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Abstract: The digital economy and the green economy are two major issues for economic recovery in
the post epidemic era. From spatial interaction spillover, we analyze and measure the relationships
between the digital economy and environmental pollution in 287 prefecture-level cities in China from
2008 to 2018 using simultaneous spatial equations and the generalized 3-stage least square (GS3SLS)
method. The results show that: (1) there is a reverse and complex spatio-temporal evolution of the
digital economy and environmental pollution in Chinese cities. (2) There is a spatial interaction
spillover effect between the digital economy and environmental pollution. Local digital economy and
environmental pollution inhibit each other. The digital economy and environmental pollution have a
significant spatial spillover. The digital economy of surrounding regions has a suppressive effect on
local environmental pollution. The environmental pollution of surrounding cities has a crowding-out
effect on the local digital economy. (3) Digital economy suppresses environmental pollution through
the green development effect and innovative development effect; environmental pollution suppresses
the digital economy through the talent crowding out effect and the policy tightening effect. The
conclusion of this paper provides evidence for the coupling and coordinated development between
the digital and green economy, which is of great significance for promoting the transformation of
economic development modes and realizing green and high-quality development.

Keywords: digital economy; green economy; environmental pollution; simultaneous spatial equation;
GS3SLS

1. Introduction
1.1. Motivation

In today’s society, digitization and low-carbon economy are becoming more popular.
Digital technology has entered the deepening stage of cross-border integration from the set
of knowledge popularization. The digital economy, based on this, has produced substantial
economic benefits. In the past, it was generally believed that there was a conflict between
economic development and environmental pollution [1,2], but the emergence of the digital
economy seemed to break away from this dilemma.

As the largest developing country and carbon emitter, China should pay special
attention to reducing pollution and carbon while paying attention to economic develop-
ment [3–5]. In particular, the central government pointed out that “achieving carbon peak
by 2030 and striving to achieve carbon neutralization by 2060” put forward higher require-
ments for pollution reduction in the new era and new stage. It is challenging to achieve
green development only by pollution terminal treatment. Effective economic means must
form a long-term mechanism for treating environmental pollution. By mixing cutting-edge
digital technology such as cloud computing, big data, and artificial intelligence with whole
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enterprises, the digital economy has challenged existing industries and become a new route
of industrial development.

The Chinese central government’s “suggestions on the 14th five-year plan and long-
term goals for 2035” put forward a proposal to: “deepen cooperation in public health,
digital economy, green development, science, technology, and education, and promote
people and cultural exchanges” [6]. The digital economy will progressively become a new
driving force in future economic growth, promoting a green economy that can balance
the link between the digital economy and environmental resource conservation. China
should attach great importance on the changing harmony between the green and digital
economy, urging them to join forces and build a new economic growth pattern. As a
result, investigating the coupling and coordinated growth link between the green economy
and the digital economy is critical for promoting China’s economic development model
transition and achieving high-quality green development [7–10].

Based on the above context, this research aims to discuss the link between the growth
of the digital economy and environmental pollution by assessing their temporal and
geographical evolution features and interaction spillover effects. The textual logic of this
research is shown in Figure 1.
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Figure 1. The logical framework.

The study objective of this article is presented in Section 1, which is based on an
examination of the current macroeconomic situation and prior relevant research: how do
the digital economy and environmental pollution impact each other from a geographical
viewpoint? In Section 2, we develop the research hypothesis of this article and provide
the empirical techniques and variable measurements of this study via theoretical analysis.
Section 3 examines the features of China’s urban digital economy and environmental pollu-
tion in terms of their chronological and geographical development. Section 4 investigates
and evaluates the robustness of the spatial interaction spillover effect of China’s urban
digital economy and environmental pollution. The interaction mechanism between the
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digital economy and ecological contamination is examined in Section 5 of this study. The
study is summarized in Section 6.

1.2. Literature Review and Contribution

There is no consensus on the interaction between digital economy and sustainable
development. Extensive studies have shown that the digital economy and green economy
are developing in lockstep [11–13], with the following categories:

Digitization and sustainable development are the main trends of economic and social
development [14–16]. Castro et al. reviewed previous studies [17]; they believed that
combining digitalization with sustainable development would provide a tremendous
opportunity to create a greener economy and society, as well as pave the way for the
attainment of sustainable development goals. One of the most potential possibilities for
long-term growth is digitization [18]. People are increasingly expecting digital to offer value
to achieving sustainable development objectives by providing new data sources, improved
analytical skills, and a collaborative digital ecosystem [19,20]. Franca et al. proposed that
small cities use blockchain to enhance solid waste management [21].

Emerging digital technologies play a positive role in green development. Innovative
digital techniques (such as deep learning and data-driven engineering) may be used
to achieve a greater level of automation and early optimization in the design process,
which is becoming more vital for the long-term sustainability of resource-based circular
economies [22,23]. Rajala et al. explored how smart products may help foster the industrial
ecosystem’s long-term growth [24]. The research contributes to our understanding of the
circular economy’s closed-loop system, which today relies more than ever on the digital
platform. Dumont et al. believe that digital technology is low-cost and easy to obtain,
which provides power for sustainable ecological agriculture [25].

The digital sharing economy is considered to be green and environmentally protective.
The sharing economy platform improves the reuse rate of existing commodities and allevi-
ates unnecessary resource consumption [26]. Digital development promotes the popularity
of shared travel, which encourages consumers to use shared transportation instead of
buying private cars [26–28]. Compared with taxis, digital ride services have better energy
efficiency and reduced greenhouse gas emissions. Uber’s mileage capacity usage rate (61%)
was greater than that of taxis (49.1%), according to Cramer and Krueger by using the trip
data of taxis and Uber in five cities in the United States [29].

Besides, the inverse relationship between economic growth and pollution has been
explored in the abundant literature on Environmental Kuznets Curve (EKC), including
the spatial effect and impact of the digital economy [30,31]. When economic development
reaches a specific point, the “inflection point”, environmental degradation tends to go
from high to low, the pollution intensity steadily decreases, and ecological protection is
improved [32]. This theory has been confirmed by a large number of studies and exists in
countries worldwide [33], especially in China [34,35].

However, many studies have proposed in a tense relationship between digitization and
sustainable development. According to Martin et al. [36], there are five conflicts between
smart cities and urban sustainable development goals, and environmental protection is
neglected. The significance of a shared digital economy on energy consumption and
greenhouse gas emissions, according to Jin et al., is so far unknown [37]. While replacing
taxis, digital ride service also hurts other green travel modes, such as cycling, public
transport, walking, and carpooling. By analyzing six European cities’ digitization and
carbon footprint, Akande et al. found a contradiction between smart cities and sustainable
development [38]. They believe that “a city can be smart but not sustainable and vice
versa”. Kuntsman and Rattle propose that digital equipment has caused great damage to
the environment during production, maintenance, and scrapping [39].

Compared with previous studies, this paper provides new evidence for the synergy
between the digital economy and green development from advanced spatial interaction.
The following is a list of the critical work and minor contributions: Build China’s urban
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digital economy and environmental pollution index from several dimensions and study
their temporal and geographic development features of them, using samples from more
than 200 prefecture-level and above cities in China, as well as historical data from 2008
to 2018. The following study examines the spatial interaction spillover impact of China’s
urban digital economy and environmental pollution using simultaneous spatial equations
and the generalized three-stage least square technique (GS3SLS) and ultimately investigate
the interaction mechanism between them. The empirical results show that: (1) between
China’s urban digital economy growth and environmental pollution, there is a degree
of reverse development trend and complicated geographical distribution. (2) The urban
digital economy and environmental pollution in China have a spatial interaction spillover
effect. Local digital economy and pollution can hurt each other. The digital economy and
environmental pollutants have a substantial regional spillover impact. The digital econ-
omy of surrounding cities inhibits local environmental pollution, and the environmental
pollution of surrounding cities has no significant crowding-out effect on the local digital
economy. (3) The digital economy suppresses environmental pollution through the green
development effect and innovative development effect; environmental pollution suppresses
the digital economy through the talent crowding out effect and the policy tightening effect.

