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Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients 

required for optimum growth, development, and productivity of plants. The de�ciency of 

any of these nutrients may lead to defects in plant growth and decreased productivity. 

Plant responses to the de�ciency of N, P, S, Fe, or Zn have been studied mainly as a 

separate event, and only a few reports discuss the molecular basis of biological interaction 

among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting 

pathways for each other but also affect micro-nutrient pathways. Limited reports are 

available on the investigation of two-by-two or multi-level nutrient interactions in plants. 

Such studies on the nutrient interaction pathways suggest that an MYB-like transcription 

factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, 

Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identi�ed 

to be involved in modulating nutrient responses in Arabidopsis. This review focuses on 

the recent advances in our understanding of how plants coordinate the acquisition, 

transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the 

molecular level. Identi�cation of the important candidate genes for interactions between 

N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve 

nutrient use ef�ciency and yield/quality of crop plants. Integrated studies on pathways 

interactions/cross-talks between macro‐ and micro-nutrients in the agronomically 

important crop plants would be essential for sustainable agriculture around the globe, 

particularly under the changing climatic conditions.

Keywords: nutrient homeostasis, nutrient interaction, nutrient pathways interaction, phosphorus, sulfur, iron, 

zinc, P-Fe-Zn tripartite interaction

INTRODUCTION

Plant growth and development are largely determined by nutrient availability; therefore to 
ensure better productivity of crop plants, it becomes essential to understand the dynamics of 
nutrients uptake, transport, assimilation, and their biological interactions (Wawrzyńska and 
Sirko, 2014). A wealth of information has been generated during the last two decades on 
morphological and physiological adaptations of plants in response to the changes in the 
availability of mineral nutrients (Gniazdowska and Rychter, 2000; Maathuis, 2009; Krouk et  al., 
2011; Gruber et  al., 2013; Zhao and Wu, 2017; Krouk and Kiba, 2020). Protein-coding genes 
involved in the uptake, mobilization, storage, and assimilation of macro/micro-elements have 
been characterized to some extent; and regulatory networks a�ecting their expression in response 
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to the changing nutritional status are being elucidated 
(Schachtman and Shin, 2007; Giehl et  al., 2009; Gojon et  al., 
2009; Liu et  al., 2009; Pilon et  al., 2009; Hindt and Guerinot, 
2012; Vigani et  al., 2013; Briat et  al., 2015; Chaiwong et  al., 
2020). Crop plants are frequently subjected to nutrients imbalance 
which adversely a�ects several metabolic processes. However, 
plants have evolved strategies to cope up with nutritional 
de�ciencies. Although a large number of elements are naturally 
available in the soil, 17 elements are currently known to 
be  important for the proper growth and development of crop 
plants. While Nitrogen (N), Phosphorus (P), Potash (K), Calcium, 
Sulfur (S), and Magnesium are known as macro-nutrients (required 
in comparatively larger amounts), Iron (Fe), Zinc (Zn), Copper, 
Boron, Manganese Molybdenum, Chloride, and others are the 
micro-nutrients (required in a smaller quantity) for the growth 
and development of crop plants. �e use of N and P fertilizers 
has been one of the key factors to produce enough food materials 
to feed the burgeoning human population world over, which 
is considered to be  one of the important components of the 
Green Revolution during the 1960s (Kumar, 2013).

Nitrogen is one of the nutrients essentially required for the 
vegetative growth of crop plants as it is needed for the synthesis 
of starch in leaf, production of amino acids for protein synthesis, 
and thus yield of the crop. Phosphorus is an essential constituent 
of nucleic acids, cellular membranes, and enzymes. It is needed 
for diverse cellular processes like photosynthesis, carbohydrate 
metabolism, energy production, redox-homeostasis, and signaling. 
P works as an activator for more than 60 enzymes in plants, 
regulates water content, and reduces the adverse e�ects of salts 
in plants. Similarly, sulfur is essentially required for the synthesis 
of amino acids like cysteine and methionine, as a cofactor/
prosthetic group in Fe-S center, thiamine, S-adenosyl methionine, 
and in several primary and secondary metabolites (Wirtz and 
Hell, 2006; Khan et  al., 2010; Koprivova and Kopriva, 2014). 
�e majority of S in living organisms is present in a reduced 
form of organic-sulfur and thiols, while it is predominantly 
present in the oxidized-inorganic forms in the environment. 
Only plants, algae, fungi, and bacteria are capable of S assimilation 
(taking up the inorganic-sulfate from the soil, reducing it to 
sul�de and synthesize various biomolecules; Davies et  al., 1996; 
Maruyama-Nakashita et al., 2004; Koprivova and Kopriva, 2014). 
De�ciency symptoms of S resemble those of N-de�ciency: the 
leaves become pale-yellow. However, unlike nitrogen de�ciency, 
the symptoms appear �rst on the younger leaves and persist 
even a�er an adequate supply of nitrogen. Moreover, S availability 
in the soil �uctuates; hence, a plant needs to reprogram its 
metabolism according to the changing nutrients status.

