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Abstract. Invasion of human tissues by the parasitic 

protozoan Entamoeba histolytica is a multistep process 

involving, as a first step, the recognition of surface 

molecules on target tissues by the amebas or tro- 

phozoites. This initial contact is followed by the re- 

lease of proteolytic and other activities that lyse target 

cells and degrade the extracellular matrix. 

In other parasitic diseases, as well as in certain 

cancers, the interaction of invasive organisms or cells 

with fibronectin (FN) through specific receptors has 

been shown to be the initial step in target cell recogni- 

tion. Interaction with FN triggers the release of pro- 

teolytic activities necessary for the effector cell migra- 

tion and invasion. Here, we describe the specific 

interaction of Entamoeba histolytica trophozoites with 

FN, and identify a 37-kD membrane poptide as the 

putative receptor for FN. The interaction between the 

parasite and FN leads to a response reaction that in- 

cludes the secretion of proteases that degrade the 

bound FN and the rearrangement of amebic actin into 

"adhesion plates" at sites of contact with FN-coated 

surfaces. The kinetics of the interaction was deter- 

mined by measuring the binding of soluble ~25I-FN to 

the trophozoites and visualization of the bound protein 

using specific antibodies. Degradation of FN was mea- 

sured by gel electrophoresis and the release of radio- 

activity into the incubation medium. Focal degradation 

of FN was visualized as black spots under the tro- 

phozoites at contact sites with fluorescent FN. 

We conclude that the interaction of E. histolytica 
with FN occurs through a specific surface receptor. 

The interaction promotes amebic cytoskeleton changes 

and release of proteases from the parasite. The bind- 

ing and degradation of extracellular matrix compo- 

nents may facilitate the migration and penetration of 

amebas into tissues, causing the lesions seen in hu- 

man hosts. 

T 
HE capacity of invasive cells to penetrate solid organs 
is considered to be a multiple step process requiring 
intimate surface contact between effector cells and tar- 

gets. This interaction may take place through specific recep- 
tor-mediated mechanisms which result in the lysis of target 
cells or substrates. Cell lysis can be accomplished by release 
of proteases and other lytic mediators and by the insertion 
of pore-forming proteins into the plasma membrane of the 
target cell (for a review see reference 39). In addition to caus- 
ing cell lysis, invasive cells can attach to and destroy ex- 
tracellular matrix components during migration through 
connective tissue barriers (15, 24), as is the case with macro- 
phages (35), endothelial cells (16), and the implantation of 
trophoblasts cells during mammalian embryogenesis (ll). 
Fibronectin-degrading proteases have also been reported in 
invading cancerous cells (8, 15). 

Entamoeba histolytica trophozoites are invasive cells 
capable of tissue penetration and intestinal ulcer formation 
in human hosts (22). The mechanisms of invasion are not 
well understood, although close parasite-target cell interac- 

tion seems to be a requirement (19, 25, 38). Degeneration of 
intestinal epithelial cells adjacent to invading trophozoites 
and dissolution of the basement membrane of the mucosa 
have been observed (32). These findings suggest that histo- 
lytic factors play a role in invasion by the parasite. Many lytic 
activities have been identified in E. histolytica, either mem- 
brane bound or released into the medium (10, 17, 21), includ- 
ing a pore-forming protein that is thought to assemble itself 
in the target cell membrane (19, 38). During the invasive pro- 
cess of this parasite, besides contact-dependent killing of 
host cells, some of the major components of the extracellular 
matrix such as collagen, laminin, and fibronectin have been 
shown to be degraded (4, 17, 23, 32). As components of the 
extracellular matrix are also targets for the battery of proteo- 
lytic enzymes present in invasive amebas, their destruction 
would allow the trophozoites to invade the large intestine and 
subsequently other organs such as the liver, lungs, brain, etc. 

