by de�nition complex, because they are composed of a

large number of elements, or because the inter{element interactions are not simple.

Multi{agent systems consisting of several situated agents with uncertain sensors and

e�ectors display both types of complexity. This section addresses how these properties

a�ect their behavior and its analysis.

The exact behavior of an agent situated in a nondeterministic world, subject to

real error and noise, and using even the simplest of algorithms, is impossible to pre-

dict exactly. By induction, the exact behavior of each part of a multi{agent system

of such nature is also unpredictable. However, according to Simon (1969), a sys-

tem is analyzable, and thus well designed, if it is decomposable into non{interacting

modules. Thus, minimizing inter{module interactions is considered good engineering

and principled AI, and most of traditional Arti�cial Intelligence relies on this style

of top{down modularity. In contrast, nature abounds with complex systems whose

global behavior results from precisely the type of interactions that current research

methodologies try to avoid. These e�ects can be found at all scales, from the sub-

atomic (Gutzwiller 1992), to the semantic (Minsky 1986), to the social (Deneubourg,

Goss, Franks, Sendova-Franks, Detrain & Chretien 1990).

Situated behavior is based on the interaction with, and thus feedback from, the
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environment and other agents. Both negative and positive feedback are relevant.

Negative feedback has a regulatory e�ect, damping the system's response to external

inuences, while positive feedback has an amplifying e�ect, increasing the system's

response. In the multi{agent spatial domain, for example, negative feedback controls

the local structure among the agents while positive feedback recruits more agents into

the structure.

Behaviors based on positive feedback usually require a critical mass to initiate

and accelerate with increased group size. All of these behaviors are variations on re-

cruitment; the more agents that are engaged in an activity, the more agents that join

in. Such behaviors are usually unstable as they are sensitive to the particular con-

ditions and resources required to maintain the recruitment e�ect. Numerous natural

group behaviors are based on positive feedback: lynch mobs, public polls, popularity

ratings, tra�c jams, ant trails, and worker recruitment in both ants and bees are all

instances of positive feedback (Camazine 1993, Deneubourg et al. 1990, Deneubourg,

Aron, Goss, Pasteels & Duernick 1986).

A group of interacting agents is a dynamical system. Global behavior of such a

complex systems is determined by the local interactions between individuals. These

interactions merit careful study in order to understand the global behavior. In natural

systems, such interactions result in the evolution of complex and stable behaviors that

are di�cult to analyze using traditional, top{down approaches. We postulate that in

order to reach that level of complexity synthetically, such behaviors must be generated

through a similar, interaction{driven, incrementally re�ned process.

Precise analysis and prediction of the behavior of a single situated agent, speci�-

cally, a mobile robot in the physical world, is an unsolved problem in robotics and AI.

Previous work has shown that synthesis and analysis of correct plans in the presence

of uncertainty can be intractable even in highly constrained domains (Lozano-P�erez,

Mason & Taylor 1984, Canny 1988, Erdmann 1989) and even on the simplest of sys-

tems (Smithers 1994). Physical environments pose a great challenge as they usually

do not contain the structure, determinism, and thus predictability usually required

for formal analysis (Brooks 1991c, Brooks 1991b). Predicting the behavior of a multi{

agent system is more complex than the single{agent case. The di�culty in analyzing

comes from two properties intrinsic to complex systems:

1. the actions of an agent depend on the states/actions of other agents,

2. the behavior of the system as a whole is determined by the interactions between

the agents rather than by individual behavior.

In general, no mathematical tools are available for predicting the behavior of a

system with several, but not numerous, relatively complex interacting components,
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namely a collection of situated agents. In contrast to physical particle systems, which

consist of large numbers of simple elements, multi{agent systems in nature and AI

are de�ned by comparatively small groups of much more complex agents. Statistical

methods used for analyzing particle systems do not directly apply as they require

minimal interactions between the components (Weisbuch 1991, Wiggins 1990).

Instead of attempting to analyze arbitrary complex behaviors, this work focuses

on providing a set of behavior primitives that can be used for synthesizing and an-

alyzing a particular type of complex multi{agent systems. The primitives provide a

programming language for designing analyzable control programs and resulting group

behaviors.

2.4.4 Emergent Behavior

Emergent behavior is a popular topic of research in the �eld of complex systems (see

Forrest (1989), Langton (1989), Langton (1990), and Steels (1994a) for overviews).

Such behavior is characterized by the following property: it is manifested by global

states or time{extended patterns that are not explicitly programmed in but result

from local interactions between a system's components. Because emergent phenom-

ena are by de�nition observed at a global level, they depend on the existence of an

observer.

Emergent behavior can be observed in any su�ciently complex system, i.e., a

system which contains local interactions with temporal and/or spatial consequences.

Perhaps because of their pervasiveness, emergent phenomena have been objects of

interest, although perhaps not objects of analytical study, for a long time. The

property of observer{dependence make emergent phenomena more di�cult to study.

Kolen & Pollack (1993) eloquently describe why in general the complexity of a physical

system is not an intrinsic property but is dependent on the observer, and further why

traditional measures of complexity are insu�cient for physical systems. Subjective

evaluation is also discussed by Bonabeau (1993).

Emergent phenomena are appealing to some researchers because they appear to

provide something for nothing. These types of systems are referred to as \self{

organizing" because of their apparent ability to create order. In reality, the dynamics

of such self{organizing systems are carefully crafted (usually by eons of evolution) to

produce the end{results. Theoretical analysis of multi{agent systems of the type used

in this research is di�cult, and, as will be argued, exact prediction of the behavior

of such systems is not currently within reach. Consequently, work on situated group

behavior can bene�t from synthesis and experimentation.

Emergent behaviors result from systems that are complex enough to defy our
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approach level of description

complex dynamics microscopic & continuous

<?> macroscopic & quasi{continuous

state spaces macroscopic & discrete

Table 2.2: A desirable level of system description for control and analysis lies between
the commonly employed ends of the spectrum.

current tools for predictive analysis, and require simulation for prediction (Darley

1994). In order to structure and simplify this process of experimental behavior design,

this work will provide a set of basic group behaviors and methods for synthesizing

them from local rules. These basic behaviors and their combinations are emergent in

that they result from the local interactions, but are predictable and well understood.

2.4.5 Limits of Analysis

The di�culty in analyzing complex multi{agent systems lies in the level of system

description. Descriptions used for control are usually low level, detailed, and con-

tinuous. In contrast, planning and analysis are usually done at a high level, often

using an abstract, discrete model. A more desirable and manageable level may lie in

between those two, as depicted in Table 2.2.

In general, this work is concerned with predicting the global behavior of the system

rather than the precise behavior of any of its components. At the high level of

precision requiring a detailed level of description, most interactions are chaotic and

unpredictable (Kolen & Pollack 1993). The goal of analysis is to gain predictive power

by modeling the system at the right level. In the case of arti�cial complex systems,

however, it is not possible to determine that level without generating and testing the

system itself.

For the case of a fully deterministic agent and world, it is possible, but usually

not realistic, to enumerate all trajectories the agent can take in its action or behavior

space. This is equivalent to elaborating the agent's phase space. Early AI methods

for proving correctness consisted of showing that, for a given set of possible initial

conditions, usually expressed as discrete states, the agent would, through a series

of actions, reach the desired terminal state, often designed to be the goal. Search{

based methods for plan or action generation are particularly amenable to this type of

analysis (Fikes & Nilsson 1971). However, besides the scaling problem, this approach

to behavior analysis fails in more realistic worlds in which both the agent and the
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environment are not deterministic.

State transitions in nondeterministic worlds can be modeled probabilistically (e.g.,

Doyle & Sacks (1989)) but obtaining appropriate values for the probabilities is in

general very di�cult since it requires a complete and accurate model of the world.

Even small inaccuracies in the values can accrue and result in artifactual dynamics at

the global level. Consequently, most probabilistic models fail to capture the stochastic

dynamics of the kinds of complex behavior this work is concerned with.

The crux of the problem, as before, is determining the appropriate level of system

description. Quantitative analysis is extremely di�cult for any but the simplest of

deterministic systems. This may not appear to be a problem, as most researchers

would be satis�ed with knowing the system's global, qualitative behavior. Global

behavior, however, is generally de�ned in quantitative terms from which qualitative

descriptions are derived, whether it be on the microscopic scale of particle interactions

(Abraham & Shaw 1992) or on the macroscopic scale of building maps (Chatila &

Laumond 1985) of the environment.

The path to a qualitative description of a system is indirect, requiring abstract-

ing away the details or through clustering analytical, quantitative information. A

qualitative description is a collection of non{analytic symbols (i.e., words instead of

numbers) with complicated associated semantics. When these semantics are de�ned,

they are either stated in terms of other symbols or eventually grounded in numerical

terms.

Given the di�culty of the problem, most analytical approaches to date have been

limited to constrained special{case scenarios. This is not surprising since any general

method for analyzing complex systems with interacting components is unlikely to be

powerful enough to provide useful predictions.

Since prediction of group behavior is too di�cult from the individual perspective,

approaches that focus on describing and analyzing ensemble properties appear better

suited for the domains addressed in this work. The next section describes an approach

to assessing and qualitatively predicting global behavior by measuring interference, a

local property that has collective consequences.

2.4.6 Interference and Conict

Interference is any inuence that opposes or blocks an agents' goal{driven behavior.

In societies consisting of agents with identical goals, interference manifests itself as

competition for shared resources. In diverse societies, where agents' goals di�er, more

complex conicts can arise, including goal clobbering5, deadlocks, and oscillations.

5The term is used in the same sense as in Sussman & McDermott (1972) and Chapman (1987).
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Two functionally distinct types of interference are relevant to this work: interfer-

ence caused by multiplicity called resource competition, and interference caused by

goal{related conict called goal competition.

Resource competition includes any interference resulting from multiple agents

competing for common resources, such as space, information, or objects. As the

size of the group grows, this type of interference increases, causing the decline in

global performance, and presenting an impetus for social rules.

Resource competition manifests itself in homogeneous and heterogeneous groups

of coexisting agents. In contrast, goal competition arises between agents with di�erent

goals. Such agents may have identical high{level goals (such as, for example, a family

has), but individuals can pursue di�erent and potentially interfering subgoals at any

particular instance, i.e., they can be \functionally heterogeneous." Such heterogeneity

does not arise in SIMD{style groups of functionally identical agents in which all are

executing exactly the same program at each point in time.

Goal competition is studied primarily by the Distributed AI community (Gasser

& Huhns 1989). It usually involves predicting other agents' goals and intentions, thus

requiring agents to maintain models of each other (e.g., Huber & Durfee (1993) and

Miceli & Cesta (1993)). Such prediction abilities require computational resources that

do not scale well with increased group sizes6. In contrast, in the work discussed here,

goal competition, and thus the need for agents to model each other, is minimized by

agent homogeneity, and we focus largely on issues of direct resource competition.

2.4.7 Individual vs. Group Bene�t

Social rules attempt to eliminate or at least minimize both resource and goal competi-

tion. In particular, their purpose is to direct behavior away from individual greediness

and toward global e�ciency7. In certain groups and tasks, agents must give up indi-

vidual optimality in favor of collective e�ciency. In those cases, greedy individualistic

strategies perform poorly in group situations because resource competition grows with

the size of the group. The agents described here fall into this category.

Since social rules are designed for optimizing global resources, it is in the inter-

est of each of the individuals to obey them. However, since the connection between

individual and collective bene�t is rarely direct, societies can harbor deserters who

disobey social rules in favor of individual bene�t. Game theory o�ers elaborate stud-

ies of the e�ects of deserters on individual optimality (Axelrod 1984), but domains

6The problem of maintaining internal models or so called theories of mind is discussed in detail
in section 2.3.5.

7In cultural contexts global e�ciency is sometimes elevated to \the common good."
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treated in game theory are much more cleanly constrained than those treated here.

In particular, game theory deals with rational agents capable of evaluating the util-

ity of their actions and strategies. In contrast, our work is concerned with situated

agent domains where the agents cannot be assumed to be rational due to incomplete

or nonexistent world models and models of other agents, inconsistent reinforcement,

and noise and uncertainty.

Furthermore, the goal of this work is not to devise optimal strategies for a spe-

ci�c group behavior but to provide methodologies for �nding e�cient approaches

to a variety of related problems. Optimality criteria for agents situated in physical

worlds and maintaining long{term achievement and maintenance goals are di�cult

to characterize and even more di�cult to achieve. While in game theory interference

is a part of a competing agent's predictable strategy, in the embodied multi{agent

domain interference is largely a result of direct resource competition, which can be

moderated with relatively simple social rules. For example, complex tra�c jams can

be alleviated through the appropriate use of yielding.

2.4.8 Estimating Interference

Understanding interference is an integral part of synthesizing and analyzing group

behavior. In synthesis, the task must be distributed over multiple agents in a way that

minimizes interference, or the bene�ts of concurrent execution are lost. In analysis,

interference must be taken into account in order to characterize the realistic behavior

of a distributed system as well as motivate the existence of social rules and protocols.

Attempting to precisely predict inter{agent interference is equivalent to trying to

predict the system's exact behavior. As has been argued about analysis in general,

this level of prediction is impossible to reach. This section proposes a qualitative

alternative that can be applied to obtain useful estimates.

Agent density is a key parameter for estimating interference since it measures

likelihood of interaction. The higher the density the higher the probability that

any two agents will encounter each other and interact. Even without evaluating the

outcome of interaction, being able to predict its estimated frequency is a useful part

of describing the dynamics of a group. For example, the probability of interaction

based on density determines how \collectively{conscious" an agent must be, or how

much greedy behavior it can get away with.

Density estimation is straight{forward. We de�ne group density to be the ratio

of the sum of the agents' footprints and the size of the available interaction space.

An agent's footprint is the sphere of its inuence. In the spatial domain, an agent's

footprint is based on its geometry, its motion constraints, and its sensor range and
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con�guration. The size of the interaction space is the area of the physical space the

agents can inhabit. The same idea applies in more abstract domains as well. In many

such domains the interaction space is time, and the agent's footprint is the duration

of information exchange. For instance, in a telecommunications domain density can

be estimated from the duration of all calls within a unit of time. Highway tra�c

is another example in which the relevant space of interactions is time. The agent

density can be represented by the ratio of the sum of the agents' footprints and the

total surface area of the road.

The density metric allows for computing how much interaction space is necessary

for a group to perform any task, and whether a speci�c amount of interaction space

is su�cient. In the spatial domain, for example, using the number and size of the

agents is enough to compute the mean free path of an agent and use it to estimate how

many collisions are expected between agents executing random walks. Similarly, for

the telecommunications domain the average uninterrupted call duration relative to

the average number of calls per unit time can be computed, which gives an estimate

of how much \phone interaction space" is available for the given parameters. Finally,

for the highway domain the same computation yields the average length of \free"

speeding8.

Such an approximate measure of density can then be used to estimate how much

interaction space, on average, is required for the system, even before the speci�cs of

the task are considered. By bringing the constraints of the task into the computation,

the expected interference over the duration of the task can also be estimated. For

most tasks, interference will vary depending on the uctuations of the density over

the lifetime of the task. This temporal density distribution demonstrates which parts

of the task require social rules. Although the exact computation of relevant density is

dependent on the particular domain and task, a rough approximation provides useful

metrics for estimating the dynamics of the group and the evolution of behavior of the

system as a whole.

2.5 Summary

Among other things, this chapter has described the constraints that were imposed

on the agents in order to structure and focus our study of group behavior. This

work in the thesis is focused on homogeneous agents using no explicit world models,

undirected communication, and implicit cooperation. All of these constraints were

chosen in order to approach the group behavior problem bottom{up and incremen-

8This model does not include stationary police cars.
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tally. This work is concerned with testing the limits of minimal internal modeling

and communication in order to �nd when such simple abilities are su�cient and when

more complex representation and communication abilities are necessary.
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Chapter 3

Related Work

3.1 Robotics and Behavior Control

This thesis focuses on the problems involved in synthesizing and analyzing intelligent

group behavior. In particular, the work described here applies to agents that are

embodied and situated in physically constrained worlds, inhabited by other agents

of the same kind, and dealing with multiple goals ranging from basic survival to

accomplishing one or more tasks. The experimental environments in which the work

was validated used mobile robots and multi{agent simulations.

Consequently, this work is related to a number of lines of research within and

outside of AI, including mobile robotics, intelligent control, simulations of multi{agent

systems, distributed arti�cial intelligence, arti�cial life, machine learning, ethology,

and cognitive science. This section presents an overview of the work in these related

�elds, with the exception of machine learning, which is covered in the second part of

the thesis.

3.1.1 Control of Multiple Physical Robots

The last decade has witnessed a shift in the emphasis of robotics in general and

mobile robotics in particular toward physical implementations. Most of the work in

robotics so far has focused on control of a single agent. The following is the ma-

jority of projects that have dealt with control of multiple physical robots. Fukuda,

Nadagawa, Kawauchi & Buss (1989) and subsequent work describe an approach to

coordinating multiple homogeneous and heterogeneous mobile robotic units, and de-

monstrate it on a docking task. Caloud, Choi, Latombe, LePape & Yim (1990),

Noreils (1992) and Noreils (1993) remain faithful to the state{based framework, and

36



apply a traditional planner{based control architecture to a box{moving task imple-

mented with two robots in a master{slave con�guration. Kube (1992) and Kube &

Zhang (1992) describe a series of simulations of robots performing a collection of sim-

ple behaviors that are being incrementally transferred to physical robots. Barman,

Kingdon, Mackworth, Pai, Sahota, Wilkinson & Zhang (1993) report on a prelimi-

nary testbed for studying control of multiple robots in a soccer{playing task. Parker

(1993b) and Parker (1994) describes a behavior{based task{sharing architecture for

controlling groups of heterogeneous robots, and demonstrates it on a set of physical

robots performing toxic waste cleanup and box pushing. Donald, Jennings & Rus

(1993) report on the theoretical grounding for implementing a cooperative manipu-

lation task with a pair of mobile robots. Perhaps closest in philosophy as well as

the choice of task is work by Altenburg (1994) and Beckers, Holland & Deneubourg

(1994). Altenburg (1994) describes a variant of the foraging task using a group of

LEGO robots controlled in reactive, distributed style. Beckers et al. (1994) demon-

strate a group of four robots clustering initially randomly distributed pucks into a

single cluster through purely stigmergic communication.

In terms of cooperation and communication, most of the above work has fallen

along the two ends of the spectrum: it either uses extensive explicit communication

and cooperation, or almost none at all. In systems that are cooperative by design, the

two or more robots are aware of each other's existence, and can sense and recognize

each other directly or through communication. This type of research explores explicit

cooperation, usually through the use of directed communication and is represented

by Caloud et al. (1990), Noreils (1992), and Parker (1993a).

The other category includes work on implicit cooperation, in which the robots

usually do not recognize each other but merely coexist and indirectly cooperate by

having identical or at least compatible goals. Such work includes Dallas (1990) and

Kube (1992). The work described in this thesis falls nearer this end of the spectrum,

but is focused on agents that can discriminate each other from the rest of the world,

and use this ability as a basis for social behavior.

3.1.2 Simulations of Multiple Agents

With the exception of the work described above, the problem of multi{agent control

has been treated mostly in simulation and under two major categories: simulations

of situated systems and simulations of abstract agents.

Simulations of situated systems involve some degree of faithfulness to the phys-

ical world, at least to the extent of employing simple models of sensors, e�ectors,

and physical laws. A number of simulations of behavior{style controlled systems
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have been implemented. For instance, Steels (1989) describes a simulation of simple

robots using the principles of self{organization to perform a gathering task. Brooks,

Maes, Matari�c & Moore (1990) report on a set of simulations in a similar task domain,

with a fully decentralized collection of non{communicating robots. Arkin (1992) de-

scribes a schema{based approach to designing simple navigation behaviors, used for

programming multiple agents working in a simulated environment with future ex-

tensions to physical agents; Arkin, Balch & Nitz (1993) apply the approach to a

multi{agent retrieval task. Brock, Montana & Ceranowicz (1992) describe SIMNET

simulations of large numbers of tank{like robots performing avoidance and formation

following. Kube, Zhang & Wang (1993) propose a behavior{arbitration scheme that

will be tested on physical robots. Simulations tend to simplify both sensing and ac-

tuation. Physically{based simulations, however, using realistic physics models of the

agent, allow for generating and testing more realistic behavior. For example, Hod-

gins & Brogan (1994) describe experiments with fully physically{based simulations

of groups of hopping robots.

In contrast to simulations of multiple robots, \swarm intelligence" refers to sim-

ulations of abstract agents dealing with more theoretical problems of communication

protocols, the design of social rules, and strategies for avoiding conict and deadlock

often in societies with with large numbers of simple agents. Representative work in-

cludes Fukuda, Sekiyama, Ueyama & Arai (1993), Dario & Rucci (1993), Dudek et

al. (1993), Huang & Beni (1993), Sandini, Lucarini & Varoli (1993), Kurosu, Furuya

& Soeda (1993), Beni & Hackwood (1992), Dario, Ribechini, Genovese & Sandini

(1991), and many others. This work is also related to DAI (see below) but in contrast

to DAI it deals with agents of comparatively low cognitive complexity.

3.2 Arti�cial Life

The �eld of Arti�cial Life (Alife) focuses on bottom{up modeling of various complex

systems. Alife work relevant to this thesis features simulations of colonies of ant{

like agents, as described by Corbara, Drogoul, Fresneau & Lalande (1993), Colorni,

Dorigo & Maniezzo (1992), Drogous, Ferber, Corbara & Fresneau (1992), Travers

(1988), and many others. Deneubourg et al. (1990), Deneubourg & Goss (1989), and

Deneubourg, Goss, Pasteels, Fresneau & Lachaud (1987) have experimented with

real and simulated ant colonies and examined the role of simple control rules and

limited communication in producing trail formation and task sharing. Deneubourg,

Theraulax & Beckers (1992) de�ne some key terms in swarm intelligence and discuss

issues of relating local and global behavior of a distributed system. Assad & Packard

(1992), Hogeweg & Hesper (1985) and other related work also report on a variety of
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simulations of simple organisms producing complex behaviors emerging from simple

interactions. Schmieder (1993) reports on an experiment in which the amount of

\knowledge" agents have about each other is increased and decreased based on local

encounters. Werner & Dyer (1990) and MacLennan (1990) describe systems that

evolve simple communication strategies. On the more theoretical end, Keshet (1993)

describes a model of trail formation that �ts biological data.

