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Abstract

Regular aspirin use is associated with reduced risk of colorectal cancer (CRC). Variation in

aspirin’s chemoprevention efficacy has been attributed to the presence of single nucleotide

polymorphisms (SNPs). We conducted a meta-analysis using two large population-based

case-control datasets, the UK-Leeds Colorectal Cancer Study Group and the NIH-Colon

Cancer Family Registry, having a combined total of 3325 cases and 2262 controls. The aim

was to assess 42 candidate SNPs in 15 genes whose association with colorectal cancer risk

was putatively modified by aspirin use, in the literature. Log odds ratios (ORs) and standard

errors were estimated for each dataset separately using logistic regression adjusting for

age, sex and study site, and dataset-specific results were combined using random effects

meta-analysis. Meta-analysis showed association between SNPs rs6983267, rs11694911

and rs2302615 with CRC risk reduction (All P<0.05). Association for SNP rs6983267 in the

CCAT2 gene only was noteworthy after multiple test correction (P = 0.001). Site-specific

analysis showed association between SNPs rs1799853 and rs2302615 with reduced colon

cancer risk only (P = 0.01 and P = 0.004, respectively), however neither reached signifi-

cance threshold following multiple test correction. Meta-analysis of SNPs rs2070959

and rs1105879 in UGT1A6 gene showed interaction between aspirin use and CRC risk

(Pinteraction = 0.01 and 0.02, respectively); stratification by aspirin use showed an associ-

ation for decreased CRC risk for aspirin users having a wild-type genotype (rs2070959
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OR = 0.77, 95% CI = 0.68–0.86; rs1105879 OR = 0.77 95% CI = 0.69–0.86) compared to

variant allele cariers. The direction of the interaction however is in contrast to that published

in studies on colorectal adenomas. Both SNPs showed potential site-specific interaction

with aspirin use and colon cancer risk only (Pinteraction = 0.006 and 0.008, respectively), with

the direction of association similar to that observed for CRC. Additionally, they showed inter-

action between any non-steroidal anti-inflammatory drugs (including aspirin) use and CRC

risk (Pinteraction = 0.01 for both). All gene x environment (GxE) interactions however were not

significant after multiple test correction. Candidate gene investigation indicated no evidence

of GxE interaction between genetic variants in genes involved in aspirin pathways, regular

aspirin use and colorectal cancer risk.

Introduction

Observational studies have consistently demonstrated an association between regular aspirin

or other non-steroidal anti-inflammatory drug (NSAID) use and reduced colorectal cancer

(CRC) risk [1]. For CRC, a randomized chemopreventive trial in patients with Lynch syn-

drome showed beneficial effect of aspirin use in reducing CRC risk, and in the general popula-

tion, long-term risk reduction is most evident from follow-up of the cardiovascular disease

prevention trials conducted in the 1980s [1–4]. Optimizing chemoprevention requires under-

standing the factors that limit the full impact of aspirin dosage. Advances in elucidating aspi-

rin’s mode of action on cellular pathways within the colonic epithelium have been made; in

particular- inhibition of cyclooxygenase activity, inhibition of NF-κB, induction of polyamine

catabolism and downregulation of WNT-β-catenin signalling [5–9]. Although, further work is

required to fully clarify these mechanisms. Delineating interaction of aspirin and its metabo-

lites with molecules involved in key cellular processes associated with tumorigenesis could not

only help validate variation in the chemopreventive efficacy but also aid in understanding the

neoplastic transformation of colonic epithelial cells [10]. Furthermore, identifying gene x envi-

ronment (GxE) interactions between genetic markers and aspirin use could help in stratifying

individuals who would most benefit (or not benefit) from taking aspirin.

Inter-individual variation in the chemopreventive effect on colorectal neoplasia has been in

part attributed to germline variations, particularly single nucleotide polymorphisms (SNPs).

Whilst a large number of SNPs in aspirin’s pharmacokinetic and pharmacodynamic pathways

have been suggested to modulate chemopreventive effect in observational studies [6, 9, 11–17],

these associations have not been replicated. Furthermore, a large genome-wide association

study (GWAS) carried out Nan et al 2015, investigated potential GxE interactions based on

regular use of any NSAIDs (including aspirin) as exposure [6]. Whilst, such GWAS studies

offer a “hypothesis-free” approach to test for association between variants and phenotype of

interest, the statistical cost of extreme multiple testing compromises power; candidate gene

approach utilises an a priori biologically-motivated hypothesis to assess association between

variants in putative genes and phenotype of interest. Hence, the techniques are complementary

approaches to identifying potential sources of GxE interactions within observational studies.