2. Research Design
2.1. Hypothesis

China’s digital economy is widely assumed to be on a long-term and steady upward
trajectory. China’s digital economy has increased in recent years. As per the white paper on
China’s digital economy growth (2020), the magnitude of China’s digital economy added
value has spread from 2.6 trillion yuan in 2005 to 35.8 trillion yuan in 2019. From 14.2 per
cent in 2005 to 36.2 per cent in 2019, its share of GDP has grown. The fast expansion of the
local economy has tremendously aided the prosperity of the area’s digital economy. The
economic growth of Chinese cities, on the other hand, is highly imbalanced, resulting in
an unequal temporal and geographical distribution of the digital economy’s development.
Similarly, as the Chinese government places a greater emphasis on environmental preserva-
tion, pollution should steadily decrease. However, due to regional economic imbalances,
there are variances in the elimination pace of various non-green enterprises (such as heavy
pollution and mining) in different areas, resulting in complicated environmental pollution
evolution features across cities; evidence from Europe can provide a reference for this [40].
The north and south of the EU region can be understood as China’s coastal and inland
areas. Both parts have established emission trading markets. It can be explained that the
source of growth is technological innovation, which brings new digital technology and
leads to the production of new industrial products. Similarly, emission reduction quotas
will reduce pollution emissions in China, reduce pollution in coastal areas, and increase
pollution in inland regions. As a result, we propose the following hypothesis:

Hypothesis 1 (H1). In Chinese cities, the digital economy and pollution have reversed and
complicated temporal and geographical dynamic development features.

The digital economy and environmental damage have a complicated connection. The
first is the effect of digitalization on pollution levels. Since the neoclassical growth model
was proposed, academic circles have unanimously agreed that technological advancement
favors efficiency. Boosting the expansion of the digital economy would encourage the
intensive change in the industrial production model by enabling technical innovation to
reduce pollution. Besides, the digital economy can transform Internet traffic’s value into
economic and ecological value and provide technical reserves and product application
incentives for green consumption. Using digital technology to develop green consumer
items and create a green consumption platform may increase public engagement and
feeling of ownership in green consumption and enhance the communication efficiency
of the green consumption idea. However, it is also possible that increased production
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due to improved efficiency will increase emissions. For example, in R&D-based growth
model, such as the Romer model, when material capital is a pollution source, technological
progress in the form of variety increase can induce rising pollution emissions by increasing
material capital. Even if technological progress is achieved by putting pollution-reducing
products into the production of final products, pollution will not decrease. The same is
true when the source of growth is human capital. Therefore, technological progress can
reduce pollution when the final products produced by improving efficiency are put into the
production of pollution-reducing products or linked with ecological innovation that helps
reduce pollution [41,42]. The second point to consider is the influence of pollution on the
digital economy. The reform and opening since 1978 have brought opportunities for China’s
economic development. However, the extensive economy dominated by heavy industry
has also caused a massive burden on the ecological environment. China has steadily
become one of the most polluted nations due to its past policy of focusing on growth rather
than conservation. Environmental and ecological concerns have become more significant
as China’s industrialization process has accelerated. Among them, the frequent occurrence
of air pollution is the most apparent embodiment, which directly affects the health of most
residents and continuously causes various social and economic losses. As an essential part
of today’s social and economic development, the digital economy has also been damaged.
However, the digital economy and environmental pollution do not only interact within the
city as their specific spatial distribution characteristics; rather, there is a complex spatial
interaction spillover effect. As a result, we propose the second hypothesis:

Hypothesis 2 (H2). There is a spatial interaction spillover effect between the digital economy and
environmental pollution in Chinese cities.

Figure 2 shows the structure of H2.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 24 
 

 

traffic’s value into economic and ecological value and provide technical reserves and 
product application incentives for green consumption. Using digital technology to 
develop green consumer items and create a green consumption platform may increase 
public engagement and feeling of ownership in green consumption and enhance the 
communication efficiency of the green consumption idea. However, it is also possible that 
increased production due to improved efficiency will increase emissions. For example, in 
R&D-based growth model, such as the Romer model, when material capital is a pollution 
source, technological progress in the form of variety increase can induce rising pollution 
emissions by increasing material capital. Even if technological progress is achieved by 
putting pollution-reducing products into the production of final products, pollution will 
not decrease. The same is true when the source of growth is human capital. Therefore, 
technological progress can reduce pollution when the final products produced by 
improving efficiency are put into the production of pollution-reducing products or linked 
with ecological innovation that helps reduce pollution [41,42]. The second point to 
consider is the influence of pollution on the digital economy. The reform and opening 
since 1978 have brought opportunities for China’s economic development. However, the 
extensive economy dominated by heavy industry has also caused a massive burden on 
the ecological environment. China has steadily become one of the most polluted nations 
due to its past policy of focusing on growth rather than conservation. Environmental and 
ecological concerns have become more significant as China’s industrialization process has 
accelerated. Among them, the frequent occurrence of air pollution is the most apparent 
embodiment, which directly affects the health of most residents and continuously causes 
various social and economic losses. As an essential part of today’s social and economic 
development, the digital economy has also been damaged. However, the digital economy 
and environmental pollution do not only interact within the city as their specific spatial 
distribution characteristics; rather, there is a complex spatial interaction spillover effect. 
As a result, we propose the second hypothesis: 

Hypothesis 2 (H2). There is a spatial interaction spillover effect between the digital economy and 
environmental pollution in Chinese cities. 

Figure 2 shows the structure of H2. 

 
Figure 2. The link between the digital economy and pollution in the environment. 

Ecological efficiency and innovation are the two main transmission channels for the 
digital economy’s impact on green development. The digital economy is a new economic 
structure that has emerged due to technical advancements in electronic equipment, 
communication networks, and data processing. The digital economy and its information 
communication channels will significantly improve the efficiency of knowledge 

Figure 2. The link between the digital economy and pollution in the environment.

Ecological efficiency and innovation are the two main transmission channels for the
digital economy’s impact on green development. The digital economy is a new economic
structure that has emerged due to technical advancements in electronic equipment, com-
munication networks, and data processing. The digital economy and its information
communication channels will significantly improve the efficiency of knowledge dissemi-
nation, which will undoubtedly enhance the knowledge stock of the whole economy in
the macro dimension, and then drive technological innovation. In reality, for example,
big data and Internet of Things (IoT) platforms can effectively improve the efficiency of
enterprise information collection and integration and then help enterprises in developing
new products. This innovation driver promotes economic efficiency while also having a
substantial beneficial influence on environmental efficiency. From the reverse inhibition of
environmental pollution in the digital economy, the extrusion of talents and a harsh policy
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environment may be the primary transmission mechanism. In the long-term process of
industrialization, the environmental damage in some developed cities in China is severe,
and high pollution problems such as haze are challenging to solve with speed. The will-
ingness to “escape” from the town is gradually strengthened for professionals who pay
attention to health. “Air pollution is becoming a greater concern for our members and
their families.” Tang Yadong, Secretary-General of the European Chamber of Commerce in
China, once said, “although there are many reasons for members to leave here, we almost
always hear that air pollution is one of the reasons.” A reduction in emission allowances
would trigger technological innovation and affect the location of polluting firms [42]. This
would impact the health of the population in the background. The relocation of firms
can also be interpreted as the migration of talent if the location of polluting companies is
accompanied by the migration of researchers and technicians working with the developed
technologies [43–45]. Furthermore, China’s central government has consistently imposed
environmental protection duties on local governments in recent years, and appropriate
laws and regulations have been published one after the other [46–48]. Some stringent laws
have even irreversibly harmed local businesses. In this situation, rules may potentially
stifle the growth of the digital economy. Therefore, we put forward the third hypothesis:

Hypothesis 3 (H3). Ecological and innovation variables have a mediating role in the digital
economy’s ability to reduce pollution. Talent flow and regulatory variables mediate the reverse
inhibition of environmental degradation in the digital economy.

