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Abstract: Evidence has demonstrated that either metabolites or intestinal microbiota are involved in
the pathogenesis of type 2 diabetes (T2D) and diabetic kidney disease (DKD). To explore the interac-
tion between plasma metabolomics and intestinal microbiome in the progress of T2D-DKD, in the
current study, we analyzed metabolomics in the plasma of db/db mice with liquid chromatography–
mass spectrometry and also examined intestinal prokaryotes and entire gut microbiome dysbiosis at
the genus level with both 16S rDNA and metagenomic sequencing techniques. We found that Nega-
tivibacillus and Rikenella were upregulated, while Akkermansia, Candidatus, Erysipelatoclostridium and
Ileibacterium were downregulated in the colon of db/db mice compared with non-diabetic controls.
In parallel, a total of 91 metabolites were upregulated, while 23 were downregulated in the plasma
of db/db mice. The top five upregulated metabolites included D-arabinose 5-phosphate, estrone
3-sulfate, L-theanine, 3′-aenylic acid and adenosine 5′-monophosphate, and the five most signifi-
cantly downregulated metabolites were aurohyocholic acid sodium salt, calcium phosphorylcholine
chloride, tauro-alpha-muricholic acid sodium salt, galactinol and phosphocholine. These plasma
metabolites were interacted with intestinal microbiomes, which are mainly involved in the pathways
related to the biosynthesis of unsaturated fatty acids, fatty acid elongation, steroid biosynthesis,
and D-arginine and D-ornithine metabolism. In the differential metabolites, N-acetyl-L-ornithine,
ornithine and L-kyn could be metabolized by the correspondingly differential ontology genes in the
intestinal metagenome. The current study thereby provides evidence for a gut–metabolism–kidney
axis in the metabolism of db/db mice, in which the gut microbiome and circulating metabolomics
interact, and suggests that information from this axis may contribute to our understanding of T2D
and DKD pathogenesis.

Keywords: diabetic kidney disease; intestinal–metabolic–kidney axe; metabolomics; microbiome;
type 2 diabetes

1. Introduction

The International Diabetes Federation (IDF) Diabetes Atlas 9th edition provided
the latest figures on diabetes worldwide. In 2019, approximately 463 million adults
(20–79 years) were living with diabetes. The prevalence of diabetes is increasing in most
countries. By 2045, the number of people with diabetes is estimated to reach 700 million [1].
Type 2 diabetes (T2D) is the most common form and accounts for about 90% of all diabetes
cases. T2D is a complex disease in which genetic, environmental and metabolic risk factors
are interrelated and contribute to its pathogenesis [1]. Accumulating evidence has demon-
strated that gut microbiome dysbiosis is an additional risk factor in the rapid progression
of insulin resistance in T2D [2,3]. Furthermore, thousands of metabolites derived from
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microbes interact with the epithelial, hepatic and cardiac cell receptors that modulate the
host physiology, while changes in the gut microbiota can shift the host metabolism towards
facilitated progression of T2D [4].

Diabetic kidney disease (DKD) is a main microvascular complication of diabetes and
is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension,
mesangial matrix expansion, glomerular basement membrane thickening and tubulointer-
stitial fibrosis [5,6]. Clinical observation has demonstrated that up to 40% of people with
T2D will develop DKD. Furthermore, DKD has become the leading cause of end-stage
kidney disease (ESKD), and patients need kidney replacement therapy to survive [6,7].
In current clinics of DKD, despite improvements in glycemic control and advances in
reno-protective therapies, such as angiotensin-converting enzyme (ACE) inhibitors or
angiotensin II receptor blockers (ARB), there is a large residual risk of ESKD onset and
progression [8,9]. Therefore, widespread innovation is urgently needed to improve health
outcomes for patients with T2D and DKD.

The db/db mice are characterized by hyperglycemia, obesity and urinary albumin
excretion enhancement and have been widely used as a genetic rodent model for the
study of T2D and DKD [10,11]. In the current study, we first evaluated db/db mice for
diabetes and DKD through clinical indicators such as blood glucose levels, body weight,
albuminuria as well as histopathological examination. We then performed metabolomics
measurements of plasma samples collected from the mice and examined in parallel the
intestinal prokaryotes and gut microbiome dysbiosis at the phylum and genus levels
by using both 16S rDNA and metabolites sequencing protocols. Finally, we analyzed
the interaction between plasma metabolomics and intestinal microbiome. Data from the
current study may provide useful information for better understanding the intestinal–
metabolic–kidney axis involved in the pathogenesis of T2D and DKD and, subsequently,
for developing new biomarkers or targets for early diagnosis and therapeutical potential in
these diseases.

2. Results
2.1. Basic Physio-Pathological Indicators

Blood glucose levels, body weight and urinary albumin/creatinine ratio (UACR)
values of the mice in Ctrl and DKD groups are represented in Figure 1A–C. The db/db
mice in the DKD group had higher blood glucose levels, body weight and UACR values
than the mice in the Ctrl group. Data demonstrated that db/db mice in the DKD group
were not only obese and hyperglycemic but also had albuminuria [12]. Furthermore, HE
staining analysis of kidney tissues indicated that damage of the glomerular structure, loss
of renal cells, podocyte deficiency and other symptoms were seen in the db/db mice in the
DKD group [13] (Figure 1E) compared with the mice in the Ctrl group (Figure 1D). The
original data of blood glucose levels, body weight and UACR values are summarized in
Supplementary Table S1.