Work in Arti�cial Life is related to the work in this thesis in that both are con-

cerned with exploiting the dynamics of local interactions between agents and the world

in order to create complex global behaviors. However, work in Alife does not usually

concern itself with agents situated in physically realistic worlds. Additionally, it usu-

ally deals with much larger populations sizes that the work presented here. Finally,

it most commonly employs genetic techniques for evolving the agents' comparatively

simple control systems.

3.3 Distributed Arti�cial Intelligence

Distributed Arti�cial Intelligence (DAI) is another �eld that deals with multi{agent

interactions (see Gasser & Huhns (1989) for an overview). DAI focuses on negoti-

ation and coordination of multi{agent environments in which agents can vary from

knowledge{based systems to sorting algorithms, and approaches can vary from heuris-

tic search to decision theory. In general, DAI deals with cognitively complex agents

compared to those considered by the research areas described so far. However, the

types of environments it deals with are relatively simple and low complexity in that

they feature no noise or uncertainty and can be accurately characterized.

DAI can be divided into two sub�elds: Distributed Problem Solving (DPS) and

Multi{Agent Systems (MAS) (Rosenschein 1993). DPS deals with centrally designed

systems solving global problems and using built{in cooperation strategies. In contrast,

MAS work deals with heterogeneous, not necessarily centrally designed agents faced

with the goal of utility{maximizing coexistence.

Decker & Lesser (1993a) is a good example of DPS work. It addresses the task of

fast coordination and reorganization of agents on a distributed sensor network with

the goal of increasing system performance and decreasing performance variance. Hogg

& Williams (1993) is another good example showing how parallel search performs

better with distributed cooperative agents than with independent agents.

Examples of MAS work include Ephrati (1992), which describes a master{slave

scenario between two agents with essentially the same goals. Miceli & Cesta (1993)

describe an approach to using an estimate of the usefulness of social interactions at

the individual agent level in order for agents to select what other agents to inter-
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act with. This decision is based on an estimate of possible future payo� in terms

of help given the agents' attitudes and skills. Unfortunately, the estimation of de-

pendence relations scales poorly with the size of the group, and as is the case of

most DAI work, is best suited for a small number of highly deliberative, non{situated

knowledge{based agents. Along similar lines, Kraus (1993) describes negotiations and

contracts between sel�sh agents. Durfee, Lee & Gmytrasiewicz (1993) discuss game{

theoretic and AI approaches to deals among rational agents. The paper describes the

advantages of introducing meta{level information.

Certain aspects of DAI work are purely theoretical and deal with the di�culty of

multi{agent planning and control in abstract environments. For example, Shoham &

Tennenholtz (1992) discuss the complexity of automatically deriving social laws for

agent groups. They show that the problem is NP{complete but can, under a number

of restrictions, be made polynomial.

Some DAI work draws heavily from mathematical results in the �eld of parallel

distributed systems. In particular, Huberman (1990) describes the e�ects of informa-

tion exchange on the performance of a collection of agents applied to a class of search

problems. He also addresses the ubiquity of log{normal distributions of performance

found across di�erent domains, and hypothesizes a universal law of distribution for all

large systems of interdependent agents using resources allocated based on perceived

progress. Clearwater, Huberman & Hogg (1991) present related work on cooperative

strategies for solving constraint satisfaction problems.

DAI and Alife merge in the experimental mathematics �eld that studies computa-

tional ecosystems, simulations of populations of agents with well de�ned interactions.

The research is focused on global e�ects and the changes in the system as a whole over

time. This process of global changes is usually referred to \co{evolution" (Kephart,

Hogg & Huberman 1990). Often the systems studied have some similarities to the

global e�ects found in biological ecosystems, but the complex details of biological

systems cannot be reasonably addressed. Co{evolution experiments are used to �nd

improved search-based optimization techniques. For example, Hillis (1990) demon-

strates how co{evolution can be used to overcome local maxima in evolving optimal

sorting algorithms.

3.4 Behavior Analysis

Previous section have described related work in synthesis and control of group be-

havior. This section reviews related work in analysis of group behavior.

As described earlier, Distributed Arti�cial Intelligence (DAI) deals with multi{

agent negotiations and coordination in a variety of abstract environments. Decker &
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Lesser (1993b) is an example of a DAI approach to modeling a distributed system.

It depends on the ability to specify the agents' beliefs, intentions, and their quality

and duration. These types of models do not scale well with the group size. Further,

in order to apply at all they need to abstract away the low{level properties of the

system, such as the exact noise and errors, which have been shown to critically e�ect

the high{level behavior (Weisbuch 1991, Wiggins 1990).

Similarly, Kosoresow (1993) describes a probabilistic method for agent coordina-

tion based on Markov processes. This method relies on specifying agents inference

mechanisms (as chains), and having agents with compatible and speci�able goals and

preferences. This type of approach applies to domains where the problem of resource

allocation can be clearly speci�ed. However, the ability to predict agents' behavior

in order to assess the resource allocation problem is extremely di�culty in physical

system with noise and uncertainty. If it were not, a number of mathematical and

game{theoretic paradigms would apply.

The classical robotics �eld of motion{planning has dealt with the problem of

planning for multiple objects. For example, Erdmann & Lozano-P�erez (1987) describe

theoretical results on the motion{planning problem for multiple polygonal moving

objects. The presented solution searches the two{dimensional representation of space{

time slices to �nd a safe path. These results depend on having only one object move at

a time, a constraint that cannot be easily enforced in situated systems. Furthermore,

the proposed strategy is too computationally intensive to be applied for real{time

control.

Donald et al. (1993) discuss motion{planning algorithms for coordinated manip-

ulation with di�erent numbers of agents and di�erent amounts of a priori knowledge

about the object to be moved. The theoretical aspect of the work focuses on comput-

ing the information requirements for performing particular robot tasks. The work is

directly applicable to manipulation tasks, such as box{pushing, that can be addressed

with one or more robots as cooperating \force{appliers." In contrast, our work does

not focus on algorithms for explicit cooperation on tasks such as object manipulation,

but instead on distributed solutions to problems that do not necessitate cooperation

but can bene�t from it.

Strategies for proving distributed algorithm correctness are tangentially related to

analyzing multi{agent behavior. Lynch & Tuttle (1987), for example, describe such

methods for distributed systems with hierarchical components. More closely related

is work by Lynch (1993) that uses a simulation method for reasoning about real{time

systems modeled as general automata. The work is targeted at proving properties

of message{passing protocols, most of which are more constrained and less uncertain

than communication among distributed physical agents.
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Work on stochastic analysis of qualitative dynamics, such as that by Doyle &

Sacks (1989), is appealing for its qualitative nature. However, the proofs depend on

the ability to represent the system as a series of transitions in a graph and the system's

dynamics as a Markov chain over that graph. The di�culty lies in establishing such

a model for a multi{agent system. It is in general di�cult to obtain the values for the

transition probabilities that capture the complex dynamics of such systems. Simpler

models can be constructed but fail to contain enough detail to conserve the dynamics.

Related work on analysis of group behavior has been conducted in branches of

biology. For example, Beli�c, Skarka, Deneubourg & Lax (1986) present a model for

honeycomb constructions based on partial di�erential equations describing the bee

density distribution in the hive and their wax distribution behavior. Less structured

group behavior, such as exploration and foraging, has also been addressed. For in-

stance, Benhamou & Bovet (1990) describe a probabilistic model for foraging. The

work closest to the domains addressed in this thesis is done by Deneubourg et al.

(1986), Deneubourg et al. (1987), Calenbuhr & Deneubourg (1992), etc. The authors

propose strategies for describing and analyzing various collective behaviors in ants.

Their work is closest in nature to the kind of analysis we propose as viable for de-

scribing group behavior of situated, embodied agents. In both cases the analysis is

performed at the level of the collective rather than the individual.

Similarly, Miramontes, Sole & Goodwin (1993) present a framework for describing

ant behavior as individually chaotic but collectively stable and periodic. Spatial dis-

tributions of activity display similar symmetries. Brown &McBurnett (1993) describe

a model of a simple political voting system which displays a large array of group be-

haviors based on simple local feedback (i.e., recruitment or persuasion) mechanisms.

The system has two stable states: a homogeneous distribution and a collection of in-

variant blocks. Intuitively, this is an analogy of an equal power distribution, in which

any imbalance results in a transient instability. Camazine (1993) shows an analogous

pattern for honey-comb population, nectar foraging, and brood sorting while DeAn-

gelis, Post & Travis (1986) demonstrate how most aggregation{type behaviors can be

shown to �t this pattern.

Another form of common feedback{based behavior involves the synchronization

of rhythmic patters of activity. For example, Meier-Koll & Bohl (1993) describe the

synchronization of circadian rhythms of in human and animal subjects and models

them as a collection of coupled oscillators. Analogous e�ects are commonly observed

in hormonal cycles (Vander, Sherman & Luciano 1980). In such systems, the synchro-

nized state is a stable behavior, as is the evenly dispersed equal{power state, while

all other states are transient. Sismondo (1990) reports on similar synchronization

behavior in insect rhythmic signaling and proposes a similar model of the behavior.
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3.5 Summary

The work in this thesis shares motivations and goals with a number of related �elds,

including AI, robotics, DAI, Alife, and ethology. This chapter reviewed the most

related lines of research from each of these �elds in preparation for the next chapter

which describes, in detail, the proposed approach.
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Chapter 4

The Basic Behavior Approach

One of the hardest problems in AI is �nding the right level of system description for

e�ective control, learning, modeling, and analysis. This thesis proposes a particu-

lar description level, instantiated in so-called basic behaviors, building blocks for

synthesizing and analyzing complex group behavior in multi{agent systems.

Biology provides evidence in support of basic behavior units at a variety of levels.

A particularly clean and compelling case can be found in motor control. Controlling

a multi{joint manipulator such as a frog leg or a human arm is a complex task,

especially if performed at a low level. In order to cut down the complexity, nature

imposes an abstraction. Mussa-Ivaldi & Giszter (1992) show that a relatively small

set of basis vector �elds, found in the frog's spine, generates the frog's entire motor

behavior repertoire by applying appropriate combinations of the basis vectors. Bizzi,

Mussa-Ivaldi & Giszter (1991) and Bizzi & Mussa-Ivaldi (1990) discuss control of the

human arm with a similar approach. The described motor basic behaviors are a result

of the types of constraints: the dynamics of the manipulator and the dynamics of the

motor tasks. In the case of motor control, the behaviors are designed for speci�c

optimizations, such as minimizing e�ort by minimizing jerk, executing straight line

trajectories, and using bell{shaped velocity pro�les (Atkeson 1989).

Taking the idea from motor control, we de�ne behaviors as control laws that

encapsulate sets of constraints so as to achieve particular goals. Basic behaviors are

de�ned as a minimal set of such behaviors, with appropriate compositional properties,

that takes advantage of the dynamics of the given system to e�ectively accomplish

its repertoire of tasks.

Basic behaviors are intended as a tool for describing, specifying, and predicting

group behavior. By properly selecting such behaviors one can generate repeatable

and predictable group behavior. Furthermore, one can apply simple compositional
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Problem Synthesis and analysis of intelligent group behavior

in order to understand the phenomenon (science)

and apply it (engineering).

Assertion Complex group behavior results from

local interactions based on simple rules.

Approach Propose basic behaviors for structuring

such simple rules.

Validation Implement robot group behaviors using

a basic behavior set and combinations.

Table 4.1: A summary of the group behavior problem being addressed in the thesis,
and the structure of the proposed solution.

operators to generate a large repertoire of higher{level group behaviors from the basic

set.

The idea behind basic behaviors is general, but particular sets of such behaviors are

domain{speci�c. In order to demonstrate the methodology, basic behaviors for group

interaction in the spatial domain will be derived, combined, analyzed theoretically,

and tested empirically. Table 4.1 summarizes the research goals, the approach, and

the experimental methodology.

4.1 Selecting and Evaluating Basic Behaviors

This chapter describes how basic behaviors are selected, speci�ed, implemented,

and evaluated. The idea of basic behaviors is general: they are the intended as primi-

tives for structuring, synthesizing, and analyzing system behavior, as building blocks

for control, planning, and learning. Basic behaviors are related to dynamic attrac-

tors, equilibrium states, and various other terms used to describe stable, repeatable,

and primitive behaviors of any system. This work is concerned with �nding ways

of identifying such behaviors for a speci�c system, and using them to structure the

rest of the system's behavioral repertoire. The power of basic behaviors lies in their

individual reliability and in their compositional properties.

This work focuses on basic behaviors for generating intelligent group interactions

in multi{agent systems. It is based on the belief that global behavior of such systems
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results from local interactions, and furthermore, that those interactions are largely

governed by simple rules. Basic behaviors present a mechanism for structuring the

space of possible local rules into a small basis set.

This chapter will illustrate the process of selecting basic behaviors on concrete ex-

amples of behaviors for a group of agents interacting in physical space. The process of

identifying the basic behaviors, formally specifying them, implementing them, testing

their properties both theoretically and empirically, and �nally combining them, will

be carried out. The criteria for selecting basic behaviors for the domain of spatially

interacting agents are described �rst.

4.1.1 Criteria for Selection

We propose that, for a given domain, a small set of basis or basic behaviors can be

selected, from which other complex relevant and desirable group behaviors can be

generated. Basic behavior sets should meet the following criteria:

Necessity: A behavior within a basic behavior set is necessary if it achieves a

goal required for the agent's accomplishment of its task(s), and that goal cannot be

achieved with any of the other basic behaviors or their combinations. Thus, a basic

behavior cannot be implemented in terms of other behaviors and cannot be reduced

to them.

Su�ciency: A basic behavior set is su�cient for accomplishing a set of tasks in

a given domain if no other behaviors are necessary. The basic behavior set should,

under the combination operators, generate all of the desirable higher{level group

behaviors.

If such behaviors are designed by hand, as opposed to being observed in an ex-

isting system, they should, in addition to the above criteria, also have the following

properties:

1. Simplicity: the behavior should be implemented as simply as possible,

2. Locality: within our framework, the behavior should be generated by local rules,

utilizing locally available sensory information,

3. Correctness: within the model in which it is tested, the behavior should provably

attain (and in some cases maintain) the goal for which it was intended within

the set of conditions for which it is designed,

4. Stability: the behavior should not be sensitive to perturbations in external

conditions for which it is designed,
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5. Repeatability: the behavior should perform according to speci�cation in each

trial under reasonable conditions and error margins,

6. Robustness: the performance of the behavior should not degrade signi�cantly

in the presence of speci�ed bounds of sensory and e�ector error and noise,

7. Scalability: the behavior should scale well with increased and decreased group

size.

It is di�cult to imagine any �xed metric for selecting an \optimal" set of be-

haviors, since the choice of the basic behavior set depends on the task(s) it will be

applied to. This work makes no attempt to devise optimality criteria in any formal

sense. Furthermore, this work does not provide theoretical proofs of correctness of

the algorithms for the presented behaviors. While such proofs may be computable for

a simple model of the agents and the environment, they become prohibitively di�cult

for increasingly more realistic models that include sensors, e�ectors, and dynamics.

As an alternative to simpli�ed modeled environments, the behaviors were tested in

the fully complex worlds with all of the error, noise, and uncertainly. In order to

make the evaluation more complete, various initial conditions and group sizes were

tested, and a large amount of data were obtained for analysis. Behavior evaluation is

described in detail in section 4.5.

The next section illustrates the process of selecting basic behaviors for the domain

of planar mobile agents.

4.1.2 Basic Behaviors for Movement in the Plane

The experimental work in this thesis is focused on interactions among mobile agents

in two{dimensional space. This domain has the desired complexity properties: the

number of possible collective behaviors is unbounded. Fortunately, the unbounded

space of possible spatial and temporal patterns can be classi�ed into classes, and

thus e�ectively viewed from a lower level of resolution. The classi�cation is based on

task and domain{speci�c criteria which allow for selecting out the (comparatively)

few relevant behavior classes to focus on. The proposed basic behaviors impose such

classes; they de�ne observable group behaviors without specifying particular rules for

implementing them.

Group behaviors in the spatial domain can be viewed as spatio{temporal patterns

of agents' activity. Certain purely spatial �xed organizations of agents are relevant,

as are certain spatio{temporal patterns. Purely spatial �xed organizations of agents

correspond to goals of attainment while spatio{temporal patterns correspond to goals

of maintenance.
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Safe{Wandering the ability of a group of agents to move around while avoid-
ing collisions with each other and other obstacles. Here, the
homogeneous nature of the agents can be used for inter{agent
collision avoidance. Thus, two distinct strategies can be de-
vised; one for avoiding collisions with other agents of the same
kind, and another for avoiding collisions everything else.

Following the ability of two or more agents to move while staying one
behind the other.

Dispersion the ability of a group of agents to spread out over an area in
order to establish and maintain some predetermined minimum
separation.

Aggregation the ability of a group of agents to gather in order to establish
and maintain some predetermined maximum separation.

Homing the ability to reach a goal region or location.

Table 4.2: A basic behavior set for the spatial domain, intended to cover a variety of
spatial interactions and tasks for a group of mobile agents.

In the process of selecting basic behaviors, the designer attempts to decide what

behavior set will su�ce for a large repertoire of goals. While the dynamical properties

of the system provide bottom{up constraints, the goals provide top{down structure.

Both of these inuences guide the behavior selection process. Energy minimization

is a universal goal of powered physical systems. In the planar motion domain this

goal translates into minimization of non{goal{driven motion. Such motion is either

generated by poor behavior design, or by interference between agents. Thus, minimiz-

ing interference means maximizing goal{driven behavior and minimizing unnecessary

motion.

Minimizing interference translates directly into the achievement goal of immediate

avoidance and the maintenance goal of moving about without collisions. Avoidance

in groups can be achieved by dispersion, a behavior that reduces interference locally.

It can also serve to minimize interference in classes of tasks that require even space

coverage, such as those involving searching and exploration.

In contrast to various goals that minimize interaction by decreasing physical prox-

imity, many goals involve the exchange of resources through physical proximity. Con-

sequently, aggregation is a useful primitive. Moving in a group requires some form
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of coordinated motion in order to minimize interference. Following and ocking are

examples of such structured group motion.

Table 4.2 shows a list of behaviors that constitutes a basic set for a exible reper-

toire of spatial group interactions. Biology o�ers numerous justi�cations for these

behaviors. Avoidance and wandering are survival instincts so ubiquitous it obviates

discussion. Following, often innate, is seen in numerous species (McFarland 1985).

Dispersion is commonplace as well. DeScnutter & Nuyts (1993) show elegant ev-

idence of gulls aggregating by dynamically rearranging their positions in a �eld to

maintain a �xed distance from each other. Camazine (1993) demonstrates similar gull

behavior on a ledge. People maintain similar arrangements in enclosed spaces (Gleit-

man 1981). Similarly, Floreano (1993) demonstrates that simulated evolved ants use

dispersion consistently. Aggregation, as a protective and resource{pooling and shar-

ing behavior, is found in species ranging from the slime mold (Kessin & Campagne

1992) to social animals (McFarland 1987). The combination of dispersion and aggre-

gation is an e�ective tool for regulating density. Density regulation is a ubiquitous

and generically useful behavior. For instance, army ants regulate the temperature

of their bivouac by aggregating and dispersing according to the local temperature

gradient (Franks 1989). Temperature regulation is just one of the many side{e�ects

of density regulation. Finally, homing is a basis of all navigation and is manifested by

all mobile species (for biological data on pigeons, bees, rats, ants, salmon, and many

others see Gould (1987), Muller & Wehner (1988), Waterman (1989), Foster, Castro

& McNaughton (1989), and Matari�c (1990b)).

Besides the described behavior set, numerous other useful group behaviors exist.

For example, biology also suggest surrounding and herding as frequent patterns of

group movement, related to a higher level achievement goal, such as capture or mi-

gration (McFarland 1987). These and other behaviors can be generated by combining

the basic primitives, as will be described and demonstrated in the next chapter.

4.2 Basic Behavior Experiments

The remainder of this chapter describes the experimental environments, presents

the algorithms for implementing the proposed basic behaviors, and evaluates their

performance based on a battery of tests and a collection of criteria.

4.2.1 Experimental Environments

Behavior observation is one of the primary methods for validating theories in syn-

thetic AI projects like the one described in this thesis. In order to have conclusive
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results, it is necessary to try to separate the e�ects caused by the particular experi-

mental environment from those intrinsic to the theory being tested. In order to get

to the heart of group behavior issues rather than the speci�c dynamics of the test en-

vironment, two di�erent environments were used, and the results from the two were

compared. The two environments are the Interaction Modeler, and a collection of

physical robots.

Another motivation for using both a physical and a modeled environment is the

attempt to isolate any observable inconsistencies in the performance of the same

behaviors in the two di�erent environments. In general, it is di�cult to determine

what features of the real world must be retained in a simulation and what can be

abstracted away. By testing systems in the physical world some of the e�ects that arise

as artifacts of simulation can be identi�ed (Brooks 1991a). This is the motivation

behind using data from physical robots. By the same token, the current state of

the art of physical robot environments imposes many constraints and biases on the

types of experiments that can be conducted. Consequently, results from any physical

environment must also be validated in an alternative setup. Two di�erent robot types

were used, in order to eliminate system{speci�c biases.

Since this work is concerned with basic principles of interaction and group behavior

rather than a speci�c domain, it is especially concerned with e�ects that are common

to both the modeled and the physical worlds.

4.2.2 The Agent Interaction Modeler

The Interaction Modeler (IM) is a simulator which allows for modeling a simpli�ed

version of the physics of the world and the agent sensors and dynamics (Figure 4-1).

The Modeler and the control software for the agents are written in Lisp. However,

for purposes of realism, the modeler is divided into three distinct components: the

simulator, the physics modeler, and the agent speci�cation. The simulator executes

the agent speci�cations and moves the agents according to their control algorithms

and their sensory readings. The simulator implements the physics of the sensors, but

not the physics of the world. The latter are implemented by the physics modeler

that checks the positions and motions computed by the simulator against simpli�ed

physical laws, and applies corrections. The IM loops between the simulator and the

physics modeler.

