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Abstract

The plane interaction problem for a circular elastic inclusion
imbedded into an elastic matrix which contains an arbitrarily
oriented crack is considered. Using the existing solutions for
the edge dislocations [6] as Green's functions, first the general
problem of a through crack in the form of an arbitrary smooth arc
located in the matrix in the vicinity of the inclusion is formu-
lated. The integral equations for the line crack are then obtained
as a system of singular integral equations with simple Cauchy
kernels. The singular behavior of the stresses around the crack
tips is examined and the expressions for the stress intensity fac-
tors representing the strength of the stress singularities are
obtained in terms of the asymptotic values of the density functions
of the integral equations. The problem is solved for various
typical crack orientations and the corresponding stress intensity
factors are given. :,

1. INTRODUCTION

In fracture studies' of ceramics and other composite materials

it is generally conjectured that the fracture of the solid will

initiate at and will propagate from a "dominant flaw". This may

be a manufacturing flaw, it may be caused by residual stresses or

some other type of loading before the part is put into use, or it

may result from the growth of a "micro flaw" due to cyclic nature

of the operating stresses. In some cases it may be possible to

detect such flaws by using nondestructive testing techniques.

This work was supported by the National Science Foundation under
the Grant GK-11977 and by the National Aeronautics and Space
Administration under the Grant NGR 39-007-011.
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More often, in studies relating to structural integrity and reli-

ability one simply assumes their existence. Thus, preliminary to

the application of the relevant fracture theory, one needs to

solve the mechanics problem for the composite medium consisting of

inclusions and/or pores and the surrounding elastic matrix which .

contains the flaw. Generally the flaw is assumed to be an internal

crack the size of which is of the same order of magnitude as that

of the inclusions. The exact elasticity treatment of the three

dimensional problem with a regular or a random array of elastic

inclusions imbedded into an elastic matrix containing an internal

crack appears to be hopelessly complicated. However, one may have

some idea about the response of the composite solid if the solution

of the related two-dimensional elasticity problem were to be

available.

In this paper such an idealized problem will be considered.

It will be assumed that the elastic matrix contains only "sparTely"

distributed inclusions. Hence the mechanical interaction is pri-

marily between an isolated inclusion or a hole and a line crack

arbitrarily located in the neighborhood of the inclusion in the ",

surrounding elastic matrix which is assumed to be infinitely large.

The body will be assumed to be in a state of plane strain or gener-

alized plane stress. The special cases of this problem in which

the geometry of the medium and the external loads contain a plane

of symmetry were considered in [1-4]. [4] also includes the solu-

tion of the problems for two collinear cracks (one in the matrix,

one in the inclusion), for a crack terminating at the inclusion-

matrix interface, and for a crack crossing the interface.

' . . ' ' • - 2 - . . ' ' • '



2. THE INTEGRAL EQUATIONS : ' ,

As in many crack problems, the solution of the present problem

too may be obtained through the superposition of two solutions.

The first refers to the simple problem of a circular elastic inclu-

sion inserted into a matrix without the crack. This problem is

solved under the given system of external loads. In the second

problem only the stress disturbance due to the existence of the

crack in the matrix is considered. In this problem the only exter-

nal loads are the crack surface tractions which are equal in magni-

tude and opposite in sign to the stresses obtained in the first

problem along the line which is the presumed location of the crack.

The nonhomogeneous medium may be subjected to an arbitrary .set of

external loads (including quasi-static thermal loads) applied to

the matrix and the inclusion. However, it is assumed that the

dimensions of the matrix are sufficiently large so that in the

second problem the interaction between the outer boundary of. -the

matrix and the crack-inclusion combination may be neglected. ^Thus,

in the second problem, which contains the singular part of the ,

solution, the matrix will be assumed as being inf i ni te. It will

henceforth be assumed that the solution of the first ̂ problem is

known. For example, if the matrix is infinitely large and is sub-

jected to biaxial stresses at infinity, this solution may be

obtained by adding the results for two perpendicular uniaxial

stresses given in [5], namely

„ - a° n 1R?. + n 23R2a - -j- ii -- •i—y- + (\ - — ̂ —
. r r
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°o 6R • 36R
tf.fi = - -o- 0

 +
 —T

 +
 —A-)sin28 , (1 . a - c )re

^
6 = " ' Y =

. .. .
5 = u^ ' (2.a-c)

where a is the uniaxial stress at infinity, R is the radius of

the inclusion, r and 6 are the polar coordinates (r is measured •

from the center of the inclusion, 8 is measured from the direction

of loading, a ) ,' and :'û  ,K^ and y^^? are» respectively, the elastic

constants of the matrix and the inclusion.