Figure 1. Cont.
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Figure 1. Clinical indicators, including body weight, blood glucose levels, histopathological examina-
tion and albuminuria in db/db mice. (A): Body weight (g) between the mice in the Ctrl and DKD
groups from 6 to 21 weeks; (B): blood glucose levels (mmol/L); (C): UACR (ng/µg) in the mice of
the Ctrl and DKD groups at the age of 21 weeks; (D,E): Images of HE stained kidney tissues from
the mice in the Ctrl group and DKD group. Ctrl: control group; DKD: diabetic kidney disease; HE:
hematoxylin–eosin; UACR: urinary albumin/creatinine ratio. p < 0.05 * and p < 0.01 **. Data are
means with SE, n = 4. Scale bars = 20 µm.

2.2. Identification of Intestinal Prokaryotes

After performing the bioinformatics analysis as described in the methods section,
we obtained the relative abundance of each level of the intestinal microbiome with 16s
rDNA (Supplementary Table S2A) and metagenomic sequencing (Supplementary Table
S2B). To analyze the differences in intestinal microbiome between the Ctrl and DKD groups
globally, a biplot of the generic-level PCA was created, as represented in Figure 2A,B. PC1
and PC2 showed approximately 80% variability (herein, data about prokaryotic content
annotated by NR in the analysis of metagenomics are presented). Regarding the confi-
dence intervals between the Ctrl and DKD groups, there was only a small overlap. We
thus preliminarily concluded that the microbes of these two groups were different and
further explored the data. The details of the composition and distribution of microbiome
in the colon are shown in Figure 2C–F as community accumulation histograms of the
relative abundance of the microbiome at the phylum and genus levels, as revealed by the
analyses of either 16s rDNA sequencing or metagenomics, respectively. It was reported
that Bacteroidete and Firmicutes comprise the majority (approximately 80%) of prokaryotic
microorganisms, according to a previous study [14]. At the phylum levels, it was reported
that T2D and obesity had a positive relationship with the relevant abundance of Firmicutes
but negative with Bacteroidete [15]. Nevertheless, data from the current study suggest that
there was no significant difference in the ratio of these two microbes between the Ctrl and
DKD groups (Supplementary Figure S1A,B). At the genus level, Muribaculaceae_norank,
Akkermansia, Helicobacter and Lachnospiraceae co-occurred in the top 10 genera, while Murib-
aculaceae_norank was the most numerous. In another finding, whether in phylum or genus
levels, the microbiota in the Ctrl and DKD groups of mice showed specific distribution
patterns in phylogenetic trees, which meant that the intestinal prokaryotes represented
were homogeneous within the groups and heterogenous between the groups. However, the
phylum levels, seen in clusters of metagenomes, between the Ctrl and DKD groups were
chaotic; analysis of the phylum levels were obviously not suitable for inferring differences
between these two groups.
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Figure 2. Composition of the intestinal microbiome in db/db mice detected with 16S rDNA and
metagenomic sequencing analyses. (A,B) The relative abundances of 16S rDNA and metagenome
at each genus level were used in Principal Component Analysis (PCA). X- and Y-axes represent the
1st and 2nd components of the PCA plot, respectively. (C,D): Community accumulation histogram
showing the relevant abundance of top 10 phyla and top 20 genera detected by 16S rDNA sequencing.
(E,F): Relevant abundance of top 10 phyla and top 20 genera detected by metagenomics.
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2.3. The Genus Levels of Microbes in db/db Mice of DKD Group

To reveal the key differences in microbes between the Ctrl and DKD groups, we carried
out different analyses of either 16s rDNA sequencing or metagenomics at the genus level
(Figure 3). Analysis results indicate that there was no significant change at the phylum level
between the Ctrl and DKD groups, whereas there were dozens of significant variations
at the genus level (p < 0.05). Due to the systematic difference of sequencing depth or
annotation database between 16s rDNA and metagenomic sequencing technologies [16],
the data from 16s rDNA sequencing implicated 14 genera with significant difference
(Figure 3A), while metagenomic sequencing resulted in 68 genera (Figure 3B). Despite
this, the technical duplication of six genera between these two different analyses was still
found. In db/db mice of the DKD group, Negativibacillus and Rikenella were found to be
upregulated, while Akkermansia, Candidatus, Erysipelatoclostridium and Ileibacterium were
downregulated (Figure 3C,D), suggesting that these microorganisms may have potential
associations with T2D and DKD. For instance, the abundance of Akkermansia measured
in 16s rDNA and metagenomics sequencing was 48.26 and 32.41 times higher in the Ctrl
group compared with the DKD group. The Akkermansia genus contains two species: A.
glycaniphila and A. muciniphila. The results of metagenomics showed that the contents of
these two species in the Ctrl group were 1.44 and 32.39 times higher than those in the DKD
group (Figure 3E). There were significant differences in intestinal prokaryotes between the
Ctrl and DKD groups, while technical duplication was achieved between these two groups.
However, the specific biological significance of the difference in abundance of these species
still needs to be further evaluated in combination with information about gene functional
annotation from the metagenomic sequence and quantification of the metabolomics.