To our knowledge, no meta-analysis has been reported in the literature which tested for

GxE interaction between SNPs in aspirin pathway genes, regular aspirin use and CRC risk.

Therefore, the current study aimed to assess associations of candidate SNPs that putatively

modify aspirin’s pharmacological effects by carrying out random effects meta-analysis of GxE

interaction between aspirin only use and CRC risk using two large population based case-
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control datasets: UK-Colorectal Cancer Study Group (UK-CCSG) and NIH- Colon Cancer

Family Registry (NIH-CCFR).

Materials andmethods

Study samples and epidemiological questionnaire

Individual level data from the UK-CCSG (recruitment 1997–2013) and NIH-CCFR Phase I

(recruitment in Australia, Canada and the USA, 1997–2002) case-control datasets were pooled.

Both studies enrolled incident CRC cases and healthy population controls [18, 19].

From the UK-CCSG dataset, CRC cases and controls from all three study sites (Leeds, Dun-

dee and York) were included in the analysis. Briefly, cases between the age of 45 and 80 years

with histologically confirmed incident CRC and diagnosed in the period of 1997–2000, were

identified at all three sites while for 2000–2013 only from Leeds. Patients who had a primary

cancer previously, history of coeliac disease, familial adenomatous polyposis, diverticular dis-

ease 2 years before current cancer diagnosis, non-adenocarcinoma colorectal cancer or ulcera-

tive colitis diagnosed in previous 3 years were not recruited in the study. Healthy population

based controls were identified through patient’s GP practice list. An age and sex matched con-

trol with no history of previous cancer at the time of recruitment was identified for each case

between 1997 and 2000 at all 3 sites, and following 2000, friends or spouse of cases from Leeds

site with no history of cancer at the time of recruitment were collected for the study to comple-

ment GP recruitment.

From the NIH-CCFR dataset, CRC cases and controls from three study sites (Ontario, Mel-

bourne and Fred Hutchinson Cancer Research Centre) were included in the analysis. Despite

availability of epidemiological data on cases and controls from the three other NIH-CCFR

sites (University of Southern California, Mayo Clinic and Hawaii), these sites were excluded

from the analysis due to the absence of genome-wide SNP genotype data for controls. For the

current study, incident case proband identified through population based cancer registries

recruited between 1997 and 2002 were included in the analysis. Healthy population based and

spouse controls were identified through medicare and driver’s license files, telephone sub-

scriber lists and electoral rolls and were randomly selected between 1997 and 2002.

For the UK-CCSG dataset, a research nurse carried out interviews of the study participants

either in hospital or at home. All participants completed detailed diet and lifestyle question-

naire called the Food Frequency and Epidemiology Questionnaire [19], which was modelled

on the questionnaire developed and validated by the European Prospective Investigation into

Cancer and Nutrition [20]. Anonymised UK-CCSG raw dataset is present in S1 File. For the

NIH-CCFR dataset, each study participant completed a standardised family history, personal

exposure and baseline epidemiologic questionnaire either in person (University of Southern

California site), by telephone (Fred Hutchinson cancer research Centre, University of South-

ern California and University of Queensland Melbourne sites) or by mail (University of

Hawaii, Cancer Care Ontario and Mayo Clinic sites) [18]. Questionnaires were customised by

the participating centres for local usage, in particular for different language conventions and

brand names, and added some questions of local interests. Copy of the phase 1 baseline family

history and baseline epidemiologic questionnaires from all 6 sites can be downloaded from:

http://coloncfr.org/questionnaires.

All participants provided written informed consent at the time of the interview and the

study design was approved by the Institutional Review Boards at each NIH-CCFR site. The

UK-CCSG study as well as the joint analysis of the UK-CCSG and NIH-CCFR data were

approved by the Leeds East Research Ethics Committee.
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Because of sample numbers, only self-reported non-Hispanic white individuals were

included in the analysis. A baseline epidemiologic questionnaire containing details about med-

ical history and medication use (including use of aspirin, NSAIDs or both) was completed by

participants in both studies; the measurement instrument differed between the studies overall

but were equivalent for assessing NSAID usage (S1 Table).