The integral equations for the stress disturbance problem may

be obtained by using the solution for the edge dislocations given

in [6] as the Green's functions. Referring to Figure l(a), let

the matrix 1 contain two edge dislocations at the point (x=c,y=0)

with Burgers vectors bv and bu. Following [6], the stresses at a..''•' • • ' • • y . • • . • . . .••••'
point P(x,y) in the matrix may be expressed as

TT(IC,-H) ; , ; • • : . • - . •
-ITj - -

O
y y t x . y , c 0 ) = h y y l ( x , y , c 0 ) b x + h y y 2 (x ,y . , c 0 )b y • ,

-^— a ^ x ( x , y , c 0 ) = h x x l ( x , y , c o ) b x + h x x 2 ( x , y , c 0 ) b y ,

TT(K ,+ I ) .

— - ^ x y ^ ^ ' y ^ o
5 = h

x y l
( x

'
y
'
c
o

) b
x
 + h

x y 2
( x

'
y
'
c
o

) b
y .'

( 3 . a - c )

w h e r e
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P(x,y)

(b)

Figure 1. Geometry showing the dislocations bx and by, and the
crack L in the neighborhood of the inclusion 2.
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.£
R » A =

M =
m(l+K 1

l-m

2m)

B =

(5)

Xl = X2 = X'F r2 =

= (x-c) (6)

Let us now assume that the matrix contains a cut along a smooth

arc L going through the point (c ,0) (Figure la). Let a (s) and

ct(s), (s6L) be the normal and tangential components of the stress

vector on L in the composite without the cut and subjected to the

given set of external loads, where s is the arc length measured on
i . • . "

L (i.e., the solution of the first problem). Let the point (cQ,0)

correspond to s = s on L. Once L is specified, from (3) we may

also obtain the normal and tangential stresses on L due to

dislocations b and b only. as follows:x y

a n ( s > s o > = hnl ( s ' so ) bx + h n 2 ( s ' s o > b '

=' htl(s,s.0)bx' + ht2(s,s0)by , (7.a,b)

where h - a n d h. . , (i=l ,2) may be obtained from (4) by using the

coordinates on L. If n and t refer to the positive normal and

tangent to L at s (Figure la) and if a = a(s) is the angle between

the x-axis and the normal n, noting that (3) is also valid for

(x,y)€L, ab and a^ are given by

K 1 9 1 9 1
n = a!v cos a + a sin a + 2a sinacosa ,n xx jj . ™j

I T

" axx)
sinacosa a " sin (8.a,b)
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Substituting x=x(s), y = y(s) from the equation of L, (3), (4),

(7) and (8) give h. and h.., (i=l,2).
I l l ' " l # 1 ~ ' . ' . ' • •

If we now assume that b and bu are continuously distributed• x y
(unknown) functions (of s ) on L, the stress disturbance problem

(the second problem) may be formulated as

-«„(*).•> / thn
:,(».se)bx(s0.) * hn2(s,s0)by(s0)]ds0 ,

-ot(s) = / [ht|(s.s0)bx(-50) ' + 'ht2{s.s0)by(s0)]ds0 . (9.a,b) ,

The single-valuedness condition of displacement vector requires

that the density functions of the system of integral equations (9)

satisfy the" following, relations: . ,

/ b (s.)ds = 0 , / bv(s )ds > 0 . (10.a,b)
L x o o L y o o

Superimposed on the solution of the corresponding "first problem",

in principle (9) and (10) give the solution to any problem of an

arbitrarily oriented arc-shaped crack in the matrix.

In particular if the crack is along a straight arc L shown .

in Figure Ib the transformations would be considerably simplified.

