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Interaction-Aware Motion Prediction For
Autonomous Driving: A Multiple Model Kalman

Filtering Scheme
Vasileios Lefkopoulos∗, Marcel Menner∗, Alexander Domahidi, and Melanie N. Zeilinger

Abstract—We consider the problem of predicting the motion of
vehicles in the surrounding of an autonomous car, for improved
motion planning in lane-based driving scenarios without inter-
vehicle communication. First, we address the problem of single-
vehicle estimation by designing a filtering scheme based on
an Interacting Multiple Model Kalman Filter equipped with
novel intention-based models. Second, we augment the proposed
scheme with an optimization-based projection that enables the
generation of non-colliding predictions. We then extend the
approach to the problem of simultaneously estimating multiple
vehicles by using a hierarchical approach based on a priority list.
The priority list is dynamically adapted in real-time according to
a proposed sorting algorithm. Finally, we evaluate the proposed
scheme in simulations using real-life vehicle data from the Next
Generation Simulation (NGSIM) dataset.

Index Terms—Motion and Path Planning, Intelligent Trans-
portation Systems, Probability and Statistical Methods.

I. INTRODUCTION

MOTION prediction is a necessary part of any autonomous
driving application that employs predictive planning

techniques [1]. It can be classified into three categories with
an increasing level of abstraction [2]: physics-based, maneuver-
based, and interaction-aware motion models. Physics-based
motion models assume that the vehicle’s motion depends
only on physical equations of motion. They are the simplest
models (e.g., constant velocity, constant acceleration) with low
computational complexity and, as a result, their predictions
are typically only reliable for a short horizon. Maneuver-
based motion models assume that the vehicle’s motion can be
represented by a series of maneuvers executed independently
of other vehicles. Thus, in contrast to the physics-based models
that work with basic motion primitives, the predictions of each
vehicle are more reliable. Interaction-aware motion models
consider the reactive part of multiple vehicles, thus leading to
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more accurate and realistic predictions, which come at the cost
of increased computational complexity.

In this work, we propose a motion prediction scheme based
on an Interacting Multiple Model Kalman Filter (IMM-KF)
for multiple vehicles that combines ideas from physics-based,
maneuver-based, and interaction-aware approaches. The pro-
posed scheme is capable of predicting collision-free, interaction-
aware trajectories of multiple traffic participants for multiple
seconds. Our predictor consists of three components:

(i) intention-based motion models that intuitively capture the
behavior most drivers exhibit in typical driving scenarios,
i.e., velocity tracking and distance keeping from a leading
vehicle,

(ii) a projection algorithm in order to generate interaction-
aware and non-colliding motion predictions, and

(iii) a time-varying priority list based on the rules of the road
that allows for the decomposition of the multiple-vehicle
motion prediction problem into smaller tractable single-
vehicle problems.

The scheme is tuned with a small amount of data and is
computationally real-time capable on embedded platforms that
are typical for autonomous driving applications.

Related work using an IMM filter for motion prediction
is presented, e.g., in [3]–[10]. In [3], a prediction scheme
for a vehicle’s position is proposed, where the filter models
are constant velocity, constant acceleration, and constant
jerk. In [4], a position tracking scheme using an IMM filter
with a variable structure is proposed, which is equipped
with a constant velocity and a constant turn model. In [5],
an estimation scheme that combines an IMM filter with a
Bayesian network is proposed. In [6], a simplified kinematic
bicycle model is used, whose linearization is estimated to
incorporate the road curvature into the filter. In [7], an object
tracking scheme for urban intersections is proposed with three
filter models: going forward, turning left, and turning right.
Further, [8] uses linearized bicycle dynamics and decouples
longitudinal and lateral estimation. To predict longitudinal
motion, constant velocity and constant acceleration models are
used, whereas to predict laterally, lane-converging models based
on a Linear Quadratic Regulator (LQR) are utilized. In [9],
linearized versions of the constant velocity rectilinear, constant
acceleration rectilinear, constant angular velocity curvilinear,
and constant angular acceleration curvilinear motion are used
as filter models.

Compared to [3]–[10], our contributions are the introduction
of (i) intention-based longitudinal models, where the intention is
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inferred online, (ii) an optimization-based projection to generate
interaction-aware and non-colliding motion predictions, and
(iii) a priority list, which is adapted online, to make the
problem real-time capable. These three components allow
us to make collision-free and interaction-aware predictions
of multiple traffic participants, with improved error statistics
over IMM-KF schemes that use simpler physics-based motion
models. Compared to deep learning-based techniques, e.g., [11]–
[17], our method is implemented recursively, with a feedback
mechanism to correct for errors, provides an interpretation
of its outputs including a measure of certainty of its predic-
tions, and does not require large amounts of training data.
We quantitatively compare the proposed scheme with deep
learning-based methods, using the Next Generation Simulation
(NGSIM) dataset. The proposed scheme exhibits beneficial
computation times on hardware that is easily embeddable
in typical autonomous driving hardware, while achieving
comparable prediction accuracy compared to deep learning-
based techniques.

