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PACS. 87.68.+z – Biomaterials and biological interfaces.

Abstract. – Attractive interactions between identical like-charged macroions in aqueous mul-
tivalent salt solution arise due to ion-ion correlations. The mean-field level Poisson-Boltzmann
(PB) theory does not predict such behavior for point-like structureless ions. Various multivalent
ions, such as certain DNA condensing agents or short stiff polyelectrolytes, do have an internal,
often rod-like, structure. Applying PB theory to the generic case of divalent rod-like salt ions,
we find attraction between like-charged macroions above a critical distance between the two
individual charges of the rod-like ions. We calculate this distance analytically within linearized
PB theory. Numerical results for the non-linear PB theory indicate strong enhancement of the
tendency to mediate attractive interactions.

Introduction. – Poisson-Boltzmann (PB) theory is a widely used mean-field level method
to calculate interactions between macroions in aqueous (salty) solutions. For monovalent salt,
its predictions are generally found to agree well with experimental results and computer sim-
ulations. However, the presence of multivalent ions can affect the nature of the interactions
between macroions in a way that qualitatively differs from the PB prediction. A remarkable
example is the possibility of attraction between two identical, like-charged, macroions that the
mean-field approach is unable to predict. This attraction currently receives much interest [1]
because it is observed for a number of biologically relevant processes such as condensation of
DNA [2], network formation in actin solutions [3], virus aggregation [4] and interactions be-
tween lipid membranes that occur during adhesion and fusion. Various theoretical approaches
ascribe this attraction to the presence of ion-ion correlations [5,6]. An intuitive understanding
of these correlations can be based on the formation of a periodic counterion arrangement in
the vicinity of each macroion, similar to a Wigner crystal. The two inter-locked counterion-
decorated macroions then experience short-ranged attraction.
c© EDP Sciences
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Multivalent ions are commonly treated as point charges. However, real ions (and particu-
larly organic ones) often possess an internal structure with the individual charges being located
at distinct, well-separated positions. Among others [7], a characteristic example is the rod-like
backbone structure of various DNA condensing agents such as the tri- and tetravalent ions
spermine and spermidine, protamine sulfate, or poly-lysine. Clearly, the spatial separation
of the individual charges within a multivalent ion is expected to affect the role that correla-
tions play for the energetics of interacting macroions. That is, large separation is expected
to reduce the importance of correlations between different multivalent ions (“inter-ionic” cor-
relations) but retains the steric constraints between the individual charges of the multivalent
ions (“intra-ionic” correlations). As is well known, PB theory entirely neglects inter-ionic
correlations. Yet, intra-ionic correlations can be accounted for within PB theory. Hence, with
growing separation between the individual charges of a multivalent ion, PB theory is expected
to become increasingly more applicable. In line with this, a recent simulation study [8] on
a mixture of monovalent and rigid dumbell-like ions observed a substantial decrease in the
critical temperature compared to an ordinary 1 : 2 electrolyte of point-like ions. The questions
arise, how to apply PB theory [9] and if it is able to predict attraction (or at least an attractive
component) for the interaction of like-charged macroions. We note that PB theory offers a
particularly simple tool to model the interaction between macroions of low dielectric constant
immersed in aqueous salt solution. Such systems are not captured by the so-called primitive
model where —nevertheless— simulations as well as analytical model calculations have pro-
vided valuable information on the structure and phase behavior of electrolyte solutions [10],
including their role for biological systems [11]. Obtaining attractive interactions between like-
charged macroions is also possible on the level of PB theory if additional order parameters
are considered. This is the case, for instance, upon including the solvent structure [12] or the
presence of polyelectrolytes [13,14] into PB theory.

In the present work we formulate PB theory for an electrolyte with an internal structure of
the individual ions. For simplicity, we shall focus on the simplest, namely that of a symmetric
2 : 2 electrolyte in which the two charges of each (positive and negative) divalent ion are
separated by a distance l. Figure 1 schematically illustrates the rod-like structure of the
divalent ions. More involved cases such as asymmetric electrolytes with higher than divalent
ions and with any distribution of the individual charges on the rod-like ion can be treated
analogously (but are not expected to give rise to qualitatively new behavior). We shall derive a
modified PB equation that takes into account the charge distribution of the rod-like divalent

Fig. 1 – Schematic illustration of two like-charged macroions of (bare) surface charge density σ0 and
overall surface area A, interacting in a symmetric 2 : 2 electrolyte solution enclosed in a volume V .
The divalent ions of the electrolyte are rod-like, with a separation l between their individual charges.
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ions up the quadrupolar order. For the generic case of two interacting like-charged planar
surfaces we show that the modified PB equation can give rise to an attractive interaction.