2.4. Intergroup Differences in Functional Annotations

Considering the limited information available from the changes in the relative abun-
dance of microorganisms, the annotation of functional changes in the sequences of intestinal
microbiome is necessary. We thus compared metagenomic sequences in COG [17], KEGG,
CAZy [18] and CARD [19] databases to obtain the sequence annotations. Significantly
different sequences obtained by COG annotation are shown in Figure 4A, while all origi-
nal annotation information is represented in Supplementary Table S3. Among them, the
top five COG sequences with the highest downregulation multiple in the DKD group
were COG5644 (uncharacterized, log2FC = −8.82), COG1562 (ERG9, log2FC = −5.20),
COG1928 (PMT1, log2FC = −4.79), COG1688 (RAMP, also known as DTL, log2FC = −3.80)
and COG1764 (OsmC, log2FC = −2.73). On the contrary, COG1988 (predicted hydrolases,
log2FC = 1.62), COG1719 (predicted hydrocarbon binding protein, log2FC = 1.63), COG0043
(UbiD, log2FC = 1.66), COG1972 (NupC, log2FC = 1.70) and COG5640 (serine protease,
log2FC = 3.18) had the most increased multiples.
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Figure 3. The gut microbiome in db/db mice underwent specific changes at the genus level, and
the changes were repeatable between 16s rDNA and metagenomics. (A,B): Heat map of differential
genera screened by Wilcox test according to 16S rDNA sequencing data (A) and metagenomics (B);
(C,D): Point plots of genera with significant differences and consistent trends in 16S rDNA sequencing
(C) and metagenomics (D); (E): Two species of Akkermansia and their expression between the Ctrl and
DKD groups. * p < 0.05.
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Figure 4. The annotation results from COG, KEGG and CARD databases showed that the metabolic
capacity of DKD microbiome changed. (A): The heat map shows the COG annotation results with
significance; (B): COG pathway enrichment analysis bubble diagram was obtained using the Clus-
terProfile package in R; (C): The heat map displays the level 3 sequence annotation results from the
KEGG database; (D): In CAZy annotation results, transcripts per million (TPM) values of cohesin
and dockerin are shown at the class level; (E): CAZy annotation results at the family level show TPM
values in the heat map (scaled by rows). * p < 0.05.

To explain the function of COG annotation data as described above more specifically,
we used ClusterProfile [20] to conduct a COG pathway enrichment analysis. The enrich-
ment analysis of the bubble chart (Figure 4B) informed us that lipid transport, carbohydrate
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transport and metabolism pathways had the highest rich factor. The level 3 KEGG pathway
annotation difference showed that many secondary metabolite-related pathways, such
as fatty acids, terpene, steroid, amino acid and polysaccharide, are more active in the
colon of Ctrl group mice (Figure 4C). Considering that saccharide, the most important
substances in organisms, is also a major cause of microvascular disease, including DKD,
we displayed the class (Figure 4D) and family (Figure 4E) levels of the corresponding
different sequences from the CAZy database obtained through BLASTP. At the class level,
only cohesin and dockerin had significant differences, and both were increased in the
Ctrl group (Figure 4D). At the family level, it is noteworthy that sequences related to
N-acetyllactosaminide transport (GT31 and GH101) and degradation (GH123) all showed
an obvious downward trend in DKD (Figure 4E). Sequences of metabolism (CBM73 and
GH75) related to chitin, a derivative of N-acetyllactosaminide, similarly changed between
the two groups. Moreover, it was obvious that most of the significantly different genes
related to carbohydrate metabolism were downregulated in the DKD group. There were
only four upregulated families in DKD, of which GH70, GH153 and GT101 are all related
to glucose metabolism, and their substrates are Glucan (or Saccharose), Glucosamine and
Glucose, respectively.

2.5. Interaction between Plasma Metabolomics and Intestinal Microbiome

In the current study, we attempted to find evidence of microbial influence on plasma
metabolite content through functional annotation of the metagenome. In level 3 KEGG
pathway annotation, we found that the metagenomic sequence changed significantly in
the pathways related to the biosynthesis of unsaturated fatty acids, fatty acid elongation,
steroid biosynthesis, D-arginine and D-ornithine metabolism, etc., between the two groups
(Figure 4C). We conducted metabolomic analyses of plasma samples collected from the
two groups of mice and found that the metabolism of db/db mice was closely related
to the process of T2D and DKD. Metabolites discriminating the Ctrl and DKD groups
(p < 0.05 and |LogFoldChange| > 0.5) are shown in Figure 5A. A total of 91 metabolites
were found to be upregulated in DKD, while 23 were downregulated. The top five up-
regulated metabolites with maximal fold changes were D-arabinose 5-phosphate, estrone
3-sulfate, L-theanine, 3′-aenylic acid and adenosine 5′-monophosphate, while the five
most significantly downregulated metabolites included aurohyocholic acid sodium salt,
calcium phosphorylcholine chloride, tauro-alpha-muricholic acid sodium salt, galactinol
and phosphocholine. As a pivotal indicator of kidney diseases, creatinine levels in plasma
samples from the DKD group were 1.55 times higher than those from the Ctrl group. We
thus summarized the effects and mechanisms of differentiated metabolites supported by
evidence from the literature on DKD in Table 1. In this table, nineteen amino acid deriva-
tives, six lipid derivatives and two carbohydrate derivatives in the differential metabolites
were authentically associated with DKD, suggesting that they may play a role of alleviation
or deterioration in the pathogenesis of DKD.

