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Abstract

The chemokine receptor CXCR4 and its ligand CXCL12 is overexpressed in the majority of tumors and is critically involved in
the development and metastasis of these tumors. CXCR4 is expressed in malignant tumor cells whereas its ligand SDF-1
(CXCL12) is expressed mainly by cancer associated fibroblasts (CAF). Similarly to CXCR4, the chemokine CCL20 is
overexpressed in variety of tumors; however its role and regulation in tumors is not fully clear. Here, we show that the
chemokine receptor CXCR4 stimulates the production of the chemokine CCL20 and that CCL20 stimulates the proliferation
and adhesion to collagen of various tumor cells. Furthermore, overexpression of CCL20 in tumor cells promotes growth and
adhesion in vitro and increased tumor growth and invasiveness in vivo. Moreover, neutralizing antibodies to CCL20 inhibit
the in vivo growth of tumors that either overexpress CXCR4 or CCL20 or naturally express CCL20. These results reveal a role
for CCL20 in CXCR4-dependent and -independent tumor growth and suggest a therapeutic potential for CCL20 and CCR6
antagonists in the treatment of CXCR4- and CCL20-dependent malignancies.
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Introduction

Chemokines, a family of small (5–20 kDa) pro-inflammatory

cytokines, are primarily responsible for the directional migration,

or chemotaxis, of lymphocytes to specific lymphoid tissues, and the

recruitment of leukocytes to the sites of infection or tissue damage.

However, chemokines are also implicated in other biological

events including angiogenesis, angiostasis, embryogenesis, hema-

topoiesis, lymphopoiesis, and HIV pathogenesis [1]. More

recently, it has been established that cancer cells exploit signaling

through chemokine receptors via several key steps involved in

initiation and progression of primary and metastatic cancer.

Different types of cancers express different chemokine receptors

[2,3], however, only the chemokine receptor CXCR4 appears to

be expressed by the majority of cancer types. Tumor cells from at

least 23 different types of cancers of epithelial, mesenchymal and

haematopoietic origin express CXCR4 [4]. Moreover, CXCR4

expression was found to be increased in several malignancies

including gliomas, breast tumors, certain leukemia cell lines,

uterine cancer, Burkitt’s lymphoma, neuroblastomas, and pancre-

atic cancer [5,6,7,8,9,10]. CXCR4 was also found to play a critical

role in the progression and development of various tumors

including breast, prostate and clear cell renal carcinoma

[6,11,12,13]. The importance of the CXCR4/CXCL12 pathway

in tumor development was further demonstrated by neutralizing

the interaction between CXCL12 and CXCR4. [6,14,15,16]. The

mechanisms by which CXCR4 regulate tumor progression are yet

not clear. Our recent results provide a novel mechanism for

CXCR4-mediated tumor growth and metastasis and establish a

functional link between CXCR4/CXCL12 and CCR6/CCL20

pathways in tumor development.

Results

CXCR4 up-regulates CCL20 mRNA and protein expression
in prostate cancer cells
In our previous work, we provided the evidence that the

CXCR4 receptor promotes prostate tumor growth, invasion and

vascularization [17]. In this study, we generated single-cell clones

of CXCR4-transduced PC3 cells with high and stable levels of

CXCR4 expression (Fig. 1A). CXCR4-transduced PC3 cells with

high and stable levels of CXCR4 expression demonstrated a high

proliferation rate in vitro in response to stimulation with CXCL12,

and increased sensitivity to low concentrations of CXCL12,

compared to wild-type PC3 cells (Fig. 1A). Moreover, mice

injected subcutaneously with these cells developed bigger tumors

compared to mice injected with wild-type PC3 cells, similarly to

our previous results (Fig. 1B,C).

In order to identify genes that are regulated by CXCR4 and

contribute to the aggressive phenotype of CXCR4-expressing

prostate cancer, we compared the expression pattern of various

chemokines between CXCL12-stimulated and non-stimulated

PC3-CXCR4.5 cells. We found an increase in expression of the

chemokine CCL20 following stimulation with CXCL12. To
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further study the possible role of CXCR4 in the regulation of

CCL20 expression, we evaluated the mRNA expression of CCL20

in prostate cancer cells with low and high CXCR4 expression

using real-time RT-PCR. We found a 41-fold increase in CCL20

mRNA in cells with high CXCR4 expression compared to the

wild-type PC3 cells. Moreover, stimulation of both PC3 and PC3-

CXCR4.5 cells with CXCL12, the ligand of CXCR4, increased

CCL20 mRNA levels in a dose-dependent manner (Fig. 1D).

Next, we assessed whether the constitutive and regulated

expression of CCL20 mRNA was paralleled by protein produc-

tion, using an ELISA assay to CCL20. Corresponding with PCR

results, CXCR4 over-expression in PC3 cells increased the

constitutive levels of CCL20 secretion from 8.664.5 pg/ml in

PC3 cells to 433630 pg/ml in PC3-CXCR4.5 cells (Fig. 1E).

Moreover, the stimulation of both parental PC3 and PC3-

CXCR4.5 cells with CXCL12 increased the secretion of CCL20

in a dose-dependent manner (Fig. 1E). To determine the pattern of

CCL20 release, we tested the protein levels of CCL20 in a culture

medium and in lysed cells following different periods of incubation

with CXCL12. PC3-CXCR4.5 cells were incubated with

CXCL12 500 ng/ml for 6, 24 or 48 hours; culture medium was

collected and the cells were lysed with lysis buffer containing 1%

NP-40. Stimulation with CXCL12 increased the intracellular

levels of CCL20 following 6 hours of incubation, however there

was no release of CCL20 to the culture medium at this time point.

Following 24 hours of incubation, intra-cellular levels of CCL20 in

non-stimulated and in CXCL12-stimulated cells were increased, as

well the secreted CCL20 was detected in the culture medium of

Figure 1. CXCR4 up-regulates CCL20 production by prostate cancer cell line PC3. (A–C) Wild-type PC3 cells, CXCR4-transduced PC3 cell
line and single cell clone with stable overexpression of CXCR4 (PC3-CXCR4.5) were stained for the control (IgG2a-PE, purple) and CXCR4 antibodies
(IgG2a-12G5, green) and analyzed using FACS. PC3 and PC3-CXCR4.5 cells were stimulated with CXCL12 at concentrations of 50, 250 and 1,000 ng/ml
for 48 hours, harvested and viable cells were counted using PI staining and FACS analysis. PC3 and PC3-CXCR4.5 cells were (56106/mice) were
injected subcutaneously into SCID/beige mice. 60 days following the injection, animals were sacrificed, tumor size (cm2) and tumor weight (g) were
measured. Data is presented as mean6SE from 5 mice. (D) PC3 and PC3-CXCR4.5 cells were stimulated with CXCL12 at concentrations 5 and 500 ng/
ml for 24 hours, total RNA was extracted, reverse-transcribed and subjected to quantitative PCR for CCL20. PCR analysis was carried out in triplicates.
(E) PC3 and PC3-CXCR4.5 cells were stimulated with various concentrations of CXCL12 (5, 50, 25, 500, and 1,000 ng/ml) for 48 hours and CCL20
secretion was assessed by ELISA. The results represent the average of triplicates6SD (** P,0.05). (F) PC3-CXCR4.5 cells were incubated with CXCL12
at concentration of 500 ng/ml. At the indicated time points CCL20 was assessed in extra-cellular (culture medium) and intra-cellular (whole cell lysate)
fractions using ELISA method. (G) In order to inhibit CXCR4 signaling, PC3 and PC3-CXCR4.5 cells were cultured with anti-CXCL12 antibodies or
pertussis toxin alone or in combination with CXCL12 during 48 hours, and CCL20 secretion was assessed by ELISA. CCL20 secretion in PC3 and PC3-
CXCR4.5 cells was also inhibited using JAK-2 inhibitor AG-490 at 1 mm/ml. and the MEK inhibitor- PD98059 (20 mM). The results represent the average
of triplicates6SD (** P,0.05).
doi:10.1371/journal.pone.0005125.g001
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CXCL12-stimulated PC3-CXCR4.5 cells (no secretion in non-

treated cells versus 4.9 pg/ml of CCL20 in CXCL12-treated cells).