Let (t,w) be the fixed coordinate system and the end points of the

cut be at (t-j,c) and (t2>c) (Figure Ib). Note that on L

t =-s a =a = ab a ' • ' = -ab (11)| o' ' ww nn n ' wt ns t

The relations and quantities necessary to express the kernels in

I (9) explicitly in terms of t and tQ may then be written as

i. . . . ~ .
• x = t sina + c cosa, y = c sina - t cosa ,

-8-
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xl =
9 ?

t t 0 + c
2

- R
2

r =

= (t0-
-t)'

2 2c +
v

. ( 1 2 )

If we now let the stresses on L o b t a i n e d f rom the s o l u t i o n of

the p r o b l e m w i t h o u t the crack be

-
a
ww

( t
'
c ) (13)

and define

bx(so} = "fl(to) • ' • • ' • by(so} = -W ' (14)

the system of integral equations (9) and the conditions (10) may

be expressed as

TT(K] +1) *1 2

1 t0 3=1

/ f.(t)dt = 0 ,
_i_ I - - . •

1 = 1,2)' . (16)

It is not difficult to show that at t= tQ the kernels Kjj'U.t

have Cauchy type singularities. In fact, examining the terms
2 2containing x-.fr-, and y/r, in (4) we find

, (17)

I

whereas all the remaining terms can be shown to be bounded in the

closed interval to £ (t ,t ) <_ t-, . Separating the singular parts of

the kernels, (15) may be written as

-9-



+D

2y- P l(t) =

TT(IC,

'1 .

. .
P(t) =

V
t2 j

t]
/ f2(t0) -
*2 J

? f (t )

c dto
A. ±.

'cZ + t0Z °

*o dto
j- a.

c2+ t0
2 °

t dtQ

• k . T i ( t < t o > f T < . t o > d t <

t.

dt.

'2

-•*99(t.O.Mt'Jdtn v
t

-22 0 . 2 0

(t2<t<t1), (18.a,b)

where k-.(t,t ), (i»j=l,2) are bounded functions in the closed
J " - . - - • • " ' : ' - • • ' • • • • ' : ' , '

interval (t2 ̂  (t ,t) _< t-,). For the homogeneous medium y, =yp,

K^ = <2»: m = 1 ,. A = 0 =B, M = 1/(1+K1). Consequently, k.- may be shown

to vanish. Thus, defining t,w-components of the dislocations by

bxsina - bycosa =

bxcosa + bysina =

(tQ) ,

(19.a,b)

the integral equations (18) may be expressed as

,
2y 1

t]= / V (tT<t<t2) (20.a,b)

(20) are the well-known integral equations for a straight crack in

an infinite homogeneous medium in which the normal and tangential

crack surface tractions p, and p2 are the only external loads and

-10-



the density functions g-j and g2 are related to the crack surface

displacements by [7]

Mt} = 3T (ut " ut} ' 92(t) = It (uw " uw> ' (21-a,b)

where u^ ='ut(t,c+0), u~ = ut(t,c-0), etc.

3. STRESS INTENSITY FACTORS

Following [8] it may be shown that the indexes of the singular

integral equations (18. a) and (18. b) are +1. Hence, the general

solution will contain two arbitrary constants which may be deter-

mined from the single-valuedness conditions (16). Also, the

fundamental functions of the system are

w^t) = w2(t) = (t-t,,)-
172^- t)"1/? . (22)

Hence the solution of (18) may be expressed as [8]

f^t) = w-UJF^t) , (i=l,2; t2<t<t1), (23)

where F-, and Fp are Holder-continuous in the closed interval

[tp,t,]. In order to investigate the singular behavior of the

stresses around the end points of the crack, we note that the

expressions (18) give the normal and the tangential components of

the stresses in the perturbation problem outside as well as inside

the cut L, i .e. ,

aww
(t'c) = Pl(t) > atw(t'c) = P2(t) •- - (24. a, b)

for all t in the matrix. Let us now define the following section-

ally holomorphic functions . .

-11-



'*!
- z dt.

; *T
dtn ,

( k , j = 1 ,2) ,

where

= ~a 22 a!2 = a21

(25)

( 2 6 )

Following [8] the asymptotic behavior of the Cauchy integral

(25) may be expressed as

' . - " ' • • • • : • - . . - ' • - . ; : • , ( 27 )
1>s g e n e r a l l y b o u n d e d or at m o s t ha.s--where around t-, and

a singularity which is weaker than that of (z-t.)

<{)k.(z) is holomorphic outside the cut we may write

t

1 / 2
" •' Since

I f
1 I

1

*<>-•* dt0 =

(t, -t2)
1/2(t2- t)

1/2

ak3(tl)F3(tl'
T7?