In carbohydrate metabolism, we found that galactinol, isomaltose, 2-deoxyglucose-
6-phosphate and D-arabinose 5-phosphate were upregulated (Figure 5B). In amino acid
metabolism, the plasma content of valine, leucine and isoleucine belonging to BCAA was
higher in the DKD group compared with that in the Ctrl group (Figure 5C). We also found
differences in the D-arginine and D-ornithine metabolic pathways in the KEGG annotation
(Figure 4C). In the metabolome, downregulation of L-arginine and upregulation of N-acetyl-
L-ornithine and Ornithine were displayed (Figure 5C), and the related encoding sequences
of N2-acetylornithine deacetylase (NAOD) and carbamoyl phosphate synthetase I (CPS-I)
decreased in the DKD group (Figure 5D). Furthermore, L-kyn was decreased in the DKD
group (Figure 5C), while the gene abundance of tryptophan 2,3-dioxygenase (TDO) related
to L-kyn generation was lower in the DKD group (Figure 5D). In lipid metabolism, a total
of 42 different lipid metabolites were identified. Most of them were upregulated in DKD
mice (Figure 5E), while only 13-hotre (R, 13-hydroxyoctadecatrienoic acid, a derivative of
linoleic acid) was downregulated. Furthermore, we not only found that 2 lysophosphatidic



Metabolites 2022, 12, 775 9 of 19

acid (Lysopa) was elevated in the DKD group, but also detected that 6 lysophosphatidyl
choline (Lysopc), 3 lysophosphatidyl ethanolamine (Lysope) and 1 lysophosphatidyl serine
(Lysops) more broadly showed the same trend (Figure 5E).

Figure 5. Changes in amino acids and lipid metabolites in plasma of db/db mice may be caused by in-
testinal microbiome. (A): Dot plots show the difference in multiples (horizontal axis) and significance
(the larger the dot, the higher the significance) of all different metabolites (metabolites with p < 0.05
were retained) between the Ctrl and DKD groups. At the same time, different types of metabolites
are distinguished by different colors. (B): Chromatographic peak area integral (CPAI) of four carbo-
hydrate metabolites in the DKD and Ctrl groups (* p < 0.05, ** p < 0.01, *** p < 0.001). (C): A heat
map shows CPAI of amino acid metabolites (metabolites with p < 0.05 and |log2FoldChange| > 0.05
were retained) in the Ctrl and DKD groups and scaled by rows. (D): The intergroup TPM value of
the enzyme coding sequence annotated by KEGG. (E): A heat map of lipid metabolites, which is
presented similar to Figure 5C.
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Table 1. Mechanisms of amino acids, lipids and carbohydrate metabolites in DKD.

Metabolites Classification Roles Mechanisms Regulation in
Current Study

γ-Glutamyl glutamic Amino acid
derivative Alleviation It may enhance mitochondrial metabolism and

insulin secretion. Down

N-Carbamyl-L-
glutamicacid

Amino acid
derivative Alleviation Activates the urea cycle to prevent high

blood ammonia. Down

L-Methionine Amino acid
derivative

Alleviation/
Deterioration

Moderate intake can maintain glucose and lipid
metabolism homeostasis in T2D. However,

excessive intake can lead to increased insulin
resistance, oxidative stress and inflammation.

Down

D-Methionine Amino acid
derivative Alleviation Protects the kidneys through antioxidants. Down

L-arginine Amino acid
derivative Alleviation

Protects renal endothelial cells by participating
in nitric oxide synthesis, subsequently

increasing glomerular filtration rate and tubular
reabsorption and reducing proteinuria.

Down

L-theanine Amino acid
derivative Alleviation

L-theanine relieves liver and kidney damage by
reducing oxidative stress, inflammatory

response and apoptosis.
Down

Glu-Glu Amino acid
derivative Alleviation Similar to Glutamyl glutamic. Down

L-Cystathionine Amino acid
derivative Alleviation L-cystathionine can inhibit

mitochondria-dependent apoptosis. Down

L-Kynurenine Amino acid
derivative Alleviation L-kynurenine can hinder oxidative stress and

immune response. Down

Histamine Amino acid
derivative

Alleviation/
Deterioration

Although histamine is a well-known
inflammatory mediator, there is also evidence

that it may reduce kidney damage in glomerular
basement membrane glomerulonephritis.

Down

3-Aminoisobutyric acid Amino acid
derivative Alleviation

It has several effects, including improving
inflammation, insulin resistance, glucose

homeostasis and lipid metabolism.
Up

N-acetyl-L-ornithine Amino acid
derivative Deterioration

The content of N-acetyl-L-ornithine in T2D
patients with DKD increased significantly, and it

is an important progressive factor of DKD.
Up

Ornithine Amino acid
derivative

Indirect
effects

Polyamines formed after ornithine
decarboxylation led to renal hypertrophy. Up

L-Homocitrulline Amino acid
derivative Deterioration

The formation of L-homocitrulline produces
ammonia, which triggers cytotoxicity

of macrophages.
Up

L-Hydroxylysine Amino acid
derivative Deterioration

Excessive amounts of L-hydroxylysine can cause
collagen deposition, which leads to thickening of

the glomerular basement membrane.
Up

DL-Valine Amino acid
derivative Marker It is a marker of DKD mouse plasma induced

by STZ. Up

DL-Leucine Amino acid
derivative Marker Like DL-valine, it can be identified as a marker

of DKD. Up

Isoleucine Amino acid
derivative Marker Similar to DL-Valine and DL-Leucine. Up
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Table 1. Cont.

Metabolites Classification Roles Mechanisms Regulation in
Current Study

L-Dopa Amino acid
derivative Deterioration

L-dopa can normalize filtration fraction and
correct pre- and post-glomerular resistance by

means of preferential post-glomerular
vasodilatation as a precursor of

dopamine synthesis.