After 48 hours of incubation, the levels of intra-cellular CCL20

were significantly elevated and higher CCL20 production was

observed in CXCL12-stimulated cells, in addition, the secretion of

CCL20 was increased. Both synthesized and secreted CCL20

levels increased in response to CXCL12 stimulation, and the

cumulative pattern of synthesis and release was observed over time

(Fig. 1F).

In order to find whether PC3 and PC3-CXCR4.5 cells secrete

CCL20 in a CXCR4/CXCL12 dependent manner, we treated

the cells with antibodies to CXCL12 and PTX. In PC3 cells,

treatment with neutralizing antibodies against CXCL12 or with

PTX (alone or in combination with CXCL12) effectively inhibited

the secretion of CCL20. Surprisingly, in PC3-CXCR4.5 cells,

anti-CXCL12 antibodies and PTX only partially inhibited the

secretion of CCL20 whereas PTX failed to inhibit CXCL12-

dependent increase of CCL20 (Fig. 1G).

CCL20 production from PC3 cells is dependent on CXCR4/

CXCL12 interaction; however, it was not clear whether the

expression and secretion of CCL20 from PC3-CXCR4.5 cells was

dependent only on CXCR4. In order to determine the role of

CXCR4 in the regulation of CCL20 production, we silenced

CXCR4 by RNA interference in PC3-CXCR4.5 - prostate cancer

cells with high CXCR4 expression. PC3-CXCR4.5 cells were

transfected with Dicer-substrate anti-CXCR4 mRNA specific

siRNA. The efficacy of CXCR4 silencing was assessed 48 hours

post-transfection. We achieved over 90% reduction in CXCR4

cell surface expression (Fig. 2A) and 75% reduction in mRNA

levels (Fig. 2A) using siRNA to CXCR4 RNA. Next, we sought to

determine whether the reduction in CXCR4 might inhibit CCL20

production in PC3-CXCR4.5 cells. Forty eight hours following

transfection with siRNA, PC3-CXCR4.5 cells were re-seeded and

stimulated with CXCL12 for an additional 48 hours. CCL20

secretion levels in culture medium of the cells transfected with

either nonspecific control siRNA or the CXCR4 siRNA were

measured using ELISA assay. Silencing of CXCR4 significantly

reduced both constitutive and CXCL12-stimulated levels of

CCL20 production. In non-stimulated cells, the secretion of

CCL20 was decreased from 350656 pg/ml in control cell to

4262.8 pg/ml in cells with CXCR4 siRNA (p,0.0054). In

CXCL12-stimulated cells, the secretion of CCL20 was decreased

from 6006113 pg/ml in control cells to 137.5653 pg/ml in cells

with CXCR4 siRNA (p,0.0035, Fig. 2A). In addition, we tested

the effect of CXCR4 silencing on CCL20 mRNA level using real-

time RT-PCR. Silencing of CXCR4 resulted in a 3-fold decrease

in CCL20 mRNA level in PC3-CXCR4.5 cells (Fig. 2B).

CCL20 expression and secretion in the parental PC3 and PC3-

CXCR4.5 cells that overexpress CXCR4 are regulated by

CXCR4 (Fig. 1G and Fig. 2A). PC3 cells express low levels of

CXCR4 and secrete low levels of CCL20, whereas PC3-

CXCR4.5 cells express high levels of CXCR4 and ten-fold higher

levels of CCL20. In both cell lines, treatment with PTX or anti

CXCL12 blocked CCL20 secretion; however, the inhibitory effect

of PTX or anti CXCL12 was much more evident in the parental

cells. Similarly, the effect of PTX on CXCL12-induced secretion

of CCL20 was partial, albeit significant only in the parental PC3

cells. The differences between these cells may be the result of a

more robust activation of diverse signaling pathways activated by

CXCR4 and the use of insensitive Ga chain used by CXCR4.

Various signal transduction pathways have been implicated

through the association of CXCR4 receptors with the guanine

nucleotide binding protein (G-proteins). For example, stimulation

of CXCR4 transfectants by CXCL12 results in increased

phosphorylation of focal adhesion components, including the

related adhesion focal tyrosine kinase (RAFTK/Pyk2), Crk, and

paxillin. CXCL12 induced activation of the p44/42 MAP kinases

(Erk 1 and 2), PI3 kinase, and NF� kB [18,19,20]. Moreover, a

short time following CXCL12 activation, the CXCR4 receptor

becomes tyrosine phosphorylated through the activation and

association with the receptor of JAK2 and JAK3 kinases [21,22].

Several STAT transcriptional factors, including STAT1, -2, -3,

and -5, but not STAT4 or -6, are associated with CXCR4

activation, concurring with the role assigned to the JAK tyrosine

kinases in transducing signals from hematopoietic growth factor

receptors. Tyrosine phosphorylation of two other members of the

chemokine receptor family, CCR2 and CCR5, in response to their

respective ligands (MCP-1 and RANTES) and the critical role of

the JAK/STAT pathway activation in later chemokine signaling

events were also documented. The activation in T cells of different

STATs by the chemokines RANTES and MIP� 1a has also been

reported. Tyrosine phosphorylation is not a unique feature of

chemokine receptors, since other GPCRs also activate STAT

transcription factors. Interestingly, JAK/STAT pathway activa-

tion by chemokines and their receptors is not always blocked by

PTX pretreatment, indicating a G-protein-independent pathway.

To address the importance of JAK/STAT and MEK activation

on the secretion of CCL20, we treated the PC3 and PC3-

CXCR4.5 cells with JAK-2 inhibitor AG-490 (Cat. 658401;

Calbiochem) at 1 mm/ml. and the MEK inhibitor- PD98059

(20 mM) (Calbiochem, San Diego, CA) PD. In both cell lines, the

JAK-2 inhibitor AG-490 totally abrogated CCL20 secretion,

whereas the MEK inhibitor- PD98059 slightly increased the levels

of CCL20. DMSO used for dissolving PD or AG-490 had an

inhibitory effect on CCL20 secretion, and more significantly on

the parental PC3 cells (Fig. 1G). These results may suggest a role

for the JAK/STAT pathway in the CXCL12-induced secretion of

CCL20.

The increased levels of CCL20 associated with increased levels

of CXCR4 do not correlate with the CXCL12 low levels secreted

by PC3 or PC3-CXCR4.5 cells and cannot be blocked by anti

CXCL12 when added to PC3-CXCR4.5 cell cultures (Fig. 1G).