�e micro-nutrients like Fe and Zn play very important roles 
in the physiological processes of crop plants; however, they are 
required in very little amounts. Fe is required for chlorophyll 
synthesis and maintenance of chloroplast structure and functions. 
It is generally present in higher quantities in soil, but its 
bioavailability becomes limited in aerobic and neutral pH 
environments (Colombo et  al., 2014). In aerobic soils, Fe is 
found predominantly in the Fe+3 form, with extremely low 
solubility, which does not ful�lls the plant’s iron requirement. 
Hence, Fe-de�ciency becomes a common nutritional disorder 

in many crop plants, resulting in interveinal-chlorosis in young 
leaves, stunted root growth, poor yield, and reduced nutritional 
quality. Similarly, Zn is required for optimum plant growth, as 
it in�uences several biological processes including cell proliferation, 
carbohydrate metabolism, and P-Zn interactions (Rehman et al., 
2012). Zn is the only metal required for all the six classes 
(hydrolases, oxidoreductases, lyases, transferases, ligases, and 
isomerases) of enzymes (Coleman, 1998). Although it plays a 
structural role in some of the regulatory proteins (Berg and 
Shi, 1996), its higher concentration is toxic for the cell (Sresty 
and Madhava Rao, 1999; Xu et  al., 2013). Zn de�ciency in a 
plant results in deformed chlorotic leaves, interveinal necrosis, 
decreased photosynthesis, and reduced biomass production leading 
to reduced plant growth, lesser yield, and poor nutritional quality 
of the produce (Zhao and Wu, 2017).

Reports on interactions between multiple nutrient elements 
suggest that they a�ect uptake, transport, or assimilation of 
each other. �erefore, multi-level interactions between the 
nutrient elements need to be  studied to better understand the 
sensing and signaling pathways triggered in response to the 
varying availability of nutrient elements. �e multi-level study, 
integrating the transcriptome through enzymatic activities to 
the metabolome, helps to understand the strategies of a plant 
to reprogram metabolic pathways in response to the de�ciency, 
resupply, su�ciency, and/or excessiveness of mineral nutrients. 
�is provides insights into how plants adjust metabolic pathways 
in the absence/resupply of mineral nutrient(s) for its proper 
growth and development (Amtmann and Armengaud, 2009; 
Kellermeier et al., 2014). Phosphorus and sulfur being essential 
macro-nutrients for plant growth, development, and productivity, 
they show interactions in terms of substituting phospholipids 
with sulfolipids and galactolipids in cellular membranes under 
P-de�ciency stress (Okazaki et al., 2013). While such biological 
interactions between N, P, and S are well-known (Aulakh and 
Pasricha, 1977; Sinclair et  al., 1997; Smith et  al., 2000; Gojon 
et  al., 2009; Islam et  al., 2012; Chotchutima et  al., 2016; Krouk 
and Kiba, 2020), the knowledge of signaling pathways involved 
in responses to nutrient availability/de�ciency is still limited. 
Nutritional de�ciencies and interactions are not restricted to 
macro-elements only, micro-nutrients, such as Zn and Fe, have 
their homeostasis and show biological interactions. �e 
interactions between Zn and Fe have also been studied (Connolly 
et  al., 2002; Kerkeb et  al., 2008; Barberon et  al., 2011; Haydon 
et  al., 2012; Xie et  al., 2019). De�ciency of micro-element 
results in certain physiological disorders impacting plant growth, 
development, and productivity. Such interactions have been 
partially understood at physiological and molecular levels, the 
intricate nutritional cross-talks need to be  extensively studied 
to maximize crop productivity.

