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Abstract. A numerical study is performed to investigate the interaction 
between a buoyancy-induced flow and an array of annular cavities. The 
buoyant flow is generated in a vertical annular enclosure with a centrally- 
positioned finned inner cylinder. Heat is generated within the inner 
cylinder, and it is convected through the inter-fin cavities and annular 
enclosure to the outside environment. The results indicate the presence 
of a twin recirculating bubble in each cavity. At higher Ra, the main flow 
enters the cavities and removes the recirculating flow. These observations 
are more pronounced at higher Pr. For more slender and deeper cavities, 
the recirculating bubbles closer to the finned wall collapse and split into 
two bubbles. The presence of cavities create a nearly uniform high- 
temperature zone adjacent to the finned wall. As the fin length is reduced 
and the cavities become more shallow, this zone shrinks and the main 
buoyancy-driven flow maintains a closer thermal communication with the 
finned wall. 
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1. Introduction 

Buoyancy-driven flows in enclosures have been the subject of study for many years 
and the published literature on the subject is diverse and rich (Catton 1978; Ostrach 
1982, 1988; Hoogendoorn 1986). A number of investigators have been interested in 
cavity-driven flow with the flow generated by the motion of the upper wall (Bozeman 
& Dalton 1973; Ozawa 1975; Tuann & Olson 1978; Benjamin & Denny 1979; Ghia 
et al 1982; Schreiber & Keller 1983; Iwatsu et al 1989, 1990, 1992) while others have 
studied the effect of thermally-induced buoyancy on the flow field. 

Although the existing literature on square cavities is rich, the number of investiga- 
tions concerned with annular cavities is fairly limited. The focus of the previous 
studies has been in two directions; one to gain better understanding of the flow field, 
and the other to explore the thermal behaviour of the problem. In fact, the coupling 
of the governing equations in thermally-driven flows links these objectives together. 
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One of the pioneering works on natural convection in annular cavities was 
performed by De Vahl Davis & Thomas (1969) who employed a numerical technique 
and reported flow and heat transfer results. In another effort, Thomas & De Vahl 
Davis (1970) classified the flow into three regimes, namely conduction, transition, 
and boundary layer regimes, and presented correlations for each regime. Other 
related works are the experimental investigations of Collier et al (1970), who employed 
carbon dioxide at high pressures and temperatures, the analytical and experimental 
studies of Nagendra et al (1970), and the experimental work of Sheriff (1966). 

Experiments on a vertical annulus where the inner cylinder is at constant heat flux 
and the outer cylinder at constant temperature are performed by Keyhani et al (1983). 
They used air and helium as working fluids and conducted their measurements at a 
fixed aspect and radius ratio. Bhushan et al (1983) continued the studies of Keyhani 
et al (1983) with the same experimental setup and performed experiments with air 
and helium at higher pressures. They arrived at new and more general correlations for 
conduction and boundary layer regimes which included the effect of aspect and radius 
ratio on heat transfer coefficient. However, the results are valid for the annuli with 
constant surface heat flux at the inner cylinder. 

Experiments of Prasad & Kulacki (1985) were performed at higher values of 
Rayleigh number and with the inner and outer surfaces maintained at constant 
temperature. They indicated that turbulence is initiated when the local Grashof 
number reaches 4 x 10 9. Other related studies are the experiments reported by 
Vijayan et al (1986) on two methods of reduction of buoyancy-driven flow in a vertical 
annulus open to hot fluid at the bottom, the numerical results of Lin & Nansteel 
(1987) for water at maximum density, the experimental work of Molki & Shahsavan 
(1989) on a vertical annulus filled with atmospheric air and immersed in a water bath 
to provide a convective environment on the outside surface of the annulus, and the 
numerical results reported by Farouk et al (1990). 

Despite the existence of the above references on buoyancy-driven flows in annular 
cavities, the interaction between annular cavities appears to be scarce. The present 
investigation is concerned with the flow and temperature fields which result from the 
interaction between a byouancy-induced flow and an array of annular cavities. The 
flow is induced by thermal gradient in an annular enclosure where a finned inner 
cylinder is situated at its centre. The interfin spacings form the array of open cavities 
which are exposed to the buoyant flow. 

This type of interaction arises in many engineering devices. For instance, the finned 
surfaces form an array of open cavities whose thermal-hydraulic performance depends 
on the nature of its interaction with the neighbouring fluid. In particular, the inner 
cylinder of the present geometry may be considered to be a heat-generating electronic 
component which is shrouded in a cylindrical container to protect it against the harsh 
environment. This aspect of the buoyancy-driven flow appears to be new and has 
not attracted the attention of other investigators. 