One possibility to explain such a phenomenon is the presence of a

CXCR4 ligand other than CXCL12. Although chemokines

typically display a high degree of receptor promiscuity, CXCR4

was (until recently) thought to bind only to CXCL12. However,

recently, it was demonstrated that the macrophage migration

inhibitory factor (MIF) can compete with the recognized ligand for

CXCL12 for binding to CXCR4 [23]. CXCR4 was shown to be

homo-oligomerized by several experimental systems. It is possible

that CXCR4 oligomerization may lead to autonomous signaling

which is mediated through JAK/ STAT signaling.

To better understand the role of CCL20 in prostate cancer

development, we characterized the expression of CCL20 and its

receptor CCR6 in human prostate cell lines PC3, LNCaP, 22RV1

and DU145. We first examined CCR6 receptor surface and

mRNA expression levels in these four cell lines. RT-PCR analysis

and FACS analysis demonstrated that only PC3 cell line expressed

CCR6 receptor at mRNA level and on the cell surface (Fig. 2C).

Next, we performed ELISA experiments to determine the

secretion levels of CCL20 chemokine. Among the four prostate

cancer cell lines studied, only PC3 cells secreted detectable levels

of CCL20 into the culture supernatant during the 48 hours

incubation (Fig. 2C). However, in addition to PC3 cells, the

mRNA expression of CCL20 was demonstrable in DU145 cells

and at a very low level also in LANCaP cells (Fig. 2C). Since PC3

cells co-expressed the CCR6 receptor and its ligand CCL20, we

focused our in vitro and in vivo experimental work on PC3 cells.

CCL20 and CXCR4 Interaction
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CCL20 promotes the growth and adhesion of CCR6-
expressing tumor cells in vitro
We hypothesized that the CCR6-CCL20 axis may be involved

in tumor progression via paracrine and/or autocrine mechanisms.

To assess biological behavior resulting from CCL20-mediated

activation in PC3 cells, we studied the effect of CCL20 on the

growth and survival of PC3 cells in culture. PC3 cells were treated

with various concentrations of CCL20. The number of viable cells

following six days of incubation was detected using propidium

iodide (PI) and FACS analysis. Treatment of cells with CCL20

increased the number of viable PC3 cells in the culture at a

concentration of 5 ng/ml (1.35-fold increase, p,0.04) and at a

concentration of 50 ng/ml (1.75-fold increase, p,0.0004); where-

as at the highest concentration of CCL20, 250 ng/ml, we found

no change in the number of viable cells compared to control non-

stimulated PC3 cells (Fig. 2D). To further verify these results,

CCL20-treated cells were loaded with 5-bromo-2-deoxyuridine

(BrdU). Cell proliferation was tested by staining for BrdU

incorporation using specific anti-BrdU antibody and FACS

analysis. Consistent with previous results, CCL20 induced the

incorporation of BrdU in the cells at a concentration of 5 and

50 ng/ml (1.76-fold increase, p,0.0002), whereas treating the

cells with higher concentration of CCL20 did not change the level

of BrdU incorporation (Fig. 2D). In accordance with the previous

Figure 2. Regulation of CCL20 expression and function. (A–B) CXCR4 expression levels of PC3-CXCR4.5 cells 48 hours following the
transfection with control non-specific siRNA and specific anti-CXCR4 siRNA. The cells were stained for the control and CXCR4 antibodies and
evaluated by FACS. Semi-quantitative RT-PCR analysis of CXCR4 and CCL20 mRNA of the siRNA-transfected PC3-CXCR4.5 cells 48 hours following the
transfection. b-actin confirmed comparable loading of RT-PCR products in each lane. Control and CXCR4 siRNA-transfected PC3-CXCR4.5 cells at
48 hours post-transfection were incubated with CXCL12 500 ng/ml for an additional 48 hours. CCL20 secretion was assessed by ELISA. The results
represent the average of triplicates6SD (** P,0.05). (C) CCR6 expression in prostate cancer cell lines PC3, LaNCAP, 22Rv1 and DU145 was evaluated
by FACS and PCR whereas CCL20 expresion was evaluated by PCR and ELISA assays. Purple line represents mouse IgG control antibody, green line
represents staining with CCR6 monoclonal antibody. (D) PC3 and PC3-CXCR4 cells were incubated with various concentration of CCL20 for 6 days.
Following 3 days of incubation, the medium with or without CCL20 was renewed. On day 6, the cells were harvested and viable cells were counted
using PI staining and FACS analysis. In addition, in order to determine proliferation of PC3 cells, the cells were labeled with BrdU (10 mM) during the
last 16 hours of incubation and processed for BrdU detection using specific anti-BrdU FITC-conjugated antibody and FACS analysis. Data is presented
as mean6SD from triplicates (** P,0.05). Data is representative of two separate experiments. (E–F) PC3 and PC3-CXCR4.5 cells either untreated or
treated with various concentrations of CCL20 were placed on collagen I- or fibronectin-coated plates (10 mg/ml) for 30 minutes. Non-adherent cells
were washed twice with cold PBS. Adherent cells were collected in 300 ml FACS buffer with 5 mM EDTA and counted by FACS. Data is presented as
mean6SD from triplicates (** P,0.05). In addition, PC3 cells (E) that demonstrated increased adhesion to collagen I and fibronectin in response to
stimulation with CCL20, were co-incubated with CCL20 and PTX (100 ng/ml) and were allowed to adhere to collagen I- and fibronectin-coated plates.
doi:10.1371/journal.pone.0005125.g002
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results, we found that PC3-CXCR4.5 cells, which constitutively

express high levels of CCL20, where inhibited in their growth

when treated with increasing concentrations of CCL20 (Fig. 2D).

Concentration of 250 ng/ml even decreased the number of PC3-

CXCR4.5 viable cells (p,0.006).

Adhesion of cancer cells to extracellular matrix (ECM)

components is a step that is associated with tumor seeding,

invasion and spreading. In order to investigate the effect of CCL20

on PC3 cell adhesion to the ECM proteins, we tested the adhesion

of PC3 cells to the fibronectin and collagen I in response to

increasing concentrations of CCL20. As shown in Fig. 2E, elevated

doses of CCL20 slightly increased the adhesion of cells to

fibronectin (500 ng/ml of CCL20 promoted 1.45-fold increase,

p,0.01), and significantly increased the adhesion of cells to

collagen type I in a dose-dependent manner (Fig. 2E). Upon

activation by CCL20 at concentration of 50 ng/ml PC3, adhesion

to collagen I was 2.2-fold elevated (p,0.001); concentration of

500 ng/ml caused a 2.09-fold increase in adhesion (p,0.003).

Treatment with pertussis toxin (PTX) prevented the CCL20-

induced increase in PC3 cell adhesion to fibronectin (p,0.0009)

and collagen I (p,0.002) (Fig. 2E). In contrast to PC3 cells ,

adhesion of CCL20-producing PC3-CXCR4.5 cells to collagen I

and fibronectin was slightly decreased following stimulation with

increased doses of CCL20 (Fig. 2F).

The exposure of chemokine receptors to high concentrations of

chemokines often results in the rapid attenuation of receptor

responsiveness and a reduced biological response. This process

termed ‘desensitization’ is the consequence of a combination of

different mechanisms. These mechanisms include receptor phos-

phorylation followed by uncoupling of the receptor from

heterotrimeric G proteins and internalization of cell surface

receptors to intracellular endocytic vesicles [24]. It is therefore

possible that at high levels of CCL20, the chemokine receptor

CCR6 is desensitized due to internalization and/or phosphoryla-

tion [25]. Indeed preliminary data suggest that high levels of

CCL20 can stimulate the internalization of CCR6.