Single rod-like ion in external field. – Consider first a single rod-like divalent ion, located
at fixed position r in the external electric field E(r). The two individual charges of the ion are
localized at positions r1,2 = r± (l/2) t, where the unit vector t = {sin θ cosφ, sin θ sinφ, cos θ}
describes the instantaneous spatial orientation of the ion. The ion’s orientation-dependent
interaction energy, uel(t) = e[Φ(r1) + Φ(r2)] with the electric field E(r) = −∇Φ(r), can be
written up to quadratic order in l as

uel(t) = 2eΦ(r) +
el2

4
t · [∇ ◦∇Φ(r)] · t, (1)

where e denotes the elementary charge and Φ is the electrostatic potential. Statistical aver-
aging over all possible orientations yields the free energy up to quadratic order in l:

fel = − ln
[

1
4π

∫ 2π

0

dφ
∫ π

0

dθ sin θe−uel

]
= 2eΦ +

el2

12
∆Φ, (2)

where here and in the following we express all energies in units of kBT (Boltzmann constant ×
absolute temperature). Equation (2) confirms a well-known result: the quadrupolar moment
of the ion energetically couples to the gradient of the electric field.

Poisson-Boltzmann theory for rod-like divalent ions. – Consider next a mixture of pos-
itive and negative rod-like divalent ions, contained in a large aqueous solution of volume V .
Also contained in the aqueous solution are one or several macroions of overall surface area A
and bare (fixed) surface charge density σ0. Denote the local concentrations of positive and neg-
ative divalent ions by n+ and n−, respectively. Due to the spatial separation of the charges
along the divalent ion, the orientationally averaged volume charge density [15], ρ, receives
contributions not only from the local concentrations but also from their second derivatives:

ρ = 2e(n+ − n−) +
el2

12
(∆n+ − ∆n−) (3)

and similarly for the surface charge density,

σ = σ0 +
el2

12

(
∂n+

∂n
− ∂n−
∂n

)
A

(4)

at the macroion surfaces, where ∂/∂n denotes the derivative in normal direction. The quan-
tities ρ and σ define both the electrostatic potential, Φ, through the Poisson equation,
ε∆Φ = −ρ, where ε is the dielectric constant of water, and the boundary condition at the
macroion surfaces, (∂Φ/∂n)A = −σ/ε. Note that the latter is valid in the limit of a low
dielectric constant, εM 	 ε, inside the macroions. The corresponding electrostatic free energy
can then be written as [15]

Fel =
ε

2

∫
V

dv(∇Φ)2 =
1
2

∫
V

dv Φρ+
1
2

∫
A

da Φσ. (5)

Using Green’s theorem we re-express Fel as

Fel =
1
2

∫
V

dv(n+ − n−)
[
2eΦ +

el2

12
∆Φ

]
+

1
2

∫
A

da
[
σ0Φ +

el2

12
(n+ − n−)

∂Φ
∂n

]
. (6)
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Indeed, eq. (6) appears as the generalization of eq. (2) from one single rod-like ion in an
external field to a symmetric 2 : 2 electrolyte of rod-like ions.

To derive the PB equation, we consider the full free energy F = Fel + Ftr of the system
which contains (besides Fel) also the translational entropy contribution

Ftr =
∫

V

dv
[
n+ ln

n+

n0
+ n− ln

n−
n0

− (n+ + n− − 2n0)
]

(7)

of the rod-like divalent ions, where n0 denotes the bulk concentration of the divalent ions. We
note the reference state F (n+ ≡ n− ≡ n0) = 0. In thermal equilibrium, the free energy F must
be minimal with respect to the ionic concentrations n+ and n−. To find the corresponding
equilibrium distributions, we perform the first variation of F (n+, n−), resulting in

δF =
el2

12

∫
A

da
∂Φ
∂n

(δn+ − δn−) +

+
∫

V

dv δn+

[
2eΦ +

el2

12
∆Φ + ln

n+

n0

]
+

∫
V

dv δn−

[
−2eΦ − el2

12
∆Φ + ln

n−
n0

]
. (8)

Vanishing of δF for arbitrary δn− and δn+ gives rise to both the Boltzmann distributions

n± = n0 exp
[
∓

(
2eΦ +

el2

12
∆Φ

)]
(9)

and the boundary condition at the macroions surfaces
(
∂Φ
∂n

)
A

= 0. (10)

Note that eq. (10) implies σ = 0, indicating the tendency of the rod-like ions to fully neutralize
the bare charges on the macroion surfaces. This electrostatically preferable complete neutral-
ization can occur only for l > 0 without a prohibitively large entropic penalty of immobilizing
the ions onto the macroion surfaces.