Fibronectin (FN) 1 is known to bind to a variety of corn- 

1. Abbreviation used in this paper: FN, fibronectin. 
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ponents, including proteoglycans, collagen, glycosamino- 
glycans, actin, and glucose (14). FN also binds to the surface 
of many eukaryotic and prokaryotic cells. In eukaryotic cells 
this interaction produces changes in cell morphology and in 
the cytoskeleton (13, 14, 29, 37). Specifically, high levels of 
fibronectin induce formation of organized arrays of actin 
microfilaments, possibly through a transmembrane linkage 
(29). Fibronectin receptors have been isolated and character- 
ized in several types of cells (2, 28, 31). In certain bacteria 
a FN receptor is thought to play a role in adherence to epithe- 
lial cells (1, 9). Trypanosoma cruzi (26, 28), Plasmodiumfal- 
ciparum (27), and Leishmania (36) (all intracellular pro- 
tozoan parasites) also have FN-receptors. The presence of a 
FN receptor in these organisms may aid in the initial interac- 
tion of these pathogens with host cells and tissues. A FN 
receptor on the surface of E. histolytica trophozoites may 
also be required for their penetration through tissues. We re- 
port here the specific binding of E. histolytica trophozoites 
to FN and the identification of a putative cell surface receptor 
for this protein. Moreover, we find that contact with FN trig- 
gers major rearrangements of the E. histolytica cytoskeleton 
and leads to the secretion of proteases by the trophozoites. 

Materials and Methods 

Cell Culture 

Entamoeba histolytica HM-I:IMSS, clone BXI, and Entamoeba histolytica 
Laredo-type torphozoites were grown in TYI-S-33 medium as described by 
Diamond et al. (7). Amebas for all the experiments were harvested during 

logarithmic growth by centrifugation at 200 g. Cell pellets were washed sev- 
eral times with 0.9% NaCl, 0.005 M Tris-HCI, pH 7.4. 

Fibronectin Preparation 

FN was purified by a modification of the gelatin-Sepharose affinity chroma- 
tography method (30) from fresh human blood collected in 10 -4 M phenyl- 
methylsulfonyl fluoride, and 5% sodium citrate. 

Protein purity was monitored in 5 % SDS-discontinuous polyacrylamide 
gels. The purified FN was dialyzed against 0.15 M NaC1, 0.05 M Tris-HCl, 
pH 7.4, and stored at -70 °. Purified plasma FN was quantified using an ex- 
tinction coefficient of 1.28 at 280 nm. 

Preparation of Antifibronectin Antibodies 

Fibronectin antibodies were prepared by immunizing rabbits with two in- 
tramuscular doses of 150 I.tg FN in Freund's complete adjuvant (Difco 
Laboratories, Detroit, MI) followed 2 wk later with 500 ~tg FN, and a final 
intravenous boost 1 wk later with 300 p,g FN without adjuvant. Antibodies 
were purified by passing the serum through a FN affinity column, eluting 
with 0.2 M glycine pH 2.8, and collecting 500-1~1 fractions in tubes contain- 
ing 100 ~tl of 1.0 M Tris-HCl pH 8.6. Fractions containing the antibody were 
pooled and dialyzed against PBS at 4°C, aliquoted, and stored at -70°C. 
Final concentration of the antibody was 0.635 mg/ml. 

Indirect Immunofluorescence 

Trophozoites were resuspended in PBS and incubated for 15 rain in suspen- 
sion with FN (0.2 mg/ml) in 0.15 M NaCl, 0.05 M Tris-HCl pH 7.4. Incuba- 
tion was at 4°C to reduce the extensive FN degradation observed at higher 
temperatures. The cell suspension was then applied to a cushion of 100 lzl 
of dihutylphtalate (6) and centrifuged at 12,000 g. The pellet was washed 
once with 1% FN-depleted serum in PBS and cells fixed with 3% parafor- 
maldehyde in PBS for 30 min. After fixation the cells were washed with the 
FN-depleted serum and centrifuged at 200 g. Rabbit anti-human FN (di- 
luted 1:50 in PBS) was then added, and the cells were incubated for 30 rain 
at room temperature. After washing the cells with PBS they were incubated 
for 30 min with a 1:20 dilution of the second antibody, fluorescein-conju- 
gated sheep anti-rabbit IgG (Cappel Laboratories, Inc., Cochranville, PAL). 
After three washes with PBS, the ceils were mounted in PBS-glycerol. 

Fibronectin lodination 

100 p.g of FN (1 mg/ml) were radioiodinated by the Chloramine-T procedure 
(12) using 1 mCi of ~2~I (Amersham Corp., Arlington Heights, IL). ~25I-FN 
was separated by chromatography on a Sephadex G-25 column equilibrated 
with 0.05 M Tris-HCl, 0.15 M NaC1, pH 7.4, and 10% BSA. The protein 
peak was pooled, aliquoted, and stored at -70°C. The specific activity of 
the ~-~I-FN was 1.28 laCi/~tg. 