In addition to PC3 cells, we tested the effect of CCL20 activation

on biological function of other human prostate cancer cell lines -

LNCaP, 22RV1 andDU145 cells. In vitro proliferation and adhesion

of the cells to collagen were tested in the absence or presence of

different concentrations of CCL20. In agreement with CCR6

expression pattern, LNCaP, 22RV1 and DU145 cells that do not

express CCR6, did not respond to CCL20 stimulation and no

increase in proliferation or adhesion was observed (data not shown).

We therefore concluded that CCL20 can stimulate both PC3

cell proliferation and adhesion to collagen type I in a dose

dependent manner.

In order to further determine the involvement of CCL20 in

cancer development in vitro, we introduced the CCL20 gene into

prostate PC3 cells which express the CCR6 receptor. PC3 cells

were stably transfected with vector encoding CCL20, and different

clones overexpressing CCL20 were obtained. The levels of CCL20

were quantified using PCR and ELISA assay (Fig. 3A). Clone

numbers 7 and 8 demonstrated the highest levels of CCL20

secretion (5,000 and 1,030 pg/ml, respectively) whereas clone

numbers 10 and 30 showed moderate levels of CCL20 secretion

(100 and 320 pg/ml, respectively).

Next, we tested the growth of PC3 clones that overexpress

CCL20. The number of viable cells following six days of

incubation was detected using PI and FACS analysis. PC3-

CCL20 clones that secrete moderate levels of CCL20, PC3-

CCL20.10 and PC3-CCL20.30, demonstrated 1.7-fold and 2.5-

fold increases in the number of viable cells in culture, respectively

(Fig. 3B). The growth of PC3-CCL20 clones that secrete high

levels of CCL20 (PC3-CCL20.7 and PC3-CCL20.8) was similar to

parental control PC3 cells (Fig. 3B). This may suggest that

autocrine secretion of CCL20 may drive tumor growth.

To further explore the effect of CCL20 overexpression on prostate

cancer cell behavior, we assessed the adhesion of PC3 clones that

overexpress CCL20 to ECM proteins fibronectin and collagen I.

CCL20-overexpressing PC3 cells were grown to confluence,

harvested, and allowed to adhere to fibronectin or collagen I-coated

plates. Over-expression of CCL20 significantly increased the

adhesion of all four CCL20-expressing clones to the collagen I.

Comparing to mock-transfected PC3 cells, clones 7, 8, 10 and 30

demonstrated 2.1-fold (p,0.04), 3.8-fold (p,0.01), 2.2-fold (p,0.03)

and 2.8-fold (p,0.004) increases in their adhesion to collagen I,

respectively (Fig. 3C). No significant change was observed in the

adhesion of these cells to the fibronectin (data not shown).

CXCR4 and CCL20 expression has been described in a variety

of human neoplasms, including colorectal, lung, pancreatic and

breast human adenocarcinomas, malignant glioma, leukemia,

lymphoma and melanoma as well as by normal keratinocytes. We

therefore next tested by ELISA the expression of CCL20 in a

range of human cancer cell lines. We found that in addition to

PC3 cells, CCL20 was secreted by promyelocytic leukemia (APL)

cell lines, NB4 and HL60, by primary blasts of patients with acute

myelocytic leukemia, human HT-29 colon carcinoma cells as well

as and by normal keratinocytes (Fig. 3D). Furthermore, in NB4,

HL60, primary AML blasts, HT-29 cells, and normal keratino-

cytes, the secretion of CCL20 was increased following stimulation

with CXCL12, in a dose-dependent manner (Fig. 3D). Next, we

characterized the expression of the CXCR4 receptor on NB4,

HL60 cells, AML blasts and HT-29 cells. Leukemic lines NB4 and

HL60, primary human AML blasts and HT-29 cells demonstrated

high cell-surface expression levels of the CXCR4 receptor (data

not shown). These results suggest a more general role for CXCR4

in regulating CCL20 expression in various cancer cells.

To confirm the role of CCL20 in autocrine stimulation of

cancer cells from a different origin, we tested the expression of

CCR6 in CCL20-secreting NB4, HL60, and HT-29 cells. We

found that NB4, HL60, and HT-29 cells expressed CCR6 at the

mRNA level (Fig. 3E), however HL60 possessed higher levels of

cell-surface CCR6 than NB4 and HT-29 cells (data not shown).

Next, we tested the effect of CCL20 stimulation on NB4, HL60,

and HT-29 cell proliferation and adhesion to the ECM

components, collagen I and fibronectin. We found a 1.6-fold

increase in adhesion of HL60 cells to collagen I upon simulation

with CCL20 250 ng/ml (p,0.006) and a 2-fold increase in

adhesion to fibronectin upon stimulation with 500 ng/ml

(p,0.015) (Fig. 3F, data not shown). Stimulation of HT-29

resulted in a dose-dependent increased adhesion to collagen type I,

but not fibronectin (Fig. 3F, data not shown). In contrast to HL60

and HT-29, NB4 cells that expressed low surface level of CCR6

did not proliferate or adhere to fibronectin or collagen in response

to CCL20 (data not shown).

Overexpression of CCL20 increases the growth, invasion
and vascularization of PC3 cells in vivo
The in vivo role of CCL20 in cancer development is not clear. To

determine the role of CCL20 in CXCR4-dependent and -

independent tumor development in vivo, a tumor xenograft model

was used. Human mock-transfected and CCL20-overexpressing

PC3 cells were injected subcutaneously into SCID/bg mice. For in

vivo experiments, we chose to use PC3-CCL20 clones 10 and 30,

since these clones demonstrated an increased proliferation rate in

culture, and produced either comparable levels of CCL20 (100, and

320 pg/ml) to PC3-CXCR4.5. Mice injected with PC3-CCL20.30

CCL20 and CXCR4 Interaction
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cells developed larger tumors as measured by an increase in size

compared to mice injected with mock-transfected PC3 cells

(Fig. 4A). Moreover, tumors produced by PC3-CCL20.30 cells

were more vascularized and invasive to the neighboring tissues

(muscle and dermis) (Fig. 4B). These findings were confirmed by

H&E-stained tissue sections of xenograft tumors. Histological

analysis of PC-CCL20 tumors demonstrated an invasion of tumors

to adjacent muscle tissue, development of necrosis that can be

associated with rapid tumor growth, and massive aberrant

vascularization of tumors. In contrast, as was previously described,

PC3-mock tumors were encapsulated, non-invasive and no aberrant

blood vessels were present (Fig. 4B). Mice injected with PC3-

CCL20.10 cells also developed larger tumors as measured by an

increase in size and weight compared to mice injected with mock-

transfected PC3 cells. However, the difference between PC3-

CCL20.10 and the parental cells were smaller (Fig. 4A).

