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Endophytic bacteria are mainly present in the plant’s root systems. Endophytic

bacteria improve plant health and are sometimes necessary to fight against

adverse conditions. There is an increasing trend for the use of bacterial

endophytes as bio-fertilizers. However, new challenges are also arising

regarding the management of these newly discovered bacterial endophytes.

Plant growth-promoting bacterial endophytes exist in a wide host range as part

of their microbiome, and are proven to exhibit positive effects on plant growth.

Endophytic bacterial communities within plant hosts are dynamic and affected

by abiotic/biotic factors such as soil conditions, geographical distribution,

climate, plant species, and plant-microbe interaction at a large scale.

Therefore, there is a need to evaluate the mechanism of bacterial

endophytes’ interaction with plants under field conditions before their

application. Bacterial endophytes have both beneficial and harmful impacts

on plants but the exact mechanism of interaction is poorly understood. A basic

approach to exploit the potential genetic elements involved in an endophytic

lifestyle is to compare the genomes of rhizospheric plant growth-promoting

bacteria with endophytic bacteria. In this mini-review, we will be focused to

characterize the genetic diversity and dynamics of endophyte interaction in

different host plants.

KEYWORDS

host endosymbiont interactions, mechanism of interaction, bacterial endophytes,
plants, endophytic
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1 Introduction

Plants interact with diverse microbial populations in the

ecosystem (Delaux et al., 2015). Microorganisms can colonize on

plants’ surfaces or internal parts depending on the host genotype

and the molecular signals released by plant roots.

Microorganisms can colonize on plants’ surfaces or internal

parts depending on the host genotype and the molecular signals

released by plant roots. Endophytes are prokaryotic bacteria

found within the healthy host tissue (Brader et al., 2014).

Bacterial endophytes can benefit the host in several ways, such

as biotic and abiotic stress resistance, increased availability of

nutrients, degradation of toxic molecules, and production of

phytohormones (Kandel et al., 2015).

Plant populat ion dynamics have soi l microbia l

intermediation. The plant has a microbial population in

the phyllosphere, endophytes, or rhizospheric microbes. The

ecology and phenotype of the plants can be affected by the

influence of symbiotic microbes on the atmosphere and

competition for soil resources.

The plant genotype affects the microbial make-up of the

phyllosphere, rhizosphere, and endophytic microorganisms

(Lynch et al., 2001). Although the precise method involves the

plant-associated microorganisms and ecosystem function, the

other specific mechanism is still unknown. Because they are co-

evolved with bacteria, plants are immobile and need to control

the results of their intricate interactions (Schnitzer and

Klironomos, 2011). Different sorts of chemicals are

continuously produced by plant roots, gathered, and secreted

into the soil (Wood et al., 2012) known as the root exudates

which contain enzymes, water, mucilage, H+ ions, and primary,

secondary compounds made up of carbon (Singh, 2015). Every

plant species’ rhizosphere is known to have a microorganism

population that is 100 times higher than soil and is mostly

controlled by compounds generated by roots (Jonkers et al.,

2003; Bever, 2003). The favorable plant-soil microbial response

enhances the microbial populations’ spatial spread (Schimel

et al., 2007), while negative reaction results in plant

replacement, which demands recolonization of locally specific

roots (Bever et al., 2010; Pedrotti et al., 2013).

It has been proposed that endophytic bacteria vary from

rhizobacteria in their genetic architecture, which may account

for their capacity to colonise plant tissues internally. However,

no specific gene or gene family has been found to explain the

endophytic regime. In a 2014 study, the whole genomes of nine

Proteobacteria were compared to identify a list of genes that may

play a role in the endophytic activity. So yet, only a few of those

genes have undergone experimental testing to determine

whether they are involved in endophytic colonisation (Shen

et al., 2013; Ouyabe et al., 2019). In this study, we have

documented some mechanisms involved in plant endophyte

interaction at the molecular level.
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2 Plant growth promotion
by endophytes

PGPEs enhance plant development through three interconnected

mechanisms: phytostimulation, biofertilization, and biocontrol.