INTERACTION BETWEEN N AND P 
HOMEOSTASIS IN PLANTS

Owing to the Haber-Bosch process, N availability is considered 
to be  virtually in�nite but the global P reserves are becoming 
scarce for agriculture in the 21st century. �erefore, understanding 
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plant responses to the availability of these nutrients and biological 
interactions are crucial for reduced/optimum fertilizer use in 
agriculture (Medici et al., 2019). �e e�ects of N‐ and P-fertilizer 
on crop yield have been largely studied in isolation, but 
recent �ndings suggest interactions between the macro-
nutrients. Elser et  al. (2007) reported synergistic interactions 
between N and P in providing a much higher yield under 
diverse ecosystems. While an adequate supply of N positively 
a�ects the uptake of P (Smith and Jackson, 1987), P-starvation 
negatively a�ects N uptake and assimilation (Gniazdowska 
and Rychter, 2000). �is suggests a mutual interaction between 
N and P nutrition in plants (Güsewell, 2004). For a crop 
plant to successfully reach its reproductive phase, su�cient 
availability of the essential mineral nutrients, such as N, P, 
and K, needs to be  ensured for various biochemical, 
physiological, and metabolic processes to occur appropriately. 
N is not only required as a nutrient for the synthesis of 
starch and amino acids, but nitrate (N) also acts as a signal 
molecule to modulate phosphate response, and to coordinate 
the N–P balance (Figure  1).

N-related long-distance signaling involves cytokinin 
biosynthesis, C-terminal encoded peptide (CEP), and glutaredoxins 
(Tabata et  al., 2014; Ohkubo et  al., 2017; Poitout et  al., 2018). 
Interaction between N and P signaling was reported to be mediated 
by Nitrogen limitation adaptation (NLA) and PHO2 that control 
phosphate transporter activity resulting in N-dependent P 
accumulation in shoots (Peng et  al., 2007; Lin et  al., 2013). A 
transcription factor GARP and Nitrate-inducible GARP-type 
translational repressor 1.4 (NIGT1.4) were reported to a�ect 
primary root growth according to the nitrate and phosphate 
ion signals via transcription and protein accumulation, respectively 
(Medici et  al., 2015). Moreover, PHR1 was reported to be  a 
central regulator of NIGT1 (Kiba et  al., 2018). Cerutti and 
Delatorre (2013) reported N–P interaction in modulating root 
architecture by a regulatory component (PDR1) of N and P 
signaling mediated by cytokinin. While P-starvation triggers the 
formation of shorter primary and lateral roots (Hufnagel et  al., 
2014; Zhang et al., 2019) to better explore the soil for P acquisition, 
N-de�ciency represses lateral root development and favors primary 
root elongation to explore deeper soil for better N acquisition 
(Jia and von Wiren, 2020). Such biological interactions might 
be  the strategy of plants to coordinate N and P acquisition 
under varying nutritional conditions for optimum growth and 
yield. However, our current understanding of the molecular basis 
of such interaction is still elusive.

�us, evidence suggests that N availability modulates 
phosphorus starvation responses (Ru�y et al., 1990; Kant et al., 
2011; Liang et al., 2015; Medici et al., 2019). Under P-starvation, 
N supplementation activates P acquisition, while N-starvation 
represses the P-starvation responses. �is indicates that a plant 
modulates its regulatory system to prioritize N nutrition over 
P. �ree major signaling factors involved in N–P interaction 
have been identi�ed, which include SPXs, PHRs, and PHO2. 
Expression of SPX1, SPX2, and SPX4 was reported to be repressed 
in response to N supplementation in Arabidopsis and rice (Kiba 
et  al., 2018; Ueda et  al., 2020). In rice, a nitrate sensor [nitrate 
transporter (NRT), NRT1.1B] was reported to interact with a 

