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Abstract

Background: Prenatal environmental conditions may influence disease risk in later life. We previously found a gene-
environment interaction between the paraoxonase 1 (PON1) Q192R genotype and prenatal pesticide exposure leading
to an adverse cardio-metabolic risk profile at school age. However, the molecular mechanisms involved have not yet
been resolved. It was hypothesized that epigenetics might be involved. The aim of the present study was therefore to
investigate whether DNA methylation patterns in blood cells were related to prenatal pesticide exposure level, PON1
Q192R genotype, and associated metabolic effects observed in the children.

Methods: Whole blood DNA methylation patterns in 48 children (6–11 years of age), whose mothers were
occupationally unexposed or exposed to pesticides early in pregnancy, were determined by Illumina 450 K
methylation arrays.

Results: A specific methylation profile was observed in prenatally pesticide exposed children carrying the PON1

192R-allele. Differentially methylated genes were enriched in several neuroendocrine signaling pathways
including dopamine-DARPP32 feedback (appetite, reward pathways), corticotrophin releasing hormone signaling,
nNOS, neuregulin signaling, mTOR signaling, and type II diabetes mellitus signaling. Furthermore, we were able to
identify possible candidate genes which mediated the associations between pesticide exposure and increased
leptin level, body fat percentage, and difference in BMI Z score between birth and school age.

Conclusions: DNA methylation may be an underlying mechanism explaining an adverse cardio-metabolic health
profile in children carrying the PON1 192R-allele and prenatally exposed to pesticides.
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Background
A considerable part of modern pesticides has neurotoxic

and/or endocrine disrupting properties [1–3] and therefore

the potential to disturb development of neurobehavioral,

neuroendocrine, and reproductive functions [4–8] espe-

cially if exposure occurs during vulnerable time periods in

fetal life or early childhood. To investigate potential health

effects of prenatal pesticide exposure, we have followed a

cohort of children, whose mothers were employed in green-

house horticulture in pregnancy. Some of the mothers were

occupationally exposed to mixtures of pesticides in the first

trimester before the pregnancy was recognized, and pre-

ventive measures were taken. Findings from this cohort

include associations between maternal pesticide exposure

and lower birth weight followed by increased body fat accu-

mulation during childhood [9], impaired reproductive de-

velopment in boys [10, 11], and earlier breast development

[12] and impaired neurobehavioral function in girls [13].

The HDL-associated enzyme paraoxonase 1 (PON1)

catalyzes the hydrolysis of a wide range of substrates

including some organophosphate insecticides [14, 15].

It also protects lipoproteins from oxidative modifica-

tions and hence against development of atherosclerosis

[16, 17]. A common polymorphism in the coding se-

quence of the PON1 gene substitutes glutamine (Q) to

arginine (R) at position 192. This substitution seems to

affect both properties of the enzyme, and several stud-

ies have indicated an increased risk of cardiovascular

disease in R-allele carriers [17, 18]. To investigate if this

polymorphism affected the sensitivity to prenatal pesti-

cide exposure, the PON1 Q192R genotype was deter-

mined in the children. We found a marked interaction

between prenatal pesticide exposure and the PON1

Q192R genotype. At school age, exposed children with

the R-allele had significantly higher BMI, body fat per-

centage, abdominal circumference, and blood pressure

compared to unexposed children with the same genotype.

In the group of children with the QQ genotype, there was

no effect of prenatal pesticide exposure on these parame-

ters [19]. In addition, serum concentrations of leptin, glu-

cagon, and plasminogen activator inhibitor type-1 (PAI-1)

were enhanced in prenatally pesticide exposed children

with the R-allele, also after adjusting for BMI [20] which

also indicates disturbance of metabolic pathways related to

development of metabolic syndrome [21–23]. In addition,

leptin seemed to be a mediator of the increased fat accu-

mulation during childhood related to prenatal pesticide ex-

posure in children with the PON1 192R-allele [20]. Thus,

the obtained results indicate a gene-environment inter-

action between pesticide exposure and PON1 gene hetero-

geneities already in early prenatal life that might enhance

the risk of cardio-metabolic diseases later in life.

The mechanism behind this interaction is not yet under-

stood but might be mediated by epigenetic alterations

depending on both genotype and prenatal exposure.

Epigenetic marks, including DNA methylation and cova-

lent histone modifications, are dynamic and can adapt to a

variety of external stimuli [24]. Furthermore, during fetal

development extensive de- and re-methylation events are

taking place making this period highly vulnerable for

epigenetic changes caused by environmental conditions

[25]. Indeed, emerging evidence in experimental animals

and in humans associate altered DNA methylation pat-

terns with a variety of prenatal exposures including dietary

factors, parental care, infections, smoking, and environ-

mental pollutants [26–31]. In experimental animals, early

life changes in DNA methylation have been associated

with diet-induced obesity and insulin resistance [32].