Inserting n± from eq. (9) into the Poisson equation yields the PB equation which we
express in terms of the dimensionless electrostatic potential Ψ = 2eΦ. In the following, we
shall also use dimensionless spatial coordinates, x̄ = x/lD, etc., scaled by the Debye length
lD = 1/κ with κ2 = 4× 8πlBn0, where lB = e2/4πε = 7 Å is the Bjerrum length in water. We
then obtain a fourth-order, non-linear, partial differential equation:

∆Ψ = sinh
(
Ψ + ξ2∆Ψ

)
+ ξ2∆ sinh

(
Ψ + ξ2∆Ψ

)
. (11)

The PB equation, eq. (11), depends on the dimensionless parameter ξ = κl/
√

24 that expresses
the effective distance between the charges of the divalent rod-like ion. For ξ = 0 the PB
equation reduces to ∆Ψ = sinh Ψ, which is the familiar equation used for a symmetric salt
solution of structureless, point-like ions.

Solving the PB equation, eq. (11), requires the specification of two boundary conditions at
the macroion surfaces. The first one is given by (∂Ψ/∂n)A = 0; see eq. (10). To formulate the
second boundary condition, it is convenient to express the (local) surface charge density at
the macroions, σ0 = pe/8πlBlD, in terms of the dimensionless charge density, p = ±8πlBlD/a,
where a is the (local) area per surface charge (the sign of the macroion charge is determined
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by the sign of p). The second boundary condition, which follows from insertion of eqs. (4)
and (9) into the condition σ = 0, can then be written as

p

ξ4
= cosh

(
Ψ + ξ2∆Ψ

) ∂
∂n

∆Ψ. (12)

Upon insertion of the equilibrium distribution for n± into F , we can show that the free energy
can be calculated by the familiar charging process [16]

F =
∫

A

da
∫ σ0

0

Φ
(
σ′0

)
dσ′0 =

1
16πlBlD

∫
A

da
∫ p

0

Ψ(p′)dp′. (13)

In the remainder, we analyze possible consequences of ξ > 0, first for the linearized and then
for the non-linear PB equation.

The Debye-Hückel limit. – In the Debye-Hückel (DH) regime the electrostatic potential
is small everywhere (Ψ 	 1) and the PB equation (see eq. (11)) linearizes:

ξ4∇4Ψ +
(
2ξ2 − 1

)
∆Ψ + Ψ = 0, (14)

where ∇4 is the biharmonic operator. The boundary condition, eq. (12), becomes p/ξ4 =
∂(∆Ψ)/∂n.

Consider two large, like-charged, planar surfaces, located at (dimensionless) positions x̄ = 0
and x̄ = d̄ = d/lD, each having area A/2 and bare surface charge density σ0 (with corre-
sponding scaled surface charge density p). The electrostatic potential depends only on the
x̄-direction, and we must solve the equation ξ4Ψ′′′′ + (2ξ2 − 1)Ψ′′ + Ψ = 0 with the boundary
conditions Ψ′(0) = Ψ′(d̄) = 0 and Ψ′′′(0) = −Ψ′′′(d̄) = p/ξ4. The solution can be written as
Ψ(x̄) =

∑4
i=1Bie

−ωix̄ with ω3 = −ω1, ω4 = −ω2 and

Bi =
(−1)i p

ξ4ωi(ω2
1 − ω2

2)(1 − e−d̄ωi)
, ω1,2 =

1 ±
√

1 − 4ξ2

2ξ2
. (15)

Most notably, for ξ > 1/2 the potential Ψ exhibits damped oscillations, whereas for ξ < 1/2
it decays monotonically. For the potential at the surfaces we find Ψ(0) = Ψ(d̄) = p C(ξ, d̄)
where the function C(ξ, d̄) is given by

C(ξ, d̄) =
1

ξ4(ω2
1 − ω2

2)

[
1
ω2

coth
d̄ω2

2
− 1
ω1

coth
d̄ω1

2

]
. (16)

Upon insertion of Ψ(0) into eq. (13), we obtain the free energy F = p N C(ξ, d̄)/2, where
N = (σ0/e)(A/2) is the number of fixed charges on each of the two flat surfaces. The function
C(ξ, d̄) determines the nature of the interaction between the like-charged macroionic surfaces.

Let us discuss some relevant cases of the DH regime. For two isolated surfaces (d→ ∞; the
left diagram of fig. 2 shows the potential for some selected cases) we obtain C(ξ, d̄→ ∞) = 1,
and the surface potential Ψ(0) = p as well as the free energy F = p N/2 are independent of
ξ. In fact, this is the familiar DH result for point-like divalent salt ions [16]. Hence, for an
isolated flat surface, an influence of the salt structure on Ψ(0) and F cannot be seen in the
linear DH limit. In contrast to that, the normalized, distance-dependent, integrated charge
density of the bare macroion charges and rod-like salt ions

Q(x̄) =
1
σ0

[
σ +

∫ x̄

0

ρ(x)dx
]