- t)1/2(t-

(t<t2, (28)

From (18) and (28) it is seen that around the crack tips

t=t-| and t=t2 the stresses p-j and p2 will have the conventional

square-root singularity. If we now define the "stress intensity

-12-



factors" as follows:

= l im /2(t - t , ) - p j C t ) ,

MtJ = l im V 2 ( t - t j ) P 2 ( t ) ,

'1

= lim /2(t2 - t) p^t) ,
t->t2

= lim - t) p(t) ,' (29.a-d)

and let

a = (t2-

noting that

/ k i j ( t , t 0 ) f j ( t 0 ) d t 0 = f i n i t e , - ; ' ( - .«o<t<») ,

we fi nd

(30)

(31 )

'-
1
 Va(?7^

[cF1(t2) + t2F2(t2)]

- cF2(t2)] , (32.a-d)

where F, and F2 are the bounded functions defined by (23). It

should be obersved that if the transformation (19) is made before

-13-



solving the integral equations, repeating the foregoing analysis

or directly from (32) it is seen that in terms of the new unknown

functions g-j and g2 the stress intensity factors may be expressed

as
2yi

kv(t,) = - lim , '• /2(t, - t) g«(t)
1 1 t+t, ' + Kl ' ^

k2(t.,) = - Vim T-~- ^(ti - t) 9i(t)1

• ' • i _____ • ' ' . ' • ' • - ' • ' " - • -
k , ( t 2 ) = l i r a Y-—^- ./2(t- t?) g ? ( t ) ,

1 * . . t->t2 ' +K1 i L -,

- • . ' • " 2U,: • _ _ . = ; • • . ' - . - . - • " • • • ' : - : ' - " . - • • • - . - ; " .
k ? ( t « ) = lim 1-3-7- V 2 ( t - t2) g , ( t ) , (33 .a-d)
. z t-»t2 ' Kl z '

where g, and g2 are the derivatives of the crack surface displace-

ments (see (21 )).

4. NUMERICAL RESULTS _-- ;

Once the tractions p, and p« are specified, the system of

singular integral equations may be solved in a straightforward

manner (see [9] for an effective numerical technique). After

solving these equations, all the desired field quantities may be

evaluated by means of definite integrals with appropriate kernels

and f, and fp as the density functions. Since the main interest

in this paper is in the fracture of composite materials the numer-

ical results will be presented only for the stress intensity

factors defined by (29) and evaluated from (32). The results are

given for a uniaxial stress a at infinity (see the insert in

Figures 2-11). The calculated results are shown in Tables 1-7 and

-14-



Figures 2-11. The stress intensity factor ratios, k.., (i,j = l,2)
- - " • • : ' . • . ' J • . . . •

shown in the tables and the figures are normalized with respect to

a /a" which is the stress intensity factor in a uniaxially stressed

infinite plane containing a crack of length 2a perpendicular to

the direction of loading. Thus

k., = 1 j , (i,j = 1,2) , .' (34)'" ' ' '

where k.(t.) is defined by (29). The length parameters a, b, c,
' J • • . " • • • . • _ • . ,

and R are shown in the insert of Figures 2-11. In the numerical

analysis it is assumed that the crack is perpendicular to the

direction of external loading, a . Only two material combinations

have been considered. The first refers to a circular hole (i.e.,

y« = 0) and in the second it is assumed that

(y2/y-,) = 23 , K-, = 1.6 , <2 = 1.8 (35)

which roughly corresponds to a metallic inclusion imbedded into an

epoxy-type matrix. —""

Table 1 and Figure 2 show the results for a radial crack
. • • . , • \ - - " •

perpendicular to a . Note that as the crack tip t2 approaches the

hole k,p goes to infinity and as it approaches the inclusion-

matrix interface (where y2 > y-j ) k-]2 goes to zero. This problem

of a crack terminating at and going through the interface was

extensively studied in [10, 11, and 4]. It should also be noted

that for y2 = 0 and b/a = 3, k-j-j will be finite (see [4]).

-15-
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Figure 2. The stress intensity factors for a symmetrically
located radial crack (R/a= 2, c = 0).