Notation & Preliminaries

We denote a conjunction (logical AND) by
∧

, a union of
sets by

⋃
, and the set of binary numbers {0, 1} by B. N (µ,Σ)

is the Gaussian distribution with mean µ ∈ Rn and covariance
Σ ∈ Rn×n, and E[x] is the expected value of x. I denotes the
identity matrix, 0 denotes a zero vector or matrix, and A � 0
denotes a symmetric positive definite matrix.

Kalman Filter: The KF is a state estimator for linear systems:

xk+1 = Fkxk + Ek + wk ,

yk = Hkxk + vk ,

where k ∈ N is the current time, xk ∈ Rnx is the state, Ek
is the input, yk ∈ Rny is the measurement, wk ∼ N (0, Qk)
is the process noise, and vk ∼ N (0, Rk) is the measurement
noise. The initial state is x0 ∼ N (µx0 ,Σx0). The KF involves
a prediction and an update step. The prediction step yields

x̂k|k−1 = Fk−1x̂k−1|k−1 + Ek−1 , (1a)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 +Qk−1 , (1b)

where x̂k|k−1 is the predicted (a priori) state estimate and
Pk|k−1 is the predicted error covariance. The update step is

ỹk = yk −Hkx̂k|k−1 , (2a)

Sk = HkPk|k−1H
>
k +Rk , (2b)

Kk = Pk|k−1H
>
k Sk

−1 , (2c)
x̂k|k = x̂k|k−1 +Kkỹk , (2d)
Pk|k = (I −KkHk)Pk|k−1 , (2e)

with the innovation residual ỹk and its covariance Sk, the
Kalman gain Kk, the (a posteriori) state estimate x̂k|k, and the
estimate covariance Pk|k, where x̂0|0 = µx0 , P0|0 = Σx0 [18].

Interacting Multiple Model Kalman Filter: The IMM-KF is
an estimation scheme for hybrid systems [19]. Consider the
discrete Markov jump linear system:

xk+1 = F
(i)
k xk + E

(i)
k + w

(i)
k ,

yk = H
(i)
k xk + v

(i)
k ,

where (i) denotes the currently active model mk from the
model set:M = {m(1), . . . ,m(M)}. The transition from model
m(i) to m(j) is described through a Markov chain, i.e., the
probability of transitioning from m(i) to m(j) is

Pr
(
mk+1 = m(j)|mk = m(i)

)
= πij , (3)

where mk ∈M is the model active at time k and πij ∈ [0, 1]
is the transition probability. The basic principle of the IMM-KF
is that separate filters are used (in parallel) for each m(i) and
their estimates are then utilized to estimate the probability of
each m(i) being active. The IMM-KF involves an interaction,
a filtering, a probability update, and a combination step. In the
interaction step, the individual filter estimates are mixed and
used to initialize each filter:

c(i) =

M∑
j=1

πjiµ
(j)
k−1, (4a)

µ
(j|i)
k−1|k−1 =

πjiµ
(j)
k−1

c(i)
, (4b)

x̄
(i)
k−1|k−1 =

M∑
j=1

µ
(j|i)
k−1|k−1x̂

(j)
k−1|k−1 , (4c)

P̄
(i)
k−1|k−1 =

M∑
j=1

µ
(j|i)
k−1|k−1

(
P

(j)
k−1|k−1 +X

(i,j)
k−1|k−1

)
(4d)

with X
(i,j)
k|k = (x̄

(i)
k|k − x̂

(j)
k|k)(x̄

(i)
k|k − x̂

(j)
k|k)>, the conditional

model probability µ
(j|i)
k−1|k−1 for transitioning from m(j) to

m(i), the state estimate of each filter x̂(i)k−1|k−1, its covariance

P
(i)
k−1|k−1, the mixing of the state estimates x̄(i)k−1|k−1, and

its covariance P̄ (i)
k−1|k−1. In the filtering step, each of the M

filters is executed separately as in (1) and (2), to obtain the
innovation residuals ỹ(i)k and their covariances S(i)

k , as well
as x̂(i)k|k with covariances P (i)

k|k. In the probability update step,
the filters’ innovation residuals are used to update the model
probabilities

L
(i)
k =

exp(− 1
2 ỹ

(i)>
k S

(i)
k

−1
ỹ
(i)
k )

|2πS(i)
k | 1/2

, (5a)

µ
(i)
k =

c(i)L
(i)
k∑M

j=1 c
(j)L

(j)
k

, (5b)

where L(i)
k is the likelihood of the observation using ỹ(i)k and

the updated model probability µ(i)
k . In the combination step,

the filters’ state estimates and their covariances are mixed,
weighted by the updated model probabilities:

x̂k|k =

M∑
i=1

µ
(i)
k x̂

(i)
k|k , (6a)

Pk|k =

M∑
i=1

µ
(i)
k

(
P

(i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)>

)
. (6b)
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II. PROBLEM STATEMENT