phosphate-signaling repressor (SPX4; Hu et al., 2019). Phosphate 
starvation response (PHR) was reported to be positively regulated 
by N at transcriptional and post-transcriptional levels (Sun 
et  al., 2018; Varala et  al., 2018). However, PHR1 stability was 
reported to decrease by N-starvation (Medici et  al., 2019). 
Moreover, the microRNA (miR827)–NLA module was reported 
to be  involved in nitrate-dependent phosphate homeostasis in 
Arabidopsis (Kant et al., 2011). Evidence indicates an important 
role of cytokine in P and N signaling (Cerutti and Delatorre, 
2013; Poitout et  al., 2018). Several other potential factors 
involved in N-dependent PHR regulation have been reported 
in Arabidopsis, including miR399 (Liang et  al., 2015) and 
NPF7.3/NRT1.5 (Cui et  al., 2019); however, their roles in 
N-dependent PHR regulation are yet unexplored. Only a 
few proteins have been reported to be  involved in nitrate 
transport in rice. Medici et  al. (2019) reported that 
N-deficiency in rice strongly affects shoot growth, but N 
availability minimizes the effects of P-deficiency on shoot 
growth. More importantly, the effect of N-deficiency is less 
important for plants under P-deficiency. Recently, Pueyo 
et al. (2021) reported structural and functional modifications 
in roots, leading to the formation of clusters and altered 

FIGURE 1 | Schematic representation of nitrogen-starvation response and 

phosphate-starvation responses explaining N/P interactions. PHR1 acts as a 

major transcriptional regulator of P-starvation response, which is 

accompanied by the activation of phosphate starvation-induced (PSI) genes 

followed by phosphate uptake and translocation by phosphate transporters 

(PHO1 and PHT1s). PHR1 is negatively regulated by SPXs through inositol 

polyphosphate (insP)-triggered Pathway. During P-starvation, PHR1 up-

regulates the IPS1 and miR399 expression. miR399 represses PHO2, which 

acts in association with NLA (an E3 ligase) to repress/degrade PHO1 and 

PHT1. OsSPX4 is degraded through 26S proteasome pathway in response to 

N supply (+N) via the action of OsNRT1.1B and an E3 ligase OsNBIP1 

(NRT1−NBIP). SPXs transcription is directly repressed in response to +N by 

NIGT1/HHOs. On the contrary, PHR is positively regulated by +N. PHO2 

expression is down-regulated in response to +N by NIGT1/HHOs and CHL1/

NRT1.1. Thus, the phosphate-starvation response is attenuated by 

N-starvation because of the accumulation of negative regulators (SPXs and 

PHO2) and a decrease in the positive regulator (PHR1).
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nodule metabolism, under P and N de�ciencies. Signaling 
factors, including phytohormones and miRNAs, were reported 
to be  the important players in the N and P interactions. 
We observed down-regulated expression of a high-a�nity nitrate 
transporter (LOC_Os02g38230) in roots of rice under P-starvation 
stress, with more down-regulation in the P-de�ciency stress-
sensitive (Pusa-44) rice genotype (our unpublished data). Hence, 
a comprehensive understanding of the interactions between 
the macro-nutrients would be  essential to optimize/maximize 
the crop yields under diverse nutritional status in the soils.

INTERACTION BETWEEN P AND S 
HOMEOSTASIS IN PLANTS

A major source of S for plants is the inorganic sulfate (SO4
−2; 

Leustek et  al., 2000), and several S transporters (SULTRs) 
have been functionally characterized in plants (Takahashi, 
2010). It has also been reported that plant cells rapidly replace 
sulfolipids with phospholipids under S-de�ciency, and 
phospholipids with sulfolipids during P-de�ciency (Yu et  al., 
2002; Sugimoto et al., 2007; our unpublished data). Interestingly, 
the genes involved in the replacement of phospholipids with 
sulfolipids under P-de�ciency in plants (SQD1 and SQD2) 
contain a PHR1 binding sequence (P1BS) in the promoter 
and get induced by P-de�ciency (Franco-Zorrilla et  al., 2004; 
Stefanovic et  al., 2007). Increased synthesis of miR395 was 
reported due to P-starvation (Hsieh et  al., 2009), which 
increases S translocation from root to shoot by SULTR2;1, 
and enhances sulfolipid biosynthesis. Evidence for co-regulation 
of P-S signaling is getting accumulated. In Arabidopsis, the 
central regulator of P-starvation signaling (PHR1) is potentially 
involved in S, Fe, and Zn homeostasis as it regulates the 
expression of three sulfate transporters (SULT1;3, SULT2;1, 
and SULT3;4), two zinc transporters (Zinc/Iron-regulated 
transporter (Zrt/Irt)-related proteins, ZIP2 and ZIP4), and a 
ferritin (FER1) protein (Rouached et al., 2011; Bournier et al., 
2013; Bouain et  al., 2014a; Briat et  al., 2015). �is suggests 
that macro‐ and micro-nutrient homeostasis, at least partially, 
relies on the regulation of the expression of transporter genes. 
We observed up-regulated expression of two sulfate transporters 
(LOC_Os01g52130 and LOC_Os06g05160) in rice, with higher 
expression in P-de�ciency tolerant genotype, under P-starvation. 
Such nutrients’ homeostasis is supposed to make NIL-23 to 
be  tolerant to P-de�ciency stress. PHR1 has been reported 
to positively regulate SULTR1;3 expression, while it negatively 
a�ects the expression of SULTR2;1 and SULTR3;4 under 
P-de�ciency (Rouached et  al., 2011).