Cell Attachment Assay 

Microelisa plates (Dynatech Corp., Baton Rouge, LA) were incubated over- 
night at 4°C with 40 p.l of FN (250 ~tg/ml). The plates were then rinsed 
three times with PBS and incubated with the amebas (0.25 × 106/ml) in 
150 lal of serum-free TYI-S-33 medium for different times at 37°C. At the 
end of the incubation, the nonadhered cells were recovered by aspiration 
with a Pasteur pipette and counted in a Coulter counter (Coulter Electronics, 

Hialeah, FL). 

Determination of Proteolytic Activity 

Tissue culture multi-well plates (Linbro, Flow Laboratories, Hamden, CT) 
were coated with 30,000 cpm/well of ~2SI-FN by incubation overnight at 
room temperature under UV light. The plates were rinsed with 0.15 M 
NaCI, 5 mM Tris-HCl, pH 7.4, and incubated with the amebas (E. histolyt- 
ica: 0.05 × 106/100 I.tl; Laredo: 0.125 × 106/100 p.I) in the same buffer. 
The release of ~25I-FN was determined by collecting the incubation 
medium at various time periods after trophozoite attachment and measuring 
radioactivity in a auto-gamma scintillation spectrometer (No. 5230; Pack- 
ard Instrument Co., Inc., Downers Grove, IL). Control wells without 
amebas were also processed for each time point. 

Binding of lzSI-FN to Entamoeba histolytica and 
Laredo Trophozoites 

E. histolytica (2 x 106) and Laredo (5 x 106) cells were incubated for 
different time periods in 80 ~tl of 0.9% NaCI in 0.005 M Tris HCI pH 7.4 
with different concentrations of ~2~I-FN in a total volume of 200 ~tl at room 
temperature. 50 p.1 of the mixture were applied to a cushion of 100 p.l of 
dibutylphtalate in a 400 txl Eppendorf tube and centrifuged 1 min in an Ep- 
pendorf microfuge (Brinkmann Instruments, Inc., Westbury, NY). The tips 
of the tubes were cut with a razor blade and directly counted for radioactiv- 
ity of the pellets. 

Preparation of Thin Sections for Autoradiography 

PBS-washed trophozoites (1 x 106/ml) were resuspended in PBS and 100 
I.tl I~SI-FN were added. The cell suspension was incubated for 15 min with 
gentle shaking and the cells layered on top of a cushion of dibutylphtalate 
and centrifuged. Cell pellets were fixed with 2.5% glutaraldehyde in 0.1 M 
sodium cacodylate buffer, pH 7.2, at room temperature for 30 min, postfixed 
with 1% OSO4 in the same buffer for 30 min, and embedded in Epon 812. 
0.5-ktm thick sections were mounted on glass slides and covered with Ilford 
K-5D emulsion diluted l:l with distilled water. The slides were exposed at 
4°C for 2 wk, developed in Microdol X (Eastman Kodak Co., Rochester, 
NY), and stained with alkaline toluidine blue. 

SubceUular Fractionation of Entamoeba 
histolytica Trophozoites 

Subcellular fractionation of trophozoites was carried out by the method of 
Aley et al. (3), using a cocktail of protease inhibitors containing 2 mM di- 
isopropylfluorophosphate, 0.1 mM phenylmethylsulfonyl fluoride, 2 I.tM 
leupeptin, and 5 mM N-ethyl-maleimide in 10 mM Tris-HCl pH 7.5. The 
fractions obtained by differential centrifugation in mannitol-sucrose gra- 
dients and a 20% sucrose cushion were: plasma membranes, internal mem- 
branes, nonvesiculated membranes, and soluble components. 

Preparation of Crude Membranes 

Cell pellets were washed with PBS and resuspended in hypotonic buffer (10 
mM Tris-HCl, pH 7.5) containing the protease inhibitors mentioned above. 
After homogenization, the homogenate was centrifugated at 150,000 g for 

30 rain and pellets used as crude membranes after resuspension in 10 mM 
Tris-HCl, pH 7.5. 
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PAGE and Autoradiography 

5 and 10% discontinuous SDS gels and 5-15 % polyacrylamide gradient gels 

were run as indicated by Laemmli (18). To avoid proteolysis, the amebic pro- 

tein samples were boiled before addition of SDS and sample buffer (24). 
Gels were fixed, stained with Coomassie Blue, and dried. Autoradiography 

was performed using X-OMAT Kodak x-ray film. 