Up

Alpha-Linolenic acid Lipid derivative Marker Linolenic acid intake was negatively correlated
with DKD in Brazilian T2D patients. Up

13-Hotre(R) Lipid derivative Alleviation

13-Hotre(R) improves inflammation and
oxidative stress, and low long-term 13-Hotre(R)

intake is associated with the development of
chronic kidney disease in T2D.

Down

Carnitine and its
derivative Lipid derivative Marker and

Alleviation

Carnitine, a derivative of methionine, increases
circulatory levels in chronic renal failure, but
inhibits tubular oxidative stress, interstitial

fibrosis and apoptosis.

Up

Lysophosphatidylcholine
and derivatives Lipid derivative Marker and

Deterioration

As a pro-inflammatory signal, these substances
can recruit macrophages to attack. The

accumulation level and activation degree of
receptors are positively correlated with UACR

and glomerular hypertrophy.

Up

Isoproterenol Lipid derivative Alleviation/
Deterioration

On the one hand, there is evidence that
isoproterenol can promote vascular dilation and

stimulate proximal tubule proliferation to
protect kidney; on the other hand, there are

studies supporting that isoproterenol can cause
renal tubule injury by triggering oxidative stress

and endoplasmic reticulum stress.

Up

7-KCHO Lipid derivative Deterioration
It is a kind of cholesterol derivative, which can

induce vascular cell apoptosis by promoting
oxygen and inflammation.

Up

2-deoxyglucose-6-
phosphate

Carbohydrate
derivative Deterioration It increases the activity of glucokinase causing

hyperactivation of glucose metabolism. Up

D−Arabinose
5−phosphate

Carbohydrate
derivative Marker Circulation level of it increased in STZ modelled

diabetic rats. Up

We further calculated the Pearson coefficients among clinical indicators, metabolite
CPAI, TPM values from the KEGG L3 annotation in the metagenome and relative abundance
of microbiology to reflect the correlation between them (Figure 6A). The number of KEGG
L3 Pathway and microbial genera significantly correlated with UACR was 15. Almost all
metabolites had significant correlation with microorganisms, which provided a reference
for the relationship between the intestine, metabolism and kidneys.

In CARD, there were a few million genomic resistance variants. Of them, 4498 with
antibiotic resistance ontology (ARO) were supported by experimental publications, which
can provide researchers with bacterial antimicrobial resistance (AMR) genes, antibiotic
molecules, drug classes and related molecular mechanisms [19]. We thus analyzed the
data based upon the comparison of the metagenomic sequences from the current study
with the information from CARD, and the annotations for the AMR genes are represented
in Figure 6B. We also performed a GSVA and obtained the GSVA score [21] of antibiotic
resistance in the groups (Figure 6C) and the antibiotic-related AMR genes (Supplementary
Table S4). The results of the analysis of differences, obtained using the generalized linear
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model, indicated that there were significant differences in the resistance of eight antibiotics
between the Ctrl and DKD groups.

Figure 6. Correlations between DKD indicators, metabolites, relative abundance of microorganisms
and microbial genes. (A): Correlation heat maps show the degree of association between clinical
index test, metabolite CPAI, TPM values from KEGG L3 annotation in the metagenome and relative
microbial abundance (* p < 0.05, ** p < 0.01). (B): The bar chart shows the different TPM multiples of
bacterial (AMR) drug classes between groups. Up and down represent the changes in the DKD group
compared with the Ctrl group. (C): The dot plots show the distribution of GSVA score annotated to
AMR gene family sequences across the groups, and each antibiotic has a p value of less than 0.05.



Metabolites 2022, 12, 775 13 of 19

3. Discussion

In the current study, we provide evidence that the intestinal–metabolic–kidney axis
exists in db/db mice, in which intestinal microbiomes and circulating metabolites are
related and interact. We analyzed the intestinal prokaryotes and gut microbiome dys-
biosis at the genus level using both 16S rDNA and metagenomic sequencing protocols
(Figure 2). Data from both the PCA analysis and Bray–Curtis distance demonstrate that
genus-level microbes are more competent to show the difference between DKD and Ctrl
mice than phylum-level microbes. Six genera, including Akkermansia, Ileibacterium, Candi-
datus, Negativibacillus, Erysipelatoclostridium and Rikenella, had significant and repeatable
inter-group differences. Of these six genera, Akkermansia and Erysipelatoclostridium have
been reported to be associated with T2D or obesity. Meanwhile, we also identified the other
four genera, which have not been reported. In the past decade, several research groups
showed that there is a negative correlation between A. muciniphila abundance and over-
weight, obesity, T2D or hypertension [22]. Depommier et al. then conducted a randomized,
double-blind, placebo-controlled pilot study on the administration of A. muciniphila in over-
weight/obese insulin-resistant volunteers. The outcomes of this clinical trial demonstrated
that supplementation with A. muciniphila shows safety, tolerability and efficacy to improve
metabolic parameters, such as insulin resistance, circulating lipids, visceral adiposity and
body mass [22]. Kim et al. performed another clinical trial in T2D patients and found
that metformin is partly attributable to the gut microbiome, and Erysipelato clostridium is
negatively associated with metformin′s hypoglycemic effect in T2D patients [23], while the
remaining four mechanisms involved remain to be explored. Thus, the current study has
demonstrated that these six genera may be associated with DKD.