Phytostimulation is the production of phytohormones for direct

plant development (Vishwakarma et al., 2021). The amount of the

plant hormone ethylene frequently declines as a result of the enzyme

1-aminocyclopropane-1-carboxylate (ACC) deaminase (Cruz Barrera

et al., 2020). According to numerous studies, the pea plant and the

pepper plant (Pseudomonas putida and Piper nigrum, respectively)

both have bacterial endophytes that release ACC deaminase to aid

plant growth (Ruduś et al, 2013). By controlling ethylene levels in

plants, ACC deaminize production may minimize abiotic stress

because an increase in ethylene can obstruct DNA synthesis, root

and shoot growth, and cell division. However, the specific method for

enhanced plant development is still unknown (González Candia,

2021). Bacterial strains also produced other hormones which include

abscisic acid, indole-3-acetic acid, and jasmonic acid, to stimulate

plant growth (Forchetti et al., 2007).The endophytes can enhance

plant growth by increasing the availability of important nutrients

known as bio-fertilization.

Nitrogen fixation is the most studied phenomenon of bio-

fertilization which is the conversion of atmospheric nitrogen into

ammonia (Mishra and Arora, 2016). Bacterial species like

Azospirillum spp., Pantoea agglomerans, and Azoarcus spp. all

are known to be involved in a substantial amount of nitrogen

fixation in plant roots (Indiragandhi et al., 2008). Nonetheless,

only 21 PGPEs can increase plant phosphorus availability by

solubilizing phosphate. The metal cation linked to phosphorous is

chelated as a result of the release of low molecular weight acids,

making it more available to plants. The researchers have isolated,

identified, and assessed the ability of Achromobacter xiloxidans

and Bacillus pumilus to solubilize phosphate in sunflowers

(Barrera et al., 2020). PGPEs were utilized to treat corn,

lowering the quantity of artificial phosphorus fertilizer required

while increasing yields by up to 50% (Cruz Barrera et al., 2019).

The protection of plants from phytopathogens and their

growth promotion is known as biological control. Antibiotic and

siderophores production are involved in biological control

mechanisms. Siderophores like pyochelin and alicyclic acid

and chelate iron are not directly involved in disease control

due to their competition with pathogens for trace metals

(Leopold, 1964). The disease can be suppressed in plants by

antimicrobial metabolites secreted by bacterial endophytes such

as 2,4-diacetylphloroglucinol (DAPG). Seed treatment of

eggplant (Solanum melongena) with DAPG-producing

bacterial endophytes reduced 70% of eggplant wilt caused by

Ralstonia solanacearum (Rana et al., 2020a).

Burkholderia, Bacillus, Pseudomonas, Enterobacter, and

Serratia are just a few of the bacterial endophyte strains that

are successful at preventing the growth of pathogenic germs in
frontiersin.org
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both in vitro and in vivo settings (Khan and Doty, 2009). Aside

from that, bacteria from the genera Bacillus, Enterobacter,

Arthrobacter, Azotobacter, Isolptericola, Streptomyces, and

Pseudomonas improved the crop’s stress resistance from heat,

drought, and salt (Rana et al., 2020b; Khalil et al., 2021). The

most important interaction between these endophytes and

symbiotic plants allowed the plants to significantly increase

their biomass and height while lowering stress. Although, it is

not yet clear how bacterial endophytes lessen abiotic stress (Liu

et al., 2014).
2.1 Rhizobium and process of
nodule formation

Rhizobium is a member of the family Rhizobiaceae and the

class Alphaproteobacteria. Rhizobium, was the name given to

this genus for the first time by Frank in 1889. There are 11 non-

rhizobial species and 49 rhizobial species in the family

Rhizobiaceae at the moment (Ledermann et al., 2021). The
Frontiers in Plant Science 03
rhizobial species induce the nodules on the roots of plants

(Fabaceae family) and are linked to symbiotic nitrogen-fixing

bacteria. The nodule’s nitrogen fixation activity is extremely

oxygen sensitive. The host plant receives continual supplies of

reduced nitrogen from the bacterial enzyme system in this

symbiotic connection, and the bacteria in exchange receive

nutrients and energy from the plant (Van Rhijn and

Vanderleyden, 1995). Nodules can occur in about 10% of

legumes. The majority of the rhizobacteria in soil are oxygen

sensit ive and feed on the decomposing remains of

other organisms.