2.2. Model

According to this paper’s theoretical analysis and research assumptions, there is a
link between the digital economy and the degree of environmental contamination. As a
result, a fixed effect panel regression model based on simultaneous equations is developed
as follows:

d_ecoit = α0 + α1epit + αXit + πi + εit (1)

epit = β0 + β1d_ecoit + βZit + µi + σit (2)

where i is the city individual and t is the time; d_eco and ep, respectively, represent the
digital economy and the pollution in the sample cities; Xit and Zit are the control variables
that affect the digital economy and the pollution; πi and µi represent the fixed effect; εit
and σit represent the error term.

Using the usual fixed effects panel model to estimate the content of this article results
in some mistakes. To begin with, the geographical link between the degree of digital
economy growth and the amount of pollution is overlooked. That is, the impact of nearby
cities on smaller cities is overlooked. Previous scientists have often used classic spatial
econometric models to handle this challenge. The Spatial Lag Model (SLM), the Spatial
Error Model (SEM), and the Spatial Dobbin Model (SDM) are examples of models that
look at the one-way effects of significant variables. The spatial interplay between them
was not well analyzed [49]. As a result, this research develops a simultaneous spatial
equation to characterize the spatial interaction of the urban digital economy with pollution.
Second, the possibility of a link between endogenous factors and random disturbance
terms is overlooked. As a result, the spatial interaction spillover effect between the level of
digital economy growth and the degree of environmental pollution was investigated using
Theil and Zellner’s generalized spatial 3-stage least square approach (GS3SLS) [50]. The
simultaneous spatial equations are set as:

d_ecoit = α0 + α1

n

∑
j 6=i

Wd_ecoit + α2

n

∑
j 6=i

Wepit + α3epit + αXit + εit (3)

epit = β0 + β1

n

∑
j 6=i

Wepit + β2

n

∑
j 6=i

Wd_ecoit + β3d_ecoit + βZit + σit (4)
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W is the spatial weight matrix in Equations (3) and (4). Xit and Zit are the control
variables that affect the digital economy and the pollution, including economic develop-
ment level, urbanization, industrial structure, openness, marketization, population density,
transportation, and posts. Moreover, there is no need to set the fixed effect, which has
been confirmed by a large number of studies in the past [49,51,52]. The spatial weight
matrix of geographical distance (W1) and economic-geographical distance (W2) are built,
respectively, due to the complexity of spatial spillovers. W1 uses the latitude and longitude
coordinates of each city center to determine the straight-line distance between them. Take
the reciprocal as the weight and set the bandwidth to 0–30 using dimensionless processing.
If the distance between the two cities’ centers exceeds 30, the weight value is set to 0,
indicating that the two cities are not nearby. W2 examines the economic distance between
cities based on geographical distance. We calculate individual elements in the matrix using
the following methods:

ECO_GEO_Distancei,j = GEO_Distancei,j × ECO_Distancei,j (5)

ECO_GEO_Distancei,j reflects the economic-geographical distance between cities i
and j, whereas GEO_Distancei,j represents the geographical distance between cities i and j
in Equation (5). The absolute magnitude of the per capita GDP difference between cities
i and j is represented by ECO_Distancei,j. The normalized weight is then taken as the
reciprocal of ECO_GEO_Distancei,j.

α1 represents the overflow strength and direction of the digital economy development
level from the nearby city. β1 represents the overflow strength and direction of the environ-
mental pollution from the nearby city. The variables α2 and β2 are utilized to validate the
geographical connection between digital economics and pollution. The former indicates
the degree and direction of neighboring urban environment pollution’s influence on the
local digital economy development level; the latter indicates the magnitude and direction
of the impact of adjacent cities’ digital economy development levels on local environmental
degradation. The endogenous link between the digital economy and the degree of pollution
is described by α3 and β3.

The GS3SLS is utilized in this study for a global estimate based on the simultaneous
spatial equations listed above. The degree of environmental degradation and the amount
of digital economy growth are endogenous variables in the spatial simultaneous equation
model. The use of OLS estimation will result in parameter estimation inconsistency. The
GS3SLS is used to estimate the overall space, the estimation method and considering
the spatial correlation and the endogenous variable potential equation of random per-
turbation terms possible correlation between problems, improve the effectiveness of the
estimation results.

In addition, the above theoretical mechanism analysis shows that the green devel-
opment effect and innovative development effect are the two main mechanisms of the
digitization economy affecting environmental pollution. In comparison, the two main
mechanisms of environmental pollution affecting the digital economy are the talent crowd-
ing effect and the policy tightening effect. This paper adopts the mediating effect model
based on spatial analysis to verify these four mechanisms to conduct empirical research [53].
The particular model is established as follows, using the impact mechanism of the digital
economy on environmental degradation as an example:

d_ecoit = α0 + α1

n

∑
j 6=i

Wd_ecoit + α2

n

∑
j 6=i

Wepit + α3epit + αXit + εit (6)

Mit = β0 + β1epit + β Xit + σit (7)

d_ecoit = γ0 + γ1

n

∑
j 6=i

W d_ecoit + γ2

n

∑
j 6=i

W epit + γ3epit + γ4Mit + γ Xit + µit (8)



Int. J. Environ. Res. Public Health 2022, 19, 5074 8 of 23

Equation (6) is the same as Equation (3) above, and the meanings of various variables
are consistent with the above. M is the mediating variable, including urban ecological
efficiency and regional innovation and entrepreneurship index. When analyzing the
influence mechanism of environmental pollution on the digital economy, M includes the
number of scientific researcher and the environmental regulation index. Section 2.3 shows
the specific economic meaning and sources.

2.3. Variables

According to the maximum availability of data, the sample for this article includes 287
prefecture-level and above cities in China, with a temporal dimension ranging from 2008
to 2018.

Firstly, the core variables of this paper are the digital economy (d-eco) and environ-
mental pollution (ep). The entropy weight approach is used in this study to calculate the
digital economy’s development level based on three factors [54]. The first indicator is
digital finance index, obtained by the Python web crawler method based on the practices
of Su et al. [55], and Yao et al. [56]. The other two indicators are digital industry (consisting
of employees in the digital industry and total telecommunication services), and digital
infrastructure that consists of internet penetration and mobile phone penetration. The
weight of each index measured by the entropy weight method is shown in Table 1. Its
essence is to use the entropy of variables to estimate the amount of information contained
in variables. The digital industry and digital finance are the predominant drivers of the
urban digital economy. There are obvious differences in the development of the digital
industry and digital finance among regions. However, with the gradual popularization
of digital equipment, there is no significant difference in the level of digital infrastructure
among areas, then its proportion is also low. In this paper, the degree of environmental
pollution includes three common types of pollution: wastewater, waste gas, and smoke.
Per capita wastewater pollutants (t/person), industrial sulfur dioxide pollutants (t/person),
and industrial smoke emissions (t/person) are the units of measurement. The data are
from China’s city statistical yearbook. Then, Z-score is used for standardization, addition,
and normalization.

Table 1. Digital economy indicator system.