We consider the problem of estimating and predicting the
state of N vehicles. In Bayesian estimation terms, we want to
calculate the Probability Density Function (PDF)

p(x1:Nk:k+T |y1
:N

1:k ) , (7)

where k ∈ N is the current time, xηk ∈ Rnx is the state of the
η-th vehicle to be estimated and xηk+1:k+T are its future states
to be predicted, yη1:k are measurements, and T ∈ N>0 is the
prediction horizon. We work under the assumption of real traffic
being collision-free and we want the predicted trajectories
to exhibit the same behavior. Let the area occupied by the
η-th vehicle be Pη(xηk) ∈ R2. The condition of vehicle η not
colliding with vehicle ν is formulated as Pη(xηk)∩Pν(xνk) = ∅.
Hence, the requirement of generating non-colliding predictions
is formally stated as

k+T⋃
t=k+1

Pη(E[xηt |y1
:N

1:k ]) ∩ Pν(E[xνt |y1
:N

1:k ]) = ∅ ∀η 6= ν, (8)

i.e., we enforce the non-collision requirement in expectation.
The rest of this paper is organized as follows. First, we

address the sub-problem of estimating and predicting a single
vehicle, under the assumption that the trajectories of the
other traffic participants are known (Section III). Then, we
estimate and predict multiple vehicles using a hierarchical
approach that uses priorities in order to formulate the multiple-
vehicle problem as N single-vehicle estimation and prediction
problems (Section IV).

III. SINGLE-VEHICLE ESTIMATION

For a single vehicle with index N , (7) simplifies to

p(xNk:k+T |yN1:k, x1
:N−1

1:k+T ).

In order to ease exposition, the index N is omitted from xNk ,
yNk and we denote the other vehicles’ states x1:N−1k by χk.
We model the vehicle’s behavior as linear, time-varying with

xk+1 = Fk(χk, zk)xk + gk(χk, zk) , (9)

where zk denotes all external variables that affect the driver’s
behavior, such as the intention of the driver (e.g., what speed
to maintain, whether to change lanes, etc.). Modeling the exact
dependence between the vehicle’s state xk and the environment
zk is in general intractable and context-dependent. In this work,
we address lane-based driving scenarios, which are structured
and allow us to approximate (9) with a finite set of maneuvers
M = {m(1), . . . ,m(M)} modeled as linear and time-varying:

xk+1 = F
(i)
k (χk)xk + E

(i)
k (χk) + w

(i)
k , (10)

where i = 1, . . . ,M denotes which of the modes m(1), . . . ,
m(M) is active at time k. The process noise accounts for the
modeling errors introduced by the approximation in (10). We
model the transitions between the different modes of M as
described by (3) allowing for estimating the active model mk

with an IMM-KF. For generating predictions, we use the most
likely model m, i.e.,

m = arg max
i
µ
(i)
k . (11)

A. Intention-based motion models

In the following, we propose intention-based motion models
m(i) to be used in (10). Each motion model corresponds to
a specific maneuver of a vehicle and the IMM-KF is used to
identify which of the motion models is active.

1) Longitudinal motion: We propose two longitudinal mo-
tion models, Velocity Tracking (VT) and Distance Keep-
ing (DK), with the longitudinal state

xlon,k :=
[
plon,k vlon,k alon,k

]>
,

where plon,k, vlon,k, alon,k ∈ R are the longitudinal position,
velocity, and acceleration, respectively.

Velocity tracking: The VT model captures driving maneuvers
in which the traffic participant tracks a certain velocity
reference. The VT vehicle dynamics is given by

xlon,k+1 =

1 Ts T 2
s

/
2

0 1 Ts
0 0 1

xlon,k +

 0
T 2
s

/
2

Ts

u(VT)
lon,k ,

where Ts ∈ R>0 is the sampling time and u
(VT)
lon,k ∈ R is the

control input that represents the intention of a driver to track
a velocity. We model the VT driver input as an LQR-based
feedback controller to track the target reference velocity:

u
(VT)
lon,k = −K(VT)

LQR

([
vlon,k alon,k

]> − [vref,k 0
]>)

with the velocity reference vref,k. As the intended velocity
reference vref,k of the driver is unknown, we augment the
state xlon,k such that both xlon,k and vref,k are estimated
simultaneously. Overall, the VT model for the filter design is
given by[

xlon,k+1

vref,k+1

]
= F

(VT)
lon (K

(VT)
LQR )

[
xlon,k
vref,k

]
+ w

(VT)
k , (12)

where w(VT)
k allows for tracking variations in vref,k.