In roots, nitrogen-fixing bacteria occur as irregular cells

known as bacteroids, which are frequently Y, club-shaped and

appear as straight rods with a regular structure (Figure 1).

Bacteroidsencode genes that determine the rhizobium’s host

specificity (Lodwig and Poole, 2003). Rhizobia that generate

nodules but are unable to fix nitrogen are sometimes referred to

as ineffective strains, whereas effective strains cause nitrogen

fixation in nodules. Nodule development is controlled by certain

genes known as nod genes i.e. nodF, nodE, nodL, nodP, nodQ,
FIGURE 1

Diagrammatic representation of the whole process of nodule formation through rhizobia.
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and nodH (Basile and Lepek, 2021). Some substances, such as

flavonoids, are released by the root cells and trigger the

production of nodules in bacteria by activating the nod gene.

In essence, these chemicals are in charge of identifying the

proper host and attaching to the root hairs.

The nod factors, which are secreted by bacteria, cause the root

hairs to curl (Moran, 1997). The root hair tip is damaged by

rhizobia, which also causes the infection thread to arise. The

thread then extends to neighboring cells by thread branching, and

the bacteria continue to grow within the growing network of

tubes, continuing to create nod factors that encourage the growth

of the root cells and ultimately result in the formation of root

nodules (Oldroyd et al., 2011). Following a week of infection,

nodules are visible with the unaided eye and each nodule contains

thousands of living rhizobium bacteria, the majority of which are

malformed and are referred to as bacteroids. Small sections of the

plant cell membranes called symbiosomes, which may or may not

include multiple bacteroids, are located next to bacteroids and are

active sites for nitrogen fixation (Ratu et al., 2021). Through the

Nitrogenase enzyme, also known as Nitrogenize catalysis, nitrogen

gas from the atmosphere is converted inside legume nodules into

ammonia, which is then assimilated into amino acids, DNA, and

RNA as well as significant energy molecules like ATP or other

chemicals like vitamins, flavones, and hormones (Bergersen,

1961). The Nitrogenize complex is protected by a variety of

mechanisms used by aerobic free-living bacteria, including

physical barriers and fast metabolic rates. Azotobacter, for

instance, circumvents this issue by maintaining the lowest

oxygen concentration in its cells and the greatest rate of

respiration of any organism. In the instance of Rhizobium, the

nodule’s red iron-containing protein, similar to hemoglobin in

function to bond with oxygen, maintains control over the oxygen

level (Lindström and Mousavi, 2020). However, this avoids the

accumulation of free oxygen to prevent the loss of Nitrogenize

activity while still providing enough oxygen for the metabolic

functioning of bacteriods. Rhizobia and plants work together to

make leghemoglobin, something neither of them could ever do on

their own. Even in poor soil with few nutrients and insufficient

nitrogen to support the growth of other plants, these nodules

increase crop output (Lodwig and Poole, 2003).
2.2 Spread and variation of microbes
from seed to plants

Plants and their microbial diversity vary throughout their life

span of plants. These factors, prompt the structure and variety of the

microbial community (Honma and Shimomura, 1978). Seed-born

microbes gain entry into the germinating plant and take advantage of

other colonizing microbes as well as opportunistic pathogens from

the surrounding soil (Glick et al., 1999; Oteino et al., 2015). Hence the

overall microbial biota and population changed dramatically

throughout the life cycle of plants. The important ways of entry
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into host plants are through root hair cells, root cracks, and wounds

whereas other sources include stomata particularly of young stems

and leaves; lenticels, and germinating radicles (Figure 2). Vertical seed

transmission is another possible way to receive endophytic bacteria

through plant host generations (Bergersen, 1961).
2.3 Presence of plant microbes in
different parts of plants

Microorganisms associated with plants formed a complex

network. Different studies suggested that plant-associated

microbes live inside plant tissues or on the surface of plant

parts such as leaves, stems, fruit, and roots (Clarholm, 1985).