2. Description, formulation, and methodology 

2.1 Statement of the problem 

The simplified view of the problem is shown in figure 1. A solid cylinder of radius 
Ri and height H is located in a larger hollow cylirrder of radius Ro to form the annular 
enclosure. In this figure only the enclosure and the finned surface of the inner cylinder 
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Figure 1. Geometry of the problem; the 
finned surface at the left is the surface 
of the inner cylinder. 

are shown. The fins are equally spaced to form the array of annular cavities. Heat 
is generated within the inner cylinder at the uniform rate s per unit volume. The 
outer boundaries of the enclosure are exposed to a convective environment at T® 
and h. With this arrangement, the thermal energy generated in the finned wall is 
transferred to the outside environment by natural convection through the annular 
fluid. The circumferential fins form the array of open cavities and interact with the 
buoyancy-driven main flow in the annulus. It should be noted that the solutions are 
based on the large value of thermal conductivity for the inner wall so that the thermal 
boundary condition on the finned wall may be considered to be uniform temperature. 

2.2 Governino differential equations 

The governing equations are conservation of mass, momentum, and energy for the 
fluid, and the energy equation for the inner finned solid. All the thermophysical 
properties are assumed to be constant, except for the density in the buoyancy term 
where Boussinesq approximation is used. The dimensionless governing differential 
equations are, 

I 0 OU 
~ ( R V ) + ~ = O ,  

u av + v aU= 
~X ~R 

OV vOV 

U~-~+ OR PrLRaR\ ale} 

I ~ { OT'~ a2T 

(1) 

FI a {ROU~ O2U7 Ra 

OR + LRaR k as/+ a-#~J R 2' 

a 2 T1 KS 
(4) 

(5) 

In these equations, the dimensionless parameters are defined as, 

x = X/L, R = r/L, (6) 
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U = u/(v/L), V = v/(v/L), T = t/too, (7) 

P = p*/[p(v/L )2], p .  = p + p,g(1 + f lT,)(H - x), (8) 

Ra=gflL3Too/(v~O, Pr=(v/~),  K = ( k s / k l ) ,  S=(L2/k~Too)s. (9) 

To complete the formulation of the problem, the boundary conditions are specified 
as: (1) on all solid boundaries, U = V= 0; (2) at the centreline of the inner cylinder 
(not shown in figure 1), 

t~ T/~R = O; (10) 

(3) at the top and bottom walls, 

solid ++_dT/t3X=Bi(T- 1), (11) 

fluid -T -dT / t3X=Nuoo(T -  1), (12) 

where the negative and positive signs apply respectively to the top and bottom walls; 
(4) at the outer cylindrical wall, 

- t 3 T / d R  = Nuoo(T- 1), (13) 

(5) at the solid-fluid interface, Ts = Ty and 

K (O T/t~ N)~ = (t~ T/t~ N)p  (14) 

In these equations, Bi = hL/k s, Nu0o = hL/k I, and N = n/L, where n is a space 
coordinate normal to the interface. Moreover, the geometric parameters which identify 
the annulus and the fins are, radius of the outer cylinder Ro = rolL, annulus height 
H = h/L, fin length L I = Ii/L, fin thickness T I = t i lL ,  and the number of fins n s. It 
is noteworthy that the radius of the inner cylinder R~ = ri/L, is related to Ro through 
Ri = Ro - 1. Once one of the two radii is known, the other is readily found. In this 
connection, the ratio of the outer radius to the inner radius, ro/r~ = Ro/Ro has emerged 
as a major geometric parameter. 

Examination of (1)-(9) and the boundary conditions indicate that the dependent 
variables, namely U, V, P, and T, are functions of X, R, Ra, Pr, K, Nu~,  S, Ro/R~, 
H, L.r, T s, and n I. In this study, Ra ranged from I000 to 1000,000, Pr from 0-7 to 
1000, L I from 1/64 to 1/2, T I from 0.009 to 0.087, and n I from 0 to 16. To save on 
the computation time, the remaining variables were fixed at values K = 2800, 
Nuoo = 20, S = 0.04, Ro/R~ = 2, and H = 1. This value of K corresponds to a practical 
situation where the inner cylinder is made of iron and the cavity fluid is air. The 
values for Nuoo and S are other realistic values close to those encountered in the 
studies of Molki & Shahsavan (1989). 