Distance keeping: The DK model captures cruise-control
maneuvers in which a traffic participant keeps a specific
distance from a leading vehicle. The discrete-time dynamics
of the DK model is

x̃lon,k+1 =

1 Ts T 2
s

/
2

0 1 Ts
0 0 1

 x̃lon,k +

T 3
s

/
6

T 2
s

/
2

Ts

u(DK)
lon,k ,

x̃lon,k = xlon,k − xlead,k,

where u(DK)
lon,k ∈ R is the driver’s control input for the DK model

and xlead,k is the longitudinal state of the leading vehicle. We
model the DK input as an LQR controller to track a longitudinal
time gap tgap,k to a leading vehicle

u
(DK)
lon,k = −K(DK)

LQR

(
x̃lon,k −

[
−vlead,ktgap,k 0 0

]>)
.

Similarly to (12), we augment the state with the reference time
gap tgap,k to be estimated and thus, the DK model for the filter
design is given by[

xlon,k+1

tgap,k+1

]
= F

(DK)
lon,k (K

(DK)
LQR , χk)

[
xlon,k
tgap,k

]
+ E

(DK)
lon,k (K

(DK)
LQR , χk:k+1) + w

(DK)
k .

(13)
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2) Lateral motion: We model lateral maneuvers with mul-
tiple Lane Changing (LC) motion models, which involve the
lateral state

xlat,k :=
[
plat,k vlat,k alat,k

]>
,

where plat,k, vlat,k, alat,k ∈ R are the lateral position, velocity,
and acceleration, respectively. The total number of lateral
models m(LC) is in general equal to the number of lanes of
the road. However, we focus only on lane change maneuvers
of up to one lane at a time, effectively leading to three m(LC)

models: one for staying on the lane, one for a lane change
maneuver to the left, and one for a lane change to the right,
denoted m(LC1), m(LC2), and m(LC3), respectively. This is a
reasonable assumption as maneuvers with multiple, consecutive
lane changes are captured by the algorithm due to its recursive
implementation, i.e., as soon as the a lane change is detected,
the algorithm can predict a subsequent lane change at the next
sampling time.

The LC model captures lateral driving maneuvers in which
the vehicle tracks the lateral position of a lane. We model the
discrete-time dynamics of the LC model as

xlat,k+1 =

1 Ts T 2
s

/
2

0 1 Ts
0 0 1

xlat,k +

T 3
s

/
6

T 2
s

/
2

Ts

u(LC)
lat,k ,

where u(LC)
lat,k ∈ R is the driver’s control input used to track a

certain lane. Again, we assume that the driver employs a linear
feedback controller to converge to a reference lane

u
(LC)
lat,k = −K(LC)

LQR

(
xlat,k −

[
pref 0 0

]>)
,

where pref is the lateral position of the lane being tracked.
This LQR-based tracking model is reasonable because of the
jerk-minimizing trajectories drivers usually employ to increase
comfort [20]. In order to make the lane-change maneuver
as realistic as possible, we use an inverse optimal control
scheme [21] to learn K(LC)

LQR from vehicle data from the NGSIM
dataset. Finally, the VT model for the filter design is

xlat,k+1 = F
(LC)
lat (K

(LC)
LQR )xlat,k + E

(LC)
lat (K

(LC)
LQR , pref) + w

(LC)
k ,

where w
(LC)
k allows for tracking variations in the reference

lane’s lateral position.
Remark 1: For simplicity, we learn one set of parameters,

K
(LC)
LQR , for all drivers. It is similarly possible to consider

multiple models of differing driving styles, e.g., aggressive or
timid, or to learn one K(LC)

LQR for each driver. The individuality
of different drivers is highlighted, e.g., in [8], [22].

3) Joint motion: Finally, the three lateral motion models are
combined with the two proposed longitudinal motion models,
i.e., in total there are six maneuvers in our filter design: M =
{VT-LC1, VT-LC2, VT-LC3, DK-LC1, DK-LC1, DK-LC1}.

The joint motion models involve the full state of the vehicle
xk := [x>lon,k x

>
lat,k]> as a common state shared among models.

Each model however has its own separate full state x(i)k related
to the common state through xk = V x

(i)
k , where x(i)k ∈ Rn(i)

x

is the full state of model m(i) and V is a selection matrix. In
our case, n(i)x = 7 and V ∈ R6×7 is the matrix that selects

all states but the reference states vref,k and tgap,k. The joint
motion dynamics of each model is given by

x
(i)
k+1 = F

(i)
k x

(i)
k + E

(i)
k + w

(i)
k ,

where each F (i)
k , E

(i)
k corresponds to one of the six maneuvers

in the filter design and consists of a longitudinal and a lateral
motion model:

Fk =

[
Flon,k 0

0 Flat,k

]
, Ek =

[
Elon,k
Elat,k

]
.

B. Non-colliding predictions for single vehicle

In the following, we show how to use the six proposed
intention-based motion models to generate non-colliding pre-
dictions. As we only use the most probable model m in the
prediction step, we omit the index m in the exposition.