The microbiome studies of A. thaliana leaves showed that plant

genotype, surrounding plants, and abiotic features affected the

microbial population structure (Teixeira et al., 2013). These

interactions are responsible for expediting the defense signals

between plants and the efficacy of natural biological control agents

(Morgan et al., 2005). Microbial populations might indirectly

affect the other taxa of microbes by altering the host growth

response or metabolites without direct interaction with microbes.
3 Beneficial effects of microbes on
plant growth and development

Plants usually take nutrients from the soil which constitutes

a pool for microscopic life forms including bacteria, fungi,

actinomycetes, algae, and protozoa. So, among them, the

bacteria are the most common ones and have the maximum

proportion in soil. The maximum number of bacteria present in

the rhizosphere near the roots of plants is different from bulk soil

(Luu et al., 2020). As these bacteria are present in more

concentration in the soil so the bacteria may affect a plant

through three different pathways (Edwards and Harding,

2004). PGPEs can promote plant growth directly by expediting

the procurement of compounds or modifying levels of plant

hormones and reducing the inhibitory effect of plant growth and

pathogenicity by acting as biocontrol agents (Yan et al., 2019).

The benefits provided by the endophytes to the host plants and

their mechanisms are described in (Table 1).
4 Role of PGPEs against biotic stress

Throughout their lives, plants are exposed to harmful abiotic

and biotic stresses. The damage that bacteria, fungi, viruses,

nematodes, viroids, and insects do to plants is referred to as

“biotic stress.” Rhizobacteria that promote plant growth by

generating phytohormones or facilitating the uptake of

particular nutrients might affect plant growth through biotic

stress (Tiwari et al., 2020). However, PGPR reduces or even
frontiersin.org
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eliminate the negative impacts of plant pathogens. For example,

Pseudomonas fluorescens produces 2,4-Diacetyl Phloroglucinol,

which inhibits the development of pathogenic fungi in plants

(Suslow and Schroth, 1982). Chitinase and laminarinase, two

extracellular enzymes generated by P. stutzeri, caused the lysis of

Fusarium solanimycelia and root rot (Cano-Salazar et al., 2011).

During a seven-month field trial, the endophytic B. cenocepacia

reduced the prevalence of fusarium wilt disease in banana plants

by 3.4%, compared to 24.5% in untreated infected plants (Sapak

et al., 2008). The antibiotic Pyrrolnitrin, which helps to reduce

cotton damping off losses brought on by Rhizoctonia solani, was

developed by several endophytic Pseudomonas fluorescens

strains (Timper et al., 2009). Fusarium oxysporum, which was

used as a bio-agent to create resistance in tomato plants, was

successfully protected against P. fluorescens in flowering plants

(Dudai, 2011). A bacteria that inhabit plant roots called Bacillus

amyloliquefaciens has the power to control plant diseases and

promote plant growth (Vardi et al., 2021).

In a study, it was discovered that bacterial endophytes shield

cucumber plants from the cucumber anthracnose produced by

Pseudomonas fluorescents (Akköprü et al., 2021). It was once

believed that Achromobacter sp., Streptomyces sp., and Bacillus
Frontiers in Plant Science 05
licheniformis were responsible for the foliar disease known as

downy mildew. The downy mildew disease infestation level was

lowered by Pseudoperonospora cubensis (Basu et al., 2022),

which ultimately resulted in an increased yield.

The management of pests, which has become a challenge for

most crops since pests have evolved a tolerance to pesticides, is

another use for these endophytic bacteria (Deng et al., 2014).

Entomopathogenic bacteria have been used to combat pests that

are immune to insecticides (Figure 3). A few fungi from the

genera Podonectria, Verticillium, Hirsutella, Sphaerostilbe,

Agerata, Metarhizium Aschersonia, and Myriangium are used

for the biological management of pests. Brevibacillus

laterosporus is effective against nematodes, Lepidoptera,

Coleoptera, and toxic fungi in plants in addition to insects

(Skinner et al., 2014).
5 Identification of endophytic
bacteria interaction with Host

In recent years, next-generation sequencing (NGS)

techniques have been utilized to study the whole population of
FIGURE 2

Overview of the endophytic bacterial mode of entry into different plant tissues.
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TABLE 1 Examples of plant growth-promoting rhizobacteria tested for various crop types.

PGPR Plant Benefits to plant growth References

Pseudomonas sp.

Green gram
Increased plant dry weight, number of nodules, total chlorophyll content, root/
shoot N, P seed protein, and yield.