Both PC3-CCL20.30 as well as the parental PC3 cells

developed a necrotic core, while tumors that overexpressed

CCL20 continued to grow beyond this point, suggesting that

CCL20 may facilitate angiogenesis in tumors. We studied this

hypothesis by comparing the number of blood vessels in

histological sections as well as by using an in vivo intra-tumoral

vessel functionality MRI based assay in the CCL20 tumors (PC3-

CCL20.30) versus that in control tumors (PC3-mock). Macro-

scopic assessment of tumors overexpressing CCL20 revealed

increased vascularization as compared to control tumors

(Fig. 4B). To complement the data obtained from histology on

blood vessel density, vessel functionality (DSo2) was measured by

fMRI to study the actual in vivo perfusion of the tumor and the

oxygen delivery efficiency into the tumor mass. Functionality of

the vasculature was derived from GE images acquired during

inhalation of air-CO2 and carbogen (95% oxygen+5% CO2) [26]

Figure 3. Regulation of CCL20 expression and function in various tumor cells. (A) CCL20 mRNA and protein expression in CCL20-
transfected PC3 single-cell clones tested by semi-quantitative RT-PCR and ELISA. (B) PC3-CCL20 clones were seeded at 26104 cells/1 ml per well into
a 24-well plate and incubated for 6 days. On day 6, the cells were harvested and viable cells were counted using PI staining and FACS analysis. Data is
presented as mean6SD from triplicates (** P,0.05). (C) PC3-CCL20 single-cell clones were grown to confluence, harvested, resuspended in their
conditioned culture medium and allowed to adhere to collagen I- and fibronectin-coated plates for 30 minutes. Non-adherent cells were washed, and
adherent cells were collected in 300 ml FACS buffer with 5 mM EDTA and counted by FACS. Data is presented as mean6SD from triplicates (**
P,0.05). (D) Leukemic cell lines NB4 and HL60, primary human leukemic blasts, HT-29 cells, and normal human keratinocytes were incubated with
various concentrations of CXCL12 for 48 hours. CCL20 secretion to culture medium was assessed using ELISA method. (E) CCR6 mRNA expression in
leukemic cell lines NB4 and HL60 and colon cancer HT-29 cells assessed by semi-quantitative RT-PCR. b-actin confirmed comparable loading of RT-
PCR products in each lane. (F) HL60 and HT-29 cells either untreated or treated with various concentrations of CCL20 were placed on collagen I
coated plates (10 mg/ml) for 30 minutes. Non-adherent cells were washed twice with cold PBS. Adherent cells were collected in 300 ml FACS buffer
with 5 mM EDTA and counted by FACS. Data is presented as mean6SD from triplicates (** P,0.05). Data is representative of three separate
experiments.
doi:10.1371/journal.pone.0005125.g003
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in mice implanted with PC3-mock cells or with PC3-CCL20.30

cells. Interestingly, MRI analysis showed that DSo2 values from

PC3-CCL20.30 tumors were significantly higher (Fig. 4C). DSo2

maps derived on day 41 showed enhanced tumor vascularity in

tumors produced by PC3-CCL20.30 vs. control tumors that had

very low DSo2 values. We left the control tumors to grow for an

Figure 4. CCL20 regulates CXCR4 dependent and independent growth of tumor cells. (A) Effect of CCL20 stable expression on prostate
tumor growth. PC3-CCL20.30, PC3-CCL20.10 and PC3-mock transfected cells (56106/mouse) were injected subcutaneously into SCID/beige mice. 48
days or 75 days following the injection, animals were sacrificed, and xenograft tumors generated by PC3-mock and PC3-CCL20.30 injected cells were
purified . Tumor size (cm2) was measured twice a week using caliper. Results are representative of three independent experiments with five mice in
each group. Data is presented as mean6SE from five mice. (B) H&E staining of paraffin-embedded tumor tissue sections derived from PC3-mock and
PC3-CCL20.30 tumors on day 48. Black arrows signify non-invasive borders of PC3-mock tumor (B,a), small blood vessel in PC3-mock tumor (B,b),
aberrant blood vessels in PC3-CCL20.30 tumor (B, c,d), original magnification of6200 is shown. (C) Vessel functionality (DSo2) was measured by fMRI.
Functionality of the vasculature was tested during inhalation of air-CO2 and carbogen (95% oxygen+5% CO2) in mice implanted with PC3-mock cells
or with PC3-CCL20.30 cells. DSo2 values from PC3-mock cells and PC3-CCL20.30 are shown. The mean6SD values of DSo2 were calculated from whole
tumor, and normalized to contra-lateral muscle, pooling data from 9 mice from the PC3-CCL20.30 group and 5 mice from the PC3-mock group (four
slices/mouse; p,0.001). (D) Adhesion of PC3-CCL20.30 cells to collagen I. PC3-CCL20.30 cells either umstimulated or stimulated with 50 ng/ml of
CCL20 with or without co-incubation with neutralizing anti-CCL20 antibodies (10 mg/ml) were placed on collagen I-coated plates (10 mg/ml) for
30 minutes. Non-adherent cells were washed twice with cold PBS. Adherent cells were collected in 300 ml FACS buffer with 5 mM EDTA and counted
by FACS. Data is presented as mean6SD from triplicates (** P,0.016). (E) PC3-CCL20.30 cells (56106/mouse) were injected subcutaneously into SCID/
beige mice. Twenty-four hours after the cell injection, mice started to get subcutaneous injections of anti-human CCL20 antibodies or isotype control
antibodies, 20 mg of antibody per injection, three times a week, during four weeks. Tumor size (cm2) was measured once a week using caliper. Results
are representative of two independent experiments with ten mice in each group. Data is presented as mean6SE from ten mice. (F) On day 64
following the cell injection, the experiment was terminated, animals were sacrificed; subcutaneous tumors were removed, measured and weighted.
Data is presented as mean6SE from ten mice in each group (** P,0.0002). (G) PC3-CXCR4.5 cells (56106/mouse) were injected subcutaneously into
SCID/beige mice. Twenty-four hours after the cell injection, mice started to get subcutaneous injections of anti-human CCL20 antibodies or isotype
control antibodies, 20 mg of antibody per injection, three times a week, during four weeks. Tumor size (cm2) was measured once a week using caliper.
On day 55 following cell injection, the experiment was terminated; animals were sacrificed, subcutaneous tumors were removed, measured and
weighted. Data is presented as mean6SE from ten mice in each group (** P,0.0027). (H) HT-29 cells (26106/mouse) were injected subcutaneously
into nude mice. Twenty-four hours after cell injection, mice started to get subcutaneous injections of anti-human CCL20 antibodies or isotype control
antibodies, 20 mg of antibody per injection, five times a week, during two weeks. On day 17 following cell injection, the experiment was terminated,
animals were sacrificed; subcutaneous tumors were removed, measured and weighted. Data is presented as mean6SE from ten mice in each group
(** P,0.0002).
doi:10.1371/journal.pone.0005125.g004
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additional month in order to let them reach similar size. However,

even on day 71, they were significantly less vascularized. While

functional vessels were observed at the center of tumors

overexpressing CCL20, no functional vessels were observed at

the center of the control tumors and only on the borders of these

tumors. The mean6SD values of DSo2 were calculated from a

region of interest containing the whole tumor, and normalized to

contra-lateral muscle, pooling data from 9 mice from the PC3-

CCL20.30 group and 5 mice from the PC3-mock group (four

slices/mouse; Fig. 4C, p,0.001). These results suggest that high

expression of CCL20 results in early neovascularization of the

tumors while in control tumors, the development of necrosis was

mediated by poor perfusion.

Neutralization of CCL20 inhibits the CCL20 and CXCR4-
dependent growth of various tumor cells in vivo
Having established the role of CCL20 in cancer development in

vivo, we evaluated the effect of neutralizing antibodies to human

CCL20 on the growth of CCL20-and CXCR4 overexpressing

PC3 cells. First, we tested the ability of anti-CCL20 antibodies to

neutralize the CCL20-induced adhesion in vitro of PC3-CCL20.30

cells to collagen I. The presence of monoclonal anti-human

CCL20 antibodies abolished the adhesion of PC3-CCL20.30 cells

to collagen I in response to CCL20 stimulation (Fig. 4D).