1) Distribution of predictions: First, we derive the distribu-
tion of the motion predictions. Given that the state estimate is
Gaussian distributed with p(xk|y1:k, x1:N−11:k+T ) = N (x̂k|k, Pk|k)
and the proposed filter models are linear, the propagated state
predictions are also Gaussian:

p
(
xt|y1:k, x1:N−11:k+T

)
= N

(
x̂t|k, Pt|k

)
for t = k + 1, . . . , k + T , where the state predictions x̂t|k and
the covariance matrices Pt|k are given by

x̂t|k = Φ(t, k)x̂k|k +

t∑
i=k+1

Φ(t, i)Ei , (14a)

Pt|k = Φ(t, k)Pk|kΦ(t, k)
>

+

t∑
i=k+1

Φ(t, i)QtΦ(t, i)
>
,

(14b)

Φ(t, i) =

(
∏t−1
j=i F

>
j )> if t > i

I if t = i.
(14c)

2) Collision constraints: Next, we formulate a non-collision
condition that is subsequently used as constraint in an optimiza-
tion framework. We model the geometrical shape of vehicles
as rectangles with constant and known width W i and length
Li of the i-th vehicle. For the single vehicle N , the condition
in (8) simplifies to

k+T⋃
t=k+1

PN (x̂t|k) ∩ Pη(xηk) = ∅ ∀η = 1, ..., N − 1 (15)

with the motion prediction x̂t|k = E[xt|y1:k, x1:N−11:k+T ] of vehicle
N . Due to the structure of the lateral motion models in
Section III-A2, each model corresponds to a specific lane.
Hence, the model m that is used for generating the predictions
fully defines the predicted lateral position p̂lat,t of the vehicle.
Thus, (15) is equivalent to satisfying∧

t∈Iη

(
|p̂lon,t|k − pηlon,t| >

LN + Lη

2

)
∀η = 1, ..., N − 1

(16)
with the index set

Iη =
{
t = k + 1, . . . , k + T : |p̂lat,t|k − pηlat,t|k| ≤

WN+Wη

2

}
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defining the time indices in which two vehicles are laterally
close to each other. Intuitively, (16) states that for all time-
steps in which two vehicles are laterally close to each other,
the vehicles must not be close longitudinally. Next, we use
the condition in (16) as constraint in our optimization-based
projection to generate non-colliding motion predictions.

3) Estimate projection: In order to obtain non-colliding
predictions satisfying (16), we project the state estimate in
(14a) as follows:

min
x∈Rnx

(x− x̂k|k)>W (x− x̂k|k) (17a)

s.t. x̂t|k = Φ(t, k)x+

t∑
i=k+1

Φ(t, i)Ei (17b)

x̂t|k satisfies (16) ∀t = k + 1, . . . , k + T, (17c)

where we choose W � 0 such that the projection of the
reference estimates vref and tgap is encouraged rather than xlon
and xlat, i.e., we incorporate a non-collision intention into vref
and tgap. The non-convex optimization problem (17) is not in a
form that can be directly handled by off-the-shelf optimization
solvers because of the disjunctions in (17c). However, (17)
can be reformulated into a tractable, equivalent Mixed-Integer
Quadratic Program (MIQP) using the Big-M method [23]:

min
x∈Rnx ,zη,t∈B

(x− x̂k|k)>W (x− x̂k|k) (18a)

s.t. x̂t|k = Φ(t, k)x+

t∑
i=k+1

Φ(t, i)Ei (18b)

p̂lon,t|k ≥ (pηlon,t + L̄η)zη,t −M(1− zη,t) (18c)

p̂lon,t|k ≤ (pηlon,t − L̄
η)(1− zη,t) +Mzη,t (18d)

for all η = 1, . . . , N − 1 and t ∈ Iη , where L̄η = LN+Lη

2 . As
a result, the motion prediction

x̂t|k = Φ(t, k)x̂proj
k|k +

t∑
i=k+1

Φ(t, i)Ei (19)

satisfies (15), where x̂proj
k|k is the minimizer of (18).

4) Projection pseudo-measurement: The minimizer x̂proj,(i)
k|k

of (18) realizes non-colliding predictions for each motion model
m(i). Additionally, we want to explicitly consider the non-
colliding motion predictions in the IMM-KF for choosing
the prediction model m(i) as in (11), i.e., if a maneuver
exhibits high projection cost in (18a), it should be considered
less likely. In order to make the models whose unprojected
maneuvers exhibit collisions less probable, we augment the
physical measurements’ residuals ỹ(i)k of each model m(i) with
the pseudo-measurement

ỹ
(i)
pseudo,k = (x̂

proj,(i)
k|k − x̂(i)k|k)>W (x̂

proj,(i)
k|k − x̂(i)k|k) (20)

and use the augmented residual and augmented covariance to
compute the likelihood L(i)

k in (5a):

ỹ
(i)
aug,k =

[
ỹ
(i)
k

ỹ
(i)
pseudo,k

]
, S

(i)
aug,k =

[
S
(i)
k 0

0 S
(i)
pseudo,k

]
.

Remark 2: The estimates x̂(i)k|k of the filters are not altered
by the pseudo-measurement but only the motion predictions
and the IMM-KF’s probability estimates µ(i)

k .
Remark 3: The minimizers of (17) and (18) are equivalent

if M is larger than any possible constraint value (Big-M), i.e.,
M ≥ p̂lon,t|k ∀t = k + 1, . . . , k + T .