2.3 Computational method 

The governing equations were discretized by a control-volume-based finite-difference 
method and solved by a line-by-line iterative procedure. In this connection, the 
momentum and energy equations were integrated over each control volume of the 
solution domain. Temperatures were evaluated at the centre of main control 
volumes, while a staggered grid was employed for velocity components. The continuity 
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equation was integrated on the main control volumes to yield a pressure-correction 
equation. 

Before integrating the differential equations, the convection and diffusion terms 
were combined to form a total flux term. A power-law scheme was used to interpolate 
total fluxes. The interface diffusion coefficients were obtained from the harmonic 
mean formula. The source terms were linearized and the convective boundary 
conditions were supplied as additional source terms. Care was exercised to avoid 
negative-slope linearization of the source terms, which could otherwise result in a 
diverged solution. Due to nonlinearity of the differential equations, underrelaxation 
had to be applied to the velocity components and the pressure. The underrelaxation 
values 0.5 and 0"8, respectively for velocities and pressure, proved to be quite 
satisfactory. More details of the discretization and computational method are well 
documented by Patankar (1980). 

Before the onset of computational runs, a comprehensive grid study was performed 
on the problem. The total number of grids were 1160, 2350, 3900, 4290, and 7968, 
while the various parameters were kept constant at Ra = 10,000, Pr = 0.7, Nu® = 20, 
S = 0.04, K = 2800, Ro/R i = 2 and H = 1. The effect of grid size on U, V, and T at 
the centre of the cavity indicated that these parameters changed with respect to the 
values for the finest grid (i.e., the 7968-point mesh) by (5"3270, 1.78%, 0.6170, 0-61~o), 
(1"0770, 0.61%, 0.36%, 0"36%), and (0.19%, 0.125/o, 0.06%, 0.07%), respectively. These 
percentages indicated that a total of 3900 grid points would be sufficient to perform 
the present computations. 

In the iterative procedure, the value of mass source in control volumes served as 
a convergence criteria. The iterations were continued until the maximum value of 
mass source did not exceed 10-~. With this criteria, the number of iterations ranged 
from 600 to 1200. All computations were performed in double precision on a VAX 
4000/200 computer. The CPU time ranged from 1 to 2 hours, with the 2-hour runs 
corresponding to the high Rayleigh numbers. 

3. Comparison with bench mark solution 

The precision of the present numerical technique and the computer code was evaluated 
by comparison with a bench mark solution. Apparently, no such solution is available 
for annular cavities. Therefore, the comparison is made with the rectangular cavity. 
It should be noted, however, that the rectangular cavity may be considered as a 
special case of the annular geometry where the radius ratio is equal to one. In fact, 
this comparison could also serve as a test of performance for the present code in 
such an extreme limiting case. 

To facilitate the comparison with the bench mark solution of De Vahl Davis (1983), 
the radii of the cavity were increased to allow the radial inter-wall distance between 
the vertical walls of the cavity to reach 2.4% of the outer radius. This also increased 
the extent of the solution domain and the computation required more grid points. 
In addition, the top and bottom walls of the cavity were insulated, and the values 
of Nuoo and K were increased respectively to 2 x 108 and 2.8 x 10 s to ensure a 
uniform temperature on the vertical walls of the enclosure. 

In this comparison, the computed quantities are the maximum vertical velocity on 
the horizontal mid-plane of the cavity, the maximum horizontal velocity on the 
vertical mid-plane of the cavity, the respective locations of these velocities, and the 



710 M Molki and M Faohri 

Nusselt number. The numerical results indicated a maximum difference of 2.0% in 
velocities and 1.7% in Nusselt number. This level of agreement between the present 
work and the bench mark solution under such an extreme limiting case is supportive 
of the present computational technique.. Additional comparison with literature, 
including a comparison with one of the previous experimental results of the authors 
(Molki & Shahsavan 1989) has been presented by Molki & Faghri (1994). 

Table I. Values of parameters for figures 2-6. 