Recently, Garcia et  al. (2021) reported the involvement of 
phytohormone ethylene (ET) in the regulation of crosstalk 
between P, S, or Fe de�ciency. Some of the key elements of 
the ET transduction pathway (CTR1, EIN2, and EIN3/EIL1) 
were reported to play roles in nutrient de�ciency responses. 
Dicot plants, like Arabidopsis, adopt several strategies (mainly 
in roots) to facilitate mobilization/uptake of nutrients to cope 
up with P, S, or Fe de�ciency. Such responses include modi�cation 
in root morphology, increased activity of transporters, enhanced 

synthesis/release of nutrient solubilizing compounds, and 
improved activities of ferric reductase or phosphatase activity.

INTERACTIONS BETWEEN P, Fe, AND 
Zn HOMEOSTASIS IN PLANTS

Cross-talks between P, Zn, and Fe homeostasis have been 
reported earlier in many plants (Briat et  al., 2015), molecular 
basis and biological signi�cance of the nutritional interactions 
have largely been unknown. Complex tripartite cross-talks 
among P, Zn, and Fe are being reported (Zheng et  al., 2009; 
Briat et  al., 2015; Rai et  al., 2015; Xie et  al., 2019). Whole 
transcriptome analysis revealed more than 500 overlapping 
genes regulated by both P‐ and Fe-de�ciency in roots of rice 
and Arabidopsis (Zheng et  al., 2009; Li and Lan, 2015). Gene 
expression in plants under P-de�ciency/starvation is determined 
by the presence/absence of Fe (Misson et  al., 2005; �ibaud 
et al., 2010). Fe-de�ciency was reported to alter the transcription 
of P assimilation-related genes (Zheng et  al., 2009; Moran 
et al., 2014). Under P-starvation, expression of FER1 (encoding 
Fe storage protein ferritin), NAS3, and YSL8 genes (responsible 
for Fe homeostasis) are induced (Bustos et  al., 2010; Bournier 
et  al., 2013). In Arabidopsis, double mutations for phr1 phl1 
altered Fe distribution and expression of Fe-related genes 
(Bournier et  al., 2013; Briat et  al., 2015). �is suggests that 
PHR1 and PHL1 might be  involved in integrating P and Fe 
nutrient signaling. A high-a�nity copper (Cu) transporter 
COPT2 was reported to act as a key player in the interaction 
between P‐ and Fe-de�ciency signaling in Arabidopsis (Perea 
et  al., 2013). COPT2 plays a dual role under Fe-de�ciency; it 
helps in Cu uptake and distribution to minimize Fe losses 
(Xie et  al., 2019). Moreover, loss of functions of COPT2 
aggravates the P-starvation responses in Arabidopsis. We observed 
up-regulated expression of Fe2+ transporter genes in roots and 
shoots of the tolerant rice (NIL-23) genotype, whereas down-
regulated expression of the transporters was observed in the 
sensitive (Pusa-44) genotype under P-starvation stress. Notably, 
a rice vacuolar-membrane transporter OsVIT1 (LOC_
Os09g23300) was observed to be  induced by ~1.5-fold in roots 
and shoots of NIL-23 under the stress, while it was signi�cantly 
down-regulated (>2.5-fold) in roots and shoots of Pusa-44 (a 
stress-sensitive rice genotype).