Next, we assessed the in vivo potential of neutralizing anti-CCL20

antibodies. PC3-CCL20.30 cells were injected subcutaneously into

SCID/bg mice. Twenty-four hours after cell injection, mice started

to get treatment with subcutaneous injections of anti-human

CCL20 antibody or isotype control, 20 mg of antibody per injection,

three times a week, during four weeks. A significant decrease in

tumor growth was observed in anti-CCL20-treated mice (Fig. 4E,

F). In the control group, nine out of ten mice developed

subcutaneous tumors which rapidly progressed over time. In

contrast, in the ani-CCL20-treated group, only five out of ten mice

developed tumors, while four of the produced tumors were very

small in size (0.2 cm60.2 cm or 0.1 cm60.1 cm) and did not

progress over time. Moreover, histological evaluation of H&E-

stained tissue sections of xenograft tumors demonstrated that

neutralizing antibodies to CCL20 inhibited intensive aberrant blood

vessel formation and promoted extensive necrotic tissue damage in

treated tumors (data not shown).

To confirm the role of CCL20 in the development and

progression of CXCR4-overexpressing prostate tumors, we

evaluated the effect of neutralizing antibodies to human CCL20

on the growth of CXCR4-overexpressing PC3 cells. PC3-

CXCR4.5 cells were injected subcutaneously into SCID/bg mice.

Injected animals were treated with the anti-human CCL20

antibody or isotype control according to the same protocol used

in mice injected with CCL20-overexpressing cells. Animals treated

with anti-CCL20 antibodies demonstrated a delay in tumor

appearance – in the control group on day 28, 100% of animals

developed visible tumors, while in the anti-CCL20-treated group,

only 60% appeared with tumors on the same day. Furthermore,

the treatment with anti-CCL20 antibodies inhibited the growth of

CXCR4-expressing prostate tumors (Fig. 4G).

It has recently been shown that CCR6 and CCL20 are

significantly upregulated in CRC and colorectal liver metastases

(CRLM) [27]. To further test the role of CCL20 in the

development and progression of colon cancer, we evaluated the

effect of neutralizing antibodies to human CCL20 on the growth

of HT-29 tumor cells. HT-29 cells were injected subcutaneously

into nude mice. Injected animals were treated daily with the anti-

human CCL20 antibody or isotype control. Treatment with anti-

CCL20 antibodies significantly inhibited the growth and invasion

of HT-29 tumors (Fig. 4H). Moreover, antibodies to CCL20

inhibited the invasion of tumor cells into surrounding tissues

similarly to the skin and muscle (data not shown). We therefore

concluded that neutralizing antibodies to CCL20 suppressed in

vivo CXCR4-dependent and independent prostate and colon

tumor growth.

CXCR4 and CCL20 are co expressed in human prostate
cancer
In order to further test the relevance of in vivo role of CCL20/

CCR6 axis in prostate cancer development, we first evaluated the

expression of CCL20 and CCR6 in human prostate cancer tissues

with the use of commercially available array of 52 paraffin-

embedded prostate sections from patients with advanced prostate

cancer. All specimens were graded using pathologic stage and the

Gleason score system. The immunohistochemical staining re-

vealed that the majority of tumor samples (50 out of 52, 96%)

expressed the CCR6 receptor at heterogeneous levels. Whereas

the ligand for CCR6, CCL20, was expressed in 34 out of 52 tumor

samples (65.4%). The CCL20 and CCR6 staining were located

mostly in epithelial and fibromuscular stromal cells (Fig. 5A). The

majority of tumor samples that expressed CCL20 co-expressed

CCR6. In contrast, normal human prostate tissue samples

expressed very low levels of CCL20 and CCR6 (Fig. 5A). Out of

34 CCL20-positive sections, 16 samples were highly positive for

CCL20. Average Gleason score in samples with high CCL20

expression was 8.7561.48 (n= 16) versus 7.7261.75 (n = 36) in

samples with low or negative CCL20 expression (p= 0.02)

(Fig. 5A9). Average stage in samples with high CCL20 expression

was 3.2860.97 (n= 16) versus 3.7560.68 (n= 36) in samples with

low or negative CCL20 expression (p,=0.07) (Fig. 5A9). No

prevalence in high levels of CCR6 in progressive stage IV sections

was detected (Fig. 5A0). These results demonstrate that high

CCL20 expression correlates with high Gleason score (e.g., tumor

grade) and higher staging of the disease in this array.

To further study the expression pattern of CCL20 and CCR6 in

prostate tumors, we stained additional specimens from 44 primary

tumors. All tissue sections were obtained from the Pathology

Department of the Hadassah Hebrew University Medical Center.

The average Gleason score in these patients was significantly lower

than in the commercial array, 5.77 versus 8.04 respectively.

Similar to the commercial array CCL20 was expressed in 70.5%

of the tumors and CCR6 was expressed in 95.5% of the tumors

sections. However, in contrast to the commercial array no

significant correlation between CCL20 expression and Gleason

score (e.g., tumor grade) and staging was found. These results

suggest that CCL20 and CCR6 are commonly expressed in

prostate cancer tumors; however, more studies are needed to

demonstrate their diagnostic significance.

In order further test the possible interaction between CXCR4

receptor and CCL20 chemokine in prostate cancer, we evaluated

the coexpression of CCL20 and CXCR4 in human prostate

cancer tissues with the use of commercially available additional

array of 48 paraffin-embedded prostate sections from patients with

advanced prostate cancer. Similar to our previous [17] and

current stud and the all samples in this array expressed the

CXCR4 receptor and CCL20 chemokine at heterogeneous levels.

Expression level of CXCR4 and CCL20 was determined by

scoring the staining intensity as low, intermediate or high. Co-

expression of CXCR4 and CCL20 in the same cancer cells was

observed (Fig. 5B). Moreover, similar expression level of CXCR4

and CCL20 was observed on the majority of prostate tumor

samples (38 out of 48 samples, 79.5%) (Fig. 5B, 5B9). Four

additional samples demonstrated close expression pattern, and
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only six samples out of 48 (12.5%) demonstrated different

expression levels of CXCR4 and CCL20. These results suggest

that in human prostate cancer CCR6, CCL20, and CXCR4 are

commonly overexpressed and that there is a correlation between

CXCR4 and CCL20 expression. More studies are needed to

determine the potential diagnostic role for CCL20 and CCR6.

Altogether, our findings for the first time provide evidence for

existence of a putative CXCR4/CCL20 interaction that could be

involved in cancer development processes. Furthermore, our data

suggest an in vivo role of the chemokine CCL20 in CXCR4

dependent and independent regulation of cancer growth and point

to CCR6 and CCL20 as novel therapeutic targets in cancer.