Primary Indicator Secondary Indicator Weight

Digital finance
(0.3169) Digital finance index 0.3169

Digital industry
(0.5818)

Employees in digital industry 0.3508

Total Telecommunication Services 0.2310

Digital infrastructure
(0.1013)

Internet penetration 0.0367

Mobile phone penetration 0.0646

Secondly, the mediating variables of this paper are urban ecological efficiency (e-eff),
regional innovation and entrepreneurship index (inn), the number of researchers (rd),
and environmental regulation index (er). The DEA model, which is based on the super-
efficient SBM-GML model, is used to assess urban ecological efficiency [57]. Fixed assets,
employment, urban area, and energy usage are the input indicators. GDP is the anticipated
production, and the unexpected output is wastewater, waste gas, and smoke [58,59]. The
regional innovation and entrepreneurship index comes from the Center for Enterprise
Research of Peking University. The number of scientific researchers comes from China’s city
statistical yearbook, represented by the number of scientific researchers every 10 thousand
people and normalized [60]. The fourth mediating variable is the environmental regulation
index, which is analyzed by Chen et al. [61]. Specifically, this paper uses the annual
government work reports of cities at all levels in China to analyze the proportion of
statements containing keywords of environmental regulation in the full text. The keywords
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are 45 Chinese words such as “environmental protection, environmental protection, green
development, new energy, haze . . . ”. After using text analysis to measure the proportion of
environmental regulation-related sentences, we multiplied by 100 and took the first-order
difference to obtain the environmental regulation index of prefecture-level cities in China.

Lastly, eight core variables-related control variables were chosen [62–65]. We took
into account the city’s per capita GDP and logarithm it (pgdp); Regional urbanization
level (urb) is the fraction of the city’s population living in the municipal area; The share
of secondary and tertiary industries in the city’s GDP (ind); Openness (ope), the city’s
real foreign investment share of GDP; The level of marketization (mar), the fraction of
private and individual employment in the whole population; Take the logarithm of the
population density (den) of the whole city; Total city passenger volume divided by total
population, expressed as a logarithm (tra); Postal development level (pos), revenue from
postal business divided by the entire population.

Table 2 lists the variables’ sources and descriptive statistics.

Table 2. Data sources and descriptive statistics.

Variable Abbr. Unit Items Summary Source

Digital economy d-eco - Mean
Std

41.925
10.724

Entropy weight
method

Environmental pollution ep - Mean
Std

6.027
6.854

Statistical
yearbook

Ecological efficiency e-eff - Mean
Std

1.528
0.516

Data Envelopment
Analysis

Innovation and
entrepreneurship index inn - Mean

Std
52.588
28.465

Center for
Enterprise
Research

Number of scientific researchers rd - Mean
Std

42.963
13.051

Statistical
yearbook

Environmental regulation index er - Mean
Std

6.933
2.742 Textual analysis

Economic Development Level pgdp ln(RMB/person) Mean
Std

10.498
0.644

Statistical
yearbook

Urbanization urb ratio Mean
Std

0.357
0.238

Statistical
yearbook

Industrial Structure ind ratio Mean
Std

0.872
0.081

Statistical
yearbook

Openness ope ratio Mean
Std

0.027
0.096

Statistical
yearbook

Marketization mar ratio Mean
Std

0.128
0.136

Statistical
yearbook

Population density den ln(person/km2)
Mean

Std
5.725
0.917

Statistical
yearbook

Transportation tra ln(RMB/person) Mean
Std

2.771
0.784

Statistical
yearbook

Posts pos ln(RMB/person) Mean
Std

4.235
0.796

Statistical
yearbook

3. Spatio-Temporal Evolution of Digital Economy and Environmental Pollution
3.1. Temporal Evolution

Using the nonparametric kernel density estimation calculation Equation and Stata
16.0 software, the global kernel density curves of China’s urban digital economy level and
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environmental pollution in 2008, 2011, 2015, and 2018 are drawn (see Figures 3 and 4).
In probability theory, kernel density estimation is used to estimate the unknown density
function. It belonged to one of the nonparametric test methods and was proposed by
Rosenblatt (1955) and Emanuel Parzen (1962), also known as the Parzen window [66].
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Figure 4. Temporal evolution of environmental pollution.

The global scale kernel density analysis can depict the temporal evolution of China’s
urban digital economy and pollution level. (1) From 2008 to 2011, 2011 to 2015, and
2015 to 2018, the center of gravity of the digital economy shifted to the right, indicating
that the degree of the urban digital economy in China grew over the study period. In
terms of pollution, there is no notable shift in emphasis from 2008 to 2015, and a solid left
movement from 2015 to 2018, demonstrating that China’s cities have achieved tremendous
accomplishments in environmental protection in recent years. (2) The prominent peak
of the curve displays a tendency of first rising and then declining, demonstrating that
the digital economic gap between cities is first widening and then closing. In terms of
pollution, there was no notable change from 2008 to 2015 and a clear decreasing trend from
2015 to 2018, showing that the pollution gap across Chinese cities has narrowed in recent
years. (3) The number of curve peaks indicates no multipolar differentiation pattern in
the urban digital economy and pollution. (4) The digital economy’s tailing on the right
is more significant than its tailing on the left. The number of cities in high-value regions
has grown, whereas the number of cities in low-value areas has declined. The left tail of
the pollution degree curve is longer and thicker than the right tail, showing that urban
pollution in low-value locations has grown. However, the share of low-value cities has
risen. The digital economy’s growth level, polarization degree, and pollution in Chinese
cities have various evolution features.
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3.2. Spatial Evolution
3.2.1. Global Spatial Evolution

Using the global Moran index and GeoDa software, this section estimates the global
Moran’s I and Z-values of China’s urban digital economy and environmental pollution from
2008 to 2018. (see Figure 5). Moran’s I is a measure of spatial autocorrelation developed by
Patrick Alfred Pierce Moran [67–70]. In short, it determines whether there is a correlation
between spatial entities in a specific range.
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In terms of the digital economy, the global Moran’s I is positive, ranging from 0.139 to
0.186, and the Z-value is between 7.827 and 10.403, all of which pass the 1% significance
test. The geographical distribution of China’s urban digital economy development level
showed a substantial positive global spatial autocorrelation, and the surrounding cities
impacted the local cities’ digital economy development. Overall, China’s urban digital
economy growth level shows a weakening geographical relationship. In terms of pollution,
the global Moran’s I range from 0.129 to 0.211, and the Z-value ranges from 7.272–11.911.
China’s environmental pollution had a solid positive global spatial autocorrelation over the
study period, with local pollution impacted by pollution in nearby cities. Overall, the global
geographic connection of pollution in Chinese cities shows solid and weak associations.
The geographical association rose between 2008 and 2014, then dropped between 2014
and 2018.

3.2.2. Regional Spatial Evolution

The global Moran index can show that there is global spatial autocorrelation between
digital economy growth and pollution in Chinese cities. However, if we want to study
local geographical aspects, we need to identify them using local spatial autocorrelation
(Figures 6 and 7). This section uses the Local Indicators of Spatial Association (LISA)
method to characterize local areas’ digital economy and pollution [71]. The figures on this
page are for simple distribution presentation only and cannot be used as maps. In the
digital economy, for example, the local spatial pattern may be split into four categories: In
the first category, agglomeration type “high-high,” high-level spatial equilibrium associated
agglomeration state “high center and high periphery” suggests high-level digital economy
growth in local cities and adjacent cities; The second is “low-low” agglomeration. This
kind shows a low-level spatial equilibrium linked agglomeration state of “low center and
low periphery” with a low-level digital economy development level in local cities; The
third variety is “low-high.” This class reflects a low degree of digital economy growth
in local cities. However, the neighboring cities’ digital economy development levels are
high, indicating a “low center and high periphery” agglomeration condition; Another
agglomeration type is “high-low.” This kind depicts the geographical imbalance of “high
center and low periphery” in the digital economy.
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Figure 6 shows a complex local spatial pattern in the urban digital economy in China.
In terms of the distribution of spatial patterns, it is evident that there are extensive “L-L” and
“H-L” development patterns in Western and Northeast China, which shows that in areas
with relatively backward economic growth in China, the digital economy is also hindered.
Key cities plunder the digital economy resources of surrounding average towns. In the
developed areas along the eastern coast, there is a large “H-H” and “L-H” development
pattern, which shows sufficient resource connectivity among cities with better development
in areas with the developed digital economy in China. In contrast, cities with the slow
growth of the digital economy in developed regions are vulnerable to being siphoned by
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surrounding cities. In terms of the evolution of spatial pattern, the distribution of “L-L” and
“H-L” in the western region is reduced, which means that the digital economy in Western
China is positive. However, the “L-L” distribution and diffusion in Northeast China and
the growth pattern of the digital economy continues to deteriorate. The digital economy
growth pattern in the developed areas along the eastern coast remains unchanged.