Table 1. The stress intensity factors
for a symmetrically located radial crack
(R/a = 2, c= 0).

b./a

3.0

3.2

3.5

4

5

6

8

00

V2 = °

kll

1.417

1.290

1.188

1.102

1.065

1.033

1.0

k!2

-> CO

2.274

1.722

1.394

1.174

1.099

1.045

1.0

V2 = 23y r

k11

0.827

0.874

0.918

0.957

0.973

0.987

1.0

k!2

^ 0

0.467

0.671

0.821

0.924

0.959

0.982

1.0

Table 2. Stress intensity factors for a symmetrically
located "tangential crack" perpendicular to the load
(b= 0, R = 2a). ••-";

c/a

2.1
2.5
3
4
6
10
00

y2/y1 = o

kll = k!2

0.0626

0.260

0.395

0.574

0.768

0.906
1.0

k21 =-k22

-0.170
-0.101
-0.0644
-0.0175
0.0274
0.0361

y2/W1 = 23 .

kll = k!2

1.201
1.196

1 .196

1.180

1.110

1.046

0 j 1.0

b ~ ~\fK21 K22

0.105

0.171
0.202
0.180

0.109

0.0567

0
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Table 3. Stress intensity factors for a crack perpendicular
to the external load (R = 2a, b = 3a).

c/a

0

0.3

0.5

1.0

1.5

2

3

4

8

CO

y 2 =0

kn

1.607

1.544

1.430

1.357

1.299

1.189

1.091

0.955

1.0

k!2

-> 00

4.267

3.070

1.969

1.552

1.337

1.083

0.957

0.911

1.0

k21

+ 0

0.072

0.113

0.177

0.184

0.150

0.052

0.011

-0.014

0

k22

+ 0

-0.391

-0.412

-0.316

-0.241

-0.243

-0.282

-0.261

-0.1.14

0

y2 = 23ia1

kll

0.784

0.792

0.817

0.839

0.860

0.905

0.951

1.020

1.0

k!2

-> 0

0.225

0.341

0.613

0.763

0.845

0.953

1.014

1.043

1.0

k21

.-" 0

-0.004

-0.006

-0.005

0.008

0.034

0.089

0.117

0.088

0

k22

•*• °

0.072

0.101

0.057

-0.007

-0.021

-0.001

0.002

-0.026

0

Table 4. Stress intensity factors for a crack perpendicular
to the external load (R = 2a, c = a).

b/a

/3/2

2.8

3.0

3.5

4

6

8

10

CO

y2 = 0

kll

1.562

1.430

1.274

1.193

1.070

1.036

1.022

1.0

k!2

-> 00

2.700

1.970

1.548

1.364

1.109

1.049

1.028

1.0

k21

0.206

0.177

0.134

0.107

0.048

0.025

0.014

0

k22

->- -00

-0 .790

-0.316

-0.047

0.023

0.032

0.015

0.007

0

v2
 = 23iji

kll

0.781

0.817

0.878

0.914

0.970

0.985

0.991

1.0

k !2

.-" 0

0.483

0.613

0.752

0.833

0.952

0.980

0.989

1.0

k21

0.002

-0.005

-0.012

-0.012

-0.006

-0.002

-0.0004

0

k22

-> 0

0.167

0.057

-0.047

-0.068

-0.041

-0.021

-0.012

0
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Table 5. Stress intensity factors for a crack perpendicular
to the external load (c = R, b-a=0.2R; a =constant, R variable,
or R= constant, a variable).

R/a

5

3

2

1.5

1.0

0.75

0.5

y2 = 0

kll

0.366

0.882

1.247

1.354

1.312

1.225

1.092

k!2

0.0582

0.257

0.600

0.926

1.384

1.679

2.180

k21

-0.102

-0.0774

0.0935

0.246

0.400

0.453

0.486

k22

-0.0210

-0.349

-0.826

-1.226

-1.719

-1.972

-2.239

y2 = 23y ]

kll

1.120

0.984

0.868

0.829

0.839

0.866

0.899

k!2

1.096

1 .063

1.022

0.990

0.951

0 . 929

0.909

k21

0.0256

0.139

0.172

0.168

0.165

0.176

0.194

k22

0.124

0.150

0.162

0.162

0.153

0.144

0.129

Table 6. Stress intensity factors for a crack perpendicular
to the external load (R = 2a, c = 2.2a).