Electroblot and Overlay 

Immediately after the electrophoretic run the proteins were transferred at 

60 V for 12 h to nitrocellulose membranes. The filter was blocked with 3 % 

BSA, 0.1% Tween 20, and 0.1% sodium azide in PBS at pH 7.4 for several 

hours, and incubated overnight with 1.5 ml of J2SI-FN (sp act, 0.9 pCi/llg) 
dilutext in 15 ml of 0.15 M NaC1, 0.05 M Tris-HCl, pH 7.4 at room tempera- 

ture. The membranes were exhaustively washed with several changes of the 

same buffer containing 0.1% Triton X-100. Amebic proteins that bound ~25I- 
FN were detected by autoradiography of the nitrocellulose membranes. 

Results 

Binding of  u~I-FN to Entamoeba histolytica and 
Laredo Trophozoites 

The kinetics of binding of IESI-FN was studied with both 
E. histolytica and Laredo trophozoites. Laredo was used as 
a control because it is a noninvasive ameba. It is inefficient 
in lytic activities characteristic of E. histolytica, such as col- 
lagenase (23), contact lysis of target cells (25), and erythro- 
phagocytosis (33). E. histolytica and Laredo trophozoites 
bound 12SI-FN in a time-dependent manner (Fig. 1 A). For 
E. histolytica most of the reaction took place during the first 
20 min. At 15 min E. histolytica bound 50% of the total FN 
bound in 1 h. The Laredo amebas bound FN more slowly 
and less effectively, and bound only 57 % of the total protein 
bound by E. histolytica at the end of the incubation period. 
The saturation of the receptor with the ligand was analyzed 
by incubating a fixed number of trophozoites with increasing 
concentrations of 125I-FN. Fig. 1 B shows that the binding 
of E. histolytica reached saturation with 350 ng of radioac- 
tive FN. The highest concentration of FN tested for a given 
number of Laredo amebas was not saturating. Unlabeled FN 
efficiently competed with the radiolabeled ligand for binding 
to the amebas, although with E. histolytica only 70 % inhibi- 
tion was obtained at concentrations as high as 80 Ixg/ml (Fig. 

1 C) of unlabeled FN. This is probably due to the degrada- 
tion of the ligand by the parasite, as will be shown below 

(Fig. 4). With Laredo, where there is no degradation of the 
bound FN, the unlabeled ligand totally inhibited the binding 
of the L2SI-FN to the trophozoites (Fig. 1 C). There was no 
effect on the binding of ~2SI-FN when 100 pg/ml of BSA, 
alkaline phosphatase, coearboxylase, or citochrome c, were 
used as competitors (data not shown). 

Localization o f  Bound Fibronectin in Trophozoites 

The binding of FN to trophozoites was qualitatively assayed 
by indirect immunofluorescence. Live trophozoites, either 
E. histolytica or Laredo, were incubated with FN antibodies 
and then with a second FITC-labeled antibody. Several sur- 
face fluorescence patterns were observed (Fig. 2). Antibod- 
ies were distributed over the entire surface of the amebas, as 
irregular patches, or at times as a cap on one side of the cell. 

Identification o f  a Putative F N  Receptor 

To identify a FN receptor or a peptide with high affinity for 
FN in the trophozoites, solubilized subcellular fractions 
were analyzed by electrophoresis in 10% SDS-polyacryl- 
amide gels and transferred to nitrocellulose filters. The filters 
were then incubated with 12SI-FN and the FN-binding pro- 
teins detected by autoradiography. Fig. 3 B shows that all 
membrane fractions, plasmatic, internal, and nonvesiculated 
(lanes 1-5), contained a single 37-kD protein with FN-bind- 
ing activity. The fraction corresponding to soluble compo- 
nents (Fig. 3, A and B, lanes 6 and 6') that contains mostly 
cytoplasmic proteins did not show the activity. Moreover, 
when nitrocelluloses filters containing membrane fractions 
were incubated with unlabeled FN (100 gg/ml) there was 
complete inhibition of the 125I-FN binding to the 37-kD pep- 
tide (data not shown). These results suggest that the putative 
37-kD FN receptor is a membrane component. Its binding 
activity appears to be very high because the peptide is not 
one of the major components of the membrane preparations 
as seen by the Coomassie stain of the separated proteins (Fig. 
3 A). Binding of FN to the 37-kD peptide was also demon- 
strated by incubating membrane fractions with cold FN fol- 
lowed by the FN antibody and a second antibody coupled to 
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Figure I. Characterization of FN binding to trophozoites. (,4) Kinetics of binding of tzSI-FN to E. histolytica (2 x 106 cells/200 ~tl, e), 
and Laredo (5 x 106 cells/200 ~tl, o). (B) Binding in the presence of increasing concentrations of ~25I-FN. Incubation was for 15 min. 
(C) Competition between t25I-FN and unlabeled FN. 15 I.tg/ml of '~5I-FN were added together with increasing amounts of unlabeled 
fibronectin. Bars represent standard deviation of two separate experiments. 
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Figure 2. Visualization of bound FN to the tropho- 
zoite surface. After incubation with soluble FN for 
15 rnin the cells were fixed and reacted first with 
antifibronectin antibody, then with a second anti- 
body labeled with FITC. Cells viewed by epifluo- 
rescence show different distribution of antibodies 
on the surface. Bar, 10 I~m. 