Figure 2a 2b 2c 2d 

Pr 0.7 0.7 1000 1000 
Ra 1000 1000,000 1000 1000,000 
n/ 8 8 8 8 
L I 0.25 0.25 0.25 0.25 
T I 0'02 0'02 0"02 0"02 
S s 0.093 0.093 0.093 0.093 

3a 3b 3c 3d 3e 

0'7 0"7 0"7 0"7 0"7 
1O0,000 100,000 100,000 100,000 100,000 
8 8 8 8 8 
0'25 0"125 0"063 0"031 0"016 
0"02 0'02 0"02 0"02 0"02 
0"093 0'093 0"093 0"093 0"093 

4a 4b 4e 4d 

0'7 0"7 0.7 0.7 
100,000 100,000 100,000 100,000 
12 6 4 2 
0"25 0"25 0"25 0"25 
0'02 0"02 0"02 0"02 
0'0585 0"1257 0'184 0"320 

5a 5b 5c 5d 

0.7 0.7 0-7 0.7 
I00,000 100,000 100,000 IO0,O00 
8 8 8 8 
0"5 0"25 0"125 0.063 
0"009 0'02 0"042 0"087 
0"1031 0'0933 0"0735 0"0336 

6a 6b 6c 6d 

I>7 0"7 0"7 0"7 
100,000 100,000 100,000 100,000 
16 8 4 2 
0"25 0'25 0'25 0"25 
0.01 0.02 0.04 0.08 
0.049 0.093 0. t68 0.280 
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4. Results and discussion 

Attention is now turned to the examination of the results. The results are grouped 
into two parts. Part one deals with the flow field, while part two considers the 
temperature. The principal parameters of each case are shown in tables 1 and 2. 

TaMe 2. Values of parameters forfigures 7-11. 

Figure 7a 7b 

Pr 0.7 1000 
Ra 1000 1000,000 
n/ 8 8 
L: 0.25 0.25 
T: 0"02 0"02 
S/ 0-093 0"093 

8a 8b 8c 8d 8e 

0.7 0.7 0.7 0.7 0.7 
100,000 100,000 100,000 100,000 100,000 
8 8 8 8 8 
0.25 O. 125 0.063 0.031 0.016 
0.02 0.02 0.02 0-02 0-02 
0.093 0.093 0.093 0.093 0.093 

9a 9b 

0.7 0-7 
100,000 100,000 
12 2 
0.25 0.25 
0.02 0.02 
0-0585 0.32 

lOa lOb lOc lOd 

0"7 0"7 0"7 0.7 
100,000 100,000 100,000 100,000 
8 8 8 8 
0.5 0.25 O. 125 0-063 
0"009 0"02 0"042 0"087 
O- 103 0"093 0"0735 0-0336 

l la  l lb  llc l ld 

0"7 0"7 0-7 0"7 
100,000 100,000 100,000 100,000 
16 8 4 2 
0"25 0"25 0"25 0"25 
0-01 0-02 0-04 0.08 
0"0494 0"093 0"168 0.280 
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4.1 The flow field 

The interaction between the main buoyancy-driven flow and the array of annular 
cavities is demonstrated by the streamlines of figure 2. In this figure, the right 
boundaries of the inter-fin cavities are exposed to the large-scale recirculation in the 
main enclosure (see figure 1), while the top, bottom, and left sides are bounded by 
the solid walls. The wall and the fins are warmer than the neighbouring fluid and 
generate a clockwise rotation in the main buoyancy-driven flow (figure I). 

It is seen from table 1 that figures 2a & b and figures 2c & d are prepared for the 
same Prandtl number (Pr) but different Rayleigh numbers (Ra). Examination of these 
streamlines indicates that at low Rayleigh numbers (figure 2a & c), the cavities are 
washed by twin recirculating flows which rotate in opposite directions. The 
recirculating bubbles situated to the right have a counter clockwise rotation, while 
those located to the left have a clockwise rotation. The top and bottom cavities, 
however, are somewhat different, since their exposure to the main large-scale 
recirculation is different. In these specific locations, only one single bubble is observed, 
which is larger and more energetic. 

At higher values of Ra (figures 2b & d), the main flow enters the cavities of the 
array where it partially disturbs or completely removes the twin recirculating bubbles. 
The streamlines in these figures indicate that the extent of this interaction increases 
with Pr, and the main recirculating flow moves into the cavities. It is noteworthy 
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Figure 2. Effect of Pr and Ra on the flow field in the array of cavities; twin 
recirculating bubbles are seen inside most of the cavities. 
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(a) (b) (c) (d) (e) 

Figure 3. Effect of fin length on the flow field. The recirculating bubbles become 
smaller and eventually disappear as the cavities become more shallow. 

that these flow features are often encountered in finned walls, and they can have a 
significant effect on heat transfer. 