Figure 7 shows that there is also an unbalanced local spatial pattern of urban envi-
ronmental pollution in China. In terms of geographical pattern distribution, western and
central China have wide “L-L” and “H-L” growth patterns, indicating that environmental
pollution in these areas is generally low. A few industrial cities absorb the pollution emis-
sion pressure of surrounding cities. There is a small area of “H-H” and “L-H” development
patterns in the northwest, indicating an aggregation effect of environmental pollution in
this area. In terms of the evolution of spatial pattern, the distribution of “L-L” and “H-L”
in the midwestern regions diffused during the investigation period, which means that the
environmental pollution across the central and western parts of China has been alleviated,
and the green development interacts among cities. The distribution of “H-H” in Northwest
China has shrunk, and the environmental pollution has been alleviated to a certain extent.

4. Spatial Interaction Spillover Effects of the Digital Economy and the
Environmental Pollution
4.1. Parameter Estimation Results

The first phase simply evaluates the link between the digital economy and the envi-
ronmental pollution value in Table 3 using the benchmark model Equations (1) and (2).

Table 3. Benchmark regression results.

Items
d-eco ep

(1) (2) (3) (4) (5) (6)

d-eco - - - −0.065 *** (−5.70) −0.305 *** (−22.04) −0.055 *** (−2.65)
ep −0.159 *** (−5.70) −0.442 *** (−22.04) −0.045 *** (−2.65) - - -

pgdp - 6.669 *** (21.18) 10.079 *** (44.05) - 3.161 *** (11.53) 0.048 (0.15)
urb - −1.386 ** (−2.19) 3.551 *** (4.35) - 5.225 *** (10.10) 0.764 (0.84)
ind - 12.160 *** (5.29) −9.973 *** (−3.64) - 24.079 *** (12.89) 5.059 * (1.66)
ope - −3.623 *** (−3.03) −0.648 (−1.19) - −1.995 ** (−2.01) −0.396 (−0.66)
mar - 17.961 *** (15.89) 13.038 *** (15.28) - 4.960 *** (5.10) −1.199 (−1.22)
den - 2.637 *** (18.21) 1.160 ** (2.46) - −1.348 *** (−10.85) −4.514 *** (−8.75)
tra - 0.125 (0.77) −0.610 *** (−5.54) - 1.184 *** (8.83) 1.629 *** (13.71)
pos - 2.309 *** (12.42) 1.056 *** (7.94) - −0.355 ** (−2.25) −0.691 *** (−4.65)
N 3124 3124 3124 3124 3124 3124
FE No No Yes No No Yes
R2 0.0103 0.6414 0.7296 0.0103 0.3936 0.1705
F 32.52 *** 618.95 *** 848.91 *** 32.52 *** 224.62 *** 64.66 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively. Bracket values are T-values.

Table 3 reveals that the digital economy and pollution have a significant mutual
inhibitory impact. Columns (1) and (4) demonstrate the scenarios when the individual
is not controlled, and the control variable is not considered. Columns (2) and (5) depict
the situation in which the individual is not held, but the control variable is considered.
Columns (3) and (6) show the case in which the individual is controlled while the control
variable is also considered. As seen in Columns (1)–(3), the digital economy is hampered
by environmental degradation. The digital economy performs a reverse inhibitory function
in environmental contamination, as seen in Columns (4)–(6).

In the second step, we analyze the spatial interaction effect and spillover effect between
the digital economy and environmental pollution using simultaneous spatial equations
and GS3SLS in Table 4.
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Table 4. Global estimation results of GS3SLS.

Items

Geographical Distance Economic–Geographical Distance

d-eco
(1)

ep
(2)

d-eco
(3)

ep
(4)

W× d-eco 0.129 ** (2.10) −0.133 *** (−3.30) 0.053 * (1.75) −0.037 (−1.34)
W× ep −0.101 (−0.45) 0.999 *** (11.80) −0.063 (−1.10) 0.010 (0.18)
d-eco - −0.133 * (−1.80) - −0.926 *** (−14.48)

ep −0.173 * (−1.86) - −0.745 *** (−13.58) -
pgdp 5.361 *** (9.75) 3.187 *** (6.83) 6.837 *** (17.73) 6.664 *** (13.59)
urb −2.438 ** (−2.43) 4.723 *** (8.35) 0.797 (1.12) 2.890 *** (4.67)
ind 9.358 *** (2.77) 17.787 *** (9.21) 19.526 *** (7.62) 26.545 *** (12.71)
ope −2.553 ** (−2.06) −1.724 * (−1.74) −3.792 *** (−3.19) −3.931 *** (−3.60)
mar 17.714 *** (15.05) 2.634 * (1.67) 17.614 *** (15.48) 15.713 *** (9.83)
den 3.226 *** (9.91) −1.522 *** (−5.39) 1.823 *** (9.67) 0.864 *** (3.33)
tra −0.048 (−0.24) 0.566 *** (4.15) 0.615 *** (3.48) 0.869 ** (5.71)
pos 2.584 *** (11.94) −0.249 (−1.02) 1.842 *** (9.38) 1.450 *** (5.86)
N 3124 3124 3124 3124
R2 0.9503 0.6822 0.9796 0.3651
F 5002.69 *** 535.88 *** 13297.45 *** 343.36 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively. Bracket values are T-values.

The digital economy and environmental contamination have a solid geographical
interaction spillover impact, as shown in Table 4. The following are the particular outcomes:
Column (1) shows that the surrounding cities’ digital economy development level has
a beneficial influence on the local digital economy’s development level; environmental
pollution in the surrounding town has no discernible inhibitory impact on the degree
of growth of the regional digital economy; local environmental pollution hurts the local
digital economy’s development level. Column (2) shows that the surrounding cities’ digital
economy development level has an inhibitory effect on local environmental pollution; the
surrounding cities’ environmental pollution promotes local environmental pollution; and
the local digital economy’s development level has an inhibitory effect on local environmen-
tal pollution. Furthermore, the coefficients may be compared if the significance is checked
and the economic importance is the same. The negative impact of local environmental pol-
lution on the development level of the local digital economy is smaller than the inhibiting
effect of environmental pollution in neighboring cities on the development level of the
local digital economy. The green impact of local digital economy growth is consistent with
the inhibitory effect of neighboring cities’ digital economy development levels on local
environmental degradation. The findings are essentially the same economic-geographical
distance, as seen in columns (3) and (4).