Recently, also human studies have suggested that DNA

methylation patterns at birth are related to birth weight

and fat mass later in childhood [33, 34]. The aim of this

exploratory study was to investigate whether methylation

patterns in blood samples of school children were related

to prenatal pesticide exposure, PON1 Q192R genotype,

and adverse health outcomes already observed in the chil-

dren. We hypothesized that the health effects associated

with early prenatal pesticide exposure were related to

differential epigenetic modifications in children with the

QQ-genotype and children carrying the R-allele.

Methods

Study population

This study is a part of an ongoing prospective study

including 203 children born between 1996 and 2001 by

female greenhouse workers. The children were examined

for the first time at 3 months of age [11] and followed-

up at school age when 44 new age-matched controls

were included [9], and the PON1 genotype was deter-

mined for 141 children [19]. For this exploratory study,

48 pre-pubertal (Tanner Stage 1) children, whose

mothers reported not to have smoked during pregnancy,

were selected equally distributed between the PON1

192QQ and QR/RR genotype. The QR/RR genotype

group consisted of 3 children with the RR genotype and

21 with the QR genotype. After excluding children of

mothers who smoked in pregnancy, the number of

unexposed controls within each genotype was low, 20

with the QQ genotype and 16 with the QR/RR genotype.

DNA qualified for methylation analysis was only avail-

able for 11 and 12 of these children, respectively. For

each genotype, we then used individual matching to

select one exposed child of same sex and age for each of

the controls. For the QQ-genotype, two exposed chil-

dren were selected for each of two controls to obtain 24

children. Thus, in total we used data from 13 exposed

and 11 unexposed children with the QQ genotype, and

12 exposed and 12 unexposed children with the QR/RR

genotype (Table 1).
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Recruitment, characteristics, exposure categorization,

and clinical examinations of the children have previously

been described in detail [9, 11, 19]. Briefly, we recruited

pregnant women working in greenhouses and referred

to the local Department of Occupational Health for risk

assessment of their working conditions and guidance for

safe work practices during pregnancy. Detailed informa-

tion about working conditions inclusive pesticide use for

the previous 3 months was obtained from maternal

interview at enrollment (gestational weeks 4–10) and

supplemented by telephone contact to the employers.

For all women, re-entry activities (such as moving or

packing potted plants or nipping cuttings) constituted

their main work functions. Approximately 20% of the

women reported having been directly involved in apply-

ing pesticides, mainly by irrigating fungicides or growth

retardants. Only few (6%) of the women had applied

insecticides. The women were categorized as occupa-

tionally exposed if pesticides were applied in the working

area more than once a month, and the women handled

treated plants within 1 week after treatment and/or the

women were directly involved in applying pesticides.

The women were categorized as occupationally unex-

posed if none of the above criteria was fulfilled. All

exposure assessments and categorization of the mothers

as pesticide exposed or unexposed were performed inde-

pendently by two toxicologists before the first examination

of the children. Women categorized as pesticide exposed

went on paid leave or were moved to work functions with

less or no pesticide exposure shortly after enrollment.

Hence, the exposure classification relates to the early

weeks of the first trimester before study enrollment.

The exposure situation was complex since the use of

specific pesticides varied with time and location, both

within the same company and between companies, de-

pending on the plant production and the type of pest to

be controlled. Out of 124 different active pesticide ingre-

dients used in the greenhouses were 59 insecticides (17

organophosphates, 12 pyrethroids, 9 carbamates, and 21

others), 40 fungicides, 11 growth regulators, and 14 her-

bicides. Some were used only in few greenhouses or in

short periods, whereas others were used more often.