SNP selection and genotyping

Literature review was carried out using PubMed and Google Scholar to identify SNPs in puta-

tive genes. A combination of keywords such as- “aspirin”, “NSAID”, “pharmacogenetics”,

“polymorphisms”, “SNPs”, “gene variant”, “colorectal adenoma” and “colorectal cancer”, was

used to search for relevant literature published between 1990 and 2015 in the search engines.

On PubMed, this resulted in 103 abstracts. All studies presenting original data on SNP and

colorectal adenoma or carcinoma risk association, or interaction between SNP and aspirin (or

NSAID) use in relation to colorectal adenoma or carcinoma were retrieved and reviewed.

Types of articles reviewed included original article, editorial letter, conference abstract, obser-

vational study, meta-analysis, review, systemic review and randomized controlled trial. The

UK-CCSG study collaborators crosschecked candidate SNP selection from the literature.

From the published studies reviewed until May 2015, a total of 42 SNPs from 15 candidate

genes were selected for analysis (S2 Table).

We selected genes and SNPs as follows: (i) from previous studies of colorectal adenoma or

cancer where statistical evidence–after correction for multiple testing–of an interaction with

NSAID use (including aspirin) had been observed (ALOX15, IL16,MDR1,MGST1, NFkB,

UGT1A6, PTGS1 and PTGS2) [6, 9, 12, 14, 15, 21–23]; (ii) SNPs in the genes CES2 and

PAFAH1B2 were selected as these genes have been shown to metabolize aspirin in intestine

and blood, respectively, but had not been tested for interaction with aspirin use in relation to

CRC risk previously [24, 25]; (iii) SNPs in genes involved in the metabolism of aspirin that

have been shown to be associated with colorectal cancer or adenoma risk (CYP2C9) [26] and;

(iv) SNPs in genes that are direct or indirect targets of aspirin and have been shown to be asso-

ciated with colorectal cancer or adenoma risk (IkBkB, CCAT2, 20p12 locus, NCF4 and ODC1)

[6, 8, 13, 16, 27].

No SNPs were genotyped for the NIH-CCFR dataset as these samples had been the subject

of genome-wide genotyping [28] using Illumina Human 1M, IM Duo and Omni1 arrays (S3

Table). Taqman allelic discrimination assay (Applied Biosystems, Paisley, UK) was used for

the UK-CCSG sample set to supplement genotyping with an Illumina HumanExome Bead-

Chip array v1.1 (Illumina, San Diego, USA) (S3 Table). A detailed description of genotyping,

quality assurance and control, and imputation is provided in S2 File.

SNPs were excluded if they were tri-allelic; had a call rate of<98%; had a minor allele fre-

quency (MAF) of<4%; or there was evidence of being out of Hardy Weinberg equilibrium

(HWE) in controls (P<0.001 after multiple tests correction). Overall, 15 of the 42 SNPs were

removed from analysis as the observed MAF was<4%. For the remaining SNPs, all were in

HWE and the MAF between the two datasets was similar (S4 Table).

Statistical analysis

Common data elements were defined for both datasets to produce common definitions and

coding terms (S1 Table). Continuous variables such as BMI, alcohol and physical activity were

converted to dichotomous variables by a median split. Comparison of SNP minor allele fre-

quency between controls in two datasets was carried out using Fisher’s exact test (S4 Table).

SNPs within the same chromosome were tested for linkage disequilibrium (R2) in controls in
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both datasets (S1 and S2 Figs). Each genotyped SNP was coded as 0, 1, or 2 for the number of

copies of minor allele and imputed SNP, such as rs20417 in the NIH-CCFR dataset, was coded

based on the “expected” number of copies of the minor allele.

The odds ratio (OR) and 95% confidence interval (CI) for associations between known epi-

demiological risk factors, “aspirin only” use, and SNP genotype with CRC risk were assessed

using logistic regression models adjusted for age, sex and study site separately for each study.

Each SNP was tested for association with colorectal cancer risk using logistic regression and

assuming an additive model of inheritance. The interaction of SNP genotype with “aspirin

only” use in relation to CRC risk was investigated. Participants who took aspirin only were

included in the analysis, whereas, users of both aspirin and other NSAIDs (UK-CCSG n = 49,

NIH-CCFR n = 160) or other NSAIDs only (UK-CCSG n = 258, NIH-CCFR n = 261) were

excluded from the analysis. Regular aspirin use was defined as daily aspirin intake for 3 months

or longer in the UK-CCSG dataset whereas it was defined as twice a week aspirin intake for

more than a month in the NIH-CCFR dataset (S1 Table). GxE interaction was tested using

logistic regression of the cross product of the presence of variant allele and dichotomous regu-

lar use of aspirin-only. The likelihood ratio test was used to assess the statistical significance of

the interaction with adjustment for age, sex and study site.