4.2. Results Analysis
4.2.1. General Interaction Effect between Digital Economy and Environmental Pollution

This research discovers a reciprocal inhibitory relationship through parameter esti-
mation between the degree of the digital economy and environmental contamination. In
terms of pure geographical distance, the level of the digital economy fell by 0.173 (p = 0.057)
for each unit of increased environmental degradation. The environmental pollution was
reduced by 0.133 (p = 0.072) for each unit of the digital economy. Overall, there is an
interactive effect between the digital economy level and environmental pollution, with
the marginal effect of environmental pollution on the digital economy level being more
apparent. In the reciprocal promotion connection between the two, the marginal impact of
environmental pollution on the digital economy level is comparatively dominating. The
digital economy consists of a set of economic activities that help improve efficiency and
optimize the economic structure, as well as various infrastructure and services that can
support the digitization of economic activities; the green economy aspires for the growth
of the economy, society, and environment in a coordinated manner. It’s a well-balanced
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economy that encompasses a variety of classic industrial economies. The digital and green
economies work closely together and interact as the two most crucial new economic forms
in the future. Environmental degradation also has hurt the digital economy’s growth.

4.2.2. Spatial Spillover Effect between Digital Economy and Environmental Pollution

This article discovers considerable regional spillovers in the digital economy and
environmental damage through parameter estimation. From a pure geographical distance
standpoint, the local digital economy grows by 0.129 (p = 0.035) for every unit of growth
in the digital economy level of neighboring cities. The digital economies of neighboring
cities may have a favorable impact on the development of the local digital economy via
industrial external expansion radiation and the shared market effect. For each unit of
environmental pollution in surrounding cities, the environmental pollution in local cities
increases significantly by 0.999 (p = 0.000). The aggregation of polluting industries often
accompanies the increase in environmental pollution in surrounding cities. Transportation
costs induce enterprises to form upstream and downstream industrial clusters in nearby
areas, and the pollution coverage is gradually expanded to improve the environmental
pollution in local cities.

4.2.3. Spatial Interaction Effect between Digital Economy and Environmental Pollution

According to parameter estimates, the surrounding digital economy has an inhibit-
ing impact on local environmental pollution. In contrast, the increase in environmental
pollution in surrounding cities has an extrusion effect on the local digital economy level.
In terms of pure geographical distance, each unit of rising in the digital economy level of
neighboring cities reduces local environmental pollution by 0.133 (p = 0.001). The spread
of the digital economy to neighboring cities has brought green development resources
and environmental protection technology spillover, in turn engineering urban growth and
building. Cities with lagging green economy growth should welcome, with an open mind,
the spillover support of adjacent cities’ digital economy development to the local green
economy while modernizing their sectors. The local digital economy level may decline by
0.101 (p = 0.656) for each unit of environmental pollution in adjacent cities. Environmental
pollution has prominent diffusion characteristics. For example, air pollution in industrial
cities will quickly spread to surrounding cities. Taking Hebei Province of China as an
example, some cities with severe industrial pollution have brought serious haze to the
region, including many underdeveloped agricultural areas. The increase in environmental
pollution in surrounding cities negatively impacts local digital economy investment and
digital economy talents, resulting in an obvious crowding out effect. Underdeveloped
areas of the digital economy should take advantage of surrounding cities’ digital economy
diffusion mechanism to actively carry out mild green transformation and alleviate the
environmental pressure caused by industrialization.

4.3. Robustness Test

The empirical findings in Section 4.2 are based on the spatial geographic weight matrix
and the economic-geographic weight matrix, which have a bandwidth of 0–30. The matrix
context may be unique, making it challenging to reach persuasive and general results. As a
result, in this part, we use empirical data to assess the universality of the bandwidth and
kind of geographical geographic weight matrix.

First, we reduce the bandwidth of W in Equations (3) and (4) from 0–30 to 0–20 and
expand to 0–40. At this time, a single city sample will have fewer or more “neighbors.” The
bandwidth robustness test parameter estimate results are shown in Table 5.
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Table 5. Results of bandwidth adjustment.

Items

Bandwidth: 0 to 20 Bandwidth: 0 to 40

d-eco ep d-eco ep

(1) (2) (3) (4)

W× d-eco 0.244 *** (4.55) −0.263 *** (−6.57) 0.166 ** (2.51) −0.173 *** (−4.15)
W× ep −0.075 (−0.65) 0.599 *** (8.13) −0.559 ** (−2.34) 1.045 *** (11.82)
d-eco - −0.102 *** (−2.80) - −0.050 *** (2.66)

ep −0.048 * (−1.86) - −0.237 * (1.66) -
pgdp 4.829 *** (3.54) 2.927 *** (6.02) 4.315 *** (7.82) 2.326 *** (4.91)
urb −3.116 *** (5.21) 4.416 *** (7.61) −4.658 *** (−4.63) 5.428 *** (9.43)
ind 5.750 * (1.70) 16.176 *** (8.23) 2.588 (0.77) 16.716 *** (8.54)
ope −2.778 ** (−3.17) −1.595 (−1.57) −1.902 (−1.49) −1.237 (−1.23)
mar 17.301 *** (14.39) 0.629 (0.39) 17.738 *** (14.53) −0.601 (−0.38)
den 3.479 *** (10.79) −1.913 *** (−6.56) 4.075 *** (12.74) −2.190 *** (−7.60)
tra −0.135 (0.13) 0.753 *** (5.46) −0.315 (−1.53) 0.564 *** (4.04)
pos 2.606 *** (12.35) −0.746 *** (−2.94) 2.863 *** (12.97) −0.723 *** (−2.90)
N 3124 3124 3124 3124
R2 0.9780 0.6547 0.9248 0.6196
F 12,492.64 *** 533.57 *** 3905.33 *** 491.66 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively. Bracket values are T-values.

Table 5 shows that the regression findings are stable and that changing the distance
band setting has no effect on the parameter estimation results. First, the level of the digital
economy and environmental pollution have a mutually inhibitory impact; second, the
digital economy and environmental pollution have significant spatial spillovers; third,
the level of the surrounding digital economy has an inhibitory effect on local ecological
pollution, and the increase in environmental pollution in surrounding cities has also
squeezed out the status of the local digital economy.

Secondly, there are usually two forms of the spatial weight matrix; one is a quantitative
matrix in which the weight is equal to the reciprocal of the distance between samples. The
alternative option is to use a qualitative weight matrix to split the distance between samples
into “neighbor relationship” and “non neighbor relationship” categories. We change the
type of W in Equations (3) and (4) from the first to the second. At this time, the spatial
relationship between sample cities is only 0 (non-adjacent) and 1 (adjacent). Table 6 shows
the matrix type robustness test parameter estimation results, and the distance bandwidth
thresholds are set to 0–20, 0–30, and 0–40.

Table 6. Results of the matrix type adjustment.

Items

Bandwidth: 0 to 20 (Contiguity) Bandwidth: 0 to 30 (Contiguity) Bandwidth: 0 to 40 (Contiguity)

d-eco ep d-eco ep d-eco ep

(1) (2) (3) (4) (5) (6)