Organophosphate insecticides were used to some extent

in the working areas for 91% of the exposed mothers in

the entire cohort, and for 24 out of the 25 exposed

mothers whose children were included in this study. The

most used organophosphates were dichlorvos, dimetho-

ate, and chlorpyrifos. Other frequently used pesticides

Table 1 Population characteristics and anthropometric data for 48 pre-pubertal children examined at age 6–11 years stratified by
PON1 Q192R genotype and prenatal pesticide exposure

PON1 192QQ PON1 QR/RR

Unexposed Exposed Unexposed Exposed

N 11 13 12 12

Female sex 5 (45.5) 7 (53.8) 6 (50.0) 6 (50.0)

Maternal smoking in pregnancy 0 (0) 0 (0) 0 (0) 0 (0)

SESa 7/4 (63.6/36.4) 3/10 (23.1/76.9)* 5/7 (41.7/58.3) 2/10 (16.7/83.3)

Birth weight (g) 3640 (2600; 5412) 3382 (2750; 4573) 3789 (2984; 4345) 3500 (2900; 3914)*

Gestational age (days) 276 (257; 291) 283 (265; 295) 283 (261; 298) 281 (266; 291)

Age (years) 7.6 (6.2; 9.8) 8.4 (6.7; 10,0) 7.8 (6.6; 9.5) 7.7 (7.1; 9.4)

Height (cm) 133.3 (117.3; 145.2) 130.3 (109.7; 139.2) 130.9 (113.7; 149.1) 128.6 (119.3; 142,5)

Weight (kg) 30.9 (18.7; 38.0) 28.3 (18.0; 30.7) 26.3 (19.9; 36.5) 27.4 (19.5; 37.8)

BMI (kg/m2) 16.2 (13.7; 20.5) 15.3 (14.9; 18.3) 15.5 (13.8; 16.9) 15.7 (13.8; 19.7)

BMI Z scores 0.66 (−1.03; 3.21) −0.18 (−0.80; 1.49) −0.04 (−1.31; 0.89) −0.01 (−0.98; 3.14)

Delta BMI Z score since birth −0.45 (−2.15; 2.97) −0.71 (−2.57; 1.87) −0.56 (−2.52; 1.03) 0.95 (−2.08; 2.97)*

Abdominal circumference (cm) 60.4 (52.0; 75.8) 58.7 (52.1; 66.8) 58.3 (52.0; 68.1) 60.8 (51.8; 70.6)*

Sum of four skin folds (mm) 38.4 (27.1; 85.4) 33.6 (25.4; 54.5) 34.0 (20.2; 45.2) 44.6 (28.8; 72.0)*

Systolic blood pressure (mmHg) 98.7 (93.7; 110.4) 97.2 (84.3; 105.3) 99.7 (84.7; 106.8) 101.7 (91.0; 108.6)

Diastolic blood pressure (mmHg) 54.7 (46.0; 69.9) 56.2 (46.0; 62.0) 56.3 (49.3; 69.1) 63.0 (57.3; 73.1)**

Leptin (ng/ml) 1.47 (0.70; 9.18) 4.40 (0.60; 15.29) 1.41 (0.67; 5.90) 4.69 (1.79; 12.25)**

Insulin (ng/ml) 0.36 (0.22; 1.15) 0.52 (0.23; 2.55) 0.34 (0.16; 1.62) 1.11 (0.24; 7.10)*

Paraoxonase activity (nmol/min/ml) 27.5 (9.9; 38.0) 30.9 (21.0; 38.9) 58.6 (41.9; 68.7) 59.6 (50.3; 71.5)

aSES socioeconomic status (social class 1–3/4–5). Differences between unexposed and exposed children for each PON1 Q192R genotype were tested using

Mann-Whitney U test for continuous variables and Fisher’s exact test (dichotomous variables) or Likelihood ratio (categorical variables with > 2 categories).

*P value ≤ 0.05, **P value ≤ 0.01. Values are presented as median (5–95%) for continuous variables and as N (%) for categorical variables
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were the pyrethroid insecticides deltamethrin and fenpro-

pathrin; the carbamate insecticides methiocarb, pirimi-

carb, and methomyl, and the fungicides fenarimol,

prochloraz, tolclofos-methyl, vinclozolin, iprodion, and

chlorothalonil. In general, the time interval between

applying insecticides and working in the treated areas was

longer (1–3 days) than for fungicides and growth regula-

tors (often a few hours). Because of the complexity of the

exposure situation and because most of the women at

enrollment had been off work for some days while the risk

assessment of their working conditions was performed,

biomonitoring of the exposure was not feasible. A

complete list of the pesticides used in the greenhouses can

be obtained from the corresponding author.

At follow-up at age 6 to 11 years, 177 children under-

went a standardized clinical examination in which

systolic and diastolic blood pressure, pubertal staging,

height, weight, thickness of skin folds, and other an-

thropometric parameters were measured [9]. The same

pediatrician performed all clinical examinations blinded

to information about maternal pesticide exposure during

pregnancy.

Venous non-fasting blood samples were collected

(between midmorning and late afternoon) in EDTA-

coated and uncoated vials (Venoject). After centrifuga-

tion at 2000 g for 10 min at 20 °C, buffy coat for

genotyping and epigenetic analysis was separated from

the EDTA-treated samples. Buffy coat and serum from

the uncoated vials were stored at −80 °C until analysis.