Remark 4: In this work, we consider motion predictions
with up to one lane change over the prediction horizon. Hence,
the predicted vehicle cannot be both in front and in the back
of vehicle η over the prediction horizon as such a maneuver
would require two lane changes. As a consequence, we can fix
zη,t = zη ∀t = k + 1, . . . , k + T in (18), which reduces the
number of binary variables to one per vehicle η and renders
(18) computationally more efficient.

Remark 5: Problem (18) can be solved efficiently as nx
is small and there are algorithms that solve combinatorial
problems efficiently, e.g., branch and bound techniques [24].
We highlight the algorithm’s real-time capabilities and provide
computation times in Section V.

C. Overall algorithm for single vehicle

Algorithm 1 summarizes the single-vehicle procedure given
the obstacle vehicles’ trajectories x1:N−1k:k+T , where Step 2–6 is
the state estimation and Step 7–11 is the motion prediction.

Algorithm 1 Single-vehicle estimation: recursion, time k

1: input: yk, x̂(i)k−1|k−1, P (i)
k−1|k−1, µ(i)

k−1, x1:N−1k:k+T

2: Run interaction step of IMM-KF (4)
3: Re-init. KFs with x̄(i)k−1|k−1, P̄

(i)
k−1|k−1 ∀m

(i)

4: Run KF (1), (2) ∀m(i)

5: Project (18) and get pseudo measurement (20) ∀m(i)

6: Run IMM-KF (5), (6) ∀m(i)

7: Find most probable model m← arg maxi µ
(i)
k

8: Project state estimate x̂(m)
k|k for model m, x̂proj

k|k ← (18)
9: for t← k + 1, . . . , k + T

10: Predict x̂(m)
t|k , P

(m)
t|k with (14), (19) for model m

11: Compute x̂t|k, Pt|k ← V x̂
(m)
t|k , V P

(m)
t|k V >

12: return: x̂k:k+T , Pk:k+T , x̂
(i)
k|k, P

(i)
k|k, µ

(i)
k

IV. PRIORITY-BASED MULTIPLE-VEHICLE ESTIMATION

We address multiple-vehicle estimation in a hierarchical
approach, where the hierarchy is given by a priority list and
dynamically adapted using ideas of the bubble sort algorithm
[25]. The proposed sorting procedure exploits the rules of the
road in which trailing vehicles must avoid collisions with a
leading vehicle.

We propose the following sorting strategy:
• If two vehicles are on the same lane, the vehicle in front

has a higher priority.
• If two vehicles are on different lanes, the one with larger

longitudinal progress over the prediction horizon T has
higher priority.

It is easy to see that it is always possible to derive a sorted
list lsort using these two criteria.
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Formally, the priority list is stated as

lsort = [l1, l2, . . . , lN−1, lN ] , (21)

where lj = η indicates that vehicle η has priority j. Note
that priority 1 is the highest and priority N is the lowest.
Consequently, the obstacle vehicles that vehicle η encounters
are given by the subset of vehicles

Lη := {l1, . . . , lη−1} . (22)

This hierarchical approach allows us to decouple the multiple-
vehicle estimation problem into multiple single-vehicle esti-
mation problems that are tractably evaluated as in Section III,
which is shown in Lemma 1 with proof in the appendix.

Lemma 1: The Bayesian tracking problem of the PDF in (7)
can be decomposed into N separate Bayesian tracking problems
using the priority list in (21).

Algorithm 2 summarizes the overall recursive procedure for
the estimation and motion prediction of multiple vehicles.

Algorithm 2 Multiple-vehicle estimation: recursion, time k
1: input: lsort, y1:Nk , x̂1:Nk−1|k−1, P 1:N

k−1|k−1, µ1:N
k−1

2: for η ← l1, . . . , lN . descending priority order
3: obstacles ← x̂l

1:η−1

k:k+T |k
4: x̂ηk:k+T |k, P

η
k:k+T |k ← Single-Veh. Est. . Alg. 1

5: lsort ← Priority List Sort
6: return lsort, x̂1:Nk:k+T , P

1:N
k:k+T

V. SIMULATION RESULTS

A. Illustrative example

We first examine a synthetic scenario to illustrate our method.
Fig. 1a shows the scenario in which a dangerous lane change
is performed by vehicle 3 going from the slow right lane to the
fast left lane with a constant longitudinal velocity of 19.4 m/s.
In front of vehicle 3 on the right lane, vehicle 2 travels with
a constant velocity of 19.4 m/s. On the left lane, vehicle 1
traveling with a higher velocity of 25 m/s has to react to this
sudden lane change by braking and keeping a distance from
vehicle 3.