The main purpose of the Interaction Modeler is to observe and compare phe-

nomena to those obtained on physical robots. However, the Modeler is also useful

for preliminary testing of group behaviors which are then implemented on physical

robots. Although it is di�cult to directly transfer control strategies from simulations
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Figure 4-1: The interaction modeler environment. The agents are shown as black
circles with white markers indicating their heading. The large rectangle indicates
the boundaries of their workspace. The agents are equipped with local sensors and
simpli�ed dynamics.
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Figure 4-2: Each of the Nerd Herd robots is a 12"{long four{wheeled base equipped
with a two{pronged forklift for picking up, carrying, and stacking pucks, and with a
radio transmitter and receiver for inter{robot communication and data collection.

to the physical world, the modeler is useful for eliminating infeasible control strategies

at an early stage, as well as for testing vastly larger numbers of agents, performing

many more experiments, and varying parameter values.

4.2.3 The Mobile Robot Herd

Group behavior experiments are implemented and tested on a collection of 20

physically identical mobile robots a�ectionately dubbed \The Nerd Herd." Each

robot is a 12"{long four{wheeled vehicle, equipped with one piezo{electric bump

sensor on each side and two on the rear of the chassis. Each robot has a two{

pronged forklift for picking up, carrying, and stacking pucks (Figure 4-2). The forklift

contains two contact switches, one on each tip of the fork, six infra{red sensors: two

pointing forward and used for detecting objects and aligning onto pucks, two break{

beam sensors for detecting a puck within the \jaw" and \throat" of the forklift, and

two down{pointing sensors for aligning the fork over a stack of pucks and stacking

(Figure 4-3). The pucks are special{purpose light ferrous metal foam-�lled disks, 1.5

inches diameter and between 1.5 and 2.0 inches in height. They are sized to �t into

the unactuated fork and be held by the fork magnet.

The robots are equipped with radio transceivers for broadcasting up to one byte

of data per robot per second. The system uses two radio base stations to triangulate
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Figure 4-3: Each of the Nerd Herd robots is equipped with contact sensors at the
ends of the fork, piezo{electric bump sensors on each side and two on the rear of the
chassis, and six infra{red sensors on the fork. Two forward{pointing IRs are located
at the ends of the forks, two break{beam IRs in the jaw and throat of the fork, and
two down{pointing IR for stacking pucks in the middle of each of the fork arms.

the robots' positions. The radio system is used for data gathering and for simulating

additional sensors. In particular, radios are used to distinguish robots from other

objects in the environment, an ability that cannot be implemented with the on{board

IR sensors1.

The mechanical, communication, and sensory capabilities of the robots allow for

exploration of the environment, robot detection, and �nding, picking up, and carrying

pucks. These basic abilities are used to construct various experiments in which the

robots are run autonomously, with all of the processing and power on board. The

processing is performed by a collection of four Motorola 68HC11 microprocessors.

Two of the processors are dedicated to handling radio communication, one is used

by the operating system, and one is used as the \brain" of the robot, for executing

the down{loaded control system used in the experiments. The control systems are

programmed in the Behavior Language, a parallel programming language based on

the Subsumption Architecture (Brooks 1990a).

1The IRs are all the same frequency and mechanically positioned for obstacle detection rather
than communication.
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4.2.4 Hardware Limitations

Properties of physical hardware impose restrictions not only on the control strategies

that can be applied, but alson on the types of tasks and experiments that can be

implemented. Robot hardware is constrainted by various sensory, mechanical, and

computational limitations. This section describes some relevant properties of the

hardware we used and their e�ect.

The robots' mechanical steering system is inaccurate to within 30 rotational de-

grees. Furthermore, the position triangulation system works su�ciently well when

the robots are within the predetermined range of the base stations. However, the

exchange of information between the robots, which nominally ought to take place at

1Hz, su�ers from extensive loss of data. Consequently, as much as half of the trans-

mitted data were lost or incorrect. The combined e�ect of steering and positioning

uncertainty demanded that the robots move slowly in order to minimize error. Thus,

the limiting factor on the robot speed was imposed by sensing and actuation, not by

the controller.

The infra{red sensors have a relatively long range (12 inches), and vary in sensi-

tivity. Consequently, not only do di�erent robots have di�erent sensing ranges that

cannot be tuned due to hardware restrictions, but the sensitivity between the two

sides of the fork on a single robot varies as well. Consequently, the amount of time

and e�ort required for detecting, picking up, or avoiding objects varied across robots

and over time. Thus, the control system could not be dependent on uniformity of the

group.

This uncertainty and variability, although frustrating, is bene�cial to experimental

validity. For instance, hardware variability between robots is reected in their group

behavior. Even when programmed with identical software, the robots behave di�er-

ently due to their varied sensory and actuator properties. Small di�erences among

individuals become ampli�ed as many robots interact over extended time. As in na-

ture, individual variability creates a demand for more robust and adaptive behavior.

The variance in mechanics and the resulting behavior provides a stringent test for all

of the experimental behaviors.

4.2.5 Experimental Procedure

All robot and modeler programs were archived and all basic behaviors were tested

in both domains. All robot implementations of basic and composite behaviors were
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tested in at least 20 trials2. In the case of the Modeler, all behaviors were tested in at

least 20 trials, with both identical and random initial conditions. Di�erent strategies

for the same group behaviors were tested and compared across the two domains.

Modeler data were gathered by keeping a record of relevant state (such as position,

orientation, and gripper state) over time. The same data were gathered in robot

experiments through the use of the radio system. The system allowed for recording

the robots' position and a few bytes of state over time. For each robot experiment,

the robots' IDs and initial positions were recorded. Some of the experiments were

conducted with random initial conditions (i.e., random robot positions), while in

others identical initial positions were used in order to measure the repeatability of

the behaviors. All robot data were also recorded on video tape, for validation and

cross referencing.

Throughout this chapter, the Interaction Modeler data are shown in the form of

discrete snapshots of the global state of the system at relevant times, including initial

state and converged state. The robot data are plotted with the Real Time Viewer

(RTV), a special purpose software package designed for recording and analyzing robot

data3. RTV uses the transmitted radio data to plot, in real{time, the positions of

the robots and a time{history of their movements, i.e. a trail, the positions of the

previously manipulated pucks, and the position of home. It also allows for replaying

the data and thus recreating the robot runs.

The robots are shown as black rectangles aligned in the direction of their heading,

with their ID numbers in the back, and white arrows indicating the front. In some

experiments robot state is also indicated with a symbol or a bounding box. In all

shown data plots, the size of the rectangles representing the robots is scaled so as

to maintain the correct ratio of the robot/environment surface area, in order to de-

monstrate the relative proximity of all active robots. The bottom of each plot shows

which of the twenty robots are being run. The corner display shows elapsed time, in

seconds, for each snapshot of the experiment. Figure 4-4 shows a typical data plot.

4.3 Basic Behavior Speci�cations

This section gives formal speci�cations for each behavior in terms of the goal it

achieves and maintains.

Basic behaviors in 2D space are speci�ed in terms of positions p, distances d, and

2In the case of foraging, most data were obtained with another set of robots, described in sec-
tion 8.1.

3RTV was implemented and maintained by Matthew Marjanovi�c.
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Figure 4-4: An example of a robot data plot: the robots are shown as scaled black
rectangles aligned in the direction of their heading, with their ID numbers in the back,
and white arrows indicating the front. The bottom of the plot shows which of the
twenty robots are being run, and the corner display shows elapsed time in seconds.

distance thresholds �avoid, �disperse, and �aggregate.

R is the set of robots: R = fRig; 1 � i � n

pi =

0
B@

xi

yi

1
CA phome =

0
B@

xhome

yhome

1
CA

dhome;i =
q
(xhome � xi)2 + (yhome � yi)2

di;j =
q
(xi � xj)2 + (yi � yj)2

Using this notation, the following are speci�cations for the basic behavior goals.
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Safe{Wandering:

The goal of safe{wandering is to keep moving while maintaining a minimum dis-

tance �avoid between agents:

dpj

dt
6= 0 and 8(i) di;j > �avoid

Following:

The goal of following is to achieve and maintain a minimum angle � between the

position of the leader i relative to the follower j:

i = leader; j = follower

0 �
dpj

dt
� (pi � pj) � k

dpj

dt
kk (pi � pj) k cos �

� = 0 ) cos � = 0 )

0 �
dpj

dt
� (pi � pj) � k

dpj

dt
kk (pi � pj) k

Dispersion:

The goal of dispersion is to achieve and maintain a minimum distance �disperse

between agents:

8(j) di;j > �disperse and �disperse > �avoid

Aggregation:

The goal of aggregation is to achieve and maintain a maximum distance �aggregate

between agents:

8(j) di;j < �aggregate
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Homing:

The goal of homing is to decrease the distance between the agent and a goal

location called \home":

8j
dpj

dt
� (pj � phome) < 0

4.4 Basic Behavior Algorithms

This section presents the algorithms used to implement each of the proposed basic

behaviors in the Interaction Modeler and on the robots. The algorithms are given in

formal notation and in algorithmic pseudo code. All algorithms are formally expressed

as velocity commands of the form:

command (v)

Two operators, N and C, are used for computing most of the algorithms. N is

the neighborhood operator which, given a robot R and a distance threshold �,

returns all other robots within that neighborhood:

N (i; �) = fj 2 i; ::n j di;j � �g

C is the centroid operator which, given a robot i and a distance threshold �,

returns the local centroid:

C(i; �) =

P
j2N (i;�) pj

jN (i; �)j

Cg is the global centroid operator:

Cg =

P
j2R pj

jnj

4.4.1 Safe{Wandering

Strategies for moving while avoiding collisions are perhaps the most studied topic

in mobile robotics. The work in this thesis was concerned with �nding avoidance

strategies that perform well in group situations and scale well with increased group
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Avoid-Other-Agents:

If an agent is within d_avoid

If the nearest agent is on the left

turn right

otherwise turn left.

Algorithm 4.1:

Avoid-Everything-Else:

If an obstacle is within d_avoid

If an obstacle is on the right only, turn left.

If an obstacle is on the left only, turn right.

After 3 consecutive identical turns, backup and turn.

If an obstacle is on both sides, stop and wait.

If an obstacle persists on both sides,

turn randomly and back up.

Algorithm 4.2:

sizes. Finding a guaranteed general{purpose collision avoidance strategy for an agent

situated in a dynamic world is di�cult. In a multi{agent world the problem can

become intractable.

Inspired by biological evidence which indicates that insects and animals do not

have precise avoidance routines (Wehner 1987), we used the following general avoid-

ance behavior:

command ( v

0
B@

cos(� + u)

sin(� + u)

1
CA )

where � is R's orientation and u is the incremental turning angle away from the

obstacle. A simple Avoid-Other-Agents rule was devised, as shown in Algorithm 4.1.

The Avoid-Other-Agents behavior takes advantage of group homogeneity. Since

all agents execute the same strategy, the behavior can rely on and take advantage of

the resulting spatial symmetry. If an agent fails to recognize another with its other{

agent sensors (in this case radios), it will subsequently detect it with its collision{

avoidance sensors (in this case IRs), and treat it as a generic obstacle, using the
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Safe--Wander:

If an agent is within d_avoid

If the nearest agent is on the left

turn right

otherwise turn left.

If an obstacle is within d_avoid

If an obstacle is on the right only, turn left.

If an obstacle is on the left only, turn right.

After 3 consecutive identical turns, backup and turn.

If an obstacle is on both sides, stop and wait.

If an obstacle persists on both sides,

turn randomly and back up.

Otherwise move forward by d_forward, turn randomly.

Algorithm 4.3:

Avoid-Everything-Else behavior, as shown in Algorithm 4.2.

A provably correct avoidance strategy for arbitrary con�gurations of multiple

agents is di�cult to devise. In order to increase robustness and minimize oscilla-

tions, our strategies take advantage of the unavoidable noise and errors in sensing

and actuation, which result in naturally stochastic behavior. This stochastic compo-

nent guarantees that the an avoiding agent will not get stuck in in�nite cycles and

oscillations. In addition to the implicit stochastic nature of the robots' behavior,

Avoid-Everything-Else also utilizes an explicit probabilistic strategy by employing

a randomized move.

Variations of the above avoidance algorithm were experimented with and com-

pared based on the amount of time the agent spent avoiding relative to the amount

of time spent it moving about freely. This ratio is an indirect measure of the quality

of the avoiding strategy in that the more time the agents spend avoiding the worse

the strategy is. Avoiding time is dependent on the agent density, so it was used as

a controlled variable in the experiments. The ratio used to evaluate avoidance is

an indirect metric; a direct measure of being stuck would be more useful, but the

robots did not have the appropriate sensors for determining this state. No signi�cant

performance di�erences were found among the similar strategies that were tested.

The strategy for safe{wandering is the combination of the two avoidance strategies
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with a default rule for moving with occassional changes of heading, as shown in

Algorithm 4.3.

4.4.2 Following

Follow:

If an agent is within d_follow

If an agent is on the right only, turn right.

If an agent is on the left only, turn left.

Algorithm 4.4:

Following is implemented with respect to the follower agent. It is achieved with a

simple rule that steers the follower to the position of the leader:

command (
v0

k pleader � pfollower k
(pleader � pfollower) )

Following can be implemented as a complement of the Avoid-Everything-Else

behavior, as shown in Algorithm 4.4.

Figure 4-5 illustrates following on three robots. Additional data on following will

be presented and analyzed in the next section.

This approach to following models tropotaxic behavior in biology, in which two

sensory organs are stimulated and the di�erence between the stimuli determines the

motion of the insect (McFarland 1987). Ant osmotropotaxis is based on the di�er-

ential in pheromone intensity perceived by the left and right antennae (Calenbuhr &

Deneubourg 1992), while the agents described here use the binary state of the two

directional IR sensors.

Under conditions of su�cient density, safe{wandering and following can produce

more complex global behaviors. For instance, osmotropotaxic behavior of ants ex-

hibits emergence of unidirectional lanes, i.e., regions in which all ants move in the

same direction. The same lane{forming e�ect could be demonstrated with robots

executing following and avoiding behaviors. However, more complex sensors must be

used in order to determine which direction to follow. If using only IRs, the agents

cannot distinguish between other agents heading toward and away from them, and

are thus unable to select whom to follow.
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Figure 4-5: An example of following with three robots. Continuous time trails are
shown. In spite of deviations in individual paths, the queue is conserved.
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Centroid-Disperse:

If one or more agents are within d_disperse

move away from Centroid_disperse.

Algorithm 4.5:

Neighbor-Disperse:

Find 2 nearest neighbors within d_disperse

Compute the angle between them,

Compute the negative of the bisector,

align in that direction and go forward.

Algorithm 4.6:

4.4.3 Dispersion

A robust dispersion behavior can be designed as an extension of the existing safe{

wandering. While avoidance in safe{wandering reacts to the presence of a single

agent, dispersion uses the local distribution of all of the nearby agents (i.e., the

locations of other agents within the range of the robot's sensors) in order to decide

in which direction to move. The algorithm, shown in Algorithm 4.4, computes the

local centroid to determine the local density distribution of nearby agents, and moves

away from the highest density:

command (
�v0

k C(i; �disperse)� pi k
( C(i; �disperse)� pi) )

Under conditions of high density, the system can take a long time to achieve a

dispersed state since local interactions propagate far and the motion of an individual

can disturb the state of many others. Thus, dispersion is best viewed as an ongo-

ing process which maintains a desired distance between the agents while they are

performing other tasks.

A number of dispersion algorithms were tested in the modeled environment as well.

As in the robot implementation, all of the approaches were based on detecting the

position of the nearest agents. However, the modeler allowed for using more precise

information, such as the exact distance and direction of the nearest neighbors. The

dispersion algorithm shown in Algorithm 4.6 was most successful in terms of e�ciency

and reliability.

Figure 4-6 shows the initial state and the �nal state of a dispersion experiment
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Figure 4-6: An example of dispersion. Fifty agents are initially packed in one half
of the workspace. d dispersion is set to two times the agent's diameter. After
approximately 20 time steps, the equilibrium is reached and all agents stop moving.
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Figure 4-7: Dispersion with three robots, initiated close to each other. The robots
found a static dispersed equilibrium state after 74 seconds.

using the above centroid{based dispersion rule tested in the Interaction Modeler.

Initially crowded in one part of the available free space, the agents apply the simple

dispersion rule in order to establish d disperse or the maximum available inter{

agent distance. Figure 4-7 shows the same dispersion algorithm applied to four robots.

Dispersion was also evaluated based on time to convergence. Algorithms using

the local centroid, and the nearest two agents, were compared to each other and to

a potential �eld summation approach, in which the scalar distance from each nearby

agent was proportional to the magnitude of a repulsive vector associated with it.

The vectors of all nearby agents were summed and the agent moved in the direction

of the resultant. The performance of the three algorithms was compared using two

di�erent initial conditions, random and densely packed. Both were tested in order

to normalize for di�erent density distributions through the lifespan of the task. As

expected, the random initial position results in faster convergence times than a packed

initial condition for all three algorithms. No statistically signi�cant di�erence was

found between the algorithms.

4.4.4 Aggregation

Aggregation is the inverse of dispersion:

command (
+v0

k C(i; �aggregate)� pi k
( C(i; �aggregate) � pi) )
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Aggregate:

If nearest agent is outside d_aggregate

turn toward the local Centroid_aggregate, go.

Otherwise, stop.

Algorithm 4.7:

Home:

If at home

stop.

otherwise turn toward home, go.

Algorithm 4.8:

and can be implemented using the centroid operator as well, as shown in Algo-

rithm 4.7.

Aggregation was evaluated using the same criteria used in evaluating dispersion,

as well as the same experiments. Analogous algorithms were implemented, using the

local centroid, two nearest neighbors, and potential �elds. Instead of varying initial

conditions, aggregation algorithms were evaluated using two di�erent terminating

conditions. The more di�cult terminating condition required that all agents form

a single aggregate, whereas the easier of the two conditions required only that they

form one or more groups in which all agents are within a �xed distance from their

neighbors. As expected, the former terminating condition required more time to

be achieved. Aside from that e�ect, no statistically signi�cant di�erence was found

between the algorithms.

4.4.5 Homing

The simplest homing strategy is a greedy local one:

command (
v0

k phome � pi k
(phome � pi) )

and implemented as a simple pursuit, as shown in Algorithm 4.8.

Figure 4-8 illustrates the homing behavior of �ve robots using this strategy. The

data illustrate that the actual trajectories are far from optimal, due to mechanical and

sensory limitations, in particular due to the error in the sensed position. The same
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Figure 4-8: Homing behavior of �ve robots. Started in an arbitrary initial con�gu-
ration, four of the robots reached the home region within 100 seconds, and the �fth
joined them 30 seconds later. The trails reect errors in position sensing, as well as
interference between the robots as approach the home region.
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Figure 4-9: Another example of homing behavior of �ve robots, started in arbitrary
initial positions. Trail histories demonstrate drastic errors in positioning, indicated
by large jumps in consecutive robot location. In particular, the triangular path shown
for robot #17 is due to repetitive position errors. In spite of the errors, all of the
robots successfully reached home.
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Figure 4-10: Homing behavior of a large group of simulated agents. Increased inter-
ference and competition for space is obvious around the goal region.
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algorithm, when tested on the Interaction Modeler, produces more direct homing

trajectories. Figure 4-9 shows another robot run of homing with �ve robots. In this

run the entire time history of the robots' positions are shown, and the positioning

errors can be easily seen. Nonetheless, all robots reach home. Figure 4-10 illustrates

homing in simulation.

Individual homing is e�ective as long as the density of agents is low. If enough

agents are homing within con�ned space, they interfere with each other. In the case of

our non-holonomic robots, interference had even more enduring e�ects on the group.

Figure 4-11 shows the growing interference between robots as they approach the goal

region. Entire time{trails are shown to demonstrate how much group interference

slows down individual performance.

Simulation and robot experiments described in this work show that interference

increases if the agents have non{zero turning radii, unequal velocities, or are subject

to sensor and control errors. All of the above conditions are common in situated

agents, suggesting the need for some form of group or structured navigation, such as

ocking, which will be introduced in an upcoming section.

4.5 Basic Behavior Evaluation

4.5.1 Empirical Evaluation of Basic Behaviors

Evaluation is one of the most di�cult components of research, and it is somewhat

new to the �eld of AI and Experimental Robotics. By nature and by design, the two

�elds are based on building arti�cial computational and physical systems. However,

results from such synthetic endeavors do not fall cleanly into the well de�ned set

of evaluation criteria designed for natural sciences. Analyzing something one has

designed is intrinsically di�erent from analyzing something externally imposed.

As a young and diverse �eld, AI still lacks standardized evaluation criteria. Con-

sequently, it is left to each researcher to establish criteria that are both speci�c to the

project and generally acceptable. The ideas proposed in this thesis are evaluated in

two ways. The �rst addresses the merit of the general approach and its applicability

to various domains. This evaluation is performed in the summary of the thesis, after

the entire work has been presented. The second type of evaluation addresses the

speci�c instantiation of the ideas in the spatial domain. This chapter presents the

evaluation criteria applied to the implementations and performance of spatial basic

behaviors and their composites.

AI and Robotics research in general is exploratory and often prone to phenomeno-
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Figure 4-11: Homing behavior of four robots. Home is located in the region (x; y) =
(0::50; 0::50). Trails are marked with di�erent patterns in order to demonstrate the
increase in interference with proximity, resulting in circuitous paths.
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logical evaluation. To prevent this, all of the evaluation criteria for the experimental

part of the work were established prior to testing and were applied to the perfor-

mance of each of the behaviors as well as to their combinations. An earlier section

on basic behavior selection elaborated the criteria for choosing the basic behavior set

and hinted at some evaluation procedures. This section gives a detailed illustration

of empirical basic behavior evaluation on the example of following.