Discussion

Recent studies have revealed the critical multifunctional role of

CXCR4-CXCL12 in cancer progression. Here we show that

CXCR4 up-regulates the expression of the chemokine CCL20 in

various cancer cells, and that CCL20 in turn promotes in an

autocrine manner the survival, proliferation and adhesion of

cancer cells in vitro and enhances xenograft tumor growth,

vascularization and invasion in vivo. CCL20 (also known as

macrophage inflammatory protein-3a (MIP3a); liver and activa-

tion-regulated chemokine (LARC) or exodus-1) is a 9 kDa CC-

type chemokine, which is expressed constitutively at low levels by

keratinocytes in epidermal layers of skin [28] intestinal mucosa

[29], liver [30], epithelial crypts of tonsils [31], as well as in the

epithelium of Peyer’s patches in the intestine [32]. While there is

redundancy in the human chemokine network, CCL20 is the

unique chemokine ligand of its receptor CCR6. Expression of

CCL20 is strongly enhanced by pro-inflammatory stimuli, such as

IL-1b, TNF-a, and LPS [33,34]. CCL20 selectively attracts

CCR6-expressing natural killer cells, memory T cells, TH17 cells,

and immature dendritic cells (DC) to the sites of inflammation to

encounter the invading pathogens.

Recent studies suggested that CCL20 is an important player in

the tumor chemokine network and similarly to other chemokines,

CCL20 may promote cancer progression by two mechanisms:

acting directly as a growth factor on cancer cells or establishing a

microenvironment that suppresses specific anticancer responses.

Figure 5. CCL20, CCR6 and CXCR4 expression in prostate cancer cell lines, in primary prostate tumor tissue and in normal prostate
tissue. (A) Expression of CCL20 and CCR6 in human prostate cancer tissue and in human normal prostate tissue. Immunohistostaining of prostate
cancer and normal specimens using the polyclonal antibody for CCL20 and the monoclonal antibody 140706 for CCR6. Original magnification of
6400 is shown. CCL20 and CCR6 expression was observed in endothelial and fibromuscular cells of prostate samples (signed with black arrows). A
commercially available array including 52 samples (CA2) from patients with prostate cancer was stained for CCL20 (A9) and CCR6 (A0). Expression was
scored on two levels: low or negative expression, and high expression. Statistical analysis of the immunohistochemical staining was performed using
two-tailed Mann-Whitney test. (B) Comnmon expression pattern of CCL20 and CXCR4 in human prostate cancer. Immunohistostaining of prostate
cancer specimens using the polyclonal antibody for CCL20 and the monoclonal antibody 12G5 for CXCR4. Original magnification of6400 is shown.
CCL20 and CXCR4 expression was observed in endothelial and fibromuscular cells of prostate samples. (B9) A commercially available array including
48 samples (CA3) from patients with prostate cancer was stained for CCL20 and CXCR4. Expression was scored on three levels: low, intermediate, and
high expression. Samples that demonstrated the same scoring in CCL20 and CXCR4 expression levels were classified as having similar expression
pattern. Samples where scores in CCL20 and CXCR4 expression differed in one level or more were classified as different expression patterns.
doi:10.1371/journal.pone.0005125.g005
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CCL20 expression has been described in a variety of human

neoplasms, including colorectal, lung, pancreatic and breast

human adenocarcinomas, malignant glioma, leukemia, lymphoma

and melanoma However, the role of CCL20 in cancer

development remains controversial. Since CCL20 is a potent

chemoattractant for immature DCs, the most powerful antigen-

presenting cells, it seems logical to attract iDCs to the tumor site to

induce antitumor immune response. According to this approach,

Fushimi et al., demonstrated in a mouse model that intratumor

injection of adenovirus-mediated gene transfer of CCL20 could

suppress tumor growth [35]. On the other hand, there is a growing

body of evidence supporting the hypothesis that CCL20

production by cancer cells promotes tumor growth and invasive-

ness. Contrary to the results of Fushimi et al., other groups of

investigators have shown that transfection of rodent tumor cell line

with CCL20 enhances tumor growth and decreases immunoge-

nicity, despite the attraction of iDCs to the tumors [36]. In their

model, as in human breast carcinomas which secrete high levels of

CCL20 [37], attracted DCs to the tumor site did not mature.

These may serve as one of the tumor escape mechanisms by which

attracted immature DCs poorly stimulate T-cell antitumor

response, and moreover can activate regulatory T cells which

suppress specific anti-tumor immune responses.

In our experimental models, we chose to evaluate the

involvement of CCL20 in prostate and colon tumor growth,

vascularization and invasiveness. Our results match the observa-

tions of Kleef et al., who demonstrated that CCL20 is overexpressed

in human pancreatic carcinoma cells and in infiltrating macro-

phages adjacent to tumors, and stimulates the growth and invasion

of neoplastic cells [38]. Up- regulation of CCL20 was demonstrated

in human hepatocellular carcinoma tissues, and CCL20 expression

was found to correlate with tumor grade [39]. Furthermore, we

found that CXCR4, CCL20 and CCR6 are over- and coexpressed

in human prostate cancer specimens (Fig. 5). In support of our

findings it was recently published that the expression levels of CCR6

in prostate cancer are associated with clinical and pathologic

features of more advanced and aggressive prostate cancer [40].

Here we show that, CCL20 promotes the growth and adhesion of

CCR6-expressing cancer cell lines. Moreover, overexpression of

CCL20 or CXCR4 in prostate and colon cancer cells promotes

tumor growth that was neutralized with anti-CCL20 antibodies.

These findings strongly emphasize the potential co-involvement of

CCL20 and CXCR4 in cancer development.

Altogether, our findings provide evidence for the existence of a

putative CXCR4/CCL20 interaction that could be involved in

cancer development processes. Furthermore, our data suggest a

role of the chemokine CCL20 in CXCR4-dependent and

independent regulation of cancer growth and point to CCR6

and CCL20 as novel therapeutic targets in cancer.

Materials and Methods

Cell culture and transduction of cell lines and cell clones
The following human cell lines were used in the study: prostate

cell lines PC3 (CRL-1435), LNCaP (CRL-10995), 22Rv1 (CRL-

2505), DU145 (HTB-81); acute promyelocytic leukemia cell lines

NB4, HL-60 (CCL-240) and colon carcinoma cell line HT-29

(HTB-38). PC3 cell line stably overexpressing CCL20 (PC3-

CCL20) was produced by transfection of PC3 cells pcDNA3-

CCL20 construct. PC3-CCL20 single-cell clones were produced

by limited dilutions. The level of secreted CCL20 protein was

analyzed in supernatant of PC3-CCL20 clones using ELISA kit

(R&D Systems, Minneapolis, MN). PC3-CXCR4 single-cell clones

were produced by limited dilutions.

RNA extraction and reverse transcription ad Semi-
quantitative and Real-Time PCR
Total RNA was extracted from prostate and leukemic cell lines

using TRIzol reagent (Invitrogen Life Technologies). For cDNA

synthesis, 2.5 microgram of total RNA were reverse-transcribed and

the following primer pairs were used for PCR: b-actin sense 59 -

CCCTGGACTTCGAGCAAGAG9 - 39, antisense 59 - TCTCCT-

TCTGCATCCTGTCG - 39; CCL20 sense 59 – ATGTGCTGTA-

CCAAGAGTTT - 39, antisense 59 - CAAGTCTGTTTTGGAT-

TTGC - 39; CCR6 sense 59 – CCATTCTGGGCAGTGAGTCA -

39, antisense 59 - AGCAGCATCCCGCAGTTAA - 39; CXCR4

sense 59 - AGCTGTTGGCTGAAAAGGTGGTCTATG - 39,

antisense 59 - GCGCTTCTGGTGGCCCTTGGAGTGTG - 39;

CXCL12 sense 59 - ATGAACGCCAAGGTCGTGGTCG - 39,

antisense 59 - TGTTGTTGTTCTTCAGCCG - 39. CCL20

quantitative PCR assay containing the primers and probe mix was

purchased from Applied Biosystems, Foster City, CA, All reactions

were run in triplicates using ABI Prism 7700 Sequence Detector

System (Applied Biosystems). Gene expression of CCL20 gene was

analyzed in relation to the levels of the housekeeping b-actin gene.