Similarly, Zn-de�ciency induces the expression of several 
P assimilation-related genes (van de Mortel et  al., 2006), while 
P-de�ciency activates the expression of the genes involved in 
Zn and Fe homeostasis (Misson et  al., 2005; Bustos et  al., 
2010). Expression of several ZIP genes (OsZIP1, OsZIP4, OsZIP5, 
plasma membrane Zn transporters) was reported to be induced 
by Zn-de�ciency and controlled by the availability of divalent 
cations such as Zn2+, Fe2+, Cu2+, Mn2+ in rice (Suzuki et  al., 
2012). We  observed up-regulated expression of OsZIP3 and 
OsZIP4 (LOC_Os04g52310 and LOC_Os08g10630) in NIL-23, 
while they were down-regulated in Pusa-44 under P-starvation 
stress. Fe-de�ciency caused up-regulated expression of the genes 
involved in Zn uptake and homeostasis in leaf and root of 
soybean (Moran et  al., 2014). A Fe-de�ciency-responsive gene 
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AtIRT1 was reported to play a key role in coordinating the 
signaling for Zn‐ and Fe-de�ciency in Arabidopsis (Briat et  al., 
2015). An MYB family transcription factor PHR1 acts as a 
common regulator of P, Fe, and Zn homeostasis, and functions 
as an integrator of multiple nutrient signals (Briat et al., 2015). 
Transcriptional activation of some of the genes involved in 
Fe homeostasis was reported to be PHR1-dependent (Figure 2), 
including FER1 (encoding the Fe storage protein), and PHO1;1 
(encoding P transporter). PHO1;1 was reported to be  involved 
in coordination between Fe transport and P–Zn de�ciency 
signaling in rice (Saenchai et  al., 2016). Excessive Zn was 
reported to cause Fe de�ciency because of decreased IRT1 
protein in Arabidopsis root (Connolly et  al., 2002) due to 
ubiquitin-mediated proteasomal degradation of IRT1 (Kerkeb 
et  al., 2008; Barberon et  al., 2011). Moreover, Fe starvation 
was also reported to a�ect S uptake and assimilation. Forieri 
et  al. (2013) reported 2.5-fold down-regulation of high-a�nity 
S transporter SULTR1;1 under Fe de�ciency. �e role and 
abundance of Fe–S cluster in various nutritional stresses need 
to be  studied (Forieri et  al., 2013). However, the basics of the 
cross-talk between P-, Fe-, Zn and S-de�ciency signaling in 
plants remain to be elucidated. We also observed that P-starvation 
stress increased carbon-�ux via glycolysis for the synthesis of 

organic acids, altered lipid metabolism, and Fe/Zn metabolism, 
which corroborate with the earlier report (Wasaki et al., 2003).

Leskova et  al. (2017) reported enhanced uptake of Zn to 
mimic Fe-de�ciency by high ferric-chelate reductase activity, not 
due to Zn-inhibited Fe uptake but Zn-simulated transcriptional 
response of Fe-regulated genes. �is indicates that Zn a�ects 
Fe homeostasis by sensing the availability of Fe. Recently, 
Brumbarova and Ivanov (2019) reported the involvement of 
three transcriptional regulators (HY5, PIF4, and the NF-Y 
complex) in modulating nutrient responses in Arabidopsis. �ese 
transcriptional regulators play important role in light signaling 
and modulate global transcriptome to adjust nutrient availability.

MASTER REGULATORS OF  
MULTIPLE-NUTRIENT HOMEOSTASIS

Transcription factor PHR1 was initially identi�ed as a major 
regulator of P homeostasis in plants (Fujii et  al., 2005;  
Aung et  al., 2006; Bari et  al., 2006). Subsequently, reports 
indicate that PHR1 also regulates the expression of genes 
involved in S, Fe, and Zn homeostasis (Rouached et al., 2011; 
Bournier et  al., 2013; Khan et  al., 2014). �us, PHR1 is 

FIGURE 2 | Schematic representation of the macro‐ and micro-nutrient homeostasis. The interactions between phosphorus (P), iron (Fe), sulfur (S), and zinc (Zn) 

homeostasis are indicated by ↔ arrows. At the molecular level, transcription factor PHR1 (initially identi�ed as a key regulator of the phosphate-starvation induced 

genes) up-regulates phosphate transporters (PHT1;1), PHO1;H1, and the genes involved in phosphate de�ciency sensing/signaling (SPX1, miR399, and miR827). 