According to our pre-speci�ed de�nition, a robot was said to be following when

it maintained a minimal angle � between itself and the leader. Repeatability and

robustness of following were evaluated based on its manifested average uninterrupted

duration, i.e. average time to failure. This duration was almost completely dependent

on how reliably the front{pointing sensors could detect the \leader". Figure 4-12

illustrates continuous following behavior of 3 robots over a four minute period. The

robot at the \front" of the queue is moving forward with its wheels slightly turned,

thus tracing out a circular path. The other two robots follow their local \leader"

according to the presented algorithm. The path of the �rst robot is smooth, while

the followers oscillate in order to keep the robot ahead of them within IR range. One

of the robots separated after two minutes, while the other two stayed together for the

duration of the shown 243.3 second run. Figure 4-13 also illustrates the robustness

of following; the robot in the lead moves about randomly and the follower keeps up

throughout the duration of the run.

The range of the IR sensors used was directed and short, requiring the agents to

stay close together within the queue. Consequently, errors in steering could cause a

follower to lose sight of the leader if it failed to turn su�ciently in order to maintain

the leader in sight. If the two continued to move in the same direction, as they would

during a higher{level task, the follower could catch up with the leader again. If not,

they would separate.

The narrow IR range explains why long queues and trains of agents were physi-

cally di�cult to maintain. However, queues were stable and insensitive to dynamic

obstacles and sensory and mechanical irregularities in the form of sensor noise, errors

in steering, and perturbations in velocity. Figure 4-14 illustrates following on three

robots in the presence of sensory or e�ector error. The middle robot stalls due to

some error, and the robot behind it stops as well, then turns and follows the leader,

as it senses the �rst robot in its range. The middle robot activates again, senses the

second robot within its range, follows it, and the queue is maintained. Figure 4-15

demonstrates following in the presence of static constraints in the environment, such

as walls and corners. The robots are able to avoid the walls and maintain the queue.

Following was also evaluated based on scalability in order to test its performance

as agents are added and removed. The data above demonstrate the behavior that
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Figure 4-12: Continuous following behavior of 3 robots over 4.8 minutes. In the initial
conditions, the wheels of the front robot are turned sideways, resulting in a circular
trajectory. The robots reliably maintain a stable queue in spite of individual local
variations in control.
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Figure 4-13: Continuous following performance of two robots over 4.9 minutes. The
third robot (#20) is out of range so it does not join the others. The robot in the
front moves about randomly, while the follower stays close behind.
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Figure 4-14: Performance of following with three robots in the presence of obstacles,
sensory, and steering errors that cause the middle robot stall. The third robot passes
it and maintains the �rst robot in its range. The middle robot senses the now{second
robot within its range, follows it, and the queue is maintained.
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Figure 4-15: Performance of the following behavior of three robots in the presence of
external obstacles and constraints. The robots maintain a queue while avoiding the
wall and going around a corner.
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Figure 4-16: Following behavior of 2 robots. The x-axis plots individual trials, the
y-axis plots the duration of uninterrupted following. The mean duration is indicated
with the dashed line.
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Figure 4-17: Following behavior with 3 robots. The x-axis plots individual trials, the
y-axis plots the duration of uninterrupted following, in seconds. The mean duration
is indicated with the dashed line.
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results if an agent stalls, or is removed from the middle of the queue. The next set of

data deals with the performance as new agents are added to the queue, the situation

that is expected to happen more commonly, since following is, at a global level, a

recruiting behavior.

Figure 4-16 demonstrates average following time for two robots in multiple runs.

Figure 4-17 plots following data for three robots. The mean following time for two

agents is nearly identical as that for three. This is exactly as expected, since following

is a completely local behavior between two agents. The failure of any pair is as likely

as the failure of any other, and the pairs are mutually independent, soq agents can

be dynamically added and removed from the ends of the queue without a�ecting the

rest.

This section has illustrated the criteria we used to evaluate the proposed basic

behaviors. The evaluation process was illustrated on the example of following. The

described criteria were systematically applied to all of the other basic behaviors as

well.

4.5.2 Evaluation of Heterogeneous Groups

An obvious alternative for a fully distributed system of identical agents is a hierar-

chical distributed system. In order to evaluate the performance of the homogeneous

basic behaviors, they were compared to particular hierarchical implementations. This

section describes the performance of a hierarchical group of agents on two basic be-

haviors: aggregation and dispersion. These two behaviors were chosen because they

can be stated in terms of achievement goals and, given su�cient space, can reach a

static state. The algorithms were evaluated based on the time or the number of steps

required to reach that well{de�ned state.

A version of hierarchical agents was implemented by classifying the agents into

a total order, based on a randomly assigned unique ID number, thus simulating an

established pecking order in the group (Chase, Bartolomeo & Dugatkin 1994, Chase

1993, Chase 1982, Chase & Rohwer 1987). While in homogeneous algorithms all

agents moved simultaneously according to identical local rules, in the hierarchical case

the ID number determined which agents were allowed to move while others waited. In

all cases, a simple precedence order, a spatially{local hierarchy, was established such

that within a small radius the agent with the highest ID got to move. Multiple types

of dispersion and aggregation algorithms were tested with such hierarchical agents.

Using the Interaction Monitor, 20 experiments were conducted with each group

size (3, 5, 10, 15, and 20 agents) and each of the algorithms. Additionally, the algo-

rithms were tested on two di�erent degrees of task di�culty. Aggregation was tested
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Figure 4-18: The performance of two di�erent aggregation algorithms based on time
required to reach static aggregated state. Two termination conditions were tested:
a single group (data points shown with boxes) and a few stable groups (data points
shown with dots). The performance of hierarchical algorithms is interpolated with
solid lines while the homogeneous ones are interpolated with dotted lines.

on two terminating conditions: a single aggregate containing all of the agents, and a

small number of stable aggregates. The former terminating condition is more di�-

cult. Similarly, dispersion was tested on two initial conditions: a random distribution

of initial positions, and a packed distribution in which all of the agents start out in

one half of the available space. The latter condition is more di�cult.

It was found that, in the case of aggregation, hierarchical strategies performed

somewhat better than our homogeneous approaches. Figure 4-18 plots the average

number of moves an agent takes in the aggregation task against the di�erent group

sizes and the two di�erent terminating conditions: a single aggregate and a few stable

groups. Both hierarchical and homogeneous algorithms behaved as expected, per-

forming better on the simpler of the two terminating conditions. Their performance

declined consistently with the growing group size.

Unlike aggregation, in the case of dispersion, homogeneous strategies outper-

formed hierarchical ones. Figure 4-19 plots the average number of moves an agent

makes in the dispersion task for the di�erent group sizes on two di�erent initial con-

ditions: a random distribution, and a packed initial state. Again, both hierarchical

and homogeneous algorithms improved with the easier initial conditions.

Although the performance di�erence between the homogeneous and hierarchical

algorithms was repeatable and consistent, it was small, and its magnitude barely

surpassed the standard deviation among individual trials for each of the algorithms

and group sizes. The standard deviation was particularly signi�cant in the case of

small (3 and 5) group sizes. Thus, no statistically signi�cant di�erence was found in
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Figure 4-19: The performance of two di�erent dispersion algorithms based on the
time required to reach static dispersed state. Two initial states were tested: a random
distribution (data points shown with stars) and a packed distribution (data points
shown with crosses). The performance of the hierarchical algorithms is interpolated
with solid lines while the homogeneous ones are interpolated with dotted lines.

global performance of hierarchical and at algorithms for aggregation and dispersion.

Furthermore, the slight di�erences that were detected between the two strategies

would mostly likely be negligible on physical agents, due to sensor uncertainty and

e�ector errors.

We believe that the similarity in performance between the homogeneous and sim-

ple heterogeneous algorithms is caused by the following:

� Functionally homogeneous agents: In spite of the linear priority ordering,

the agents are fundamentally homogeneous since they are functionally indistin-

guishable. Thus, the hierarchical relationships between agents are spatially and

temporally independent, since the agents keep no history of their past encoun-

ters with each other.

� Simplicity of behavior: The only behavior being observed is spatial, in the

domain where the consequences of actions of identical agents have no time{

extended consequences.

� Large group sizes: In su�ciently large groups of functionally identical agents,

temporary e�ects are averaged out as uctuations and noise. This property

is crucial for producing reliable global behavior in the presence of local per-

turbations, and is observable in the shown data: the general trends in global

performance are consistent even although the standard deviation among trials

is quite large.
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Figure 4-20: The initial conditions used for comparing dispersion algorithms. Maxi-
mally packed states for �ve di�erent group sizes (3, 5, 10, 15, and 20) were tested.

The experiments comparing simple hierarchical and homogeneous algorithms de-

monstrate that, in the described domain, simple hierarchical strategies do not a�ect

the global performance because their impact on the global behavior is negligible. More

complex hierarchical strategies could be devised, in order to assure their inuence on

the global behavior, but would require an increased perceptual and cognitive over-

head, such as perhaps keeping a history of past encounters and models of previously

encountered agents. This data permit us to hypothesize the following: for simple

spatial domains 1) simple homogeneous solutions can work quite well, and 2) more

complex strategies requiring individual agents to perform recognition, classi�cation,

and representation may be are required to signi�cantly improve group performance.

4.5.3 Evaluating Distributed v. Centralized Algorithms

The beginning of the thesis compared centralized and distributed approaches, and

argued that centralized approaches do not scale for the types of systems this thesis

has dealt with. For the purposes of comparison, however, a set of special case scenarios

was constructed, for which optimal centralized solutions could be computed for the

dispersion task. While computing the optimal dispersion strategy for an arbitrary

con�guration of agents is di�cult and, for large group sizes, intractable, the strategy

can be computed for special classes of initial positions.
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Figure 4-21: The performance of the optimal global \total knowledge" algorithm
for dispersion (data points shown with diamonds) compared with the hierarchical
and homogeneous dispersion strategies (data points shown with boxes and crosses,
respectively).

Packed con�gurations of agents were designed for �ve group sizes: 3, 5, 10, 15,

and 20, as shown in Figure 4-20. These con�gurations were chosen for two reasons: 1)

they presented challenging initial conditions for dispersion, and 2) optimal dispersion

solutions could be computed by taking advantage of the symmetry of con�gurations.

Optimal solutions employed the general strategy of moving the outer agents �rst until

enough space is cleared for the next layer to move, and so on. The average number of

moves per agent for obtaining a dispersed state was computed for each of the group

sizes.

The \total knowledge" algorithm was tested along with the existing hierarchical

and homogeneous algorithms on the Interaction Modeler. The data for the distributed

algorithms were averaged over 20 trials for each group size. Figure 4-21 plots the

performance of the three algorithms.

Not surprisingly, the total knowledge algorithm performs the best. However, it

is important to note that although its performance declines slower than that of the

distributed algorithm, the two are only o�set by a constant factor. Given that the

performance of the total knowledge algorithm is not practically attainable in real{

time, the distributed alternative with minimum computational and sensing overhead

presents a useful alternative.
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4.6 Summary

This chapter has introduced the methodology for selecting basic behaviors and demon-

strated it on the spatial domain. A basic behavior set consisting of safe{wandering,

following, dispersion, aggregation, and homing was proposed, implemented in two dif-

ferent experimental environments, and tested in simulation and on physical robots.

Experimental data were evaluated using a collection of criteria we speci�ed a priori.

The performance of the basic behaviors was also tested compared against hierarchical

and total knowledge approaches.

The next chapter introduces ways in which the described basic behaviors can

combined in order to be achieve a variety of higher{level goals and tasks.
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Chapter 5

Combining Basic Behaviors

5.1 Two Types of Behavior Combination

Basic behaviors are designed to be a substrate for a variety of more complex compound

group behaviors for a given domain (Figure 5-1). Generating compound behaviors

requires applying some kind of a combination operator whose properties are well

understood and which produces the desired output composite behavior. This is is

considered to be one of the challenges of behavior{based control, i.e., arbitration, the

problem of coordinating the activity of multiple input behaviors in order to produce

desired output behavior.

Depending on the complexity of the system, arbitration can and usually must be

performed at multiple points. One level of arbitration can be achieved by designing

mutually exclusive behavior conditions (Matari�c 1992c). Creating a unique one{to{

one mapping between conditions and behaviors guarantees a mutually exclusive set

of condition{action couplings. In contrast, if the mapping is one{to{many, so that a

condition can result in more than one possible behavior, then there is a possibility

that two or more behaviors may be in conict.

Mutually exclusive behavior conditions are su�ciently powerful for arbitrating in

a system that performs only one behavior at a time. However, in more complex sys-

tems, multiple behaviors can contribute to the output (Parker 1994, Payton, Keirsey,

Kimble, Krozel & Rosenblatt 1992, Ferrell 1993). Consequently, most practical sys-

tems use mutually exclusive behavior conditions within a coherent layer or submodule

of the system dealing with a particular coherent set of tasks. Between modules and

layers another level of arbitration is necessary which either implements a type of a

sum of the inputs or a switch. The general form of a behavior{based system involves

such combination operators at one or more levels.
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The architecture proposed here for combining basic behaviors has the described

general form. In order to take advantage of the expressive combinatorial power of

the basic behaviors, the architecture uses both combination operators: behaviors can

be combined directly, by executing multiple behaviors at once, and temporally, by

sequencing the behaviors one at a time. Direct combinations allow for multiple con-

currently active behaviors to contribute to outputs. Temporal combinations assure

a coherent sequence of the outputs. The two types of combination operators, ap-

plied to the �xed set of basic behaviors, can generate an unbounded repertoire of

collective behaviors, because temporal combinations can extend arbitrarily in time

(Figure 5-2). The following sections describe the operators and demonstrate them

with implemented compound behaviors.

5.1.1 Direct Combinations of Basic Behaviors

A direct combination of behaviors is some function of the outputs of a subset of the

basic behaviors, as illustrated in Figure 5-3. In the spatial domain, the outputs of all of

the basic behaviors are in the form of direction and velocity vectors, so appropriately

weighted sums of such vectors directly produce coherent higher{level behaviors. This

method is illustrated by using direct combination to implement ocking.

Flocking is de�ned as collective motion that satis�es the following constraints: all

of the agents within sensing range of each other must stay within a ocking range

from their neighbors as they move. Unlike aggregation, ocking not only requires the

agents to stay together, but also to move toward a goal, generically referred to as

home. Formally:

8(i; j) di;j < �flock and
dpCg

dt
� (Cg � phome) < 0

Flocking can be implemented by combining the outputs of safe{wandering, aggre-

gation, dispersion, and homing, such that the speci�ed constraints are satis�ed, as
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Figure 5-4: The implementation of ocking as a combination of safe{wandering, dis-
persion, aggregation, and homing. Safe{wandering, aggregation, and dispersion pro-
duce robust ocking, and homing gives the ock a goal location and direction to move
in.
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Figure 5-5: An example of direct basic behavior combination within a higher{level
task.

shown in Figure 5-4. Intuitively, aggregation keeps the robots from getting too far

from each other, dispersion keeps them from getting too close, and safe{wandering

prevents each agent individually, and thus the ock as a whole, from colliding with

any non{agent obstacles, and homing moves the ock toward some goal. Flocking can

be further reduced to a combination of just safe{wandering, aggregation, and homing

for a range of values of �flock, such that �flock < �aggregate, so that safe{wandering also

has a dispersing e�ect.

The given set of basic behaviors allows for many other direct composites, such as

surrounding, a combination of aggregation and following, and herding, a combination

of surrounding and ocking, as shown in Figure 5-5.

For any given high{level goal, the structure of direct behavior combination is a
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Figure 5-6: Direct behavior combinations use continuous summing functions. Con-
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a common higher{level goal. In this example, two types of surrounding are used,
depending on the sensory conditions.
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Figure 5-7: The general form of temporal behavior combinations switches between
mutually exclusive behaviors. Only one behavior is active at a time, resulting in a
behavior sequence triggered by di�erent sensory conditions.

directed acyclic graph (DAG) with behaviors as nodes and inheritance relations as

arcs. The semantics of the arcs are identical to the semantics of the
L

and
N

combi-

nation operators. Basic behaviors are the originator nodes of the graph. Except for

the �nal high{level behavior node, all other nodes are combinations of originator and

other intermediate nodes in the graph. Figure 5-5 illustrates an example of a graph

in which aggregation is shared by two intermediate nodes: ocking and surrounding.

Since behavior combinations are based on continuous function (weighted sums) of the

input parameters, the same nodes can be used in multiple combinations. For example,

�gure 5-6 illustrates the use of the same basic behaviors (aggregation and following)

to construct two di�erent types of surrounding behaviors, and then combining both

in herding.

5.1.2 Temporal Combinations of Basic Behaviors

Basic behaviors and their direct combinations achieve and maintain single goals.
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Figure 5-8: The implementation of foraging using a temporal combination of safe{
wandering, dispersion, homing, and following. Each triggered by di�erent sensory
conditions, the behaviors collectively result in foraging.

For example, dispersion achieves the goal of establishing a minimumdistance between

all of the agents while following maintains the goal of preserving a queue of moving

agents each of which is within a given distance and direction from its neighbors. In or-

der to achieve higher{level tasks de�ned by multiple sequential goals, basic behaviors

must be properly temporally combined.

Such combinations are temporal sequences of basic behaviors, each of which is

triggered by appropriate conditions in the environment, as shown in Figure 5-7. Com-

bining interactions temporally relies on the agents' ability to perceive the state that

triggers a behavior change. Given this ability, simple �nite state machine controllers

can be designed to generate a variety of multi{goal behaviors. This method is illus-

trated on an implementation of foraging, a group task of gathering objects (\food")

from the environment (Figure 5-8).

In foraging, the high{level achievement goal of the group is to collect objects from

the environment and deliver them home. This complex behavior is a prototype for

a variety of tasks including harvesting, garbage collection, and clearing toxic spills

and mine{�elds. For the foraging task, in addition to having the basic behavior

repertoire, individual agents are also able to search for pucks, pick them up, and

drop them. Furthermore, foraging uses a restricted notion of kinship de�ned by the

agents' \puck state:" any two robots without pucks are \kin", as are any two that

are carrying pucks. Since the robots cannot directly sense each other's external state,

puck state is is broadcast by each of the robots within a limited range via the radios.

Foraging is initiated by dispersion1, and then safe{wandering. Finding an object

triggers homing. Encountering another agent with a di�erent immediate goal, as

1Floreano (1993) shows that evolved systems of ants favor dispersion as the �rst step in foraging.
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Condition Behavior

at-home? have-puck? crowded? behind-kin? sense-puck?

0 0 0 0 0 safe{wandering
0 0 0 1 0 following
0 0 1 0 0 dispersion
0 0 1 1 0 dispersion
0 1 0 0 0 homing
0 1 0 1 0 following
0 1 1 0 0 dispersion
0 1 1 1 0 dispersion
1 0 0 0 0 safe{wandering
1 0 0 1 0 following
1 0 1 0 0 dispersion
1 0 1 1 0 dispersion
1 1 0 0 0 drop-puck
1 1 0 1 0 drop-puck
1 1 1 0 0 drop-puck
1 1 1 1 0 drop-puck
0 0 0 0 1 pickup-puck
0 0 0 1 1 pickup-puck
0 0 1 0 1 pickup-puck
0 0 1 1 1 pickup-puck
0 1 0 0 1 homing
0 1 0 1 1 following
0 1 1 0 1 dispersion
0 1 1 1 1 dispersion
1 0 0 0 1 safe{wandering
1 0 0 1 1 following
1 0 1 0 1 dispersion
1 0 1 1 1 dispersion
1 1 0 0 1 drop-puck
1 1 0 1 1 drop-puck
1 1 1 0 1 drop-puck
1 1 1 1 1 drop-puck

Table 5.1: The controller for foraging. For brevity, conditions for avoidance are
left out. Whenever one is sensed, the agent executes the avoidance rules of safe{
wandering.
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herding

foraging

following

homing

aggregation

dispersion flocking

safe−wandering

Figure 5-9: An example of applying both direct and temporal combinations to the
same basic behaviors to generate various higher{level behaviors. In this case, safe{
wandering is used to generate ocking, and it is used in foraging. Similarly, aggregation
is used in foraging and in surrounding.

manifested by its external state, e.g., not carrying a puck induces safe{wandering

away from the object. Conversely, encountering kin triggers ocking. Reaching home

and depositing the object triggers dispersion if multiple robots are at home, or safe{

wandering if the robot is alone. Figure 5.1 shows the controller for the task.

Foraging demonstrates how basic behaviors can be temporally combined into a

higher{level compound behavior. The combination is simple in that conicts be-

tween two or more interacting agents, each potentially executing a di�erent behavior,

are resolved uniformly due to agent homogeneity. Since all of the agents share the

same goal structure, they will all respond consistently to environmental conditions.

For example, if a group of agents is following toward home and it encounters a few

agents dispersing, the di�erence in the agents' external state will either induce fol-

lowing agents of the same kind or avoiding agents of any other type, thus dividing or

\specializing" the group again.

Foraging is just one example of a variety of spatial and object manipulation tasks

that can be implemented with the described architecture and the given basic behav-

iors. Other tasks include sorting objects, building structures, surveying and mapping

an unknown territory, and many others.

Figure 5-9 illustrates how the same basic behaviors, in this case dispersion and

safe{wandering, can be used in a direct combination, ocking, and also in a temporal

combination, foraging.

The next section demonstrates robot implementations of compound behaviors.
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Flock:

Sum outputs from Safe--Wander, Disperse, Aggregate, and Home.

Algorithm 5.1:

5.2 Implementations of Compound Behaviors

5.2.1 Flocking

As described earlier, ocking is a form of structured group movement that serves to

minimize interference, protect individuals, and enable e�cient information exchange.

Flocking was implemented with a simple algorithm shown in Algorithm 5.1.

The choice of weights on the di�erent behavior outputs was determined by the

dynamics and mechanics of the agents, the ranges of the sensors, the agents' turning

radii, and their velocity. In the robot implementation, ocking consisted of a combi-

nation of safe{wandering and aggregation only, by using the appropriate combination

of �avoid and �aggregate thresholds.

Like following, ocking is a coordinated{motion behavior which is best evaluated

by testing its duration, repeatability and robustness. As expected, performance of

ocking was dependent on the size of the ock. Small ocks, consisting of four or

fewer agents, were less stable2, while larger ocks remained stable even if any of the

agents failed due to mechanical problems. Figure 5-10 demonstrates just such a case,

in which one of the agents' position sensors failed and it quickly diverged from the

ock.