Meta-analysis of the association and interaction tests for the SNPs and “aspirin only” use

with CRC risk in both datasets was carried out. Estimates of log odds ratios and standard error

from both datasets, which were adjusted for age, sex and study site, were used to calculate com-

bined risk estimates using random-effects models where the log OR were weighted by the

method of DerSimonian and Laird [29]. To test for heterogeneity between the estimates from

the two datasets, Cochran’s Q-test and Higgin’s I-squared statistic [30] was calculated. All tests

were carried out using an additive inheritance model. All P-values were two-sided and the sig-

nificance threshold was set at�0.001 to allow for multiple testing (Bonferroni correction for

42 SNPs, 0.05/ 42 = 0.001). All analyses were conducted in Stata V12 (Stata Corp., College Sta-

tion, USA). Checklist outlining information about the justification for the study and the meth-

odology employed is provided in S3 File.

Results

Baseline epidemiological characteristics of cases and controls

Overall, the UK-CCSG dataset consisted of 1910 cases and 1275 controls and the NIH-CCFR

dataset consisted of 1415 cases and 986 controls. Characteristics of the study population are

presented in Table 1 (Further information in S5 Table). Compared to the UK-CCSG dataset,

the NIH-CCFR dataset had higher proportion of cases under the age of 50 (Table 1), resulting

from the differences in case ascertainment strategies. Association of known epidemiological

risk factors, including aspirin use, with CRC risk in both studies was consistent with the exist-

ing literature (Table 1). Due to the availability of participant’s data on weight at the age 20 in

both datasets, we tested for association between BMI at age 20 and CRC risk. We observed a

positive association between BMI and CRC risk which is consistent with a prospective study,

which had shown that weight gain during early adulthood increased risk of colon cancer [31].

Association between family history and CRC risk in the NIH-CCFR dataset was not tested

since the study sites used different case recruitment strategies, some of which selected cases

based on the family history and age at cancer diagnosis [18].

SNP association with CRC risk

Each SNP was assessed for its association with CRC risk using logistic regression separately by

dataset (S6 Table). Meta-analysis of the datasets showed a reduced risk of CRC associated with
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Table 1. Characteristics of population based UK-Colorectal Cancer Study Group (UK-CCSG) and NIH-Colon Cancer Family Registry (NIH-CCFR) datasets. For
odds ratio comparisons, the baseline level is indicated.

UK-Colorectal Cancer Study Group (N = 3185) NIH-Colon Cancer Family Registry (N = 2401)

Controls (n = 1275),
n (%)

Cases (n = 1910),
n (%)

Odds Ratio
(95% CI)

P-value Controls (n = 986),
n (%)

Cases (n = 1415),
n (%)

Odds Ratio
(95% CI)

P-value

Sex, n(%)

Male (baseline) 635 (49.8) 1124 (58.8) 473 (48.0) 731 (51.7)

Female 639 (50.2) 786 (41.2) 0.69 (0.60–
0.80)

<0.001 513 (52.0) 684 (48.3) 0.86 (0.73–
1.02)

0.08

Age (in years)a, n (%)

<50 42 (3.3) 106 (5.6) - - 154 (15.6) 637 (45.0) - -

50–59 167 (13.1) 309 (16.2) 299 (30.3) 334 (23.6)

60–69 493 (38.6) 646 (33.8) 305 (30.9) 314 (22.2)

70–79 505 (39.6) 685 (35.9) 228 (23.1) 130 (9.2)

80–89 69 (5.4) 161 (8.4) - -

�90 - 3 (0.2) - -

Primary cancer site, n
(%)

Colon - 1222 (64.0) - - - 804 (62.6) - -

Rectum - 688 (36.0) - 480 (37.4)

BMI at 20 yearsb, n(%)

Low (baseline) 628 (49.9) 821 (44.8) 481 (49.5) 575 (41.3)

High 630 (50.1) 1013 (55.2) 1.23 (1.07–
1.42)

0.005 490 (50.5) 816 (58.7) 1.39 (1.18–
1.64)

<0.0001

Family history of
cancerc, n(%)

No (baseline) 209 (47.4) 195 (29.5) - -

First or (and) second
degree relative

232 (52.6) 466 (70.5) 2.15 (1.68–
2.77)