peroxidase. The positive band corresponding to the 37-kD 
peptide is shown in plasmatic (lane 1 ) and crude membrane 
(lane 2) fractions in Fig. 3 C. 

b~bronectin Degradation by E. histolytica Trophozoites 

The following experiment was performed to determine the 
integrity of the FN that remained associated with the cells 
after the incubation for different lengths of time. After incu- 
bation with ~25I-FN the cells were solubilized and analyzed 
by electrophoresis on acrylamide gels (Fig. 4 A). It can be 
seen that the FN was progressively degraded into several 
peptides. The distribution of the radioactive peptides as- 
sociated with the amebas was determined by fixing cells after 
15 min of interaction with 125I-FN and processing for auto- 
radiography. As can be seen in Fig. 4 B, silver grains were 
mostly localized in the cytoplasm associated with digestive 
vacuoles, indicating internalization of the bound protein. On 
the other hand the 125I-FN bound to Laredo trophozoites 
was not degraded (Fig. 4 C). 

Attachment to and Degradation of FN-coated Surfaces 

Data on binding of soluble FN to E. histolytica indicated not 
only specific binding of the protein to the trophozoites but 
also the release of degraded FN peptides into the medium. 
We measured the adhesion of amebas to fibronectin-coated 
and uncoated surfaces to corroborate these results and to 
study the mechanism of adhesion. It was found that 80% of 
amebas attached to FN-coated surfaces while only 20-25 % 
bound to uncoated plastic or glass. In the presence of FN, 
adhesion was rapid, reaching a maximum between 15 and 20 
min (Fig. 5 A). This is in agreement with the time course of 
soluble FN binding (Fig. 1 A). After maximum binding was 

reached, the number of bound amebas decreased with time 
(Fig. 5 A). Adhesion to plastic was maintained at low levels, 
similar to the adhesion levels found with nonspecific sub- 
strates such as BSA. 

The efficient binding of the amebas to FN-coated surfaces 
followed by the detachment as a function of time, suggested 
that cells may digest the FN substrate and thus be released. 
To test this hypothesis, amebas were allowed to attach and 
interact with FN-coated glass slides for 15 min. The slides 
were then washed and stained with an anti-FN antibody. As 
shown in Fig. 5 B, regions where ceils were attached show 
loss of FN staining (black holes), presumably due to degra- 
dation of FN by the cells. Laredo amebas did not produce 
the black holes after interaction with the FN. 

To corroborate that degradation of FN actually occurs, 
amebas were incubated on L~5I-FN-coated plates and the re- 
lease of radioactivity into the incubation medium was mea- 
sured (Fig. 5 C). It can be seen that E. histolytica releases 
radioactivity into the medium with a time course similar to 
that of the binding of soluble 125I-FN to the cells and that of 
the attachment of cells to FN-coated surfaces. The released 
label in control wells, without amebas, never reached >15 % 
of that released by E. histolytica. Very different results were 
obtained with Laredo trophozoites. Release of label after 120 
min of interaction was only 17 % as efficient as for E. histolyt- 
ica (Fig. 5 C). This result confirms that Laredo lacks the ac- 
tivity(ies) necessary for FN degradation, although the pro- 
tein binds to trophozoites (Fig. 1). 