=
σ

σ0
+

1
p

2∑
i=1

Biωie
−ωix̄ (17)
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Fig. 2 – Results for the DH regime. Left diagram: the normalized potential, Ψ/p, of an isolated
planar surface as a function of the scaled distance, x̄ = x/lD, to that surface. The inset shows the
normalized, integrated charge density Q(x̄); see eq. (17). Right diagram: the normalized free energy
C = 2F/Np as a function of the distance d̄ = d/lD between two planar surfaces. The corresponding
repulsive and attractive regions are marked in the inset. Both diagrams show the cases x̄ = x/lD for
ξ = 0 (a), ξ = 0.5 (b) and ξ = 0.7 (c).

does depend on ξ, as shown in fig. 2 (inset of left diagram). Note, in particular, that ξ > 1/2
allows for electrical overcharging as indicated by Q < 0.

Consider next the interaction between two like-charged planar surfaces as a function of
their mutual distance d. The corresponding (normalized) free energy C = 2F/Np is shown
in fig. 2 (right diagram) as a function of d̄ = κd for ξ = 0, 0.5, and 0.7. For ξ < 1/2, the
interaction is always repulsive. For ξ = 1/2, we obtain C(ξ = 1/2, d̄) = coth d̄ + d̄/ sinh2 d̄
which still is a monotonously decaying function of d̄, implying repulsion between the two
surfaces. However, for ξ > 1/2, the interaction turns attractive above a sufficiently large
separation d̄ = d̄� between the two surfaces. The inset in the right diagram of fig. 2 shows
position d̄� at which C(ξ > 1/2, d̄�) adopts a minimum, separating the repulsive from the
attractive regime. For example, ξ = 0.7 (corresponding to l = 3.4lD) results in an energetic
minimum at d̄∗ = 3.2 (corresponding to d = 3.2lD). Hence, the rod-like ions just match
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Fig. 3 – Results for the non-linear PB regime. The scaled free energy C = 2F/Np as a function of
the dimensionless distance d̄ = d/lD for p = 0.01 (a), p = 3 (b), p = 6 (c), and p = 12 (d). The solid
and broken lines correspond to ξ = 0.4 and ξ = 0.7, respectively.
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the optimal separation between the macroions, indicating that a bridging mechanism [13] is
responsible for the attractive interactions.

Nonlinear Poisson-Boltzmann theory. – Analytical solutions of the non-linear PB equa-
tion, eq. (11), are not available. To investigate the influence of the non-linearity, we have
numerically calculated solutions of eq. (11) and of the corresponding free energy, F . As for
the linear regime, we can express the free energy F = p N C/2 in terms of the coefficient
C. Yet, unlike in the linear regime, the coefficient C = C(ξ, d̄, p) now depends on p, the
scaled charge density of the macroion surfaces. Figure 3 displays for two cases, ξ = 0.4 (solid
lines) and ξ = 0.7 (broken lines), the d̄-dependence of C for increasing p. Two conclusions
can be drawn. First, for ξ > 1/2, the non-linearity of the PB equation enhances the attrac-
tion strength between two like-charged surfaces. Second, with increasing p there appears an
attractive region even for ξ < 1/2 which is not predicted in the DH approximation. Hence,
attractive interactions between like-charged macroions in salt solution of rod-like divalent ions
can be induced through an increase in the surface charge densities of the macroions.

Conclusions. – We show that the mean-field level PB theory is generally able to predict
attractive interactions between like-charged macroions if the mobile ions possess an internal
structure with spatially separated individual charges. Even though we have focused on a
symmetric 2 : 2 electrolyte that consists of simple rod-like ions, similar conclusions are valid
for other mixtures (including the only-counterion case) and other ionic structures. As is well
known, ion correlations provide the general mechanism to induce attraction between like-
charged macroions. Our present approach is based on the PB approach and, thus, neglects
inter-ionic correlations. Yet, it takes into account intra-ionic correlations through the con-
straint that the two individual charges of each rod-like divalent ion are separated from each
other by a fixed distance l.
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[11] Holm C., Kékicheff P. and Podgornik R. (Editors), Electrostatic Effects in Soft Matter

and Biophysics, Nato Sci. Ser., Vol. 46 (Kluwer Academic Publishers) 2001.
[12] Burak Y. and Andelman D., J. Chem. Phys., 114 (2001) 3271.
[13] Podgornik R., Polyelectrolyte mediated bridging interactions, preprint (2004).
[14] Borukhov I., Andelman D. and Orland H., J. Phys. Chem. B, 103 (1999) 5042.
[15] Jackson J. D., Classical Electrodynamics, third edition (John Wiley & Sons) 1998.
[16] Evans D. F. and Wennerström H., The Colloidal Domain, Where Physics, Chemistry, and

Biology Meet, second edition (VCH Publishers) 1994.