Many metabolites have relationships with diabetes and DKD. We thus summarized
the evidence from the literature in Table 1 for further reference. For instance, many amino
acids (e.g., L-Methionine, L-theanine, L-Cystathionine) act as antioxidants and maintain
the balance of carbohydrate and lipid metabolism to protect the kidney but decrease in
plasma of DKD [8,24]. In terms of lipid metabolites, all 40 lipids with significant differences,
except 13-Hotre(R), were upregulated in the DKD group. Among them, the increase in
L-Carnitine, 7-Kcho, Lysopa and their derivatives also indicates a more active inflammatory
state, which may cause the activation of various immune cells, including Mac and T
Cells [25,26]. However, many lipid derivatives (e.g., Carnitine, 7-KCHO, Isoproterenol)
were elevated in DKD (Figure 5E), and it has been shown that some lipid derivatives
have pro-inflammatory [26], pro-oxidative stress and pro-apoptotic effects [27]. However,
carbohydrate derivatives other than glucose seem to play less important roles in DKD
progression than amino acids and lipids (Figure 5B,C,E). For the significantly differentiated
metabolites we found, we summarized and made Table 1 to reveal their association with
DKD more intuitively.

Regarding the general adaptability and diversity of microorganisms, we believe that
the sequence function of the microbiome is more significant than its abundance in DKD
pathogenesis. We then performed functional annotation on metagenomic sequences using
multiple databases to combine metabolomics to reveal the underlying mechanisms that
influence DKD progression. The annotation by COG and KEGG indicated that the functions
of metagenomic sequences in carbohydrate, amino acid and lipid metabolism fluctuated in
DKD (Figure 4A–C,E).

The result of the metabolome analysis showed that L-arginine was deficient when
N-acetyl-L-ornithine and ornithine accumulated (Figure 5A,C). Coincidentally, N-acetyl-
L-ornithine can be deacetylated by NAOD to form L-Arginine, which is the substrate
for ornithine. In the current KEGG annotation, the NAOD encoding gene reads were
found to be decreased in DKD (Figures 5D and 7). In addition, encoding sequences of
CPS-I decreased in the DKD group, while CPS-I can use ammonia, which is produced
by ornithine, to synthesize carbamyl phosphate and participate in the ornithine cycle by
converting it into citrulline. The decrease in CPS-I leads to a decrease in the synthesis of
citrulline, which explains the upregulation of ornithine (Figures 5D and 7). Moreover, as
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a tryptophan derivative, the L-Kyn level in the plasma of the DKD group was decreased,
while the gene abundance of TDO, one of the rate-limiting enzymes of the Kynurenine
pathway related to L-Kyn generation, was lower in the DKD group (Figures 5D and 7).

Figure 7. Pathways of communication between the microbiota and the kidney. Multiple indirect (e.g.,
N-acetyl-L-ornithine, kynurenine and L-arginine) pathways exist through which the gut microbiota
can modulate the gut–kidney axis. NAOD: N2-acetylornithine deacetylase; IDO1: Indoleamine-2,3-
Dioxygenase 1; TDO: Tryptophan 2,3-dioxygenase; ASL: Argininosuccinate lyase; ARG1: Arginase 1;
CPS-I: Carbamoyl phosphate synthetase I; ASS: Argininosuccinate synthetase.

In this study, we found that the function of the metagenomic sequence has a certain
effect on plasma metabolite content. For example, in terms of amino acid metabolism, there
are more differential metabolites for DKD supported by the literature than carbohydrates
and lipids (Table 1). Moreover, not only did the metabolic capacity of D-Arginine and
D-ornithine decline in KEGG Level 3 annotation, but a decrease in the NAOD coding
sequence was also found, which leads to an increase in Ornithine and a decrease in L-
Arginine in the plasma of DKD; N-acetyl-L-Ornithine cannot be metabolized properly and
thus accumulates in the plasma (Figure 5C,D and Figure 7). A balance of these two amino
acids is also thought to be important for maintaining patients′ glucose tolerance levels [8].
A clinical observation has reported that N-acetyl-L-ornithine levels in subjects with diabetes
and DKD were higher than those in individuals with normal glucose tolerance [28]. For
another amino acid, the decrease in L-Kyn content in DKD may be related to the decrease
in the TDO coding sequence (Figure 5D) and further correlated with proteinuria and
inflammation [24].

To explore the biomarkers for the diagnosis and treatment of DKD, we analyzed the
Pearson coefficients between UACR, blood glucose, microbial abundance and metabolites.
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The results showed that almost all metabolites were significantly correlated with microor-
ganisms (Figure 6A), and there were a dozen genomic resistance variations in CARD
(Figure 6B,C). In agreement, the most direct approach to microbial remodeling is antibiotic
therapy. We thus focused on detection of AMRs and innovated the collation of antibiotic
resistance targeted by various AMRs with GSVA analysis. The current study demonstrated
that, among the changes in antibiotic resistance between groups, the polyamines with broad
antibacterial spectrum may play a central role in the development of T2D-DKD. The antibi-
otics with increased resistance in the Ctrl group of this study may be expected to be used for
assistant treatment in DKD. These microorganisms and antibiotics we found are expected
to provide innovative ideas for the prevention and treatment of DKD as supplements.

In conclusion, we comprehensively monitored the progression of DKD, intestinal
microbiome and plasma metabolic changes in non-diabetic control and db/db mice and
provided evidence that the intestinal–metabolic–kidney axis exists in DKD. The results
indicate that intestinal microbiome disturbances can directly or indirectly affect plasma
metabolism and subsequently affect renal status and functions. Therefore, the data from
the current study are useful for better understanding the pathogenesis of T2D and DKD.