Changes in the Distribution of Polymerized Actin 
Induced by FN Binding 

Changes in the cytoskeleton induced by binding of the 
amebas to different substrates were analyzed by staining of 
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Figure 3. Identification of a FN-binding peptide. Subcellular fractions from amebas were prepared, solubilized, and fractionated by elec- 
trophoresis on 10% acrylamide gels. The lanes represent: (1) crude membranes; (2 and 3) plasma membranes in duplicate; (4) nonvesicu- 
lated membranes; (5) internal membranes; and (6) soluble components. Two gels were run in parallel, one (A) was stained with Coomassie 
Blue after electrophoresis. The proteins from the other (B) were transferred to a nitrocellulose filter and incubated with t25I-FN. (C) Blots 
of gels containing plasma and crude membrane fractions (lanes 1 and 2) were incubated first with unlabeled FN and then with anti-FN 
antibody and a second antibody coupled to peroxidase. The reactive band is shown. Arrow indicates the position of the 37-kD band identified 
by autoradiography or the FN antibody. 

the polymerized actin with fluorescently tagged phalloidin. 

Amebas were cultured on three different substrates: FN- 

coated glass, BSA-coated glass, and uncoated regular glass. 

Fig. 6. (A and B) shows that the interaction with FN induced 

the polarization of  amebic actin to form special structures at 

the interface with the FN-coated surfaces, reminiscent of  

adhesion plates. These structures were not seen when amebas 

interacted with substrates such as BSA (Fig. 6 C) or un- 

coated glass (Fig. 6 D). Other types of  actin-containing 

structures outlined by rhodamine-phalloidin correspond to 

phagocytic and pinocytic invaginations present in axenically 

cultured trophozoites (5). These invaginations (Fig. 6, ar- 

Figure 4. Degradation and internalization of bound FN. (,4) Autoradiography of the peptides derived from ~25I-FN associated with E. his- 

tolytica trophozoites. Amebas were incubated with soluble ~SI-FN for the indicated time. The cells were pelleted, washed, and dissolved 
in electrophoresis buffer and analyzed on 5-15 % gradient polyacrylamide gels. The first lane contains the ~25I-FN used for the experiment. 
(B) Thin section autoradiography of cells incubated for 15 min with soluble ~25I-FN. Silver grains are mainly associated with digestive 
vacuoles. Bar, 10 gm. (C) Autoradiography of a 5% polyacrylamide gel showing ~25I-FN after the indicated periods of incubation with 
Laredo trophozoites. Incubation conditions were the same as for E. histolytica. 
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rows) show a distinct morphology and can be seen as mouths 
in amebas interacting with different substrates or in tropho- 
zoites kept in suspension. 

Figure 5. Attachment of trophozoites to solid substrates. (A) Time 
course ofE. histolytica trophozoite attachment to fibronectin-covered 
and plastic surfaces. Cells (0.25 x 10~/ml) in serum-free medium 
were incubated at 37°C in microelisa plates coated with FN (o) or 
uncoated (o). The cells that did not adhere were recovered and 
counted. (B) Visualization of the degraded fibronectin under E. his- 
tolytica trophozoites after 15-min incubation of FN-coated slides 
with live amebas and staining of the FN with anti-FN antibody and 
a second FITC-labeled antibody. Bar, 25/.tm. (C) Time course of 
the release of radioactive peptides from a 12SI-FN substrate by 
E. histolytica (e) and Laredo (o) trophozoites. Each point repre- 
sents the average of triplicate samples of two separate experiments. 

Discussion 

Fibronectin, one of the major components of the extracellu- 
lar matrix, is a multifunctional glycoprotein composed of 
highly structured domains, one of which is a cell attachment 
site (14, 37). Attachment of some pathogenic organisms to 
fibronectin at the host cell surface has been described for 
bacteria (1, 9, 31) and more recently for various parasitic pro- 

tozoa (26, 27, 36). Interaction with target cells has been 
found to require fibronectin recognition. 

Entamoeba histolytica, the causative agent of human ame- 
biasis, is an extracellular parasite that can produce cell lysis 
and extracellular matrix damage (4, 17, 25, 31). Our results 
show that E. histolytica specifically binds and degrades 

fibronectin. The binding is faster and more efficient than the 
binding showed by Laredo amebas, which are noninvasive 
but were isolated from a human carrier. E. histolytica 
trophozites degrade the bound fibronectin, liberating smaller 
peptides into the medium, while Laredo is apparently unable 
to degrade the bound FN at detectable levels. 