The utility of ocking can easily be seen through its interference{minimizing prop-

erties. For instance, it is much more e�cient than individualistic homing as the num-

ber of homing agents increases. Although ocking involves a compromise between

individual and group goals, which may make an individual agent's path locally sub-

optimal, the collective behavior is more e�cient in that all of the agents get to the

destination faster than they do, on the average, using individualist greedy homing

strategies3.

Typical ocking behavior is shown in �gures 5-11, 5-12, and 5-13. Flocking was

also tested in more challenging environments. For example, a barrier roughly the size

of two robots was presented in front of the ock as the ock was moving. As expected,

2According to the de�nition of stability given in Chapter 4.1
3Tra�c laws are human forms of following and ocking. They impose structure on the collective

motion so as to minimize average interference.
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Figure 5-10: Flocking behavior of �ve robots. One of the robots separates, without
a�ecting the behavior of the others. Due to a failure of the position sensors, the robot
falls behind the group and cannot rejoin them. The rest of the robots reorganize and
maintain the global structure.
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Figure 5-11: Flocking behavior of the same �ve robots in another trial. The robots
maintain a coherent ock, in spite of the often large position errors sensed by individ-
uals. These errors are manifested in the variability in the spacing between the robots
as the ock moves.
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Figure 5-12: Flocking behavior of four robots. The robots are initiated in a line and
they quickly move into a ock. There are no �xed leaders so robots at the front of
the ock occasionally exchange places with others due to velocity and other control
variations, all the while maintaining the ock formation.
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Figure 5-13: Another run of four ocking robots. The robots are started in a di�cult
initial con�guration: facing each other. After an initial reordering they establish a
ock and maintain it as they move across the workspace. As shown in the last frame,
the position sensors on robot #2 faltered so its path appears discontinuous, but its
actual trajectory keeps it with the ock.
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the ock split into two groups around the obstacle and rejoined on the other side.

Empirical data for this and other experiments is available on video tape.

The idea that ocking can be generated by simple rules has been popular among

many researchers. For example, DeScnutter & Nuyts (1993) and Goss, Deneubourg,

Beckers & Henrotte (1993) show a similar approach by demonstrating how simple

rules can result in gull ock formation in simulation. Even more directly, Reynolds

(1987) presents an elegant graphical simulation of bird ocking. However, the robot

implementation required more rules due to the more complex dynamics.

5.2.2 Foraging

Foraging consists of �nding pucks in the environment, picking them up, and de-

livering them to the home region. An e�cient implementation of foraging serves to

validate our proposed behavior combination strategy. Foraging was tested on two

di�erent types of robots and environments, and its performance was repeatable and

robust.

The shown implementation of foraging did not attempt to directly optimize the

amount of time required to collect all of the pucks, although this criterion was in-

directly minimized by diminishing interference between agents. Foraging was tested

to validate that basic behavior sequencing was appropriate and robust, and that the

higher{level task of collecting pucks was accomplished e�ectively. Figures 5-14, 5-15,

and 5-16 demonstrate typical foraging performance by showing snapshots at di�er-

ent stages during the foraging process. Most foraging runs were terminated after 15

minutes, at which time about two thirds of the pucks were collected. The duration

of the runs was largely due to the ine�cient search strategy: the robots did not

remember where the pucks were. An improved strategy, in which the robots remem-

bered the location of the pucks and returned to it repeatedly until all of the pucks

were transported, was used as a part of the group learning algorithm described in

Chapter 8.

Not taking advantage of exact puck location was at least partially justi�ed since,

over the course of an experimental run, the pucks outside the home region were pushed

around and gradually dispersed over an expanding area. This, in turn, a�ected the

global behavior of the system, since the more dispersed the pucks became the more

likely the robots were to stumble onto one of them by random search.

Puck dispersion was a side{e�ect, a result of the dynamics of interaction between

the robots and the environment. It was also an inuence on the dynamics since it

a�ected the global behavior and performance of the system. Although a relatively

simple e�ect, it would not be predicted by standard analytical models since it would
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Figure 5-14: Foraging behavior of six robots. The robots are initiated in the home
region. The pucks are initially clustered at the bottom center of the workspace. After
dispersing, they safe{wander and search for pucks, pick them up, and take them home.
If they encounter another robot with a puck while they are carrying one, they follow,
as shown in the third frame of the data. After some time the pucks accumulate in
the home region.
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Figure 5-15: Foraging behavior of seven robots. In this experiment more robots
e�ectively manage to transport a larger number of pucks home than the group of six
robots shown above. Boxes around robots indicate they are executing avoidance in
safe{wandering (e.g. see robots #14 and #16 in the last frame of the data, avoiding
the walls of the workspace).
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Figure 5-16: Another example of foraging behavior with seven robots. As before, the
robots gather around the area with pucks (at the \top" of the workspace), picking
them up, and gathering them in the home region. Interference is resolved by safe{

wandering and following.
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likely fall below the granularity of the model precision level.

In our system, foraging could be accomplished by a single agent, so the task itself

does not require cooperation. Thus, the goal of the collective solution is to accel-

erate convergence with the growing size of the group. Arkin et al. (1993) describe

simulation results of a similar task with varying numbers of agents and inter{agent

communication. Complementary to the results presented here, they �nd that perfor-

mance improves with simple communication. They also report an improvement of

performance with growing group size up to a �xed point for the particular retrieval

and gathering task. This result is in agreement with the results shown here that

illustrate the interference e�ects of larger and thus higher{density groups in con�ned

workspaces. Given the number of pucks to be collected, the collective solutions pro-

posed here always outperformed a single agent, but as the group size grew, so did

the importance of behaviors that minimized interference. This relationship will be

further elaborated on in Chapter 8 which describes the approach to group learning.

5.2.3 Docking & Parking

This section gives another example of combining behaviors through the use of tempo-

ral switching and environmental constraints. Achieving arbitrary agent behaviors can

be di�cult as there is a often minimal match between the dynamics of the agent and

its environment and the human{speci�ed task. We now describe how docking, another

group behavior that, if programmed top{down, would be di�cult to achieve, can be

simply generated by taking advantage of the system dynamics, and the interaction of

simple basic behaviors.

Docking behavior \parks" the robots along some kind of a boundary. In general,

getting a collection of robots to park along a line is di�cult. A guaranteed solution

can be found by geometric planning, but is intractable for uncertain, dynamic envi-

ronments with multiple agents. In contrast to a tightly{controlled top down approach,

we demonstrate the following a bottom{up alternative.

Our docking algorithm takes advantage of environmental constraints, i.e. the

existence of other agents, the boundary, and the walls (see �gure 5-17). The individual

robot's goal is to keep moving safely and avoid collisions and drops. The collective

goal is to achieve a state in which all of the robots are parked along the edge of a

step, which they can detect using their downward{pointing IR sensors.

The algorithm consists of two behaviors:

� safe{wandering { keeps the robot moving forward and avoiding collisions,

� avoiding-drops { stops the robot from falling o� an edge.
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Figure 5-17: Docking behavior in progress, based on the constraints of the environ-
ment and three rules: avoid, go forward, and don't fall of the edge.

The behaviors are combined, in parallel, with avoiding behaviors taking prece-

dence over wandering, as shown in Algorithm 5.2 below.

Dock:

If ground cannot be sensed

stop.

If another robot is near by

avoid.

If all is clear

go forward.

Algorithm 5.2:

If the three behaviors are executed in a con�ned space with a vertical boundary,

they will produce in a tight docking behavior. Since no position control is used, no

speci�c docking positions are determined a priori. The algorithm is insensitive to

initial conditions, to the number of robots, and to their avoidance strategies.

We tested the above algorithm in over 20 trials on groups from one to �ve robots.

In all cases, it quickly resulted in all of the robots lined up along the edge, as shown

in Figures 5-18 and 5-19.

Although we only explored the simplest case of docking, the environment con-
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Figure 5-18: The end result of the docking behavior of �ve robots.

Figure 5-19: Another view of the docking robots.
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straints can be eliminated if the robots use some position control. Similar simple

behaviors and combinations have been used in other behavior{based systems. For

instance, Matari�c (1990a) uses three rules to achieve boundary following on a sonar{

based mobile robot. Steels (1994a) implements docking onto a charger with two

rules: one that approaches a light source above the charger, and another that avoids

obstacles.

5.3 Combining Behaviors on Di�erent Agents

This chapter has discussed ways of combining behaviors into higher{level compos-

ites, within a control system of a single agent. The described direct and temporal

combination operators both rely on all of the agents' ability to respond to external

conditions consistently. As long as all of the agents follow consistent social rules, i.e.

use compatible social repertoires, conict within and between agents is minimized.

Homogeneity simpli�es the task of combining behaviors, since the concern of conict

between behaviors is reduced by consistent social rules followed by all the agents.

However, although our agents are homogeneous in terms of their high{level goals,

their immediate goals may di�er at any point in time, i.e. they can be \locally

heterogeneous." The arbitration of an encounter between two or more such agents is

in fact analogous to the behavior selection problem at the level of control of a single

agent. Consequently, similar strategies apply to the multi{agent case: the behaviors

of the agents can be combined in some form, or one of the agents will take precedence

over the rest.

As previously argued (Matari�c 1992a), an unambiguous precedence hierarchy be-

tween the competing behaviors or agents is the simplest way to guarantee a globally

consistent result. Thus, ensuring minimal higher{order e�ects and interference in a

(locally) heterogeneous society can be accomplished by a strict hierarchy of control.

This type of social organization appears quite stable and ubiquitous in animal and

human societies. It often employs rather elaborate dominance structures requiring

the maintenance of identities, distinguishing characteristics, and histories of previous

encounters (McFarland 1987, Gould 1982), thus demanding higher cognitive over-

head than the agents we have experimented with. As discussed in Section 4.5.2, such

overhead may be necessary for certain types of complex, time{extended interactions.
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5.4 Summary

This chapter has addressed methods for minimizing interference between behaviors

on a single agent and behaviors between two or more interacting agents. A gen-

eral architecture was introduced for combining a �nite set of basic behaviors into an

unbounded repertoire of higher{level behaviors based on direct and temporal com-

binations. The two types of combination operators used by the architecture were

demonstrated on compound spatial behaviors of ocking, foraging, and docking, im-

plemented and tested on the collection of mobile robots.

The next chapter introduces a methodology for automating the behavior combi-

nation process through the use of learning.
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Chapter 6

Learning in Situated Systems

So far we have dealt with the problem of synthesizing intelligent group behavior by

hand. We now extend the presented ideas to include learning, an ability that allows

the agent to acquire new and adapt old behaviors for individual and group bene�t.

6.1 Motivation

Why learn?

Learning has two purposes universal across domains. It is useful for:

1. adapting to external and internal changes

2. simplifying built{in knowledge

The ability to cope with changes in the environment is termed adaptability. It

allows agents to deal with noise in their internal and external sensors, and with

inconsistencies in the behavior of the environment and other agents. Adaptability

comes at a phenotypical and cognitive cost, so creatures are adapted only to a speci�c

niche. Consequently, all creatures, natural and otherwise, fail at their tasks under

certain conditions. The purpose of learning is to make the set of such conditions

smaller.

Adaptability does not necessitate learning. Many species are genetically equipped

with elaborate \knowledge" and abilities, from the very speci�c, such as the ability

to record and utilize celestial maps (Waterman 1989), to the very general, such as

plasticity in learning motor control (McFarland 1987) and language (Pinker 1994).

But genetic code is �nite. In fact, primate and human cortical neural topology is

too complicated to fully specify in the available genome, and is instead established by
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Problem Learning in complex situated domains.

Assertion Traditional reinforcement learning

must be reformulated.

Approach Replace states, actions and reinforcement

with conditions, behaviors, heterogeneous reward functions

and progress estimators.

Validation Implement learning on a group of mobile robots

learning to forage.

Table 6.1: A summary of the situated learning problem addressed here, and the
structure of the proposed solution.

spontaneous synaptic �ring in utero and in the �rst decade of life (Vander et al. 1980).

In addition to compensating for genetic parsimony, learning is useful for optimizing

the agent's existing abilities, and necessary for coping with complex and changeable

worlds. It is often argued that societies exist largely for conservation and propagation

of behavior strategies too complex to be passed on genetically.

The answer to the built{in versus learned tradeo� varies across species and envi-

ronments. The work described here addresses this fundamental tradeo� in the domain

of situated multi{agent systems.

The rest of the thesis will address the following problem: how can a collection of

situated agents learn in a group environment? This problem will be addressed in a

nondeterministic, noisy and error{prone domain with stochastic dynamics, in which

the agent does not have an a priori model of the world.

We propose a formulation of reinforcement learning that uses a level of description

that makes the state space manageable, thus making learning possible. Furthermore,

we present two methods for shaping reinforcement to take advantage of information

readily available to the agent, and to make learning more e�cient. These ideas

are validated by demonstrating an e�ective learning algorithm on a group of robots

learning to forage. Table 6.1 summarizes the problem and the approach.
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6.2 Relevant Learning Models

There are many things an agent can learn, but not many ways in which it can learn

it. According to what is being learned, existing approaches can be classi�ed into the

following categories:

� learning declarative knowledge

� learning control

� learning new behaviors

� learning to select behaviors/actions

6.2.1 Learning Declarative Knowledge

Learning declarative knowledge is one of the founding areas of AI but also one that is

least directly related to the work in this thesis. The only type of declarative knowledge

that situated agents have had to deal with to date are maps of the environment.

Much of the robotics literature deals with the problem of constructing and updating

such maps in variety of situated domains (see Matari�c (1990a) for a review of the

literature). Maps and world models are closely tied to action in the world, which

is why they are the primary type of declarative knowledge so far used in situated

agents1. In contrast, this thesis focuses on procedural knowledge that is directly tied

to acting and interacting in the world. The remaining learning categories are directly

tied to action2.

6.2.2 Learning Control

Learning control is a growing �eld based on adaptive control, a branch of control

theory. Problems in adaptive control deal with learning the forward or inverse model

of the system, i.e., the plant. Forward models provide predictions about the output

expected after performing an action in a given state. Analogously, inverse models

provide an action, given the current state and a desired output (Jordan & Rumel-

hart 1992). Learning control has been applied to a variety of domains and has used

a number of di�erent learning methodologies. Connectionist algorithms are most

popular, (see Miller, Sutton & Werbos (1990) for a representative collection), but

1Note: not all maps are explicit and declarative. See Matari�c (1990a) for examples.
2Author's bias: declarative learning can be further divided into as many interesting categories,

but is not the area pursued here.
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other approaches have also been studied (e.g., Atkeson, Aboaf, McIntyre & Reinkens-

meyer (1988), Atkeson (1990), Schaal & Atkeson (1994)). Adaptive control problems

typically deal with learning complex dynamical systems with non{linearly coupled

degrees of freedom usually involved in moving multi{jointed manipulators, objects,

and physical bodies.

6.2.3 Learning New Behaviors

Learning new behaviors deals with the problem of acquiring strategies for achieving

particular goals. Because the notion of behavior is not well de�ned, neither is the

behavior learning problem.

We de�ned behavior to be a control law with a particular goal, such as wall{

following or collision avoidance. The de�nition is general and meant to refer to a

level of description above basic control without specifying what that level is, since

it varies with the domain. Furthermore, the concept of behavior contains informal

notions about generality and adaptivity that are di�cult to state precisely without

domain{speci�c grounding.

Consequently, most learning control problems appear to be instances of behavior

learning, such as learning to balance a pole (Barto, Sutton & Anderson 1983), to play

billiards (Moore 1992), and to juggle (Schaal & Atkeson 1994). Furthermore, work on

action selection, deciding what action to make in each state, can be viewed as learning

a higher{level behavior as an abstraction on the state{action space. For example, a

maze{learning system can be said to learn a speci�c maze{solving behavior.

Genetic learning has also addressed learning behaviors in simulated worlds (Koza

1990). Since learning behaviors requires �nding appropriate parameter settings for

control, it can be cast as an optimization problem, for which genetic algorithms are

particularly well suited (Goldberg 1989). However, since genetic algorithms operate

on an abstract encoding of the learning problem, the encoding requires a good model

of the agent and the environment in order to generate useful behaviors. Since the

problem of modeling situated worlds is notoriously di�cult, only a few genetic al-

gorithms have produced behaviors that successfully transferred to physical systems

(Steels 1994b, Cli�, Husbands & Harvey 1993, Gallagher & Beer 1993).

However, none of the above learning approaches can be said to learn new behaviors

according to the precise de�nition of the problem. The posed \behavior learning

problem" (Brooks & Matari�c 1993) requires that the agent acquire a new behavior

using its own perceptual and e�ector systems, as well as to assign some semantic label

to the behavior, in order to later recognize and use it as a coherent and independent

unit. Behavior learning appears to require bridging the elusive signal{to{symbol gap,
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even for the most limited notion of \symbol."

Given this de�nition, no existing work performs behavior learning. Learning con-

trol and learning action selection are not strictly instances of behavior learning be-

cause in both cases, by de�nition, only a single behavior is learned and no further

abstraction is performed. Similarly, genetic algorithms do not address the stated

behavior learning problem either, because in their domain the semantics are also

provided by the designer.

The signal{to{symbol problem is one of the hallmark challenges in AI. Because it

bridges a gap between two already estranged communities, it has not received much

attention. Another challenge of the problem is setting it up to avoid biasing the

learner inappropriately, but still be able to evaluate its performance. It is unlikely

that \behaviors", \concepts", and \symbolic representations" that are automatically

generated by a situated agent will map neatly from the agent's sensorium into the

human observer's semantic space. Nonetheless, the situated domain is particularly

well suited for this type of work as it allows for grounding the agents' learning in

physical behavior that is observable and thus can be evaluated externally from its

mechanism and representation.

6.2.4 Learning to Select Behaviors

If learning new behaviors is learning how to do something, then learning to select

behaviors is learning when to do it. Behavior selection has not been extensively

studied so far, largely due to the lack of formalization of \behavior" as a building

block for control. The work that has been done on the topic has used reinforcement

learning techniques (e.g., Maes & Brooks (1990) and Maes (1991)). Learning behavior

selection is by de�nition a reinforcement learning problem as it is based on correlating

the behaviors the agent performs and the feedback it receives as a result.

6.3 Reinforcement Learning

Reinforcement learning (RL) is a class of learning methodologies in which the agent

learns based on external feedback received from the environment. The feedback is

interpreted as positive or negative scalar reinforcement. The goal of the learning

system is to maximize positive reinforcement (reward) and/or minimize negative re-

inforcement (punishment) over time. Traditionally, the learner is given no explicit

built{in knowledge about the task. If the learner receives no direct instruction or

answers from the environment the learning is considered unsupervised (Barto 1990).

The learner produces a mapping of states to actions called a policy.
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Reinforcement learning originated in Ivan Pavlov's classical conditioning experi-

ments (Gleitman 1981). Embraced by behaviorism, stimulus{response learning be-

came the predominant methodology for studying animal behavior in psychology and

biology. Ethology, the study of animals in their natural habitats, developed in re-

sponse to the tightly controlled laboratory experimental conditions commonly used by

behaviorists. In the mean time, RL was adopted and adapted by the computational

community, and applied to various machine learning problems.

Maze{learning was formulated as a reinforcement learning problem based on re-

ward and punishment in the �rst well known application of RL (Minsky 1954). Soon

thereafter, the problem of learning a scoring functions for playing checkers was suc-

cessfully addressed with an RL algorithm (Samuel 1959). Subsequently, RL was

applied to a variety of domains and problems, most notably in the Bucket Brigade

algorithm used in Classi�er Systems (Holland 1985), and in a class of learning meth-

ods based on Temporal Di�erencing (Sutton 1988). Reinforcement learning has been

implemented with a variety of algorithms ranging from table{lookup to neural net-

works, and on a broad spectrum of applications, including tuning parameters and

playing backgammon.

Our work is concerned with reinforcement learning on situated, embodied agents.

In particular, it is focused on issues that arise when traditional models of RL, and

algorithms applied to those models, are used in the complex multi{agent domain we

are working with. To address these issues, we begin by describing the most commonly,

but not exclusively, used RL model.

6.3.1 Markov Decision Process Models

Most computational models of reinforcement learning are based on the assumption

that the agent{environment interaction can be modeled as a Markov Decision Process

(MDP), as de�ned below:

1. The agent and the environment can be modeled as synchronized �nite state

automata.

2. The agent and the environment interact in discrete time intervals.

3. The agent can sense the state of the environment and use it to make actions.

4. After the agent acts, the environment makes a transition to a new state.

5. The agent receives a reward after performing an action.
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While many interesting learning domains can be modeled as MDPs, situated

agents learning in nondeterministic, uncertain environments do not �t this model.

The next section describes the reasons why, by addressing each of the model assump-

tions in turn.

6.3.2 State

Most RL models are based on the assumption that the agent and the environment

are always in a clearly{de�ned state that the agent can sense. In situated domains,

however, the world is not readily prelabeled into appropriate states, and the world

state is not readily and consistently accessible to the agent. Instead, the world is

continuous and partially observable.

Continuity

The state of a situated agent consists of a collection of properties, some of which are

discrete, such as the inputs from binary sensors, others continuous, like the velocities

of wheels. Even for the simplest of agents, a monolithic descriptor of all state prop-

erties is prohibitively large. It scales poorly with increased sensory capabilities and

agent complexity in general, and results in a combinatorial explosion in standard RL.

Most models to date have bypassed continuous state by presuming higher{level

sensory operators such as \I see a chair in front of me." But such operators have

been shown to be unrealistic and largely unimplementable in systems using physical

sensors (Agre & Chapman 1990, Brooks & Matari�c 1993). In general, the problem of

partitioning continuous state into discrete states is hard (Ko�seck�a 1992), and even if

a reasonable partitioning of the world is found, there may be no mapping from the

space of sensor readings to this partitioning.

Observability

Although continuous and often complex, sensors have limited abilities. Instead of

providing descriptions of the world, they return simple properties such as presence of

and distance to objects within a �xed sensing region. Consequently, they cannot dis-

tinguish between all potentially relevant world states. The collapse of multiple states

into one results in partial observability, i.e. in perceptual aliasing, a many{to{one

mapping between world and internal states. The inability to distinguish di�erent

states makes it di�cult and often impossible for the learning algorithm to assign ap-

propriate utility to actions associated with such states (Whitehead & Ballard 1990).