We predict the motion plans for the three vehicles with
(a) the well-established Constant Velocity (CV) and Constant
Acceleration (CA) models, (b) the VT-DK models with a static
priority list (from lowest to highest: vehicle 3, 1, 2), and (c)
the VT-DK models with the dynamically adapted priority list.
Fig. 2 shows a snapshot of the scenario, the moment when
vehicle 3 merges into the left lane in front of vehicle 1. The
CV-CA models shown in (a) predict a collision where vehicle 1
ends up in front of vehicle 3; the VT-DK models with the static
priority list shown in (b) produce a non-colliding prediction
but incorrectly predict that vehicle 3 aborts its lane merging
maneuver; whereas when the priority list is sorted online (c),
we correctly predict that vehicle 1 will brake to keep a safe
distance from vehicle 3. We have included a supplementary
video to illustrate this scenario and highlight the advantages
of the intention-based models in conjunction with the sorting
algorithm of the priority list.

Veh.1

Veh.2

Veh.3

(a) (b) (c)

Figure 1. Test cases for evaluation of the proposed scheme. (a) Synthetic
dangerous lane change scenario, (b) NGSIM cruise control scenarios involving
keeping distance from a leading vehicle without changing lanes, and (c)
NGSIM lane change scenarios involving changing between two lanes with
both being blocked by leading vehicles.
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(a)

(b)

(c)

Figure 2. Snapshot of dangerous lane change scenario using (a) the CV-CA
models, (b) the VT-DK models with a constant priority list, and (c) the VT-DK
models with the priority list sorted online. The predictions for vehicle (solid
lines) and their start/end point (crosses) are displayed, along with the actual
trajectories (dashed lines) and their start/end points (circles).

B. Real-life vehicle data

In order to systematically evaluate the overall performance
of our method, we use the NGSIM I-80 dataset [26], which
consists of 45 minutes of vehicle trajectory data with 0.1 s
sampling time. We extract specific test cases from the dataset
that correspond to typical highway driving scenarios: cruise
control (Fig. 1b) and lane change (Fig. 1c). In total, we
predict 244 cruise control and 115 lane change scenarios with
prediction horizons of 1 s, 2 s, 3 s, and 4 s.

Fig. 3 compares the predicted motion plans resulting from
Algorithm 2 with the ones resulting from the CV-CA models.
It presents the means as well as the standard deviations of
the position prediction errors at the end of the prediction
horizon. It can be seen that for short prediction horizons, the
two model sets show comparable performance. For longer
predictions, however, the VT-DK model set produces smaller
prediction errors (between 30.5 % and 53.3 % for 4 s) and
reduced uncertainty about its predictions (between 59.7 % and
68.6 % for 4 s). This can be attributed to the intention-based
nature of non-colliding predictions, along with the stable VT
and DK models that limit the growth of the uncertainty.

C. Real-time computation capabilities

Next, we evaluate the real-time capability of the proposed
algorithm. The only computationally demanding step of our
method is solving the projection optimization problems of (18).
We evaluate the computational burden by solving 784 MIQPs
from the NGSIM test cases using FORCES PRO [27], [28] for a
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Figure 3. Mean longitudinal position prediction errors using models CV-
CA (blue circles) and VT-DK (red squares) and their corresponding standard
deviations, for prediction horizons of 1 s, 2 s, 3 s, and 4 s. The results are
obtained from single/multiple-vehicle predictions of many cruise control/lane
change scenarios from the NGSIM dataset.
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Figure 4. Histogram of exemplary projection MIQP solve times of (18) using
FORCES PRO [27], [28] for a prediction horizon of 4 s (T = 40).

prediction horizon of 4 s (T = 40). The resulting solve times are
displayed in Fig. 4. FORCES PRO needs approximately 0.2 ms
to 0.5 ms for most of the solves. Assuming a conservative
average solve time of 0.5 ms per MIQP, the projection of all
M = 6 models of M takes 3 ms per IMM-KF recursion. For
a local cluster of N = 10 vehicles, evaluating each of them
sequentially with Algorithm 2 takes 30 ms. This is well within
the available time margin (e.g., for a 0.1 s sampling time), thus
making the method executable in real-time. This can be further
improved by parallelizing the M MIQPs of the IMM-KF. The
computations were carried out on an Intel i7 CPU at 3.60 GHz
with 32 GB memory.

VI. DISCUSSION

In this section, we compare the performance of the proposed
prediction scheme with state-of-the-art deep learning-based
approaches that similarly use the NGSIM dataset. Table I
reports the Root Mean Squared Error (RMSE) of trajectory
predictions for the proposed method and [11]–[13] for various
prediction horizons. The RMSE is computed over all prediction
time-steps and trajectories and is also used in the review [29] as
a unified evaluation metric. The RMSE values for [11]–[13] are

Table I
COMPARISON WITH RELATED WORKS ON TRAJECTORY PREDICTION

Work RMSE (m)

1 s 2 s 3 s 4 s 5 s

[11] 0.72 2.00 3.76 5.97 9.01
[12] 0.49 1.41 2.60 4.06 5.79
[13] 0.56 1.19 1.93 2.78 3.76
ours 0.58 1.36 2.28 3.37 4.55

taken from [29] and are also stated in the respective references.
The computation time for the proposed method results from the
analysis in Section V-C with 0.03 s for a cluster of 10 vehicles.
Like many papers on deep learning-based methods, [11]–[13]
did not report their methods’ corresponding computation times;
a metric that is crucial in autonomous driving applications [29].
Conceptually similar approaches are typically computationally
more expensive, e.g., with 0.35 s and 0.06 s for 10 vehicles,
cf. [14], [15].