As previously described [19], C-108T (rs705379) and

Q192R (rs662) polymorphisms of the PON1 gene was de-

termined by the Taqman-based allele discrimination using

the ABI Prism 7700 Sequence Detection System, serum

activity of PON1 was determined by spectrophotometry

with paraoxon as substrate, and insulin (proinsulin and

insulin) and leptin concentrations in serum were deter-

mined by commercial ELISA hormone kits from RayBio.

Genotyping and all serum analyses were performed

blinded to both exposure information and examination

outcomes.

Sample preparation

DNA from buffy coat samples was extracted using

QIAamp DNA Blood Mini Kit (Qiagen, Hilden,

Germany). The blood spin protocol was applied ac-

cording to manufacturer’s instructions. Samples were

eluted in 100 μl elution buffer. DNA samples were

bisulfite-converted using the EZ DNA methylation kit

from Zymo according to manufacturer’s instructions.

Successful bisulfite conversion was checked using a

bisulfite-specific PCR of an amplicon in the SALL3

gene (see Additional file 1 for primer sequences). Only

samples showing an intense band on agarose gel were

further analyzed by the 450 K methylation array. As a

negative control non-converted gDNA was used.

DNA methylation and data preprocessing

The Infinium HumanMethylation450 BeadChip array

(Illumina, San Diego, CA, USA) was used to measure

DNA methylation genome-wide. 4 μL of bisulfite-

converted DNA from each sample was amplified, frag-

mented, precipitated, resuspended, and subsequently

hybridized onto the BeadChips. After overnight incuba-

tion of the BeadChips, unhybridized fragments were

washed away, while hybridized fragments were extended

using fluorescent nucleotide bases. Finally, the Bead-

Chips were scanned using the Illumina iScan system to

obtain raw methylation intensities for each probe.

We used the R package RnBeads to preprocess the

Illumina 450 K methylation data [35]. Cg-probes were

filtered before normalization based on following criteria:

probes containing a SNP within 3 bp of the analyzed

CpG site, bad quality probes based on an iterative

Greedycut algorithm where a detection p value of 0.01

was set as a threshold for an unreliable measurement,

and probes with missing values in at least one sample.

After filtering these cg-probes, beta values (ratio of

methylated probe intensity versus total probe intensity)

were within-array normalized using the beta mixture

quantile dilation (BMIQ) method [36]. Another filtering

step was performed after normalization based on the

following criteria: probes measuring methylation not at

CpG sites and probes on sex chromosomes. The two

filtering steps removed a total of 20,338 cg-probes and

ended up with a data set of normalized methylation

values for 465,239 cg-probes. Beta values were trans-

formed to M values (M = log2(β/(1−β))) prior to further

analyses. Principal component analysis (PCA) was

conducted to detect possible batch effects. Associations

between the first eight principal components and

possible batch effect covariates were measured. The

Kruskall-Wallis test was used to find associations with

sentrix_ID (BeadChip), while the two-sided Wilcoxon

sum rank test was used for associations with the pro-

cessing date, exposure and PON1 Q192R genotype.

Significant associations between principal component 2

and sentrix_ID (BeadChip) and processing date were

suggestive for batch effects and were therefore corrected

using the ComBat function in the SVA R package [37]

(Additional files 2 and 3). Raw and normalized array

data were uploaded to the Gene Expression Omnibus

(GEO) database and have accession number: GSE90177.

For each sample, the relative cell type contribution

was measured using the approach described by House-

man et al. [38]. Reference methylomes of each blood cell

type (granulocyte, CD4+ T-cell, CD8+ T-cell, B-cell,

monocyte, NK-cell) were obtained from the study of
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Reinius et al. using the FlowSorted.Blood.450 K R pack-

age [39]. The analysis was limited to the 100,000 most

variable sites. The top 500 cg-probes associated with the

cell types were used to estimate the relative cell type

composition in each sample. One-way ANOVA was used

to determine differences in relative cell type composition

between the exposed and the unexposed children and

between children with the QQ and QR/RR genotype. As-

sociations between relative cell type composition and

health outcomes (percentage body fat, delta BMI z-scores

from birth to school age, and BMI Z scores), leptin levels

and age were analyzed using simple linear regression.