Other genes known to be involved in P-de�ciency signaling/sensing include miR827 and miR399. Transcriptional regulation of some of the genes involved in 

maintaining Fe and Zn homeostasis is PHR1-dependent; it includes FER1 (encoding Fe storage protein ferritin) and ZIP2 and ZIP4 (zinc transporters). PHR1 also 

acts as a central regulator of sulfate transport (SULTR1;3, SULTR2;1, and SULTR3;4). The arrow-heads and �at-ended lines indicate the positive and negative 

effects of PHR1, respectively. PHR1 acts as a regulator of P-transporters (PHT1 and PHO1) via the PHR1–miR399–PHO2 module. Also, ZIP2 and ZIP4 are activated 

by PHR1 binding to the P1BS sequences in the promoter of the genes. Likewise, Zn suf�ciency inactivates the Zn-regulatory network and represses Zn transporters 

for Zn homeostasis. Besides, PHO1;H3 is repressed by suf�cient Zn supply, and the PHR1 and PHO1 proteins help to maintain the Pi–Zn homeostasis cross-talk. 

Similarly, Fe homeostasis is also regulated in a PHR1-dependent manner.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kumar et al. Interaction Between Macro‐ and Micro-Nutrients

Frontiers in Plant Science | www.frontiersin.org 6 May 2021 | Volume 12 | Article 665583

considered as a molecular link between the pathways controlling 
macro‐ and micro-nutrient homeostasis. �e regulatory role 
of PHR1 has been documented based on two-by-two interactions 
of some of the nutrient elements like P and S, P and Fe, P 
and Zn. PHR1 is one of the important regulators of P-de�ciency 
responses, but other regulators like WRKY45/75, ZAT6, MYB62, 
PTF1, and bHLH32 have also been reported.

Subsequently, higher-order coordinators such as light-response 
transcription factors/complexes (PIF4, HY5, and the NF-Y) 
were identi�ed as master transcriptional regulators coordinating 
plant growth and nutrient utilization (Brumbarova and Ivanov, 
2019). Based on the available reports and nutritional interactions, 
it can be concluded that PHR1 and HY5 act as master regulators 
of multiple nutrient homeostasis. Moreover, the role of miRNAs 
as a potential regulator of the cross-talks between the nutrient 
homeostasis is also being deciphered (Hsieh et  al., 2009; Pant 
et al., 2009; Liang et al., 2015; Pueyo et al., 2021). �e involvement 
of epigenetic and epitranscriptomic marks (Wang et  al., 2016; 
Kumar et al., 2018; Kumar and Mohapatra, 2021) in regulating 
nutrient interactions is yet to be  explored. �e need of the 
day is to conduct more extensive, multi-level interaction studies 
with a system biology approach, and to decipher the integrative 
gene-networks to better manage the nutrient de�ciencies in 
crop plants, towards maximizing the yield and quality of the 
produce (Kumar, 2018).

CONCLUSION

�e combinations of high-throughput “Omics” and reverse genetics 
approaches have resulted in the characterization of genes involved 
in the interactions between multiple nutrients homeostasis. 
Interactions between macro-nutrients have been evident from 
the morphological, physiological, and agronomic studies; however, 
molecular bases of such biological interactions between macro-, 
micro-, and macro-micro-nutrients are being elucidated. Biological 
interactions have not only been detected between N and P, but 

P and micro-nutrients (Fe and Zn) have also been reported in 
plants (Bouain et  al., 2014b; Briat et  al., 2015), which would 
be very important to maximize crop yield, particularly on marginal 
lands under the changing climatic conditions (Kumar, 2020). 
Studies involving various combinations of macro‐ and micro-
nutrient stress, and integrative signaling molecules would provide 
the genetic-basis for multi-partite cross-talks in plants. �erefore, 
future research would also need to focus on integrative studies 
to decipher the mechanisms involved in coordinating multiple 
nutrient interactions and nutrient-stress signaling to mitigate 
the harmful e�ects of nutrient(s) de�ciency in crop plants. 
Besides, identi�cation of the genes involved in the interactions 
between di�erent nutrients (e.g., N, P, Fe, Zn, and/or Fe), 
their transport, and signaling in crop plants will help breeders/
agronomists to develop alternate strategies for nutrient 
management in crops (Xie et  al., 2019). In conclusion, the 
multi-partite integrative studies on the interactions between 
nutrient metabolic pathways would be  of great importance for 
sustainable agricultural production/development all over the 
world (Kaur and Kumar, 2020).
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