1.98 x
10−9

- - - -

Cigarette smokingd, n
(%)

No (baseline) 555 (43.7) 710 (37.6) 408 (41.4) 557 (39.4)

Yes 715 (56.3) 1179 (62.4) 1.29 (1.12–
1.49)

0.001 578 (58.6) 856 (60.6) 1.08 (0.92–
1.28)

0.34

Alcohol intakee, n(%)

Low (baseline) 642 (50.6) 741 (39.6) 146 (48.2) 219 (42.3)

High 626 (49.4) 1130 (60.4) 1.56 (1.34–
1.81)

1.01 x
10−9

157 (51.8) 299 (57.7) 1.27 (0.95–
1.69)

0.10

Physical activityf, n(%)

Low (baseline) 622 (49.1) 976 (52.3) - -

High 646 (50.9) 888 (47.7) 0.88 (0.76–
1.01)

0.07 - - - -

Regular aspirin only
useg, n(%)

No (baseline) 848 (76.8) 1421 (81.4) 518 (64.7) 874 (75.2)

Yes 256 (23.2) 324 (18.6) 0.76 (0.63–
0.91)

0.003 283 (35.3) 531 (24.8) 0.60 (0.50–
0.73)

4.80 x
10−7

Regular NSAID useg, n
(%)

No (baseline) 848 (66.9) 1421 (75.3) 518 (52.9) 874 (62.2)

(Continued)
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the presence of variant allele of SNPs rs6983267 (OR = 0.86, 95% CI = 0.79–0.94, P = 0.001,

I2 = 0), rs2302615 (OR = 0.85, 95% CI = 0.74–0.98, P = 0.02, I2 = 0) and rs11694911 (OR =

0.85, 95% CI = 0.74–0.96, P = 0.01, I2 = 0) at CCAT2 and the ODC1 gene locus, respectively (S7

Table).

Site-specific meta-analysis of colon and rectum showed approximately 20% decrease in

colon cancer risk only in the presence of CYP2C9 rs1799853 variant allele (OR = 0.79, 95%

CI = 0.65–0.95, P = 0.01, I2 = 0) and ODC1 rs2302615 variant allele (OR = 0.80, 95%

CI = 0.69–0.93, P = 0.004, I2 = 0) (S8 and S9 Tables). No site-specific association was observed

for the CCAT2 rs6983267 variant allele, as it was associated with reduced risk of both colon

cancer (OR = 0.86, 95% CI = 0.78–0.95, P = 0.002, I2 = 0; S9 Table) and rectal cancer

(OR = 0.85, 95% CI = 0.75–0.95, P = 0.005, I2 = 0; S10 Table).

Gene x aspirin-only use interactions

Each SNP was assessed for an interaction with aspirin-only use in relation to CRC risk, sepa-

rately by dataset and combined in a meta-analysis. In the meta-analysis, SNP rs2070959 in

the UGT1A6 gene showed evidence of an interaction between aspirin-only use and CRC risk

(Pinteraction = 0.01, I2 = 0), whereby aspirin users with wild-type genotype were associated with

23% lower CRC risk (OR = 0.77, 95% CI = 0.69–0.86) compared to negligible risk reduction in

variant allele carriers (OR = 0.92, 95% CI = 0.86–0.99) (Fig 1; S11 and S12 Tables). A second

SNP in UGT1A6 gene: rs1105879, which is in high linkage disequilibrium (LD) with rs2070959

(R2 = 0.90), showed similar evidence (Fig 1; S11 and S12 Tables; S1 and S2 Figs). No significant

difference in risk reduction was observed between wild-type genotype and variant allele carri-

ers for both SNPs in non-users of aspirin.

Meta-analysis of the GxE interaction stratified by tumour site showed an interaction

between SNP rs2070959 and aspirin-only use in relation to colon cancer risk (Pinteraction =

0.006): aspirin users with the wild-type genotype showed a 26% lower risk of colon cancer

than non-users with wild-type genotype (OR = 0.74, 95% CI = 0.65–0.84), whereas, no

Table 1. (Continued)

UK-Colorectal Cancer Study Group (N = 3185) NIH-Colon Cancer Family Registry (N = 2401)

Controls (n = 1275),
n (%)

Cases (n = 1910),
n (%)

Odds Ratio
(95% CI)

P-value Controls (n = 986),
n (%)

Cases (n = 1415),
n (%)

Odds Ratio
(95% CI)