W × d-eco 0.448 *** (10.10) −0.362 *** (−5.77) 0.217 *** (4.34) −0.086 ** (−2.11) 0.656 *** (6.62) −0.041 (−1.18)
W × ep 0.081 (0.91) 0.224 *** (2.73) −0.734 *** (5.13) 0.896 *** (17.51) −0.271 *** (−3.96) 0.918 *** (18.16)

d-eco - −0.033 (0.23) - −0.434 *** (−4.77) - −0.551 *** (−8.01)
ep −0.234 ** (−2.44) - −0.626 *** (−4.24) - −1.802 *** (−7.17) -

pgdp 3.763 *** (7.93) 2.889 *** (4.13) 6.242 *** (11.64) 4.674 *** (9.26) 9.370 *** (11.13) 5.182 *** (12.19)
urb −4.705 *** (−5.74) 5.211 *** (7.43) 0.116 (0.11) 4.217 *** (7.10) 6.849 *** (4.04) 3.814 *** (6.80)
ind 4.484 (1.54) 15.655 *** (6.79) 19.229 *** (5.42) 21.663 *** (10.79) 41.188 *** (7.19) 22.830 *** (11.70)
ope −1.670 (−1.31) −1.987 * (−1.92) −2.983 ** (−2.46) −2.405 ** (−2.50) −4.977 *** (−2.91) −2.753 *** (−2.86)
mar 17.798 *** (14.88) −0.450 (−0.17) 18.286 *** (16.20) 8.281 *** (4.46) 18.649 *** (11.63) 10.281 *** (6.73)
den 4.246 *** (16.36) −2.423 *** (−4.59) 2.166 *** (5.67) −0.832 ** (−2.36) −0.738 (−1.15) −0.423 (−1.54)
tra −0.155 (−0.84) 0.803 *** (5.77) 0.236 (1.28) 0.460 *** (3.72) 0.866 *** (3.49) 0.480 *** (3.81)
pos 2.749 *** (12.92) −0.859 ** (−2.12) 2.293 *** (11.02) 0.593 ** (2.13) 1.620 *** (5.37) 0.889 *** (3.79)
N 3124 3124 3124 3124 3124 3124
R2 0.9878 0.5909 0.9884 0.8858 0.9889 0.8725
F 24,709.48 *** 435.11 *** 22,685.97 *** 2066.63 *** 27,343.34 *** 1967.06 ***

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively. Bracket values are T-values.
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The regression findings are still robust, as shown in Table 6, and the way of modifying
the spatial weight matrix has no effect on the parameter estimation outcomes.

5. Additional Analysis

The findings of the above empirical investigation demonstrate a complicated geo-
graphical connection between the digital economy and pollution, which inhibits each other.
This article will perform an empirical analysis utilizing the mediating effect model to under-
stand better the relationship between the digital economy and environmental degradation.
According to the theoretical mechanism analysis, the green development impact and the
inventive development effect are the two critical mechanisms for the digital economy to in-
fluence the growth of environmental degradation. The two primary methods for ecological
degradation to harm the digital economy are the talent crowding out effect and the policy
tightening effect. The mechanisms above will be empirically tested in this section.

The stepwise test regression coefficient approach based on spatial analysis is used
to assess the mediating function of urban ecological efficiency in the inhibition of digital
economy on environmental pollution, as shown in Equations (6) and (8). Table 7 displays
the regression findings.

Table 7. Mechanism test of green development effect.

Items
Geographical Distance Economic–Geographical Distance

ep M ep ep M ep

(1) (2) (3) (4) (5) (6)

d-eco −0.014 ** (−2.49) 0.003 *** (2.95) −0.012 ** (−2.33) −0.035 * (−1.74) 0.003 *** (2.95) −0.034 * (−1.72)
W× d-eco −0.203 *** (−6.05) - −0.162 *** (−4.70) −0.230 *** (−7.82) - −0.175 *** (−5.93)

W× ep 0.845 *** (24.73) - 0.800 *** (20.43) 0.304 *** (11.53) - 0.263 *** (9.81)
M - - −1.035 *** (−6.53) - - −1.619 *** (−9.98)

Controls Yes Yes Yes Yes Yes Yes
N 3124 3124 3124 3124 3124 3124
R2 0.1776 0.2425 0.2231 0.2050 0.2425 0.2351

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively. Bracket values are T-values.

By observing Table 7, it can be found that the digital economy has a significant
inhibitory effect on environmental pollution through the green development effect. From
the direction and significance of the coefficient in Column (1), it can be seen that the
digital economy has a large negative influence on environmental contamination, which
is consistent with the benchmark regression result; the influence of the digital economy
on urban ecological efficiency is verified in Column (2), and the influence coefficient is
0.003, which means that digital economy encourages the growth of ecological efficiency;
the impact coefficient of the local digital economy on environmental pollution in Column
(3) is −0.012, which is lower than the impact coefficient of the local digital economy on
environmental pollution in Column (1). The impact coefficient of intermediary variable
urban ecological efficiency on environmental pollution is −1.035, which is significant at the
1% confidence level, which means that improving urban ecological efficiency will reduce
environmental pollution. To summarize, the inhibitory effect of the digital economy on
environmental pollution is partly realized by promoting ecological efficiency. Similarly,
when the regression findings of Columns (4)–(6) are combined, the inhibitory impact of
the digital economy on environmental pollution is partially achieved through enhancing
urban ecological efficiency from the standpoint of economic-geographical distance.

By observing Table 8, it can be found that the digital economy has a significant in-
hibitory effect on environmental pollution through the effect of innovation development.
Columns (1)–(3) show that the inhibitory effect of the digital economy on environmental
pollution is partly realized by promoting regional innovation and entrepreneurship in-
dex. Similarly, the regression results of Columns (4)–(6) show that from the standpoint of
economic-geographical distance, the inhibitory effect of the digital economy on environ-
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mental pollution is partly realized by promoting regional innovation and entrepreneurship
index.

Table 8. Mechanism test of innovative development effect.

Items
Geographical Distance Economic–Geographical Distance

ep M ep ep M ep

(1) (2) (3) (4) (5) (6)

d-eco −0.014 ** (−2.49) 1.564 *** (36.15) −0.013 * (1.86) −0.035 * (−1.74) 1.564 *** (36.15) −0.033 * (−1.65)
W× d-eco −0.203 *** (−6.05) - −0.206 *** (−5.97) −0.230 *** (−7.82) - −0.208 *** (−7.37)

W× ep 0.845 *** (24.73) - 0.844 *** (24.67) 0.304 *** (11.53) - 0.291 *** (10.21)
M - - −0.005 * (1.69) - - −0.008 * (−1.75)

Controls Yes Yes Yes Yes Yes Yes
N 3124 3124 3124 3124 3124 3124
R2 0.1776 0.6569 0.1779 0.2050 0.6569 0.2050

Notes: ***, **, and * stand for significant levels of 1%, 5%, and 10%, respectively. Bracket values are T-values.

By observing Table 9, it can be found that the digital economy is significantly ham-
pered by pollution through the talent crowding out effect. Columns (1)–(3) show that
the inhibitory effect of environmental pollution on the digital economy is partly realized
by reducing the number of scientific researchers. Similarly, the regression findings in
Columns (4)–(6) reveal that the inhibitory impact of environmental pollution on the digital
economy is partially achieved by limiting the number of scientific researchers from the
aspect of economic-geographical distance.

Table 9. Mechanism test of talent crowding out effect.

Items

Geographical Distance Economic–Geographical Distance

d-eco M d-eco d-eco M d-eco

(1) (2) (3) (4) (5) (6)

ep −0.111 *** (−6.61) −0.617 *** (−19.44) −0.108 *** (−6.33) −0.022 ** (−2.40) −0.617 *** (−19.44) −0.018 ** (−2.12)
W× ep −0.106 ** (−2.22) - −0.017 (−0.35) −0.110 *** (−3.51) - −0.103 *** (−3.12)

W× d-eco 0.850 *** (52.57) - 0.754 *** (41.46) 0.358 *** (16.13) - 0.329 *** (15.08)
M - - 0.196 *** (11.86) - - 0.206 *** (13.77)

Controls Yes Yes Yes Yes Yes Yes
N 3124 3124 3124 3124 3124 3124
R2 0.7277 0.3947 0.7298 0.7533 0.3947 0.7530

Notes: *** and ** stand for significant levels of 1% and 5%, respectively. Bracket values are T-values.

By observing Table 10, it can be found that the digital economy is significantly ham-
pered by pollution through the tightening effect of the policy. Columns (1)–(3) show
that the inhibitory effect of environmental pollution on the digital economy is partly re-
alized by strengthening environmental regulations. Similarly, the regression results of
Columns (4)–(6) show that from the standpoint of economic-geographical distance, the
inhibitory effect of environmental pollution on the digital economy is partly realized by
strengthening environmental regulations.