Effect of fin length or depth of cavities on the flow field is shown in figure 3, and 
the relevant parameters are given in table 1. It is seen from the figure that the twin 
recirculating bubbles are greatly affected by the fin length. The bubble adjacent to 
the wall disappears as the fin length is reduced and the cavities become shallow 
(figure 3a). Further reduction of the fin length brings the main recirculating flow closer 
to the cavities and there is more interaction with the cavity fluid. It is clear from 
figures 3d-e  that for shallow cavities, the recirculating bubbles disappear and the 
main flow enters the inter-fin spacings with no difficulty. 

In figure 4, the streamlines are presented for different number of fins. The cavities 
become more slender as the number of fins is increased. In this case, the 
next-to-the-wall recirculating bubbles tend to collapse and split into two parts (figure 
4a). On the other hand, the extent of flow interaction increases as the number of fins 
is decreased and the main flow moves into the interfin spacings (figure 4d). 

The finned walls are often optimized with respect to their thickness and number. 
In this regard, the fin length can be either increased with constant thickness, or it can 
be increased under the constraint that the fin mass remains constant. With thi~ 
constraint, a longer fin has to be thinner and a shorter fin must be thicker. 

The streamlines of figures 5-6 are obtained with the restriction that the total fin 
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Figure 4. Effect of number of fins on the flow field. Larger number of fins tends 
to stretch the next-to-the-wall recirculating bubbles ad split them into two parts. 

mass remains constant. In figure 5, the fin length is reduced under the constant-mass 
constraint and the number of fins is constant, while in figure 6, the fin length is held 
constant and the number of fins is reduced. It is clear from figure 5 that the number 
and extent of the recirculating bubbles are reduced with the fin thickness. However, 
as evidenced from figure 6, the main flow moves into the cavities as the number of 
fins is decreased. 

4.2 The temperature field 

Representative isotherms for the array of cavities are presented in figures 7-11, with 
the respective parameters given in table 2. In figure 7, the effect of Pr and Ra on 
temperature distribution indicates that there is a larger temperature variation in the 
top and bottom cavities of the array, while the temperature gradient in the remaining 
cavities is relatively small. This observation is consistent with the fact that the flow 
in the top and bottom cavities is more dynamic. As is evident from the earlier 
streamlines, the main flow often penetrates into these cavities with less difficulty, thus 
permitting better exchange of thermal energy. 

Figure 8 shows the effect of fin length on the temperature field. According to table 2, 
the figure is prepared for a hxed Pr and Ra, with the fin thickness being constant. 
Again, it is seen that the temperature variation in the cavities situated at the far ends 
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( a )  ( b )  (c) ~(d) 

Figure 5. Effect of fin length under constant-mass restriction; the number and 
extent of the bubbles are reduced with the thickness. 

(a) (b) ~I~ (C) '~(d) 

/i 

Figure 6. Effect of number of fins under constant-mass restriction; the main flow 
enters the cavities as the number of fins is decreased. 
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Figure 7. Effect of Pr and Ra on 
isotherms; larger temperature gra- 
dients are seen near the fin tips and 
also in the top and bottom cavities 
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Figure 8. Effect of fin length on isotherms; more temperature variation is observed 
as the fin length is reduced. 
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Figure 9. Effect of number  of fins on 
isotherms; for larger number  of fins, a 
nearly isothermal zone is seen in the 
finned area. 
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Figure 10. Effect of fin length on isotherms under  constant-mass restriction. 
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Figure 11. Effect of number of fins on isotherms under constant-mass restriction. 

of the array is much larger. As the fin length is reduced, the extent of the nearly 
uniform temperature zone created by the presence of the fins is also reduced and 
there is a closer thermal communication between the finned wall and the main 
buoyancy-driven flow. 

Figure 9 indicates the effect of number of fins on the cavity isotherms. With more 
fins, the recirculating bubbles are present in the cavities and the thermal 
communication between the finned wall and the main flow is through the multiple 
bubbles. As the number of fins is diminished, the size of cavities in vertical direction 
is increased and the main fluid comes into a close contact with the finned wall. It is 
seen in this figure that the temperature variation increases with the fin spacing. 