P-value

Yes 420 (33.1) 467 (24.7) 0.66 (0.57–
0.78)

3.58 x
10−7

461 (47.1) 531 (37.8) 0.68 (0.58–
0.81)

6.04 x
10−6

Continuous variables such as BMI, alcohol intake and physical activity were dichotomised by placing a cutoff point at the median split in controls. Odds ratio was

calculated using logistic regression and depicts association with colorectal cancer risk.
a Age at the time of diagnosis for cases and interview for controls
b Body Mass Index (BMI) cut-off point in UK-CCSG and NIH-CCFR dataset is 21.8 kg/m2 and 21.5 kg/m2 respectively. Participants below the cut-off point are

categorised as “Low” and above the cut-off point are categorised as “High” in the respective datasets.
c Association between family history of cancer and CRC risk not calculated for the NIH-CCFR dataset due to the different case recruitment strategies employed by the

study sites
d “Yes” is defined as ever smoked 1 cigarette a day for 3 months or longer. “No” is defined as never smoked a cigarette.
e Alcohol intake cut off point in UK-CCSG and NIH-CCFR dataset is 5.6 units/day and 0.89 units/day respectively. Participants below the cut-off point are categorised

as “Low” and above the cut-off point are categorised as “High” in the respective datasets.
f Physical activity cut off point in UK-CCSG dataset 3 hours/week. Participants below the cut-off point are categorised as “Low” and above the cut-off point are

categorised as “High” in the respective datasets.
g Regular aspirin or NSAID use is defined as regular intake for a period of 3 months or longer in the UK-CCSG dataset whereas it is defined as regular use of at least two

pills per week for at least one month in the NIH-CCFR dataset.

https://doi.org/10.1371/journal.pone.0192223.t001
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Fig 1. Meta-analysis of interaction between SNP variant allele, aspirin-only use and colorectal cancer risk. (A)
Forest plot depicting meta-analysis odds ratio of GxE interaction term. I-squared is the measure of the variation in
odds ratio attributable to heterogeneity [30] and P-value tests for heterogeneity between the UK-CCSG and
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difference in risk reduction was observed in variant allele carriers regardless of the aspirin use

status (Fig 2A). We observed a similar direction and magnitude of interaction between SNP

rs1105879 and aspirin-only use in relation to colon cancer risk (Pinteraction = 0.008). No evi-

dence of interaction was observed between either SNP, aspirin use and rectal cancer risk (Fig

2B). Haplotype analysis of SNPs was not conducted as the SNPs were in high LD and would

not have provided additional statistical power to observe any potential interaction (S1 and S2

Figs).

Sensitivity analysis

The predefined analysis plan included participants of all ages. However, the UK-CCSG cohort

represents population-based cases (6.9% of cases below the age of 50 years) whereas the

NIH-CCFR cohort is enhanced for early onset (47.7% of cases below the age of 50 years).

Since aspirin is prescribed prophylactically for cardiovascular diseases after the age of 50, it is

likely that the participants under the age of 50 may not be exposed to aspirin. Hence, we

NIH-CCFR datasets. (B) Association betweenUGT1A6 SNP rs2070959 (T181A) variant allele and CRC risk stratified
by aspirin use. Pinteraction = 0.01. (C) Association betweenUGT1A6 SNP rs1105879 (R184S) variant allele and CRC risk
stratified by aspirin use. Pinteraction = 0.02. �P-value for association<0.001; UK-CCSG: UK-Colorectal Cancer Study
Group; NIH-CCFR: NIH-Colon Cancer Family Registry.

https://doi.org/10.1371/journal.pone.0192223.g001

Fig 2. Meta-analysis of site-specific interaction between SNP variant allele, aspirin-only use and (A) colon cancer risk and (B) rectal cancer risk. (A) Association
betweenUGT1A6 rs2070959 (T181A) variant allele and colon cancer risk stratified by aspirin use (Pinteraction = 0.006); association betweenUGT1A7 rs1105879
(R184S) variant allele and colon cancer risk stratified by aspirin use (Pinteraction = 0.008). (B) Association betweenUGT1A6 rs2070959 (T181A) variant allele and rectal
cancer risk stratified by aspirin use (Pinteraction = 0.22); association betweenUGT1A6 rs1105879 (R184S) variant allele and rectal cancer risk stratified by aspirin use
(Pinteraction = 0.26). Forest plot depicting meta-analysis odds ratio of gene x environment interaction term. I-squared is the measure of the variation in odds ratio
attributable to heterogeneity [30] and P-value tests for heterogeneity between the UK-CCSG and NIH-CCFR datasets. �P-value for association<0.05; CC: Colon
Cancer; RC: Rectal Cancer; UK-CCSG: UK-Colorectal Cancer Study Group; NIH-CCFR: NIH-Colon Cancer Family Registry.