Partially Observable Markov Decision Processes (POMDPs) have been developed
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by the operation research community for dealing with this problem. Partial observ-

ability is added into a Markov model by introducing a discrete probability distribution

over a set of possible observations for a given state. POMDPs have been studied and

successfully applied to theoretical learners (Cassandra, Kaelbling & Littman 1994),

but have not yet been used empirically largely due to the fact that observability

models of situated systems are not generally available.

Generalization

Any learner is caught in a paradox: it must disambiguate the relevant inputs, but it

also must discard all irrelevant inputs in order to minimize its search space. However

it may be structured, the learner's space in traditional RL is exponential in the size

of the input, and thus marred by the curse of dimensionality (Bellman 1957). Some

form of input generalization, or collapsing of states into functional equivalence

classes, is necessary for almost all problems.

Human programmers perform generalization implicitly whenever they use clever

orderings of rules, careful arbitration, and default conditions, in crafting control

strategies. They minimize ambiguity and maximize parsimony by taking advantage

of their domain knowledge.

In RL, in the absence of domain knowledge, state generalization has been ad-

dressed with statistical clustering methods using recursive partitioning of the state

space based on individual bit relevance (Chapman & Kaelbling 1991, Mahadevan &

Connell 1991a, Moore 1991, Moore 1993). It is also confronted in Classi�er Systems

that use binary strings as state descriptors (Holland 1986). The state can contain

wild cards (#'s) that allow for clustering states, with the exible grouping potential of

full generality (all #'s) to full speci�city (no-#'s). Generalization results in so-called

\default hierarchies" based on the relevance of individual bits changed from #'s to

speci�c values. This process is analogous to statistical RL methods (Matari�c 1991).

The input generalization problem is also addressed by the connectionist RL lit-

erature. Multi{layer networks have been trained on a variety of learning problems

in which the hidden layers constructed a generalized intermediate representation of

the inputs (Hinton 1990). While all of the RL generalization techniques are non{

semantic, the table{based methods and Classi�er System approaches are somewhat

more readable as their results are a direct consequence of explicit hand{coded criteria.

Connectionist approaches, in contrast, utilize potentially complex network dynamics

and produce e�ective but largely inscrutable generalizations.

All of the described generalization techniques are e�ective but require large num-

bers of trials to obtain su�cient statistical information for clustering states. As such,

they are an incremental improvement of the overwhelmingly slow exponential learning
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algorithms. Our work will explore a di�erent alternative, one that takes principled

advantage of domain knowledge instead of purely statistical generalization.

Paradoxically, the unwieldy fully{exponential3 state{action search space used by

standard RL models gives them one of their main positive properties: asymptotic

completeness. While hand coded reactive policies take advantage of the cleverness

of the designer, they are rarely provably complete. Most irrelevant input states are

easily eliminated, but potentially useful ones can be overlooked. On the other hand,

complete state spaces guarantee that, given su�cient time and su�ciently rich re-

inforcement, the agent will produce a provably complete policy. Unfortunately, this

quality is of little use in time{bounded situated domains.

6.3.3 State Transitions

Simple MDP{based models employ discrete, synchronized state transitions. In con-

trast, in situated domains the world state and the agent state change asynchronously

in response to various events. In dynamic domains, only a subset of those events are

directly caused by the agent's actions or are in agent's control. In general, events

can take di�erent amounts of time to execute, can have delayed e�ects, and can

have di�erent consequences under identical conditions. In short, situated domains

are di�cult to model properly.

Deterministic models do not capture the dynamics of most situated domains,

so nondeterministic alternatives have been considered (Lin 1991). Unfortunately,

most are based on unrealistic models of sensor and e�ector uncertainty with overly

simpli�ed error properties. They are typically based on adding Gaussian noise to each

sensed state and each commanded action. However, uncertainty in situated domains

does not follow Gaussian distributions but instead results from structured dynamics

of interaction of the system and the environment. These dynamics play an important

role in the overall behavior of the system, but are generally at a description level too

low to be accurately modeled or simulated.

As an example, consider the properties of realistic proximity and distance sen-

sors. The accuracy of ultrasound sensors is largely dependent on the incident angle

of the sonar beam and the surface, as well as on the surface materials, both of which

are di�cult and tedious to model accurately. Infra{red and vision sensors also have

similarly detailed yet entirely di�erent properties, none of which are accurately rep-

resented with simple models. Simple noise models are tempting, but they produce

arti�cial dynamics that, while potentially complex, do not model the true complexity

3In the number of state bits.
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of realistic physical systems. Consequently, many elegant results of simple simulations

have not been successfully repeated on more complex agents and environments.

Given the challenges of realistic modeling, it is generally very di�cult to obtain

transition probabilities for nondeterministic models of situated domains. Models for

such domains are not readily available, and must be obtained empirically for each

system by a process analogous to learning a world model. It is di�cult to estimate

if obtaining a world model for a given domain requires any more or less time than

learning a policy for some set of goals. Consequently, insightful work on learning

world models for more intelligent exploration (Sutton 1990, Kaelbling 1990) is yet to

be made applicable to complex situated domains.

We have argued that accurate models of situated domains are di�cult to obtain

or learn. Instead, we will focus in this work on learning policies in systems without

explicit world models. The next section describes the general form of RL algorithms

that have been used for such policy learning.

6.3.4 Algorithms

Reinforcement learning algorithms have the following general form (Kaelbling 1990):

1. Initialize the learner's internal state I to I0.

2. Do Forever:

a. Observe the current world state s.

b. Choose an action a = F (I; s)

using the evaluation function F .

c. Execute action a.

d. Let r be the immediate reward for

executing a in world state s.

e. Update the internal state I = U(I; s; a; r)

using the update function U .

The internal state I encodes the information the learning algorithm saves about

the world, usually in the form of a table maintaining state and action data. The

update function U adjusts the current state based on the received reinforcement, and

maps the current internal state, input, action, and reinforcement into a new internal

state. The evaluation function F maps an internal state and an input into an action

based on the information stored in the internal state. Di�erent RL algorithms vary

in their de�nitions of U and F .
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The predominant methodology used in RL is based on a class of temporal di�er-

encing (TD) techniques (Sutton 1988). All TD methods deal with assigning credit or

blame to past actions by attempting to predict long{term consequences of each action

in each state. Sutton's original formalization of temporal di�erencing (TD(�)) deals

with such predictions in Markovian environments, and covers a large class of learning

approaches. For example, Bucket Brigade, the delayed reinforcement learning method

used in Classi�er Systems, is an instance of TD (Matari�c 1991). Q-learning (Watkins

1989), the most commonly known and used TD algorithm, is de�ned and explained

in Appendix A, as background for subsequent comparison.

6.3.5 Learning Trials

Performance properties of various forms of TD applied to Markovian environments

have been extensively studied (Watkins & Dayan 1992, Barto, Bradtke & Singh 1993,

Jaakkola & Jordan 1993). Provable convergence of TD and related learning strategies

based on dynamic programming is asymptotic and requires in�nite trials (Watkins

1989). Generating a complete policy, however incorrect, requires time exponential in

the size of the state space, and the optimality of that policy converges in the limit

as the number of trials approaches in�nity. In practice, this translates into hundreds

of thousands of trials for up to ten{bit states. Thus, even in ideal Markovian worlds

the number of trials required for learning is prohibitive for all but the smallest state

spaces.

The situated learning problem is evenmore di�cult, however. Assuming an appro-

priately minimized state space, a learner may still fail to converge, due to insu�cient

reinforcement.

6.3.6 Reinforcement

Temporal credit assignment, assigning delayed reward or punishment, is considered

to be one of the most di�cult and important problems in reinforcement learning4.

Temporal credit is assigned by propagating the reward back to the appropriate pre-

vious state{action pairs. Temporal di�erencing methods are based on predicting the

expected value of future rewards for a given state{action pair, and assigning credit

locally based on the di�erence between successive predictions (Sutton 1988).

Reward functions determine how credit is assigned. The design of these functions

is not often discussed, although it is perhaps the most di�cult aspect of setting up

4The �rst statement of the problem is due to Samuel (1959), whose checkers{learning program
learned to reward moves that eventually lead to \a triple jump."
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a reinforcement learning algorithm. The more delayed the reward, the more trials

the learning algorithm requires, the longer it takes to converge. Algorithms using

immediate reinforcement naturally learn the fastest.

Most reinforcement learning work to date has used one of the following two types

of reward: immediate or very delayed. We postulate, however, that situated domains

tend to fall in between the two popular extremes, providing some immediate rewards,

plenty of intermittent ones, and a few very delayed ones. Although delayed reinforce-

ment, and particularly impulse reinforcement that is delivered only at the single goal,

eliminates the possibility for biasing the learning, it usually makes it prohibitively

di�cult. Most situated learning problems do not resemble mazes in which the reward

is only found at the end. Instead, some estimates of progress are available along

the way. These estimate can be intermittent, internally biased, inconsistent, and

occasionally incorrect, but if used appropriately, can signi�cantly speed up learning.

The approach presented in the next chapter takes advantage of such intermediate

estimates to shape reinforcement and accelerate learning.

6.3.7 Multiple Goals

We have argued that impulse reinforcement related to a single goal makes learning

prohibitively slow. Furthermore, single goal agents are rare in situated domains.

Instead, situated agents are best viewed as having multiple goals, some of which are

maintained concurrently, while others are achieved sequentially. For example, in our

previously described foraging task, an agent maintains a continuous low{level goal

of collision avoidance, also keeps a minimal distance from other agent in order to

minimize interference, may attempt to remain in a ock, and may be heading home

with a puck.

Most RL models require that the learning problem be phrased as a search for a

single goal optimal policy, so that it can be speci�ed with a global reward function.

Not surprisingly, if the world or the goal changes, a new policy must be learned, using

a new reward function. The existing policy will conict with the new learning and

will need to be \forgotten."

In order to enable learning of a multi{goal policy, the goals must be formulated

as subgoals of a higher{level single optimal policy. Therefore they must be sequential

and consistent. To enforce a speci�c goal sequence, the state space must explicitly

encode what goals have been reached at any point in time, thus requiring added

bits in the input state vector (Singh 1991). Although a natural extension of the RL

framework, this method requires the state space to grow with each added goal, and

cannot address concurrent goals. Sequences of goals fail to capture the dynamics of
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complex situated worlds and agents that may have one or more high{level goals of

achievement, and also a number of maintenance goals, the interaction of which has

important e�ects on the agents' behavior and rate of learning.

A more general solution to multiple goals within the traditional framework is to use

separate state spaces and reinforcement functions for each of the goals and merge them

Whitehead, Karlsson & Tenenberg (1993). However, merging policies assumes that

the necessary information for utility evaluation is available to the agent. However,

as previously discussed in relation to game{theoretic approaches (see Section 2.4.7),

that assumption may not hold in many situated domains.

6.3.8 Related Work

Work in computational RL has been active since the �fties and has become particu-

larly lively in the last decade. The majority of the contributions have been theoretical

in nature. For thorough reviews of reinforcement learning as applied to well{behaved

learning problems see Watkins (1989) and Sutton (1988). For more recent work on im-

proved learning algorithms for situated agents, largely applied to simulated domains,

see Kaelbling (1990) and Whitehead (1992). This section will focus on empirical

learning work with situated agents.

Whitehead & Ballard (1990) and Whitehead (1992) addressed the perceptual alias-

ing problem in situated RL. They proposed an approach to adaptive active perception

and action that divided the control problem into two stages: a state identi�cation

stage and a control stage, and applied appropriate learning methods to each. The

approach was demonstrated on a simulated block stacking task, but has not been

tested in an embodied domain.

Kaelbling (1990) used a simple mobile robot to validate several RL algorithms

using immediate and delayed reinforcement applied to learning obstacle avoidance.

Maes & Brooks (1990) applied a statistical reinforcement learning technique using

immediate reward and punishment in order to learn behavior selection for walking on

a six{legged robot. The approach was appropriate given the appropriately reduced

size of the learning space and the available immediate and accurate reinforcement

derived from a contact sensor on the belly of the robot, and a wheel for estimating

walking progress.

More delayed reinforcement was used by Mahadevan & Connell (1991a) in a box{

pushing task implemented on a mobile robot, in which subgoals were introduced to

provide more immediate reward. Mahadevan & Connell (1991b) experimented with

Q{learning using monolithic and partitioned goal functions for learning box{pushing,

and found subgoals necessary.
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Chapman & Kaelbling (1991) and Mahadevan & Connell (1991a) demonstrated

complementary approaches for generalization. Chapman & Kaelbling (1991) started

with a single most general state and iteratively split it based on statistics accumulated

over time. Splitting is based on the relevance of each state bit; when one is found to

be relevant, the state space is split in two, one with that bit on, and the other with

it o�. In contrast, Mahadevan & Connell (1991a) started with a fully di�erentiated

speci�c set of states, and consolidated them based on similarity statistics accumulated

over time.

Aside from traditional unsupervised reinforcement learning methods described

above, other techniques have also been explored. Pomerleau (1992) used a supervised

connectionist learning approach to train steering control in an autonomous vehicle

based on generalizing visual snapshots of the road ahead.

Thrun &Mitchell (1993) demonstrated a connectionist approach to learning visual

features with a camera mounted on a mobile robot. The features are not assigned by

the designer but are instead selected by the network's intermediate representations.

Not surprisingly, the result is not semantically meaningful to a human observer, but

is nonetheless well suited for the robot's navigation task.

The work presented here is, to the best of the author's knowledge, the �rst at-

tempt at applying reinforcement learning to a collection of physical robots learning

a complex task consisting of multiple goals. Parker (1994) implemented a non{RL

memory{based style of parameter{learning for adjusting activation thresholds used

to perform task allocation in a multi{robot system. Tan (1993) has applied tradi-

tional RL to a simulated multi{agent domain. Due to the simplicity of the simulated

environment, the work has relied on an MDP model that was not applicable to this

domain. Furthermore, Tan (1993) and other simulation work that uses communi-

cation between agents relies on the assumption that agents can correctly exchange

learned information. This often does not hold true on physical systems whose noise

and uncertainty properties extend to the communication channels.

6.4 Summary

This chapter has overviewed the key properties of reinforcement learning strategies

based on Markov Decision Process models, and their implications on learning in situ-

ated domains. Learning algorithms based on dynamic programming and traditionally

applied to such Markovian domains were also discussed. Finally, related robot learn-

ing and reinforcement learning work was reviewed.

Two main problems arise when the standard MDP formulation is applied to our

multi{agent domain: 1) the state space is prohibitively large, and 2) delayed rein-
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forcement is insu�cient for learning the foraging task. The next chapter introduces a

method of reformulating the learning problem in order to make learning both possible

and e�cient in the complex domain used in this work.
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Chapter 7

The Learning Approach

This chapter describes a formulation of the proposed reinforcement learning problem

in order to make learning possible and e�cient in the complex situated domain at

hand, as well as in situated domains in general.

In order to deal with the complexity and uncertainty of situated domains, a learn-

ing algorithm must use an appropriate level of description. A learner using too low

a level of description will result in a state space so large as to make the learning

prohibitively slow. In contrast, a learner based on too corse a level of description

cannot discover any novel and potentially useful strategies outside the structured

space allowed by the coarse representation.

An appropriate representation shapes the state space into an expressive but tractable

learning space. An e�ective learning algorithm, then, searches this learning space ef-

�ciently. Thus, given the complexities of situated agents and environments, as well as

those of reinforcement learning algorithms, any approach to situated learning should

have the following properties.

A model for situated learning should:

1. minimize the learner's state space

2. maximize learning at each trial

This chapter will address each of the desired properties in turn. First, an approach

will be described for minimizing the state space in order to make the learning problem

tractable. Second, an approach for shaping reinforcement will be proposed that makes

learning more e�cient. In both cases, the traditional primitives of reinforcement

learning (states, actions, and reinforcement) will be reformulated (�!) into subtly
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di�erent but pragmatically more e�ective counterparts, as follows:

1. states & actions �! conditions & behaviors

2. reinforcement �! multi{modal feedback

7.1 Reformulating the Problem

Traditional state{action models used by many RL approaches tend to be based on a

level of description inappropriate for complex situated domains. Their representations

abstract away important control details, but still must search excessively large state

spaces representing the agent's entire world. A large state space is not so much a sign

of a di�cult problem as it is of a poorly formulated one. We propose the following

reformulation that uses a more appropriate representation for the problem of learning

in noisy and inconsistent worlds:

Reinforcement learning in situated domains can be formulated as learning

the conditions necessary and su�cient for activating each of the behav-

iors in the repertoire such that the agent's behavior over time maximizes

received reward.

This formulation accomplishes the desired goal of diminishing the learning space

by using conditions and behaviors instead of states and actions, with the e�ect of

elevating the level of description of the learning problem.

7.1.1 Behaviors

The �rst part of the thesis has argued that behaviors are an intuitive and e�ective level

of description for control, and described a methodology for selecting and combining

basic behaviors for a given domain and set of goals. Behaviors were de�ned as goal{

driven control laws that hide the details of control. The same reasons that made

behaviors a useful abstraction in control make them an appropriate and e�cient

basis for learning.

Behaviors are more general than actions because they are not tied to speci�c

detailed states but instead triggered by a set of general conditions. For instance, a

wall-following behavior applies to any environment and any wall that the agent can

sense, and is not dependent on the agent's exact state including such information as

its (x; y) position, whether it is carrying a puck, and what is in front or behind it.

It can be said that much of the RL literature already uses behaviors without

labeling them as such. For example, an action called \left" which transports an
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agent to the next square on a grid and turns it by 90 degrees, requires a complex

control sequence. It is a control law that guarantees an output, such as the agent's

position and orientation, and is thus identical in e�ect to our de�nition of behavior.

Such a behavior, however, may not be realistic in continuous, noisy domains. In

general, atomic actions of simulated grid worlds can translate into arbitrarily complex

behaviors on embodied systems. Consequently, situated, embodied agents often use

a very di�erent set of behavior primitives, speci�cally designed for the particular

dynamics of the agent and its interaction with the world.

Behaviors elevate control to a higher and more realizable level. However, the

complexity of reinforcement learning lies in the size of the learning space, which is

traditionally exponential in the state space of the agent. In order to signi�cantly

accelerate learning, we must minimize this space as well. We propose to do so by

abstracting the learning space to a higher level, structured by the granularity of the

conditions necessary for executing each of the behaviors.

Using behaviors abstracts away the details of the low{level controller, while still

using realizable units of control, and thus guaranteeing the results, or postconditions,

of each behavior. Similarly, conditions abstract away the low{level details of the

agent's state space, and de�ne the learning space at a higher level, by state clustering.

7.1.2 Conditions

Conditions are predicates on sensor readings that map into a proper subset of the

state space. Each condition is de�ned as the part of the state that is necessary

and su�cient for activating a particular behavior. For instance, the necessary and

su�cient conditions for picking up a puck are that a puck is between the �ngers of

the robot.

The space of conditions is usually much smaller than the complete state space of

the agent, resulting in a smaller space for the learning algorithm. Furthermore, the

fewer state elements need to be sensed the less the system will su�er from error and

uncertainty. Finally, the only events relevant to the agent are those that change the

truth value of the predicates, i.e. the current condition. Those events are used to

trigger and terminate behaviors.

Reformulating states and actions into conditions and behaviors e�ectively reduces

the state space to a manageable size, thus making learning possible in a complex do-

main. The next step is to make learning e�cient, by using appropriate reinforcement.
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7.2 Reinforcement for Accelerated Learning

The amount and quality of the reinforcement determines how quickly the agent will

learn. In nondeterministic uncertain worlds, learning in bounded time requires shap-

ing of the reinforcement in order to take advantage of as much information as is

available to the agent.

In general, reinforcement learning can be accelerated in two ways: 1) by building{

in more information, and 2) by providing more reinforcement. The reward function

implicitly encodes domain knowledge and thus biases what the agent can learn. Sim-

plifying and minimizing reinforcement, as practiced by some early RL algorithms

(Sutton 1990), does diminish this bias, but it also greatly handicaps, and in situated

domains, completely debilitates the learner.

Domain knowledge can be embedded through a reward{rich and complex rein-

forcement function. This approach is e�ective, but the process of embedding seman-

tics about the world into the reward function is usually ad hoc. In the ideal case,

reinforcement is both immediate and meaningful. Immediate error signals that pro-

vide not only the sign but also the magnitude of the error result in fastest learning.

As in supervised learning, then provide the agent with the correct answer after each

trial. In learning control (Jordan & Rumelhart 1992, Atkeson 1990, Schaal & Atke-

son 1994), such error signals are critical as the learning problem is usually �nding a

complex mapping between a collection of input parameters and the desired output.

Immediate reinforcement in RL is typically a weak version of an error signal, reduced

to only the sign of the error but not the magnitude or the direction.

We propose an intermediate solution based on shaping as a version of an error

signal based on principled embedding of domain knowledge.

7.2.1 Heterogeneous Reward Functions

Monolithic reward functions with a single high{level goal, when applied to situated

domains, require a large amount of intermediate reinforcement in order to aid the

agent in learning. Intuitively, the more subgoals are used the more frequently rein-

forcement can be applied, and the faster the learner will converge. We have already

argued that situated agents maintain multiple concurrent goals, and that such goals

can be achieved and maintained by using behaviors as the basic unit of control and

learning. Thus, a task in a situated domain can be represented with a collection

of such concurrent goal{achieving behaviors. Reaching each of the goals generates

an event1 that provides primary reinforcement to the learner. The following is the

1A change in the conditions.
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general form of such event{driven reinforcement functions:

Re(c; t) =

8><
>:

r if the event E occurs

0 otherwise
e 6= 0

Event{driven reinforcement for any event E is a function of conditions c and time

t. The received reinforcement r may be positive or negative.

If necessary information about the task and the appropriate sensors are avail-

able, each of the goals can be further broken down into one or more subgoals, with

associated secondary reinforcement. In general, the speci�cation of a high{level be-

havior provides a collection of subgoals that need to be achieved and maintained. If

the achievement of a subgoal can be detected, it can be directly translated into a

reinforcement function.