Table 10. Mechanism test of policy tightening effect.

Items

Geographical Distance Economic–Geographical Distance

d-eco M d-eco d-eco M d-eco

(1) (2) (3) (4) (5) (6)

ep −0.111 *** (−6.61) 0.031 *** (3.82) −0.108 *** (−6.38) −0.022 ** (−2.40) 0.031 *** (3.82) −0.016 ** (1.99)
W× ep −0.106 ** (−2.22) - −0.101 ** (−2.11) −0.110 *** (−3.51) - −0.108 *** (−3.45)

W× d-eco 0.850 *** (52.57) - 0.852 *** (52.23) 0.358 *** (16.13) - 0.348 *** (15.63)
M - - −0.051 ** (2.04) - - −0.024 *** (−3.90)

Controls Yes Yes Yes Yes Yes Yes
N 3124 3124 3124 3124 3124 3124
R2 0.7277 0.1016 0.7280 0.7533 0.1016 0.7540

Notes: *** and ** stand for significant levels of 1% and 5%, respectively. Bracket values are T-values.
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6. Discussions

There is a complex interaction mechanism between the urban digital economy and the
degree of environmental pollution. The special spatial distribution characteristics make the
spatial interaction spillover effect between them need to be deeply explored. This paper uses
multi-dimensional indicators to calculate the digital economy and environmental pollution
degree of more than 200 cities in China from 2008 to 2018. It analyzes their temporal
and spatial evolution characteristics, spatial interaction spillover effect, and interaction
mechanism. Through empirical analysis, we obtain the following significant findings:

Firstly, reverse and complex spatio-temporal evolution of the digital economy and
environmental pollution in Chinese cities. (1) The entire growth of China’s urban digital
economy is increasing with time. The disparity in development levels widens and then
narrows. The number and development level of head cities have grown. Between 2015 and
2018, total environmental contaminants decreased significantly. The pollution difference
between cities has narrowed recently. The number of clean zones increased, but so did their
pollution. (2) China’s urban digital economy and pollution distribution show significant
geographical autocorrelation in global spatial evolution. The spatial correlation of the
digital economy shows a fluctuating evolution from strong correlation to weak correlation,
and the spatial correlation of environmental pollution shows the evolution characteristics
of strong alternating correlation and weak correlation. (3) In terms of regional spatial
evolution, the digital development in Western and Northeast China is generally weak, and
the eastern coastal areas have the “alliance between giants” Development pattern. Some
key cities siphon digital economic resources in the surrounding backward areas. There
is a certain degree of pollution accumulation in Northwest China, while environmental
pollution in the central and western regions is relatively light. A few industrial cities absorb
the pollution emission pressure of surrounding cities. The analysis of temporal and spatial
evolution characteristics shows that there is a high imbalance between China’s digital
economy and environmental pollution, which is consistent with the previous research
results in other regions. The unbalanced development will inevitably lead to the continuous
flow of factors between regions, which leads to the subsequent conclusion.

Secondly, there is a complex spatial interaction spillover effect between the digital
economy and environmental pollution. (1) The digital economy and pollution are mutually
inhibited. The digital economy contributes to ecologically friendly development, while
pollution impacts the local digital economy. (2) The digital economy and pollution have
enormous geographical spillover effects. The digital economy will spread to the neigh-
boring regions, raising the urban circle’s total digital level. The industrial agglomeration
of polluting enterprises leads to the correlation of regional emissions. (3) The level of
the surrounding digital economy can restrain the local environmental pollution, and the
increase in environmental pollution in surrounding cities can also squeeze out the local
digital economy. The radiation of the digital economy to surrounding cities has brought an
overflow of green development resources and environmental protection technology. In con-
trast, the diffusion of pollution emissions with air and other media has caused the outflow
of emerging digital industries in surrounding cities. The development of digital economy
has crossed the “inflection point” of EKC and formed a “joint force” with environmental
protection, promoting each other and developing in a virtuous circle. However, the results
of spatial interaction spillover effect show that there is diffusion and competition between
digital economy and environmental pollution outside or between cities, and the previous
research focusing on the research within the sample is not enough.

Finally, we found the specific interaction mechanism between the digital economy and
environmental pollution. (1) The digital economy reduces pollution by encouraging green
and creative growth. The vibrant digital economy has led to emerging digital technologies
and platforms and significantly promoted ecological efficiency. Technological innovation
and efficiency improvement are of crucial significance to green development. (2) Envi-
ronmental contamination hinders the digital industry by talent outflow and restricting
policies. Serious pollution problems such as haze in industrialized cities lead to losing
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high-tech talents. The relevant environmental laws and regulations issued to make up
for the ecological deterioration also hurt economic development. These are the inevitable
consequences of “pollution first and then treatment.”

Admittedly, this study also has several deficiencies. (1) Even though this paper
employs a spatial econometric method to investigate the relationship between the digital
economy and environmental pollution, its conclusion is based on historical data and
econometric reasoning, lacks in-depth economic theoretical analysis, and can only reflect
the evolution of data characteristics and their relationships during the study period. This
disadvantage may have an impact on the study’s long-term effectiveness. In the future, we
should develop a universal economic theoretical model to assess the usefulness of the results
of this work and make appropriate projections. (2) It should be noted that the covariates in
this paper are selected according to the availability of data and the mainstream methods
of previous research, which is less targeted to the digital economy and environmental
pollution topics in this paper. More relevant variables should be actively constructed for
analysis if further research can be carried out. (3) Although this paper uses the cutting-edge
spatial econometric model, there are still two common shortcomings. One is that the
primary estimation method of the spatial econometric model is the Maximum Likelihood
Estimate (MLE), but the large sample theory of MLE needs to be improved. The other is
that we must subjectively set a non-random spatial weight matrix instead of estimating
the matrix according to the data. The spatial weight matrix may not be entirely reflected
the complex relationship between different regions. Although many robustness tests have
been carried out in this paper to minimize this error, it is unavoidable. (4) Due to the data
availability limit, this study uses index variables for analyses. It would largely constrain
policy implications potentially linked to the results. (5) The last deficiency is the sample
problem of this paper. According to Figures 6 and 7, readers can find that some cities in
central and Western China do not consider it due to the lack of data. In the empirical test, it
also impacts the effectiveness of the test of spatial interaction spillover effect.

7. Conclusions

The conclusion of this paper serves as a point of reference for many nations’ and
regions’ digital economy and green development initiatives. According to the analysis of
temporal and spatial evolution characteristics, it is necessary to balance the digital economy
and the share of environmental degradation across areas and equitably divide digital econ-
omy development resources so that backward regions may also benefit from high-quality
economic growth enabled by the digital economy. Environmental pollution enterprises
should also be appropriately distributed to avoid areas with excessive pollution concen-
tration from breaking through the upper limit of ecological self-regulation capacity and
causing irreversible ecological damage. The significant spatial spillover effect shows that to
grow cities in underdeveloped regions, it needs to learn from adjacent cities’ experiences
with digital economy usage and management and cut down or green-update backward
sectors; the negative spatial interaction warns us that, while consolidating their develop-
ment, advanced areas of the digital economy and green development should use their
resources to help neighboring backward cities carry out green innovation and pollution
control, improve the inhibition ability of the digital economy to environmental pollution,
weaken the reverse containment of environmental pollution to economic development, and
play an exemplary and leading role. The digital economy is a new engine to accelerate
economic development and a new idea to promote social high-quality green development.
Finally, according to the apparent influence path of this paper, the government should
improve the digital economy infrastructure, pay attention to the development of scientific
and technological talents, consolidate the foundations of digital industrialization, use the
digital economy as a key starting point for upgrading industrial structure, assist businesses
in improving their level of digital technology innovation, and accelerate the transformation
of digital scientific and technological achievements in various fields.
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