(Del Carmen Orozco-
Mosqueda et al, 2020)

Soybean
Wheat

Increased soil enzyme activity, nutrient absorption, and yield (Kalyani et al., 2008)

Chickpea An enhanced fresh and dry weight of plants (Berendsen et al., 2012)

Rice More ability to control fungal and bacterial pathogens (Bulgarelli et al., 2012)

Canola Encouraged growth and cadmium accumulation in plants (Agler et al., 2016)

Mustard Improved growth and reduced Cr contents among plants (Foster, 1988)

Soybean, mung
bean, wheat

Promotes growth of plants (Bertin et al., 2003)

Pseudomonas putida

Mung bean
The ethylene production repressed in treated plant
Increase the growth and decreases Pb and Cd uptake

(Glick, 2012)
(Ahemad and Khan, 2012)

Lectuca Enhancement of shoot/root length attained through concentrated inoculants (Sharma et al., 2011)

Artichoke
PSB along with N fixers increase in shoot length/weight, germination percentage
seedling vigor, and reduction in germination time

(Tank and Saraf, 2010)

Pseudomonas aeruginosa

Maize
Endorsed plant growth and helped soil metal utilization, increase Pb and Cr
uptake

(Lawongsa et al., 2008)

Black gram
Reduced Cd deposition in tissues, widespread rooting, and increased plant
growth

(Wu et al., 2015)

Indian mustard
and pumpkin

Increased in plant growth, decrease in Cd uptake (Rajkumar et al., 2006)

Tomato, Okra,
African spinach

Increase in Dry weight of tomato, okra, and spinach (Gupta et al., 2002)

Pseudomonas fluorescens

Alfalfa Enhanced Fe and Cu movement from root/shoot (Mayak et al., 1999)

Peanut Increase in pod yield and nodule dry weight (Lobo et al., 2019)

Soybean Increased plant growth (Rekha et al., 2007)

Canola Protect plants against the inhibitory effects of Cd (Jahanian et al., 2012)

Maize
Increase of plant growth, height, seed weight, no. of seed/ear, leaf area, shoot dry
weight

(Curá et al., 2017)

Azospirillum amazonense Rice
Grain dry matter deposition, panicle count, and nitrogen buildup at the grain
maturity stage all increase

(Sant'anna et al, 2011)

Azospirillum brasilense Common bean Increase of Root growth in plants (Adesemoye et al, 2008)

Azospirillum lipoferum Cotton
An increase in soil microorganisms, plant height, and seed production was
observed, but no changes in boll weight or staple length.

(Fayez and Daw, 1987)

Azotobacter chroococcum Chinese mustard Increased plant development and metal toxicity protection for the plant (Jha, 2017)

Azospirillum brasilense Rice Increased grain yield (Gupta et al., 2005)

Kluyvera ascorbate
Mustard, Tomato
Canola,

Heavy metals reduce plant growth but do not boost metal uptake. (Safronova et al., 2006)

Bradyrhizobium

Green gram
The development traits at all of the studied pesticide dosages (quizalafop-p-ethyl
and clodinafop)

(Wani et al., 2007)

Soybean and
yellow Lupin

Increased biomass, nitrogen content, deposition of metals (Dell’amico et al, 2008)

(Continued)
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cultivable or non-cultivable bacteria inside plants, as well as their

genomes. The interaction of host and bacterial endophytes has

insightful concerns for the biological functioning of plants. As a

result of interactions, rapid changes in host phenotype occurs

also it is assumed as a driving force for the speciation and co-

evolution of both the genetic system of host and bacteria

(Fawcett, 1944). Though old genetic techniques to study plant-

microbe interaction are less efficient, time-consuming, costly,

and labor-intensive required a wide range of experiments and

are usually limited to certain known genes (De Oliveira et al.,

2004) in comparison to investigating the host-microbe

interactions in molecular levels, it is needed to understand the

phenotypic phenomena and genomics in depth. So the

development of NGS technologies or metagenomic studies has

provided the best way to understand the host-pathogen system.

Through this technology, we can construct genome models of

different organisms, which includes strains, their natural

populations over time and their evolutionary histories (Navas

et al., 2017; Sharma et al., 2021).