A general heterogeneous reward function has the following form:

Re(c; t) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

rE1 if event E1 occurs

rE2 if event E2 occurs

: :

: :

: :

rEn if event En occurs

0 otherwise

The complete reward function is a sum of inputs from the individual event{driven

functions. Thus, if multiple events occur simultaneously, appropriate reinforcement

for all of them is received from multiple sources.

Even{driven reinforcement functions are illustrated with the following example:

� A robot receives reward Ra whenever it avoids an obstacle, and reward

Rh whenever it reaches home.

� The corresponding reward function appears as follows:

R(c; t) =

8>>>><
>>>>:

ra if an obstacle is avoided

rh if home is reached

0 otherwise

� If the robot happens to be avoiding an obstacle and reaches home at the
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same time, it receives reinforcement from both sources concurrently:

R(c; t) = ra + rh

As the above example illustrates, each of the heterogeneous reward functions

provides a part of the structure of the learning task, and thus speeds up the learning.

Event{driven reward functions associate reinforcement with the achievement of

goals and subgoals through the application of associated behaviors. They deliver

reward or punishment in response to events, i.e. between behaviors. The next section

describes a shaping mechanism for providing reinforcement during the execution of a

behavior.

7.2.2 Progress Estimators

Many goals have immediately available measures of progress, since few tasks need to

be de�ned as long sequences of behaviors without any feedback. Progress estimators

use domain knowledge to measure progress during a behavior and, if necessary, to

trigger principled behavior termination.

Feedback as a learning signal can be received from a one or more goals. Consider

the following example:

� The robot's task is to learn to take pucks home.

� Having found a puck, the robot can wait until it accidentally �nds home

and then receives a reward.

� Alternatively, it can use a related subgoal, such as getting away from the

food/puck pile, for feedback.

� In such a scheme, the longer the robot with a puck stays near food, the

more negative reinforcement it receives.

� This strategy will encourage the behaviors that take the robot away from

the food, one of which is homing.

While immediate reinforcement is not available in many domains, intermittent

reinforcement can be provided by estimating the agent's progress relative to its cur-

rent goal and weighting the reward accordingly. Measures of progress relative to a

particular goal can be estimated with standard sensors, and furthermore feedback is

available from di�erent sensory modalities.

The following are the two general forms of progress estimator functions.
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Rp(c; t) =

8><
>:

m if c 2 C 0
^ progress is made

n if c 2 C 0
^ no progress

m > 0; n < 0; C 0
� C

Rs(c; t) =

8>>>>><
>>>>>:

i if c 2 C 0
^ progress is made

j if c 2 C 0
^ regress is made

0 otherwise

i > 0; j < 0; C 0
� C

C is the set of all conditions, and C 0 is the set of conditions associated with the

given progress estimator, i.e. those conditions for which the given progress estimator

is active.

Rp and Rs have di�erent dynamics. Rp is a two{valued function that monitors

only the presence and absence of progress. Rs is a three{valued function that monitors

the presence and absence of progress, as well as negative progress or regress.

Progress estimators diminish brittleness of the learning algorithm in the following

ways:

� decrease sensitivity to noise

� encourage exploration in the behavior space

� decrease fortuitous rewards

Each is described in turn.

Decreasing Sensitivity to Noise

Progress estimators provide implicit domain knowledge to the learner. They strengthen

appropriate condition{behavior correlations and serve as �lters for spurious noise.

Noise{induced events are not consistently supported by progress estimator credit,

and thus have less impact on the learner. Consider the following example:

� Agent A is executing behavior B in condition c and receives positive

reinforcement rp by the progress estimator Rp.

� A receives negative reinforcement re from Re as a result of an event in-

duced by a sensor error.

� The impact of the negative reinforcement is diminished by the continuous

reinforcement received from Re throughout the execution of B.
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The domain knowledge behind progress estimators provides a continuous source

of reinforcement to counter intermittent and potentially incorrect credit.

Encouraging Exploration

Exploration versus exploitation is one of the critical tradeo�s in machine learning.

The agent must do enough exploration to discover new and potentially more e�cient

condition{behavior combinations, but must also optimize its performance by using

the best known pairings. Ine�ective exploration results in thrashing, repeatedly at-

tempting of one or more inappropriate behaviors.

Since situated environments are event{driven, any given behavior may persist for a

potentially long period of time. An agent has no impetus for terminating a behavior

and attempting alternatives, since any behavior may eventually produce a reward.

The learning algorithmmust use some principled strategy for terminating behaviors in

order to explore the condition{behavior space e�ectively. Progress estimators provide

such a method: if a behavior fails to make progress relative to the current goal, it is

terminated and another one is tried. By using domain knowledge to judge progress,

progress estimators induce exploration by terminating behaviors according to common

sense, rather than according to an arbitrary internal clock or some ad hoc heuristic.

Decreasing Fortuitous Rewards

A fortuitous reward is one received for an inappropriate behavior that happened to

achieve the desired goal in the particular situation, but would not have that e�ect in

general. Consider the following scenario:

� The agent has a puck and is attempting various behaviors.

� While executing avoidance in safe�wandering, A fortuitously enters the

home region.

� Without a progress estimator, A will receive a reward for reaching home,

and will thus positively associate the avoiding behavior with the goal of

getting home. It will require repeated trials in order to discover, implicitly,

that the correlation is based on the direction it is moving rather than on

safe � wandering.

� Now suppose a progress estimatorH is added into the learning algorithm.

H generates a reward when the agent decreases its distance to home. If

it fails to do so in a given time interval, the behavior is terminated.

� Although A can still receive fortuitous rewards, their impact will be

smaller compared to that of the consistent progress estimator. The con-

tinuous reward for approaching home will have a discounting e�ect on any
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fortuitous rewards the agent receives. Thus, H will bias the agent toward

behaviors that decrease the distance to home.

In general, the only way to eliminate fortuitous rewards is to know the relevance of

context a priori. Progress estimators achieve this e�ect incrementally, because behav-

iors have some measurable duration which allows progress estimators to contribute

reinforcement.

7.3 Summary

This chapter has introduced a formulation of reinforcement learning based on con-

ditions, behaviors, and shaped reinforcement in order to: 1) make learning possible

and 2) make learning e�cient in complex situated domains.

The described formulation is a direct extension of behavior{based control (Matari�c

1992a, Brooks 1991b, Brooks 1986). The presented heterogeneous reward functions

are related to subgoals (Mahadevan & Connell 1991a) as well as subtasks (White-

head et al. 1993). However, unlike previous work, which has focused on learning

action sequences, this work used a higher level of description. The proposed subgoals

are directly tied to behaviors used as the basis of control and learning. Similarly,

progress estimators are mapped to one or more behaviors, and expedite learning of

the associated goals, unlike a single complete external critic used with a monolithic

reinforcement function (Whitehead 1992).

Elevating the description, control, and learning level of the system to one based on

perceptual conditions and behaviors instead of perceptual states and atomic actions

greatly diminishes the agent's learning space and makes learning tractable. The use of

heterogeneous reward functions and progress estimators builds in domain knowledge

and contextual information thus making learning more e�cient.

The proposed reformulation forms a better foundation for situated learning, but

does not impose any constraints on the kind of learning algorithm that can be ap-

plied. Indeed, it is completely general and compatible with any reinforcement learning

approaches.

The next chapter demonstrates how this formulation was applied to the task of

learning foraging in a situated, multi{robot domain.
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Chapter 8

Learning Experiments

This chapter describes the learning experiments conducted to test the presented ap-

proach to setting up the learning space to enable learning, and shaping reinforcement

to accelerate learning in situated domains.

8.1 The Robots

The learning experiments were performed on a group of up to four fully autonomous

R2 mobile robots with on{board power and sensing (Figure 8-1). Each robot consists

of a di�erentially steerable wheeled base and a gripper for grasping and lifting objects

(Figure 8-2). The robots' sensory capabilities include piezo{electric bump sensors for

detecting contact{collisions and monitoring the grasping force on the gripper, and a

set of infra{red (IR) sensors for obstacle avoidance and grasping (Figure 8-3).

Finally, the robots are equipped with radio transceivers, used for determining ab-

solute position and for inter{robot communication. Position information is obtained

by triangulating the distance computed from synchronized ultrasound pulses from two

�xed beacons. Inter{robot communication consists of broadcasting 6{byte messages

at the rate of 1 Hz. In the experiments described here, the radios are used to deter-

mine the presence of other nearby robots. As in the �rst set of robot experiments,

the robots are programmed in the Behavior Language (Brooks 1990a).

8.2 The Learning Task

The learning task consists of �nding a mapping of all conditions and behaviors into

the most e�ective policy for group foraging. Individually, each robot learns to select
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Figure 8-1: Three of the four robots used in the learning experiments. These robots
demonstrated learning to forage by selecting among a basic behavior repertoire under
appropriate sensory conditions.

Figure 8-2: Each of the learning robots consists of a di�erentially steerable wheeled
base and a gripper for grasping and lifting objects. The robot's sensory capabili-
ties include piezo{electric bump and gripper sensors, infra{red sensors for collision
avoidance, and a radio transmitter for absolute positioning.
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Figure 8-3: The robot's sensory capabilities include piezo{electric bump and gripper
sensors used to detect collisions and to grasp pucks, infra{red sensors for collision
avoidance, and a radio transmitter for absolute positioning and message passing.

the best behavior for each condition, in order to �nd and take home the most pucks.

Foraging was chosen because it is a complex and biologically inspired task, and be-

cause our previous group behavior work, described in earlier sections and in Matari�c

(1992b) and Matari�c (1993), provided the basic behavior repertoire from which to

learn behavior selection. As was described in Section 5.1.2, foraging can be achieved

from a small basic behavior set. Such a set, given to the robots a priori, consisted of

the following �xed behavior repertoire:

� safe{wandering

� dispersion

� resting

� homing

Resting was introduced to expand the agents' behavior space, as well as to intro-

duce an internal clock that can trigger internally{generated events. The internal clock

imposed a cyclic \circadian" schedule consisting of periods of \day{time" and shorter

periods of \night{time". Resting could be used as a part of a regular recharging cycle,

or as a chance for the robots to aggregate and exchange information1.

Utility behaviors for grasping and dropping objects were also included in the

robots' capabilities, but since their conditions were not learned, they are not included

in the above basis set nor in the learning space.

1Neither of these options were used in the shown generation of robots.

132



Given the behavior repertoire, the robots were given the task of learning the

appropriate conditions for triggering each of the behaviors. By considering only the

space of conditions necessary and su�cient for triggering the behavior set, the state

space is reduced to the power set of the following clustered condition predicates:

� have-puck?

� at-home?

� near-intruder?

� night-time?

The conditions for grasping and dropping were built{in. As soon as a robot detects

a puck between its �ngers, it grasps it. Similarly, as soon as a robot reaches the home

region, it drops the puck if it is carrying one. Finally, whenever a robot is too near

an obstacle, it avoids. The three reexive behaviors were deemed to be \instinctive"

because learning them has a high cost. Learning to avoid has a potentially prohibitive

damaging cost for the robot, and is not a natural learning task, as it appears to be

innate in nature, and can be easily programmed on most systems. Puck manipulation

requires a fast and accurate response from the gripper motors, and, like the other

basic behaviors, is best suited for parameter learning. The remaining behaviors:

dispersion, safe{wandering, homing, and resting formed a more appropriate basis for

learning, because they are general and executable in a variety of situations, so �nding

the appropriate subset of such situations (conditions) for their activation is both an

interesting learning problem and a useful application for control.

As described, the foraging task may appear quite simple, since its learning space

has been appropriately minimized to include only the clustered conditions and the

few basic behaviors. In theory, an agent should be able to quickly explore it and learn

the optimal policy. In practice, however, such quick and uniform exploration is not

possible. Even the relatively small learning space presents a challenge to an agent

situated in a nondeterministic, noisy and uncertain world. As we will soon demon-

strate, even in its reformulated version this problem poses a challenge for traditional

RL methodologies using delayed reward, and thus also justi�es the proposed shaped

reinforcement strategy.

Improved reinforcement is necessary partially because, in our domain, the learner

is not provided with a model of the world. As discussed earlier, such a model is di�cult

to obtain. Without it, the agent is faced with implicitly deducing the structure

of a dynamic environment that includes other agents whose behavior occasionally

facilitates, but largely interferes with, the individual learning process (see Figures 8-4
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Figure 8-4: A scaled top view of the experimental area in which the learning experi-
ments were conducted. The workspace is small enough to result in frequent interaction
and interference between the robots. The home region is shaded.

and 8-5). Thus, the shown scenario poses a di�cult challenge for the reinforcement

learning paradigm. The next section describes our solution.

8.3 The Learning Algorithm

The learning algorithm produces and maintains a total order on the appropriate-

ness of behaviors associated with every condition, expressed as a matrix A(c; b). The

value of any condition{behavior pair (c; b) is the sum of the reinforcement R received

up to that point:

A(c; b) =
TX
t=1

R(c; t)

The values in the matrix uctuate over time based on received reinforcement.

They are updated asynchronously by any received learning signal.

The following events produce immediate positive reinforcement:

� Ep: grasped-puck

� Egd: dropped-puck-at-home

� Egw: woke-up-at-home

\Waking{up" refers to the event of the internal clock indicating the end of night{

time and the beginning of day{time.
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Figure 8-5: The camera's view of the experimental environment used for learning.
The boundary of the home region is indicated with a row of pucks for the purposes
of the photo. The pile of pucks is also marked.

The following events result in immediate negative reinforcement:

� Ebd: dropped-puck-away-from-home

� Ebw: woke-up-away-from-home

The events are combined into the following heterogeneous reinforcement function:

RE(c) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

p if Ep occurs

gd if Egd occurs

bd if Ebd occurs

gw if Egw occurs

bw if Ebw occurs

0 otherwise

p; gd; gw > 0; bd; bw < 0

Two progress estimating functions are used: I and H. I is associated with min-

imizing interference and is triggered whenever an agent is close to another agent. If

the behavior being executed has the e�ect of increasing the physical distance to the
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other agent, the agent receives positive reinforcement. Conversely, lack of progress

away from the other agent is punished, and after a �xed time period of no progress,

the current behavior is terminated.

Formally, I is the intruder avoidance progress function such that:

RI(c; t) =

8><
>:

m distance to intruder increased

n otherwise

near intruder 2 c; m > 0; n < 0

The other progress estimator, H, is associated with homing, and is initiated when-

ever a puck is grasped. If the distance to home is decreased whileH is active, the agent

receives positive reinforcement, status quo delivers no reinforcement, and movement

away from home is punished.

Formally, H is the homing progress function such that:

RH(c; t) =

8>>>>><
>>>>>:

n nearer to home

f farther from home

0 otherwise

have puck 2 c; n > 0; f < 0

The simplest learning algorithm that uses the above reinforcement functions was

implemented and tested. The algorithm simply sums the reinforcement over time:

A(c; b) =
TX
t=1

R(c; t)

The inuence of the di�erent types of feedback was weighted by the values of the

feedback constants. This is equivalent to the alternative of weighting their contribu-

tions to the sum, as follows:

R(c; t) = uRE(c; t) + vRI(c; t) + wRH(c; t)

u; v; w � 0; (u+ v + w) = 1

Binary{valued and real{valued RE, RH , and RI functions were tested. Our results

showed that di�erent weights on the reinforcement functions did not result in faster
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or more stable learning. This is not surprising, since the subgoals in the foraging task

are independent and thus their learning speed is uncorrelated.

8.4 The Control Algorithm

The following is the complete control algorithm used for learning foraging. Behavior

selection is induced by events, each of which is a change in the condition predicates.

Events can be triggered:

1. externally: e.g., a robot gets in the way of another. External events include:

Ep, Egd, and Ebd.

2. internally: e.g., the internal clock indicates night{time. Internal events in-

clude: Egw and Ebw.

3. by progress estimators: e.g., the interference estimator detects a lack of

progress and terminates the current behavior. Estimator events are triggered

by: RI(c; t) < intruder � threshold and RH(c; t) < homing � threshold.

Whenever an event is detected, the following control sequence is executed:

1. appropriate reinforcement is delivered for the current condition{behavior pair

2. the current behavior is terminated

3. another behavior is selected, according to the following rule:

(a) choose an untried behavior if one is available,

(b) otherwise choose the best behavior.

Choosing untried behaviors �rst encourages exploration. Since a policy is a total

ordering of the condition{behavior pairs, the agent must explore the entire behavior

space before it can be said to have converged. Given the small size of the behavior

set, this strategy has an accelerating e�ect on establishing an initial ordering of the

behaviors for each condition.

Best behavior b for a given condition c is de�ned to be the one with the highest

associated A(c; b) value. Since the number of behaviors is small, this selection is easy

to compute. Because of its use of positive and negative reinforcement, as well as the

progress estimator induced exploration strategy, the learning algorithm does not tend

to fall into local maxima. Consequently, we did not need to add randomness to the

selection mechanism.
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Figure 8-6: Typical initial conditions for learning trials. The robots are initiated
either in the home region or in random positions around the workspace.

Figure 8-7: A typical environment state during the course of a learning experiment.
Since they are learning independently, the robots have likely acquired di�erent parts
of the policy. Through interactions with objects in the world and each other they
accumulate learning trials in order to complete their learning.
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Figure 8-8: A typical environment state after learning. Most pucks have been col-
lected and brought to the home region. The robots have all learned when to go get
the pucks, and are thus competing for those remaining to be moved.

Learning is continuous and incremental over the lifetimeof the agent, thus ensuring

that the agent remains responsive to changes in the environment (e.g., no more pucks

are left at a particular location) and internal changes in function (e.g., dying battery

slows motion down.

In the described learning task, the optimal policy was derived by hand, based on

empirical data from the foraging experiments described in Section 5.1.2, and with

the addition of the new resting behavior. This policy is shown in Figure 8.1. The

performance of the desired policy was tested independently and compared to alterna-

tive solutions in order to establish its superiority relative to the imposed evaluation

criteria.

Snapshots of a learning experiment are shown to illustrate the progression of a

typical of experiment. Figure 8-6 shows typical initial conditions, Figure 8-7 demon-

strates a stage during the course of learning, and Figure 8-8 shows the environment

toward the end of the experiment, when most of the pucks have been collected. Fig-

ure 8-9 illustrates the resting behavior.

The learning process consists of adjusting the values in a table with a total of 64

entries: 24 conditions � 4 behaviors. Table 8.2 shows the table and the policy the

agents were initialized with. The utility of all behaviors in all conditions is equal, and

initialized to the average of the minimum and maximum A(c; b) value.
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Figure 8-9: An example of the resting (or recharging) behavior of four robots, trig-
gered by their internal clocks. In this case, the robots have all learned to go home
to rest, as this photo illustrates a late stage in the learning, as demonstrated by the
small number of remaining pucks.

Condition Behavior

near-intruder? have-puck? at-home? night-time?

0 0 0 0 safe{wandering
0 0 0 1 homing
0 0 1 0 safe{wandering
0 0 1 1 resting
0 1 0 0 homing
0 1 0 1 homing
0 1 1 0 safe{wandering
0 1 1 1 resting
1 0 0 0 safe{wandering
1 0 0 1 safe{wandering
1 0 1 0 dispersion
1 0 1 1 resting
1 1 0 0 homing
1 1 0 1 homing
1 1 1 0 safe{wandering
1 1 1 1 resting

Table 8.1: The optimal foraging policy. Only the top{ranked behavior is shown for
each condition. The full table has a total numerical ordering of four behaviors for
each condition, a total of 64 entries.
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Condition Behavior

safe{wandering homing dispersion resting

0000 50 50 50 50
0001 50 50 50 50
0010 50 50 50 50
0011 50 50 50 50
0100 50 50 50 50
0101 50 50 50 50
0110 50 50 50 50
0111 50 50 50 50
1000 50 50 50 50
1001 50 50 50 50
1010 50 50 50 50
1011 50 50 50 50
1100 50 50 50 50
1101 50 50 50 50
1110 50 50 50 50
1111 50 50 50 50

Table 8.2: The policy agents are initiated with. The utility of all behaviors in all
conditions is equal, and initialized to the average of the minimum and maximum.

8.5 Experimental Results and Evaluation

The e�ectiveness of the proposed reinforcement functions was evaluated by testing

three di�erent types of reinforcement. The following three approaches were compared:

1. A monolithic single{goal (puck delivery to the home region)

reward function R(c; t) = REgd
(c; t),

and using the Q-learning algorithm,

2. A heterogeneous reward function using multiple goals: R(t) = RE(t),

and using the reinforcement summation algorithm A(c; b) =
PT

t=1R(c; t),

3. A heterogeneous reward function using multiple goals R(t) = RE(t)

and two progress estimator functions RH(c; t) and RI(c; t),

and using the reinforcement summation algorithm A(c; b) =
PT

t=1R(c; t).

Data from sixty trias, twenty of each of the three strategies, were collected and

averaged. The experiments were run on four di�erent robots, and no signi�cant

robot{speci�c di�erences were found. Data from runs in which persistent sensor

failures occurred were discarded.
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Figure 8-10: The performance of the three reinforcement strategies on learning to
forage. The x-axis shows the three reinforcement strategies. The y-axis maps the
percent of the correct policy the agents learned in 15 minutes, averaged over twenty
trials. The error bars show the best and worst performance, and the histograms the
average value.

The data were based on values of A(c; b), which were collected twice per minute

during each learning experiment and once at the completion of the experiment, show-

ing the �nal values. All experiments lasted 15 minutes. The 15 minute threshold was

empirically derived, since the majority of the learning trials reached a steady state

after about 10 minutes, except for a small number of rare conditions, as discussed

below.

8.5.1 Evaluation

Evaluating performance of situated systems is notoriously di�cult among other rea-

sons because standard metrics for evaluating learning mechanisms, such as absolute

time{to{convergence, do not directly apply. The amount of time required for a robot

to discover the correct policy depends on the frequency of external events that trigger

di�erent states in its learning space. Additionally, noise and error can make certain

parts of the policy uctuate so waiting for a speci�c point of absolute convergence

is not feasible. Instead, convergence is de�ned as a relative ordering of condition{

behavior pairs.

The performance of the three approaches is compared in Figure 8-10. The x-axis
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shows the three reinforcement strategies. The y-axis maps the percent of the correct

policy the agents learned, in 15 minutes, averaged over twenty trials, i.e., the ratio of

correct condition{behavior pairings according to the optimal policy. The error bars

show the best and worst performance, and the histograms the averaged value.