Cell proliferation assay
The effect of CCL20 on the viability of PC3, PC3-CXCR4.5,

PC3-CCL20 clones and leukemia NB4 and HL60 cells was studied.

In brief, PC3 and PC3-CXCR4.5 cells were seeded at 26104 cells/

1 ml per well into a 24-well plate in medium supplemented with

0.1% FCS with or without various concentrations of CCL20

(PeproTech EC, London, UK). Following three days, the medium

with or without CCL20 was renewed. On day six, the attached cells

were harvested, stained with propidium iodide (Sigma, St. Louis,

MO), and the number of viable cells was determined using FACS

analysis. Optionally, PC3 and PC3-CXCR4.5 cells were labeled

with 5-bromo-2-deoxyuridine (BrdU) (Sigma, St. Louis, MO) at a

concentration of 10 mM during the last 16 hours of incubation and

processed for BrdU detection using specific anti-BrdU antibody

(eBioscience) and FACS analysis.

Cell adhesion assay
Prostate cancer cells (PC3, PC3-CXCR4.5 and PC3-CCL20

clones), leukemia NB4 and HL60 cells, and colon cancer cells HT-

29 (16105/500 ml) were allowed to adhere to 10 mg/ml fibronectin-

coated or collagen type I-coated 24-well plates for 30 minutes at

37uC in serum-free RPMI supplemented with 0.1% bovine serum

albumin (BSA). Non-adherent cells were washed twice with cold

PBS. Adherent cells were collected in 300 ml FACS buffer (PBS6

1+0.1% BSA+0.01% NaNO3) with 5 mM EDTA and counted by

FACScalibur (Becton Dickinson Immunocytometry Systems).

ELISA assay
Prostate cancer cells (PC3, PC3-CXCR4.5 and PC3-CCL20

clones), leukemia cells NB4 andHL60 and colon cancer cells HT-29

were seeded into a 12-well plate at 26105/1 ml of medium per well

with various concentrations of CXCL12 (5–1,000 ng/ml) (Pepro-

Tech EC, London, UK) or PTX (5 mg/ml) (List Biological

Laboratories, Campbell, CA, USA). The cells were incubated for

48 hours, supernatants were collected and CCL20 protein levels

were determined using ELISA kit (R&D Systems, Minneapolis,

MN). For intracellular CCL20 detection, cells were harvested and

lysed with lysis buffer containing 50 mM Tris-HCl, pH 7.6,

150 mM NaCl, 5 mM EDTA pH 8.0, 0.5% NP40 and protease

inhibitors cocktail (Roche Diagnostics, Mannheim, Germany). Cell

lysates were centrifuged at 14,000 g for 20 minutes at 4uC and equal

amounts of protein extracts were applied for ELISA analysis.
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Flow cytometric analysis
In order to characterize the expression levels of chemokine

receptors CXCR4 and CCR6 on cancer cell lines, the cells were

stained with human specific direct-labeled antibodies and analyzed

by FACScalibur (Becton Dickinson Immunocytometry Systems),

using CellQuest software. For CXCR4 expression analysis, anti-

human CXCR4 monoclonal antibody, clone 12G5 (R&D

Systems, Minneapolis, MN) or polyclonal anti-N-terminus anti-

body (Chemicon International, Temecula, CA, USA) were used.

For CCR6, anti-human CCR6 monoclonal antibody, clone

53103.11 (R&D Systems, Minneapolis, MN) was used.

RNA interference
The Dicer-substrate siRNA duplexes of CXCR4 (NCBI

accession number NM_003467): sense 59 - UAAAAUCUUC-

CUGCCCACCAUCUAC - 39, antisense 59 – GUAGAUGGU-

GGGCAGGAAGAUUUUAUU - 39 were purchased from IDT,

Coralville, IA. The non-specific siRNA duplexes were used as a

control. PC3-CXCR4.5 cells were transfected with 200 nmol/L

siRNA in serum-free medium using Oligofectamine reagent

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions.

Establishment of tumor xenografts
Nude and SCID/beige mice (C.B -17/IcrHsd-SCID-bg) were

maintained under defined flora conditions at the Hebrew

University Pathogen-Free Animal Facillity. All experiments were

approved by the Animal Care Committee of the Hebrew

University. Prostate cancer cell lines (PC3, PC3-CXCR4.5, PC3-

CCL20.30 and PC3-CCL20.10) and HT 29 cells were grown to

80% confluence, harvested, and injected subcutaneously in the

flank of mice (56106/mouse). Once palpable, tumors were

measured and tumor size (width6length) was calculated. For the

neutralizing experiments, mice were treated with subcutaneous

injections of monoclonal anti-human CCL20 antibody (MAB360,

R&D Systems, Minneapolis, MN) or control IgG1 antibody. At

the end of the experiments, animals were sacrificed, tumors were

harvested, measured and weighted. MRI analysis of tumor growth

and blood vessel functionality and maturation were done as

previously described (18).

Immunohistochemistry and scoring
Two different commercial prostate tumor tissue microarrays

were used: CA2 array included 52 prostate cancer tissue sections

and CA3 array included 48 prostate cancer tissue sections

(SuperBioChip Lab). In addition tissue samples of primary

prostate tumors from 41 patients, 2 were collected from the

archives of the Pathology Department of the Hadassah Medical

Organization, Jerusalem, Israel. Formalin-fixed, paraffin-embed-

ded tissue samples were initially dewaxed, rehydrated, treated with

EDTA buffer and blocked with CAS blocking reagent (Zymed

Laboratories, San Francisco, CA, USA) for 30 minutes in room

temperature. Samples were then incubated overnight at 4uC in a

humidified chamber with anti-human CCL20 polyclonal antibody

(PeproTech EC, London, UK), diluted to final concentration

20 mg/ml, or alternatively with anti-human CCR6 monoclonal

antibody (R&D Systems, Minneapolis, MN) diluted to final

concentration 10 mg/ml, or with anti-human CXCR4 monoclonal

antibody, clone 12G5 (R&D Systems, Minneapolis, MN) diluted to

final concentration 10 mg/ml. Next, the sections stained for

CCL20 were incubated with diluted 1:1000 biotinylated goat-anti-

rabbit antibody (Jackson ImmunoResearch), for 30 minutes at

room temperature and thereafter with horseradish peroxidase -

conjugated streptavidin (Zymed Laboratories, San Francisco, CA,

USA) for 30 minutes at room temperature. The sections stained

for CCR6 or CXCR4 were incubated with secondary anti-mouse

horseradish peroxidase-conjugated antibody (DakoCytomation,

Glostrup, Denmark) for 30 minutes at room temperature. 3-

amino-9-ethylcarbazole (AEC) was used for color development,

and sections were counterstained with hematoxylin.

Analysis of CCL20 and CCR6 expression was determined by

scoring the staining intensity as negative, weak or strong by two

independent investigators. Scoring was performed blindly, without

knowledge of overall Gleason score or tumor pathologic stage.

Statistical analysis
Data are presented as means6SD or 6SE. Statistical

comparison of means was performed by a two-tailed unpaired

Student’s t test. Differences with a P,0.05 were determined as

statistically significant.
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