These complicated interactions can be analyzed and

integrated by viewing plant microbiomes as a system. To

better understand endophytism, contemporary genomic

investigations incorporating metaomics and comparative

studies can be quite beneficial (Dubey et al., 2020). A better

understanding of endophyte interactions could be used to

improve agricultural management by increasing plant

development, biocontrol, and bioremediation (Alaimo

et al., 2018). Some of the tools being utilized or that could be

used to understand the link between plants and endophytes
Frontiers in Plant Science 07
include genome sequencing, comparative genomics,

microarray, next-generation sequencing, metagenomics,

and metatranscriptomics (Dixit et al., 2022). To study

endophytes and their apparent function in host plant

ecology, contemporary methods and approaches need to be

investigated (Gaiero et al., 2013).

Another way to identify the endophytic bacteria interact

with the plant is to isolate the endophytic bacteria culture and

then classify based on its phenotypic traits, and a few isolates

from each category are identified further through partial

sequencing of the 16S rRNA gene (Khare et al., 2018). The

results of partial sequencing show that the isolates belonged

to the genera Pseudomonas, Stenotrophomonas, Bacillus,

Pantoea, and Serratia of bacteria (Liu et al, 2017>2552).

These isolates are tested for their ability to produce

siderophores, phosphate solubilization, atmospheric

nitrogen fixation, protease, and hydrogen cyanide, as well as

phytohormones like auxin and gibberellin (Eid et al., 2019).

Auxin and gibberellin, two plant growth hormones, can be

produced by all strains, though to varying degrees. Almost all

strains could solubilize phosphate (Lata et al., 2019). The

outcomes of protease, siderophore, and atmospheric

nitrogen-fixing ability vary between strains. These findings

provide information on the relationship between endophytic

bacteria and their host plant (Vandana et al., 2021).

Furthermost genomic methods require recognition of

variations among sequences within species or populations, like

point mutations, Addition/deletions, and structural variations in

structures (Bulgarelli et al., 2013).
TABLE 1 Continued

PGPR Plant Benefits to plant growth References

Green gram
Increase of nodule number, seed yield, grain protein, root/shoot N at 290 mg Ni/
kg soil

(Burd et al., 2000)

Brevundimonas Canola Isolated cadmium directly from the solution (Gholami et al., 2009)

Enterobacter cloacae Canola Significant increases in root and shoot length were observed.
(Bashan and González,
1999)

Klebsiella oxytoca
Maize Increase of plant growth parameters (Remans et al., 2008)

Enterobacter sakazakii

Brevibacillus White clover Increased plant growth and nutrition and decreased zinc conc. Anjum et al., 2007)

Methylobacterium oryzae,
Berkholderia sp.

Tomato
Significant increase in shoot/root length attained through bacterial cells
inoculation

(Wu et al., 2006)

Sinorhizobium sp. Brown mustard Increased the efficacy of Pb (Thakuria et al., 2004)

Bacillus spp Barley Increased root/shoot weight (Dary et al., 2010)

Rhizobium sp. Pea Increase of the dry matter, nodule numbers, root/shoot nitrogen
(Lugtenberg and Kamilova,
2009)

Mycobacterium sp. Canola Prevent plant against the inhibitory effects of cadmium (Wani et al., 2008)

Bacillus sp.
Paenibacillus sp.

Rice Considerably encouraged the root/shoot growth. (Robinson et al., 2001)
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5.1 Evolution of new pathogenic
strains of microbes

One of the great evolutionary changes in life is the

development of advantageous symbioses between eukaryotic

(plants) and prokaryotic creatures (Chebotar et al., 2015).

According to certain theories, the relationship between

endophytic bacteria and plants frequently depends on two

fundamental elements: currency and a system for exchanging

currency. The currency could be, for instance, a root exudate

that bacteria can take up in the context of interactions between

plants and endophytic bacteria (Mercado-Blanco and JJ

Lugtenberg, 2014). Similarly, bacteria may release hormones

that encourage plant growth, such as auxin and gibberellins,

which may be favorable for plant growth (Maksimov et al.,

2018). It is anticipated that selection will favor the evolution of

mutualism when the exchange of currencies between the two

parties is balanced. Therefore, it is hypothesized that increased

mutualistic dependency develops through reciprocal co-

evolution or adaptation by one of the partners through the

selection of features directly related to the mutualistic interaction

(Chen et al., 2021).