The binding was specifically inhibited by unlabeled 

fibronectin but not by other proteins. The difference in inhi- 
bition of binding observed between E. histolytica and Laredo 
was probably due to the proteolytic activities on the cell sur- 

face of E. histolytica trophozoites. There were also differ- 
ences in the receptor affinity between the two strains because 
in Laredo saturation was not achieved even at the highest 

concentration of FN tested. 
Because of the proteolytic activity in E. histolytica it was 

not possible to obtain data such as the number of receptor 
molecules/cell, the apparent dissociation constant, and the 
classes of receptors present in trophozoites. Protease inhibi- 
tors that effectively blocked proteolysis such as N-ethyl- 
maleimide, p-hydroxy-mercury-benzoate, and diisopropyl- 
fluorophosphate could not be used with live ceils as they are 
extremely toxic to the amebas and produce immediate lysis. 

We also assayed FN to see whether it could promote 

trophozoite adhesion as it does in other eukaryotic cells. We 
found focal degradation of FN at the contact sites of the 
trophozoites. This could explain why the number of adhered 
cells decreased with time. Laredo on the other hand attached 
to FN-coated surfaces but did not degrade the protein. Local- 
ized fibronectin degradation, which has resulted in the same 
effects described here for E. histolytica, has also been 
reported in virus-transformed fibroblasts (34). 

Release of radioactive FN peptides into the incubation 

medium by E. histolytica and not by Laredo further suggests 
that FN degradation is related to the invasive activity of 
pathogenic amebas. The recognition of FN and its degrada- 
tion at cell contact sites may be the first step in attachment- 
detachment, migration, and subsequent invasion of connec- 

tive tissue. 
Autoradiography of thin sections of E. histolytica after in- 

cubation with soluble 125I-FN showed that part of the pro- 
tein is internalized. The fact that the 125I-FN associated with 
the cell pellets and seen by SDS-PAGE was never found intact 
after 5-10-min interaction suggests that the internalized FN 
was already degraded. By contrast the 125I-FN associated 
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Figure 6. Actin rearrangement 
induced by interaction with 
FN. Tmphozoites were allowed 
to interact with various sub- 
strates for 15 min, fixed, per- 
meabilized, and stained with 
rhodamine phalloidin. (A and 
B) Amebas on fibronectin- 
coated glass slides. The most 
striking patterns of actin stain- 
ing observed were the "adhe- 
sion plates: Endocytic invagi- 
nations were present (arrows) 
in C, amebas incubated on 
bovine serum albumin-coated 
surfaces, and (D) amebas in- 
cubated on glass. Bar, 10 ~tm. 

with Laredo trophozoites remained intact after 60 min of in- 

teraction. 
Changes in the distribution of polymerized actin were 

elicited by the interaction between E. histolytica and FN. 
Special surface modifications, reminiscent of adhesion 
plates, were seen in the trophozoites only when they were in- 

teracting with FN-coated surfaces. It appears that the 
cytoskeletal changes at the site of FN attachment of the 
trophozoites were induced upon contact, presumably medi- 
ated by a receptor. They were not the consequence of or the 

response to contact with any protein-coated surface, as con- 
tact with BSA-coated surfaces did not elicit the formation of 
adhesion plates. Other eukaryotic cells (13, 29) also rear- 

range their cytoskeleton, particularly their actin fibers, in re- 
sponse to interaction with FN. E. histolytica trophozoites 
showed a response to FN apparently common to most inva- 
sive cells. It is interesting that this primitive eukaryote al- 
ready has developed the capacity to respond to signals from 
the extracellular matrix. 

A receptor-mediated mechanism would require the pres- 

ence of the receptor on the ameba's surface. We identified a 
single peptide of 37 kD as the putative receptor in E. histolyt- 
ica trophozoites to which either ~25I-FN or unlabeled FN 

bind in a specific manner. 
In summary, we have demonstrated that FN can bind 

specifically to the surface of live E. histolytica and Laredo 
amebas. In fact, a putative receptor protein of 37 kD has been 
identified by FN-binding assays. E. histolytica degrades and 
internalizes the FN to which it attaches, while Laredo does 
not show this response. Presumably this proteolytic activity 

is an essential factor for tissue invasion. Moreover, the at- 
tachment of amebas to FN-coated surfaces appears to cause 
major rearrangements of their cytoskeleton, as revealed by 
the changes in the phalloidin staining pattern. 

Further characterization of the receptor will be necessary 
to establish its complete identity and similarity with other 

FN receptors, as well as its role in the migration through and 
invasion of tissues by pathogenic amebas. 
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