https://doi.org/10.1371/journal.pone.0192223.g002
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performed sensitivity analysis by excluding all participants under the age of 50 and carried out

GxE interaction test between only aspirin use, SNP variant allele and CRC risk. Compared to

the analysis carried out in all participants, we observed similar direction andmagnitude of interac-

tion between SNPs in theUGT1A6 genes, only aspirin use and CRC risk age restricted analysis

(Pinteraction = 0.009, I2 = 0 for rs2070959; Pinteraction = 0.01, I2 = 0 for rs1105879; S13 Table).

Discussion

In the current meta-analysis, we observed association between the SNP at CCAT2 gene locus

with reduced CRC risk, which was noteworthy after multiple test correction and congruent

with the literature [26, 32]. Potential site-specific association between rs1799853 in CYP2C9

and colon cancer risk was complemented by the assessment of the difference in CYP2C9 pro-

tein expression between colon and rectum in the Human Protein Atlas. Medium protein

expression is observed in the colon but not rectal tissue [33], suggesting that there may be rele-

vant differences in site-specific metabolism. SNP rs1799853 is a nonsynonymous coding vari-

ant (p.R144C) which codes for a CYP2C9 enzyme with reduced activity and metabolic

capacity [34]. As CYP2C9 enzyme metabolises pro-carcinogenic xenobiotic compounds such

as- polycyclic aromatic hydrocarbons and heterocyclic aromatic amines- in the intestinal epi-

thelium, it leads to an increased risk of cancer [35]. Hence, the carriers of the SNP rs1799853

variant allele may observe reduced risk of developing colon cancer compared to rectal cancer.

Interestingly, we observed a potential site-specific association for decrease in colon cancer

risk in the presence of ODC1’s rs2302615 A allele. Whilst the association was not significant

after multiple test correction, it was complemented by the study carried out by Zell et al. which

observed decreased probability of survival in patients diagnosed with rectal cancer and carry-

ing rs2032615 A allele (ODC1 GA/ AA genotype HR = 2.92, 95% CI = 1.22–7.03) but not in

colon cancer patients (ODC1 GA/ AA genotype HR = 1.76, 95% CI = 0.85–3.63) [36]. Orni-

thine decarboxylase (ODC) regulates polyamine synthesis. Upregulated polyamine metabo-

lism is associated with increased risk of colorectal cancer. Regulation of ODC1 is carried out by

E-box transcription factors, chiefly- transcriptional activator c-MYC and transcriptional

repression MAD1. Tissue specific RNA-seq data in the Human Protein Atlas show 7.5 and 5.8

transcripts per million of MAD1 in colon and rectum tissues, suggesting slightly higher expres-

sion of MAD1 in the colon compared to rectum [33]. Coupled this with the observation sug-

gesting preferential binding of MAD1 to ODC1 promoter containing A allele in two colon

cancer cell lines- HT29 and HCT116 [36], it is likely that the carriers of rs2302615’s variant

allele may observe reduced risk of developing colon cancer.

Upon assessing GxE interaction, aspirin-only users with wild-type genotype of the SNPs in

UGT1A6 gene gave suggestive evidence of decreased risk of CRC or colon cancer but not in

variant allele carriers. The UDP glucuronosyltransferase 1A6 (UGT1A6) protein is involved in

metabolism of salicylic acid through glucuronidation [37]. A study in liver microsomes and

urine analysis in young volunteers following aspirin intervention has shown that homozygous

mutant carriers of the SNPs rs2070959 and rs1105879 have a higher metabolic activity than

wild-type carriers [37, 38], hence wild-type carriers are likely to benefit from aspirin interven-

tion, consistent with our interaction data. In previous studies, a significant interaction between