Competition for scarce shared resources like iron may also

lead to asymmetrical currency exchange, which could help to

explain why some plant-microbe interactions are hostile (Hong

and Park, 2016). Furthermore, because the rhizosphere is open,
Frontiers in Plant Science 08
the free diffusion of resources derived from plants may promote

higher levels of cheating in which mutant bacterial genotypes

take benefit of “public goods” without producing substances that

aid plant growth (Pandey et al., 2017). Because of this,

mutualistic plant-microbe interactions may need additional

enforcement from the plant, such as penalizing dishonest

bacterial genotypes or positively identifying genotypes that

promote plant growth (Ryan et al., 2008).Intriguing research

would also be done to see whether endophytic bacteria and

plants may coevolve from first neutral interaction and whether

plants can coevolve in response to rhizosphere bacteria (Santos

et al., 2018). In conclusion, by showing that plant-associated

bacteria can quickly evolve along the symbiotic connection

within a few growth cycles, our results urge eco-evolutionary

management of endophytic bacteria and plants interactions in

agriculture (Aswani et al., 2020).
5.2 Endophytic bacteria in
disease management

Crop productivity is impacted by a number of common

plant diseases that are present worldwide. Some of the serious

ones are wilt disease, root rot, powdery mildew, leaf spot, leaf

curl, and blight. To counter these phytopathogens, endophytic

bacteria are crucial (Latha et al., 2019).
FIGURE 3

Mechanism of plant growth promotion by rhizobacteria (PGPR).
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By producing proteins associated with pathogenesis (PRPs)

and defense enzymes that stop the growth of phytopathogens

that cause disease, endophytic bacteria can produce

siderophores, antimicrobial compounds, and systemic

resistance (Pandey et al., 2019). Bacterial endophytes are also

potentially useful biocontrol agents. Plant diseases degrade plant

performance and crop quality, which reduces crop output

(Muthukumar et al., 2017). It has been shown that the

nitrogen-fixing bacteria Azotobacter chrococcum , the

phosphate-solubilizing bacteria PSB (Pseudomonas cepacia),

the endophytic bacterial strains Lysinibacillus sp. and Bacillus

subtilis, and their combination as bio-fertilizers can reduce the

incidence of bacterial wilt disease in chili plants by up to 80%

(Tewari et al., 2019).

The endophytic bacterial strain B. subtilis showed the

strongest (80%) illness suppression (Jacob et al., 2020). This

endophyte could also considerably aid the growth of the chili.

Chemical pesticides are typically used to manage such

phytopathogens, but this tactic has raised concerns about

environmental contamination and contributed to the

emergence of resistance to specific chemicals over time

(Prasad et al., 2020). New insecticides must always be

developed to address this. Chemical pesticides are thought to

be ineffective when compared to endophytic bacteria acting as

biocontrol agents or bioinsecticides. A broad array of

mechanisms, including direct antagonism via the generation of

antibiotics, siderophores, hydrogen cyanide, hydrolytic enzymes

(chitinases, proteases, and lipases), etc., are involved in the

biocontrol of plant diseases (Puri et al., 2017).
6 Conclusion

Some of the bacterial endophytes or PGPR are commonly

used to control different diseases and as biological control agents

so nowadays most of the focus is the understanding of complex

interactions and their mechanisms and outcome either beneficial

or harmful. It is hard to find the exact mechanism of interaction

among complex microbial populations residing in the soil and

environment near to host. So that proper characterization and

management strategies can be devised according to the current

need of time. In recent time peoples are preferring organic food

and disliked the use of fertilizers and chemicals in agriculture. As

the world population is increasing and food shortage issues are
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raised, in the current situation food security is an important

topic for debate. Hence bacterial endophytes can be used as an

alternative to chemical fertilizers, nutrient sources, and

biological control agents for various plant pathogens. Scientists

are focusing on the use of these endophytes in the form of

biopesticides, and biofertilizers with different trade names for

the control of different diseases and sustainable agricultural

systems. Although the application of these endophytes in

combination may lead to the development of optimum PGPEs

inoculants that robust, and slight variation of environmental

factors will not affect the plant growth promotion.
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