Q-Learning Performance

As described above, Q-learning was tested on the reduced learning space using the

enumerated conditions and behaviors. In terms of reinforcement, Q-learning used a

simpli�ed version of the second algorithm, based on an impulse function delivering

positive reinforcement for the single goal of dropping a puck in the home region. Given

the nondeterminism of the world, and the uncertainty in sensing and state transitions,

the single goal provides insu�cient feedback for learning all aspects of foraging, in

particular those that rely on accurate delayed credit assignment. The performance

of Q-learning was vulnerable to interference from other robots, and declined most

rapidly of the three approaches when tested on increased group sizes.

Q performs poorly, but the partial policy it discovers is consistent over all trials

and is made up of the few condition{behavior pairs that receive immediate and reliable

reinforcement. Thus, the performance of Q indicates the di�culty of the learning task

at least to the extent of demonstrating the immediately reinforced parts as the only

parts it is capable of learning.

It is important to note that Q is unable to take advantage of reward discounting

because there is no particularly useful ordering to the sequence of behaviors an agent

executes at any time in our domain, because the agent's behavior is dependent on

the behavior of all of the others that interact with it during that time. These in-

teractions are not individually modeled and learned in order to avoid a prohibitively

large learning space as well as high sensing overhead. Consequently, the agent can-

not deduce any structure about sequential behaviors from discounting, because at its

representational level there is no structure. It needs to acquire a fully reactive policy

which does not bene�t from temporal discounting.

Multiple Goal Performance

The second learning strategy, utilizing reinforcement frommultiple goals, outperforms

Q because it detects the achievement of the subgoals on the way of the top{level goal of

depositing pucks at home. However, it also su�ers from the credit assignment problem

in the cases of delayed reinforcement, since the nondeterministic environment with

other other agents does not guarantee consistency of rewards over time.

Furthermore, this strategy does not prevent thrashing, so certain behaviors are
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active unnecessarily long. For example, safe{wandering and grasping are pursued

persistently, at the expense of behaviors with delayed reinforcement, such as homing.

The performance of heterogeneous reinforcement gives us another evaluation of the

di�culty of the proposed learning task. With around 60% of the correct policy

learned on the average, it demonstrates that additional structure is necessary to aid

the learner in acquiring the rest. This structure is provided by progress estimators.

Progress Estimator Performance

The complete heterogeneous reinforcement and progress estimator approach maxi-

mizes the use of all potentially available information for every condition and behav-

ior. As predicted, thrashing is eliminated both in the case of learning the conditions

for dispersion and homing because the progress estimator functions encourage ex-

ploration. Furthermore, fortuitous rewards have less impact than in the alternative

algorithms. The implicit domain knowledge is e�ectively spread over the reinforce-

ment in order to guide the learning process continually, thus maximizing the utility

of each of the learning trials and consequently speeding up the learning.

The design of the foraging task using basic behaviors guarantees that its subgoals

are independent of each other. Consequently, the associated reinforcement functions

do not directly a�ect each other, and the simple ones we used are mutually consistent

as they all contribute to a common high{level goal. Although in theory the more

reinforcement is used the faster the learning should be, in practice noise and error in

the di�erent reinforcement sources could have the opposite e�ect. Our experiments

demonstrated that a signi�cant amount of noise and inconsistency in the di�erent

reinforcers and progress estimators did not adversely a�ect the learner.

For example, each robot's estimate of its position and the proximity of others

was frequently inaccurate due to radio transmission delays. These errors resulted

in faulty homing and interference progress estimates. Nonetheless, all condition{

behavior pairs that involved carrying a puck converged quickly. Furthermore, their

A(c; b) values did not tend to oscillate. The fast rate of convergence for associations

with behaviors that involved dispersion and homing result directly from the e�ects

of the two progress estimators. When the two are removed, as in the second tested

algorithm, the performance declines accordingly.

Conversely, the set of conditions associated with �nding pucks uniformly took

longer to learn, since they had no direct progress measure to accelerate the learning.

Furthermore, the learned values initially tended to oscillate, since the di�erences

between the behavior alternatives were not great, again due to a lack of intermediate

rewards. Empirical results show that noise and error{induced inconsistencies in the

progress estimators did not signi�cantly diminish the bene�t of their use in this
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Reinforcement E�ect

R(c; t) = REgd
(t) converges for at most 1=3 of the policy

R(c; t) = RE(t) converges for at least 1=2 of the policy
R(c; t) = RE(t) +RI(t) +RH(t) converges for at least 2=3 of the policy

Table 8.3: A qualitative summary of the performance for the three types of reinforce-
ment used on the foraging task.

domain.

8.5.2 Further Evaluation

Table 8.3 shows a coarse performance ordering of the three approaches. Although

intuitive, this ordering is not particularly informative. A better way to analyze the

approaches is to evaluate each part of the policy separately, thus measuring when

and what each robot was learning. Table 8.4 illustrates the �nal state of a learner

using heterogeneous reward functions and progress estimators. The table provides

additional information for analysis.

To capture the dynamics of the learning process, each condition{behavior pair

was evaluated according to the following three criteria:

1. number of trials required,

2. correctness,

3. stability.

The number of trials was measured relative to a stable solution, whether the

solution was optimal or not. The second criterion sought out incorrect (in terms

of optimality) but stable solutions. Finally, the third criterion focused on unstable

policies, looking for those in which the behavior orderings tended to uctuate.

Based on those criteria, some condition{behavior pairs proved to be much more

di�cult to learn than others. The most prominent source of di�culty was the delay in

reinforcement, which had predictable results clearly demonstrated by the performance

di�erences between the three strategies. Learning the conditions for safe{wandering

was di�cult as there was no available progress estimator, and the robot could be

executing the correct behavior for a long while before reaching pucks and receiving

reward. In the mean time it could be repeatedly interrupted by other activities, such

as avoiding obstacles and intruders, as well as homing and resting at the onset of

night{time.
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Condition Behavior

safe{wandering homing dispersion resting

0000 100 45 40 35
0001 45 100 35 45
0010 100 40 45 30
0011 30 45 40 100
0100 55 100 40 35
0101 65 100 35 40
0110 100 45 65 30
0111 30 40 30 100
1000 100 40 75 35
1001 100 80 60 45
1010 85 30 100 45
1011 40 45 30 100
1100 100 95 45 40
1101 45 100 60 40
1110 100 45 90 30
1111 65 30 45 100

Table 8.4: An example policy learned by one of the robots using heterogeneous reward
functions and progress estimators.

Another source of di�culty was rareness of occurrence of some combinations of

conditions. In particular, the condition consisting of the onset of night{time while a

robot is carrying a puck and avoiding another robot rarely occurred. Consequently,

the correct mapping was di�cult to learn since the robots did not get a chance to

explore all behavior alternatives. This accounts for the incomplete policy even in the

case of the most successful reinforcement strategy.

The combination of positive and negative reinforcement pushes the learner out of

any local maxima, but allows oscillations and instabilities in the ordering of the A(c; b)

values in the table. Two of the conditions oscillated because the alternatives resulted

in equally e�ective solutions. In situations when the robot is not carrying a puck

and encounters an intruder, any motion away from the intruder will be bene�cial and

rewarded by the progress estimator RI . Consequently, homing and safe{wandering

are often as e�ective as dispersion. In contrast, if the robot is carrying a puck, then

dispersion and homing are e�ective and rewarded by contributions of the RI and RH

progress estimators. As described earlier, it is the combination of the two estimators

that speeds up exploration as well as minimizes fortuitous rewards. Only a speci�c

progress measure that minimizes the travel time to the goal can eliminate this e�ect.
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Such optimization is di�cult in systems using largely local sensing and control and

dealing with interference from other agents. Given those challenges, the policy the

robots found was appropriate for the properties of their domain.

8.5.3 Scaling

We evaluated the three reinforcement alternatives on groups of three and four robots

and found that interference was a detriment to all three. In general, the more robots

were learning at the same time, the longer it took for each to converge. This was par-

ticularly pronounced for condition{behavior pairs without directly associated progress

estimators, such as those involved in the conditions that did not involve carrying a

puck.

The only behavior capable of reaping bene�ts from interference was dispersion,

which was learned faster and more accurately in crowded situations. We have con-

sidered adding a social behavior called yielding in order to minimize interference by

having only one robot move at a time in crowded situations. Our previous results,

described in section 4.5.2, showed that such \hierarchical" behavior had little e�ect

on individual basic behaviors aggregation and dispersion. However, we believe yield-

ing would be more e�ective in the case of foraging. Because of �xed home and puck

locations, the task is more structured and can take advantage of rules that produce

more structured motion.

8.6 Discussion and Extensions

8.6.1 Social Rules

We have noted that a decline in performance of all of the algorithms was observed with

the increased group size and the associated increased interference between agents. Al-

though not surprising, this is an undesirable e�ect. In an ideal scenario, the presence

of other agents would speed up rather than slow down individual learning. However,

such synergy is only possible in societies where individuals bene�t from each other's

experience and interact according to mutually bene�cial social rules.

Our most recent work has addressed the problem of learning such social rules.

This is a challenging learning problem since social rules do not necessarily have im-

mediate or even delayed payo� to the individual but may only bene�t the individual

on average from having a global e�ect. Consequently, social rules involve some \al-

truistic" behavior, even at the simplest of levels, such as yielding in tra�c. Such

behavior is di�cult to learn with individualist reinforcement learning strategies. We
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are currently working on an algorithm that utilizes the observation of neighboring

agents' behavior and received reinforcement in order to acquire and practice social

behaviors (Matari�c 1994).

8.6.2 Transition Models

The learning problem presented here, involving a collection of concurrently learning

agents in a noisy and uncertain environment, was purposefully chosen for its com-

plexity. The fact that a state transition model was not available to aid the learner

presented one of the major challenges.

As argued earlier, such models are not generally available, but partial models

could be constructed empirically, either prior to or during the learning process. The

implemented reinforcement functions take advantage of immediate information from

the world to generate reinforcement. Thus, they would have an accelerating e�ect

on any learning domain, regardless of whether a transition model is available. An

interesting extension of this work would apply the described reinforcement approach

to problems that involve incomplete and approximate state transition models in order

to study the e�ects of combining immediate reinforcement with discounted future

rewards commonly applied to RL problems.

8.6.3 Heterogeneous Learning

One of the key advantages of heterogeneous reinforcement is the possibility of learning

multiple types of behaviors in parallel. Such concurrent multi{modal learning is

biologically and pragmatically inspired, and has been an ongoing challenge in the

learning community (Franklin & Selfridge 1990, Brooks & Matari�c 1993).

In our foraging task, basic behaviors were designed by hand and behavior selection

was learned. However, basic behaviors themselves could be learned or optimized

in parallel with learning behavior selection. For example, the agents could use a

parameter learning scheme to optimize their grasping behaviors whenever in a puck{

carrying state. In order to avoid extending the learner's state space and reverting

to the traditional problems of monolithic learners, multi{modal learning would be

implemented using multiple correlation mechanisms instead of a monolithic A(c; b)

matrix.

The described reinforcement techniques can be applied at every learning level. No

explicit merging of learned policies is needed since the learning modules would be

independent.
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8.6.4 Structuring Learning

One of the di�culties facing the learning community is the lack of structure that

taxonomizes the existing learning methodologies and delineates their applicability.

Consequently, the choice of methodology is often based on passing trends and dogma

rather than on objective applicability and performance criteria. One of the goals of

the learning work described in this thesis has been to introduce some structure into the

popular methodology broadly characterized as reinforcement learning. By applying

reinforcement learning to a novel and more complex domain than has been experi-

mented with to date, we were able to establish its limitations for that domain, and

propose a reformulation of the representation and reinforcement that makes learning

in that domain both possible and e�cient.

By appropriately setting up the learning task, e�ective results were achieved from

a single learning methodology. An interesting direction to pursue would be to deal

with learning problems complex enough to require more than one learning strategy

as a means of relating di�erent techniques.

8.6.5 Signal{to{Symbol Learning

Signal{to-symbol learning encapsulates the entire learning process from the ground-

ing of the agent's experiences in the world to the resulting comparatively high{level

representations. To date, systems that have learned from low{level signals, such as

sensory information, have either bypassed symbolic representations all together, or

had them built{in by the designer. An the other end of the spectrum, symbolic high{

level learning has not traditionally concerned itself with grounding in the physical

world. However, for situated systems, which must make a connection between di-

rect sensory experiences and high{level cognitive activities, symbol grounding is an

important problem that must be addressed (Harnad 1990).

Most work on situated agents to date has not dealt with what are considered

to be highly cognitive tasks. However, even learning of \lower{level" capacities,

such as complex motor behaviors, requires intermediate and increasingly abstract

representations. The process of relabeling information into forms that can be used

by other subsystems for achieving di�erent goals is already a step in the direction of

bridging the signal{to{symbol gap.

The learning work presented here has been at a level that could use a simple map-

ping between conditions and behaviors. Nonetheless, even the process of constructing

the presented reusable behavior combinations requires some way of labeling the com-

binations. As most other work, the learning strategy described here was able to use

a built{in mapping to labeled behaviors. A more general solution to the problem is
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desirable, and we hope to address it in future work.

8.7 Summary

The goal of the described learning work has been to bring to light some of the im-

portant properties of situated domains, and their impact on reinforcement learning

strategies. We have described why MDP models of agent{world interactions are not

e�ective in the noisy multi{agent domain, how the traditional notions of state and

action present an inappropriately low level of system description for control and learn-

ing, and how delayed reinforcement is not su�cient for learning in our domain and

other domains of similar level of complexity.

We introduced a higher{level description of the learning system, based on condi-

tions and behaviors, that greatly diminishes the learner's state space and results in

more robust control. We also introduced a methodology for shaping reinforcement in

order to take advantage of more information available to the agent. In our domain

shaping was necessary given the complexity of the environment{agent and agent{

agent interactions. The approach consists of two methods: one that partitions the

learning task into natural subgoals (behaviors) and reinforces each separately, and

one that employs progress estimators to generate more immediate feedback for the

agent.

The proposed formulation was evaluated on a group of physical robots learning to

forage and was shown to be e�ective as well as superior to two alternatives. The ap-

proach is general and compatible with the existing reinforcement learning algorithms,

and should thus serve to make learning more e�cient in a variety of situated domains

and with a variety of methodologies.
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Chapter 9

Summary

The aim of this thesis has been to gain insight into intelligent behavior by increas-

ing the level of complexity of the systems being designed and studied. In contrast

to many AI systems that have focused either on complex cognition situated in sim-

ple worlds, or vice versa, the work described here has addressed situated, embodied

agents coexisting and interacting in a complex domain (Figure 9-1). We hope that

the methodologies and results presented here have extended the understanding of

synthesis, analysis, and learning of group behavior.

Selection of the appropriate representation level for control, planning, and learning

is one of the motivating forces behind this work. We have proposed a methodology

for using constraints in order to derive behaviors, control laws that guarantee the

achievement and maintenance of goals. Furthermore, we described a methodology for

selecting basic behaviors, a basis set of such behaviors to be used as a substrate for

control and learning for a given agent and environment.

We demonstrated these ideas on the problem of synthesizing coherent group be-

havior in the domain of planar spatial interactions. We devised a basic behavior set

and showed that it meets the de�ning criteria, including no mutual reducibility and

simple combination. We then showed how basic behaviors and their conditions can

be used as a substrate for learning. Furthermore, we described a methodology for

shaping reinforcement by using heterogeneous reinforcement functions and progress

estimators in order to make learning possible and more e�cient in dynamic multi{

agent domains.

The main idea behind this work is the approach to combining constraints from

the agent, such as its mechanical and sensory characteristics, and the constraints for

the environment, such as the types of interactions and sensory information the agent

can obtain, in order to construct constraint{based primitives for control. At the
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Figure 9-1: A family photo of the physical experimental agents used to demonstrate
and verify the group behavior and learning work described in this thesis.

sensory end we called these primitives conditions and at the action end we referred

to them as behaviors. In both cases they are a clustering of constraints that provide

an abstraction at a level that makes control and learning e�cient.

We have dealt with a complexmulti{agent domain and a complex learning problem

in order to fully confront the issues in selecting the right abstraction and representa-

tion level for situated agents. The complexity of our chosen environment, combined

with the requirement of acting in real time, enforced the necessity for using a repre-

sentation level that was not so low as to be computationally intractable or so high as

to remove the potential of novel behavior strategies to be designed or learned by the

agents.

This work is intended as a foundation in a continuing e�ort toward studying

increasingly more complex behavior, and through it, more complex intelligence. The

work on basic behaviors distills a general approach to control, planning, and learning.

The work also brings to light some theoretically and empirically challenging problems

and o�ers some e�ective solutions to situated learning. Future work should both

analytically tighten and experimentally broaden our understanding of all those issues.

The demonstrated results in group behavior and learning are meant as stepping stones

toward studying increasingly complex social agents capable of more complex learning,
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ultimately leading toward better understanding of biological intelligence.
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Appendix A

Q-learning

Watkins (1989) introduced a family of methods he called Q-learning for solving

Markov decision problems with incomplete information, through the use of delayed re-

inforcement. The simplest version, called one-step Q-learning, is the most commonly

used and is thus described below.

Q-learning is based on a temporal di�erencing strategy that attempts to maximize

Q(s; a) at each time step. Q(s; a) is the expected discounted reward of taking action

a in the input state s. The Q values for all state{action pairs are stored in the Q table

and updated at each time step. The utility E of a state is the maximum Q value of

all actions that can be taken in that state. The Q value of doing an action in a state

is de�ned as the sum of the immediate reward r and the utility E(s0) of the next state

s0 according to the state transition function T , discounted by the parameter .

Formally:

s0  T (s; a)

E(s) = maxaQ(s; a)

Q(s; a) = r + E(s0), 0 �  � 1

Q values are updated by the following rule:

Q(s; a) Q(s; a) + �(r+ E(s0)�Q(s; a))

0 � � � 1

An RL algorithm using Q-learning has the following form:
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1. Initialize all Q(s; a); select s0.

2. Do Forever:

a. Observe the current world state s.

b. Choose an action a that maximizes Q(s; a).

c. Execute action a.

d. Let r be the immediate reward for executing a in state s.

e. Update Q(s; a) according to the rule above.

Let the new state be s0 T (s; a).

� and  are the tunable learning parameters. � determines the learning rate.

� = 1 disregards all history accumulated in the current Q value and resets Q to

the sum of the received and expected reward at every time step, usually resulting in

oscillations.

 is the discount factor for future reward. Ideally,  should be as close to 1 as

possible so that the relevance of future reward is maximized. In deterministic worlds

 can be set to 1, but in the general case two algorithms with  = 1 cannot be

compared since, in the limit, the expected future reinforcement of both will go to

in�nity.

The choice of initial Q values can a�ect the speed of convergence since the farther

they are from the optimal policy the longer it takes to converge. If initialized to 0's in

a problem set up to have a positive optimal policy, the algorithm will tend to converge

to the �rst positive value, without exploring alternatives, so random actions must be

added to guarantee that the entire action space is explored (Kaelbling 1990). Alter-

natively, if the optimal policy can be roughly estimated,Q values can be initialized to

be higher and decreased over time. However, Q is sensitive to the coupling between

the initial values and the reinforcement function. If the reinforcement function is

strictly positive and the Q table is initialized to values exceeding the optimal policy,

the system will take longer to converge than if the reinforcement function contains

some negative signals.
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Appendix B

Glossary

adaptability the ability to cope with internal and external changes.

agent an entity or computational process that senses its world and acts on it.

arbitration the problem of coordinating the activity of multiple input behaviors in

order to produce desired output behavior.

basic behaviors building blocks for control, planning, and learning.

basic behavior set a basis set of behaviors that are directly, or by combination,

su�cient for reaching all goals of a system. The elements of the set are not

mutually reducible.

behavior a control law that achieves and/or maintains some goal.

behavior conditions proper subsets of the state space necessary and su�cient for

activating a behavior.

collective behavior an observer{subjective de�nition of some spatial and/or tem-

poral pattern of interactions between multiple agents.

condition a predicate on sensor readings that maps into a proper subset of the state

space.

cooperation a form of interaction, usually based on communication.

ensemble behavior observable global behavior of a group or collection of agents

event a change in the agent's perceptual or condition vector.

external state externally observable state of an agent.
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fortuitous reward a reward received for an inappropriate behavior that happened

to achieve the desired goal.

group density the ratio of the sum of the agents' footprints and the size of available

interaction space.

direct communication an action with the sole purpose of transmitting information.

directed communication communication aimed at a particular receiver or set of

receivers.

direct behavior combination a temporal overlap of two or more behaviors. More

than one behavior is active at a time. Implemented with a summation operator.

embodiment the state of being embodied, having a body with physical constraints

and properties.

explicit cooperation a set of interactions which involve exchanging information or

performing actions in order to bene�t another agent.

footprint the sphere of an agent's its inuence.

implicit cooperation a form of interactions consisting of actions that are a part of

the agent's own goal{achieving behavior, but may have e�ects in the world that

help other agents achieve their goals.

impulse reinforcement reinforcement delivered only when the agent reaches a sin-

gle goal state.

group a collection of size three or more.

homogeneity the property of being situated in the same world, embodied with

similar dynamics and executing identical control programs.

heterogeneity the property of being di�erent from another agent in terms of one's

environment, embodiment, or control.

interaction mutual inuence on behavior.

interference any inuence that partially or completely blocks an agents' goal{driven

behavior.

multi-agent control generating the desired behavior for a multi{agent system.

niche a habitat, a class of environments for which an agent is adapted.
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non-directed communication communication not limited to a particular receiver

or set of receivers; includes indirect and direct communication.

multi-agent system a system consisting of at least two agents.

policy a mapping of inputs, states, or conditions, to actions or behaviors.

situatedness the property of being situated, of existing in some context, in an en-

vironment which involves interaction dynamics.

stigmergic communication communication based on modi�cations of the environ-

ment rather than direct message passing.

temporal behavior combination a temporal sequence of two or more behaviors.

Only one behavior is active at a time. Implemented with a switching operator.

thrashing repeated execution of one or more inappropriate behaviors.
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