UGT1A6 SNPs, aspirin use and colorectal adenoma risk has been observed whereby, carriers

of variant allele were associated with lower risk of colorectal adenoma in aspirin users com-

pared to non-users [17, 39]. This is in contrast to our findings where CRC risk was decreased

in aspirin users with wild-type genotype compared to non-users. Analysis for the interaction

between the UGT1A6 SNP variant allele, any NSAID (including aspirin) use and CRC risk in

the current study revealed no difference in the direction of association compared to the
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interaction involving aspirin only use (data not presented). Whilst testing for the source of the

contradiction between these observations was beyond the remit of the current study, it is plau-

sible to attribute the differences to the distinction between the key genetic and epigenetic

molecular factors between adenoma and carcinoma that may make carcinoma cells more sen-

sitive to aspirin intervention [40]. One of the key changes observed during adenoma to carci-

noma progression is change in gene expression [41, 42]. One of the genes downregulated

during the adenoma-carcinoma progression is UGT1A6. As the wild-type allele has lower met-

abolic activity compared to the variant allele, participants with wild-type genotype are likely to

retain active metabolites of aspirin longer than the mutant allele carriers; hence, deriving

greater chemopreventive benefit. Moreover, this is in keeping with observations in chemopre-

vention trials CAPP1 and CAPP2 where the chemopreventive effect of aspirin was restricted

to colorectal cancer incidence with apparently limited impact on colorectal adenoma develop-

ment [43, 44]. Additionally, the site-specific interaction of UGT1A6 SNPs with colon cancer

has been observed previously, albeit without statistical significance due to small study size con-

sisting of only 422 cases and 481 population controls [45].

Interestingly, SNP rs11694911, which is located downstream to the ODC1 gene has previ-

ously been shown to be associated with increased risk of colorectal adenoma [16]. In contrast,

we observed an association between the SNP variant allele and 16% reduction in colorectal

cancer risk. Sample sizes in both studies were reasonable and to date, no functional evidence

about the SNP is available. Among individuals with the wild type rs2965667 SNP atMGST1

locus, we found decreased CRC risk among aspirin users; this finding is consistent in direction

but not as strong as the findings from the GWAS study of Nan et al. 2015 where the study

involved over 8000 cases and controls. However, for individuals carrying the variant allele,

that study showed significantly increased risk of CRC among NSAID users, a result inconsis-

tent with our observations. The current study didn’t observe evidence of interaction between

variant alleles of SNPs in previously reported genes- ALOX15, IL16,MDR1, NFkB, PTGS1 and

PTGS2-with aspirin only use and CRC or colon cancer risk. This could in part be attributed to

the differences in the choice of drug definition for carrying out the interaction test. Previous

studies carried out GxE interaction test with any NSAID use (including aspirin) and CRC risk.

The broad range of NSAIDs used to carry out the test includes drugs with different pharmaco-

kinetic and pharmacodynamics mechanisms thus precluding the assessment of the true source

of interaction.

An ad hoc power calculation was performed in Quanto V1.2.4 (http://biostats.usc.edu/

Quanto.html) using the outcomes observed in the current study to assess the number of cases

and controls needed to carry out an interaction test between UGT1A6 SNP, aspirin only use

and colorectal cancer risk with two-sided P value of 0.002 (corrected for multiple tests) and

80% power. Assuming an unmatched case-control (1:1 ratio) study design, population CRC

risk (Po) of 6%, SNP minor allele frequency of 31% with additive mode of inheritance, genetic

effect (RG) of 5%, environmental effect (aspirin only users; RE) of 26% and population preva-

lence of aspirin users (PE) of 20%: we would require 7057 cases and controls to observe an GxE

interaction effect (RGE) of 20%. This highlights that the current study with a combined total of

3325 cases and 2262 controls had limited statistical power for GxE interaction. Whilst we did

not adjust analysis for multiple test correction, hence increasing the probability of false positive

results, we did observe results for some of the SNPs that are congruent with previously pub-

lished studies where correction for multiple testing was applied. Even though these results are

consistent with ours, all positive results should be regarded as hypothesis-generating and

should be investigated in other independent datasets.

Additionally, we could not investigate whether there was a dose-response relationship

among aspirin users because dose information was not recorded in the NIH-CCFR dataset.
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Other NSAIDs were also used by participants in both studies but numbers precluded detailed

examination of each. Compared with previous studies where analysis for interaction was car-

ried out in all users of NSAIDs–and thus limiting identification of the true source of interac-

tion as each NSAID affect different biological pathways–our study was restricted to interaction

in aspirin-only users.

In summary, our results suggest variant alleles of the genes involved in aspirin pathways,

CYP2C9,ODC1 and UGT1A6, may be involved in the modification of CRC or colon cancer

risk independently or in conjunction with aspirin use.
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