4. Material and Methods
4.1. Animals and Physio-Pathological Parameters

Six-week-old male db/db (BKS.Cg-Dock7m +/+ Leprdb/J) mice and C57BL/6J mice
were purchased from Cavens Laboratory Animal Co. Ltd. (Changzhou, China). The mice
were kept in the barrier environment of the animal experiment center, Xuanwu campus,
China Pharmaceutical University (CPU), and fed a normal pellet diet with water and food
provided ad libitum for 4 weeks. Two groups of mice were retired breeders housed for
at least 2 weeks before all experimental procedures. For the group of DKD mice, urine
samples were collected by metabolic cage (DXL-XS, FENGSHI, Suzhou, China) for 24 h
once a week. The urine samples were used to determine microalbuminuria (MAU) and
creatinine (Cr); fresh urine was centrifuged (956× g, 10 min), and the supernatant was then
fetched and stored at −80 ◦C. Concentrations of MUA and Cr were measured by ELISA
quantitative kits (Elabscience Biotechnology, Houston, TX, USA) with Sandwich-ELISA
and Competitive-ELISA principles, respectively. The db/db mice with DKD (DKD group)
were diagnosed from a urinary albumin/creatinine ratio (UACR) greater than 30.0 ng/µg
and were included in the DKD group, while the Ctrl group consisted of C57BL/6J mice
with normal blood glucose levels and UACR values.

After the mice were anesthetized with sodium pentobarbital (20 mg/mL, 50–70 mg/kg)
at 21 weeks of age in the laboratory of molecular medicine, blood samples were collected
from the mice by eyeball extraction, and kidneys were flushed with PBS via aortic catheter-
ization at a speed of 6 ml/min until blanched. All left kidneys were placed in general
purpose tissue fixative fluid (Servicebio, Wuhan, China) for hematoxylin–eosin (HE) stain-
ing. The colons of the mice were surgically ligated to ensure that they were free from
contamination by environmental microorganisms and then stored in liquid nitrogen. All
experiments with the mice were approved by the Institutional Animal Care and Use
Committee of CPU.

4.2. Metabolomic Analysis with Plasma Samples

For metabolomic analysis, 100 µL plasma was added with 4 times volume of pure
methanol for the precipitation of protein. After vortex oscillation and ice incubation stand-
ing for 5 min, the supernatant was collected after high-speed centrifugation at 15,000× g,
4 ◦C for 5 min. The collection was centrifuged again in a centrifuge tube at 15,000× g,
4 ◦C for 20 min after adding 1/2 volume of mass spectrometry-grade water. Finally,
the supernatant was collected for analyses of the targeted metabolomics using liquid
chromatography–mass spectrometry (LC-MS) based on the highly sensitive SCIEX QTRAP®

6500+ mass spectrometry platform (SCIEX, Framingham, MA, USA), and a blank control
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was prepared with 53% methanol solution containing 0.1% formic acid, while the pre-
treatment process was the same as that of the experimental sample.

MS analyses were performed in the ExionLC™ AD system (SCIEX) combined with a
QTRAP® 6500+ mass spectrometer (SCIEX). Samples were injected onto a BEH C8 Column
(100 × 2.1 mm, 1.9 µm) with a 30 min linear gradient at a flow rate of 0.35 mL/min for
the positive polarity mode. As eluents, 0.1% Formic acid-water and 0.1% Formic acid-
acetonitrile were used. The solvent gradient was set as follows: 5% B, 1 min; 5–100% B,
24.0 min; 100% B, 28.0 min; 100–5% B, 28.1 min; 5% B, 30 min. The QTRAP® 6500+ mass
spectrometer was operated in positive polarity mode with Curtain Gas of 35 psi, Collision
Gas of Medium, Temperature of 500 ◦C, IonSpray Voltage of 5500 V, Ion Source Gas of 1: 55,
Ion Source Gas of 2: 55. The parameters for negative polarity mode were the same as those
for positive polarity mode except column (aHSS T3, 100 mm × 2.1 mm), linear gradient
(25-min), flow rate (0.35 mL/min), solvent gradient (2% B, 1 min; 2–100% B, 18.0 min; 100%
B, 22.0 min; 100–5% B, 22.1 min; 5% B, 25 min) and IonSpray Voltage (−4500 V).

4.3. Precondition of 16S rDNA and Metagenomics Sequencing

Colons were stored in liquid nitrogen for genomic DNA extraction. After a quick
return to normal temperature in a 25 ◦C water bath, genomic DNA from the colon contents
was extracted using the EZNA Stool DNA Kit (Omega Bio-tec, Norcross, GA, USA), and the
extraction quality was observed by 1% agarose gel electrophoresis (AGE). One part of the
extracted DNA was amplified by PCR using primers 341F (5′-CCTAYGGGRBGCASCAG-3′)
and 806R (5′-GGACTACNNGGGTATCTAAT-3′) belonging to the V3–V4 variable region
of 16S rDNA. Afterwards, the PCR products were examined by 2% AGE and recycled by
gel-cutting using an AxyPrepDNA Gel Recovery Kit (Axygen, Union, CA, USA) for 16S
rDNA sequencing (Illumina, San Diego, CA, USA).