b/a

0

0.5

1.0

2

4

6

u2 = o

kll

0.146

0 .549

0.952

1.315

1.188

1.084

k!2

0.146

0.008

0.196

0.926

1.268

1.126

k21

-0.113

-0.124

-0.043

0.092

0.123

0 .0765

k22

0.113

-0.101

-0.372

-0.526

-0.060

0.025

U2 = 23ul

kll

1.199

1.096

0.972

0.847

0.911

0.961

k!2

1.199

1.214

1.156

0 .994

0.871

0.941

k21

0.127

0 .202

0.212

0.122

0.011

-0.0016

k22

-0.127

-0.026

0.031

0.035

-0.066

-0.060
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Table 7. Stress intensity factors for a crack
perpendicular to the external load (c=R/2).

" 2 ~ °

R/a

5

3

2

1.5

1.0

0.75

0.5

b/a

5.5

3.7

2.8

2.35

1.9

1.675

1.45

kll

1.866

1.721

1.562

1.448

1.309

1.232

1.153

k!2

2.426

2.668

2.862

2 . 993

3.139

3.185

3.120

U2 = 23u1

5

3

2

1.5

1.0

0.75

0.5

5.5

3.7

2.8

2 .35

1.9

1.675

1.45

0.654

0.716

0.781

0.827

0.881

0.911

0.940

0.508

0.483

0.469

0.463

0.460

0.464

0.481

k21

8.22xl(T4

0.148

0.206

0.217

0.205

0.188

0.165

k22

-0.816

-0.791

-0.727

-0.645

-0.472

-0.319

-0.0976

• • ..

0.050

0.010

0.002

0.008

0.026

0.040

0.056

0.025

0.178

0.156

0.139

0.113

0.094

0.062
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Table 2 and Figure 3 show the results for the other symmetric

crack geometry, namely, b=0 and c variable. In this case it is

seen that the stress intensity factor ratio k,, for the cleavage

mode may be greater than 1 for the stiffer inclusion and may be

considerably less than 1 for the hole. This and the similar

results observed in some of the subsequent figures may at first

appear to be somewhat paradoxical. However, if one considers the

distribution of the stresses obtained from (1) in the absence of

the crack which is shown in Figures 4 and 5, the explanation for •

these trends would be clear. The stresses given in Figures 4 and

5 are related to the input functions in (1.8)' by .

pl(t) = ' ayy(t'c) »•'.'••• P2(t) = - axy(t'c) ' (36)

Other results which may be of interest in the applications

are given in Tables 3-7 and Figures 6-11. Since the shear compo-

nents, k2l-, (j=l,2) of the stress intensity factor are not zero",";.

in a brittle or quasi-brittle matrix the crack propagation would .

not be expected to be in the plane of the crack. From the results

given in this paper, it is not difficult to show that, generally

for the crack tip near the interface, the crack would propagate

towards the interface if n2
 = 0 or V?< ^1 * an^ awa^ from it if

]jp > u-j . A quantitative model for this phenomenon was discussed

in [12]. ^ - . .
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Figure 3. The stress intensity factors for a symmetrically
located "tangential crack" perpendicular to the load (b=0,
R = 2a).
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Figure 4. The stress distribution in a plate with a circular
hoi e.
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Figure 5. The stress distribution in a plate with a circular
e last ic inclusion (^2 = 23y- j , K - j = 1 . 6 , K2

 = 1 - 8 ) .
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Figure 6. Stress intensity factors for a crack perpendicular
to the external load (R = 2a, b = 3a).
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Figure 7. Stress intensity factors for a crack perpendicular
to the external load (R = 2a, c = a).
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Figure's. Stress intensity factors for a crack in the matrix
containing a circular hole .(u2 = °> c = R, b-a = 0.2R, a = constant)
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F i g u r e 9. Stress intensi ty factors for a crack in the matr ix
c o n t a i n i n g a n e las t ic i n c l u s i o n ( y 2

 = 23
V!-j» c = R » b - a = 0 . 2 R ,

a = cons t an t ) . ,
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Figure 10. Stress intensity factors for a crack in the matrix
containing a circular hole (y2 = 0, c=2.2a, R=2a).



*-.•
' *'. •

1,0

0.5

CO
eg

0.2

-0.2

b/a

Figure 11. Stress intensity factors for a crack in the matrix
containing an elastic inclusion (y2 = 23y-j, c = 2.2a, R = 2a).