At a given temperature difference, there are two parameters which determine the 
magnitude of heat transfer. These are the heat transfer coefficient and the surface 
area. As the fin length or the number of fins is reduced, the area decreases and this 
tends to decrease heat transfer from the wall. On the other hand, the presence of 
recirculation zones in the inter-fin spacings has an enhancing effect on heat transfer 
coefficient, so that the overall effect is determined by the combined effect of these 
parameters. In a previous study, the authors (Molki & Faghri 1994) have indicated 
that for the case of constant hea t  generation within the finned wall, the wall 
temperature decreases as the number of fins or their length is increased. 

Isotherms for fin arrangements of constant mass are shown in figures 10-11. Again, 
the temperature variation in the cavities situated at the far ends of the array is 
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relatively large. The figures also indicate that the effect of fin spacing (or number of 
fins) on isotherms is stronger than that caused by the fin length. 

5. Conclusion 

The paper described a numerical investigation of the effect of a buoyancy-driven flow 
on an array of annular cavities. The buoyant flow is generated by temperature gradient 
in an annular enclosure where the resulting flow interacts with an array of smaller 
cavities inside the enclosure. The study is focused on the qualitive description of the 
flow and temperature fields. 

At low Ra numbers, a twin recirculating bubble is observed in the array of cavities 
which rotate in opposite directions. As Ra increases, flow patterns undergo a 
transition so that at higher Ra, the main flow is able to enter the cavities and remove 
the recirculation bubbles. These observations are more pronounced at higher Pr 
number. 

Another noteworthy parameter which affects the flow patterns is the depth of 
cavities or fin length. As the cavity depth is reduced, the recirculation bubbles adjacent 
to the bottom wall of cavities disappear. Further decrease of depth would remove 
all recirculation from within the cavities and would bring the main flow into a closer 
thermal communication with the finned wall. 

Flow patterns are also affected by the vertical dimension of cavities. For more 
slender and deeper cavities, the recirculating bubbles that are closer to the finned 
wall collapse and split into two bubbles. 

Examination of the temperature field indicates that there is a large temperature 
variation at the top and bottom cavities of the array, while the temperature gradient 
in the remaining cavities is relatively small. An overall review of the isotherms shows 
that the presence of the cavities creates a nearly uniform high-temperature zone 
adjacent to the finned wall. However, as the fin length is reduced and the cavities 
become more shallow, this uniform-temperature zone is shrunk and the main 
buoyancy-driven flow maintains a closer thermal communication with the finned 
wall. 

The first author gratefully acknowledges that the funding for this project was provided 
by the Esfahan University of Technology. 

List of symbols 

Bi 
# 
h 
H 
K 
l: 
c: 
L 
n 

Biot number, hL/k~; 
acceleration of gravity, m/s 2, (8); 
outside convective heat transfer coefficient, W/m 2 °C, annulus height, m; 
dimensionless annulus height, h/L; 
solid-fluid conductivity ratio, ks~k:; 
fin length, m; 
dimensionless fin length, l:/L; 
radial distance between the inner and outer walls of the annulus, m; 
space coordinate normal to solid-liquid interface; 
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n: 

N 
Nu~ 
P 
P 
Pr 
R 
rl 

ro 
Ri 
Ro 
Ra 
S 

S 
tf 
t 
t~ 
r: 
T, 
T 
U 
V 
X 
B 
V 

P 
P, 

number of fins; 
dimensionless n, n/L; 
Nusselt number outside the annulus, hL/k:,  (12); 
pressure, Pa, (8); 
dimensionless pressure, (8); 
Prandtl number ,  v/a; 
dimensionless radial coordinate, r/L, (6); 
radius of the inner cylinder, m; 
radius of the outer cylinder, m; 
dimensionless radius of the inner cylinder, ri/L; 
dimensionless radius of the outer cylinder, ro/L; 
Rayleigh number, (9); 
heat generation within the inner cylinder, W/m 3, (9); 
dimensionless s, (9); 
fin thickness, m; 
temperature, °C, (7); 
temperature of the surroundings, °C, (7); 
dimensionless fin thickness, t: /L; 
reference temperature, °C, (8); 
dimensionless temperature, t/t~o, (7); 
velocity component in x direction, u/(v/L ), (7); 
velocity component in r direction, v/(v/L), (7); 
axial coordinate, x/L, (6); 
volumetric coefficient of thermal expansion, 1/K, (8); 
kinematic viscosity of fluid, m2/s; 
fluid density, kg/m3; 
reference density, kg/m 3. 

Subscripts 

f fluid, fin; 
i inner cylinder; 
o outer cylinder; 
s solid; 

surroundings. 
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