The proposed method exhibits one of the lowest RMSEs for
smaller prediction horizons, while also being comparable to
state-of-the-art results for prediction horizons up to 5 s. While
exhibiting comparable RMSEs, our method has some favorable
aspects compared to deep learning-based techniques. First, our
method requires only a few lane-change maneuvers to calibrate
K

(LC)
LQR , whereas deep learning-based methods need a significant

part of the NGSIM dataset to train their algorithms (i.e.,
thousands of trajectories). Second, our method has the smallest
computation time out of the available results, supporting its
real-time capabilities. In contrast to most of the related works,
our method is easily embeddable in typical autonomous driving
hardware configurations, without e.g., the need for powerful
GPUs [11], [12], [15].

The presented results rely on the priority-based estimation
technique, as well as the lane-based prediction models. For
scenarios that significantly differ from regular (and legal)
driving behavior, the prediction accuracy may deteriorate, e.g.,
if a motorcycle violates the rules of the road by traveling
in-between lanes. The handling of such corner cases can be
addressed via extensions of the proposed method.

VII. CONCLUSION

This paper proposed a framework for motion estimation and
prediction of traffic participants in highway driving scenarios.
First, we focused on estimation of a single vehicle and designed
an IMM-KF-based algorithm using a novel, intention-based
model set, consisting of typical driving maneuvers exhibited
by traffic participants during highway driving. Further, we
extended the algorithm to generate non-colliding predictions
using projections onto a feasible collision-free space. Lastly,
we addressed motion estimation and prediction for multiple
vehicles by assuming a hierarchical structure encoded through a
vehicle priority list. Simulation results with the NGSIM dataset
showed (i) increased motion prediction accuracy compared
to similar approaches in literature that use an IMM-KF
and comparable results with state-of-the-art deep learning-
based methods, and (ii) the proposed algorithm’s real-time
capabilities.
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APPENDIX: PROOF OF LEMMA 1

Proof: Without loss of generality, let the priority list l
in (21) be sorted in ascending order according to the vehicles’
indices. Then, the index sets in (22) take the form

Lη = {1, . . . , η − 1} ∀η = 1, . . . , N. (23)

The PDF in (7) is evaluated as

p(x1:Nk |y1:N1:k ) =
∑
m1:N
k

p(x1:Nk ,m1:N
k |y1:N1:k ) .

Using Bayes’ theorem, we obtain

p(x1:Nk ,m1:N
k |y1:N1:k )

=
p(y1:Nk |x1:Nk ,m1:N

k )p(x1:Nk ,m1:N
k |y1:N1:k−1)

p(y1:Nk |y1:Nk−1)
,

where p(y1:Nk |y1:Nk−1) is a normalization constant that can be
readily calculated, and

p(y1:Nk |x1:Nk ,m1:N
k ) =

N∏
η=1

p(yηk |x
η
k,m

η
k).

Further, marginalizing over x1:Nk−1 and m1:N
k−1 yields

p(x1:Nk ,m1:N
k |y1:N1:k−1)

=

∫ ∑
m1:N
k−1

p(x1:Nk ,m1:N
k , x1:Nk−1,m

1:N
k−1|y1

:N
1:k−1) dx1:Nk−1

where, using conditional probabilities and the Bayesian net-
work’s structure, yields

p(x1:Nk ,m1:N
k , x1:Nk−1,m

1:N
k−1|y1

:N
1:k−1)

= p(x1:Nk ,m1:N
k |x1:Nk−1,m1:N

k−1, y
1:N
1:k−1)p(x1:Nk−1,m

1:N
k−1|y1

:N
1:k−1)

= p(x1:Nk ,m1:N
k |x1:Nk−1,m1:N

k−1)p(x1:Nk−1,m
1:N
k−1|y1

:N
1:k−1).

The term p(x1:Nk−1,m
1:N
k−1|y1:N1:k−1) is known due to the recursive

nature of the employed Bayesian tracking scheme and

p(x1:Nk ,m1:N
k |x1:Nk−1,m1:N

k−1)

=

N∏
η=1

p(xηk,m
η
k|x

1:N
k−1,m

1:N
k−1, x

1:η−1
k ,m1:η−1

k ) ,
(24)

as we can evaluate the individual PDFs of (24) in hierarchical
order according to (23). Finally, the predictions of the vehicles’
states x1:Nk+1:k+T can be evaluated by repeating (in hierarchical
order) the IMM-KF steps for each vehicle.
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