Another part of the fresh genome DNA samples was directly processed into 450 bp
fragments by an ultrasonic crushing machine named Covaris M220 (Covaris, Woburn,
MA, USA). Afterwards, the metagenomic library was prepared for PE450 high-throughput
sequencing (Illumina, San Diego, CA, USA). Low-quality and mice genomic DNA reads
were removed before analysis.

4.4. Bioinformatical and Statistical Analyses

To analyze the intestinal microbiome based upon data from the 16S rDNA sequencing,
Trimmomatic-0.38 was used to carry out the quality control (QC) on the pair-end (PE),
while FASTQ files were removed from the machine. Reads with tail mass less than 20 bases
(window size was 10 nt) were filtered out during the process, and reads with length less
than 50 bases were discarded after QC. OTU clustering of non-repeated reads after splicing
under 97% similarity was implemented by Usearch (version 10). The Ribosomal Database
Project (RDP) Classifier Bayesian algorithm was adopted to perform taxonomic annotation
on Silva database for 97% similar level of OTU representative sequence alignment to obtain
the corresponding species classification information (domain, phylum, class, order, family,
genus, species) of each OTU.

For further analysis of the intestinal microbiome based upon the data from metagenome,
the QC process was similar to the 16S rDNA section, except that the sequences with
length less than 70 bp were deleted after mass pruning. Clean reads were assembled
with MEGAHIT (version 1.2.9), and species taxonomic annotation was performed by
Kraken2 (version 2.0.6-beta) to obtain abundance information. Then, nucleic acid sequences
were clustered by CD-HIT (version 4.5.7) with 95% similarity and then translated into
protein sequences by Transeq (version 6.6.0.0); after that, the annotated information was
obtained from Clusters of Orthologous Groups of proteins (COG), Comprehensive Antibi-
otic Resistance Database (CARD), Non-Redundant Protein Sequence Database (NR) and
Carbohydrate-Active enZYmes Databases (CAZy) using the BLASTP function of Diamond
(version 0.8.36). Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations at all
levels were done through KofamScan based on KEGG Orthology and Hidden Markov
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Model. In the functional annotation, the pathway enrichment analysis was performed
using ClusterProfile (Version 4.0.5), and bubble mapping was visualized with ggplot2
(Version 3.3.5) packages. GSVA was carried out through GSVA Packages (Version 1.34.0)
in R, and GSVA score was obtained to conduct difference analysis through a generalized
linear model in limma (Version 3.42.2).

SCIEX OS (version 1.4) was used to dispose the mass spectrum file, and the integration
and correction of chromatographic peaks were performed. Urine metabolites data were
identified by comparing the collision energy, parent ion, product ion, retention time and
declustering potential of each substance recorded in the novogene database (novoDB),
which was built by analytical standards. The relative quantities of metabolites represented
by the area integration data of all chromatographic peaks were obtained while parameters
were set as follows: minimum peak height, 500; gaussian smooth width, 1; signal/noise
ratio, 5.

Considering that the relative abundance data of omics did not conform to normal
distribution, the difference analysis mentioned in this paper was implemented by a rank
sum test in R through the Wilcox test function. Subsequent visualization, such as Principal
Component Analysis (PCA), was completed by ggord (version 1.1.6) in R (version 3.6.0)
with relative abundance as input data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12090775/s1, Figure S1: At the phylum level, there was
no significant difference in relative abundance of Bacteroidetes and Firmicutes between Ctrl and DKD
groups; Figure S2: Evaluated that db/db mice through clinical indicators, detected metabolomics with
plasma samples, examined the intestinal prokaryotes and gut microbiome dysbiosis by using both 16S
rDNA and metagenomic sequenc-ing protocols; Table S1: Body weight, blood glucose levels, UACR
in the mice of Ctrl and DKD groups; Table S2: Relative abundance of microorganisms in each sample
at each classification level (domain, phylum, class, or-der, family, genus, species) obtained from 16S
rDNA sequencing analysis (A) and metagenomes (B); Table S3: The annotated results of metagenomic
sequences in COG, KEGG, CAZy and CARD databases; Table S4: This list can be used for GSVA
analysis and display relationship between AMR and corresponding antibiotic resistance modified
from recorded in the CARD; Table S5: This data contains compound characteristics, quantitative
results, and information on differences between groups for each substance detected in metabonomics.
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ARO antibiotic resistance ontology
CARD comprehensive antibiotic resistance database
CAZy carbohydrate-active enzymes databases
COG clusters of orthologous groups of proteins
COXs cyclooxygenases
CPAI chromatographic peak area integration
Cr creatinine
DKD diabetic kidney disease
ECM extracellular matrix
ESKD end-stage kidney disease
G-3-P glycerol-3-phosphate
GBM glomerular basement membrane
HE hematoxylin-eosin
HMC human mesangial cells
IDF International Diabetes Federation
LC-MS liquid mass spectrometry
L-Kyn L-Kynureniure
LOXs lipoxygenases
LPAR lysophosphatidic acid receptor
Lysopa lysophosphatidic acid
Lysopc lysophosphatidyl choline
Lysope lysophosphatidyl ethanolamine
Lysops lysophosphatidyl serine
MAU microalbuminuria
MS mass spectrometry
NAOD N2-acetylornithine deacetylase
NMR nuclear magnetic resonance spectroscopy
novoDB novogene database
NR non-redundant protein sequence database
PCA principal component analysis
PE pair-end
QC quality control
RAAS renin-angiotensin-aldosterone system
RDP ribosomal database project
SCFA short-chain fatty acids
TDO tryptophan 2,3-dioxygenase
UACR urinary albumin/creatinine ratio
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