Statistical analysis

Differential methylation was analyzed both at the single

CpG site level and at the region level (Fig. 1). At the single

CpG site level, multiple linear regression (Matlab version

2014b, The Mathworks®, Natick, MA, USA) was per-

formed in which methylation was the dependent variable

and PON1 Q192R genotype and prenatal pesticide expos-

ure (yes/no) were the independent variables. Our statis-

tical approach was designed to explain—at the level of

methylation—the previously reported gene-environment

interaction between the paraoxonase 1 (PON1) Q192R

genotype and prenatal pesticide exposure leading to an

adverse cardio-metabolic risk profile at school age among

children carrying the R-allele [19]. Thus, our primary

interest was to identify methylation marks associated with

exposure that were more altered in R-allele carriers than

in QQ-homozygotes. Two statistical models were included

in our statistical approach. In the first model, effect modi-

fication (interaction) of exposure by PON1 Q192R geno-

type was allowed by including main effects (exposure and

genotype) and cross-product terms (exposure*genotype)

in the models. Statistical significant effects of exposure in

the PON1 192QR/RR group were defined as follows: P

value interaction term ≤0.1 and P value of exposure in

the QR/RR group ≤ 0.001. This model allows studying

synergistic effects where the combined effect of pre-

natal exposure and in the QR/RR group is greater than

the sum of the effects of each factor alone. In the sec-

ond model, effect modification of exposure by PON1

Q192R genotype was not assumed (no cross product

term included). Statistical significant effects of exposure

were defined as follows: P value of exposure ≤0.001, P value

of PON1 genotype ≤ 0.1. In this model the combined effect

of exposure and being R-allele carrier is equal to the sum of

the effect of each factor separately. For both models, the

associations were adjusted for child sex. To identify probes

that were most aberrant in the exposed QR/RR group, we

set an additional filter for both models in which we defined

that the prenatally exposed QR/RR group should either be

highest or lowest methylated (based on mean methylation

level) as compared to the other three groups (exposed QQ,

unexposed QR/RR and unexposed QQ). These sites are

defined as significantly differentially methylated positions

(sig-DMPs) in the remainder of this text. Sig-DMPs were

annotated using the HumanMethylation450 v1.2 manifest

file. The freely available EpiExplorer tool was used to add

further annotation including chromatin state segmentation

and histone modifications based on the UCSC hg19

browser [40]. Genomic locations of transcription factor

binding sites (TFBS) were directly downloaded from the

UCSC h19 genome browser. Enrichment or depletion of

sig-DMPs in a particular genomic region was determined

using the Fisher’s exact test.

Fig. 1 Analysis workflow. Differentially methylated genes were detected using a single CpG and a region-based approach. Only sig-DMPs and

sig-DMRs were selected in which the pesticide exposed QR carrier group was either hyper- or hypomethylated in comparison with the other
groups (interesting profile). By overlapping the sig-DMPs with the sig-DMRs a high confidence list of differentially methylated genes could

be generated
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Differentially methylated regions (DMRs) were detected

using the limma-based DMRcate R package [41]. We only

looked for regions differentially methylated between the

exposed QR/RR group and one of the other groups

(exposed QQ, unexposed QR/RR and unexposed QQ). In

line with identification of sig-DMPs, significant regions

(Padj value < 0.05) were selected in which the exposed R-

allele carriers showed either the highest or the lowest

methylation state which are called sig-DMRs in the

remainder of this text. P values were corrected for mul-

tiple testing using the Benjamini-Hochberg method (Padj).

Pyrosequencing

We used bisulfite pyrosequencing to further verify the

methylation differences observed in the methylation

array. We selected regions in four genes that are known

to be involved in metabolism: LEP, GPR39, PPARG, and

OPCML (Additional file 4). LEP DNA methylation has

been associated with BMI, birth weight, and cholesterol

levels [42–44]. Also, maternal conditions have an effect

on the methylation status of the LEP promoter [45–48].

GPR39 belongs to the ghrelin receptor family and was

shown to be associated with obesity [49]. PPARG is a

nuclear receptor involved in regulation of lipid and

metabolism as well as a target for some obesogenic

endocrine disruptors [20, 50–53]. Furthermore, PPARγ

is directly involved in the regulation of PON1 gene

expression [54–56]. OPCML (Opioid Binding Protein/

Cell Adhesion Molecule-like) is a member of the IgLON

family. A SNP in the OPCML gene was associated with

coronary artery calcified plaque in African Americans

with type 2 diabetes [57]. A mouse and human GWAS

analysis identified an OPCML SNP associated with obes-

ity traits and visceral adipose/subcutaneous adipose

ratio, respectively [58, 59]. 1 μg DNA from each sample

was bisulfite-converted using the EpiTect Fast bisulfite

Conversion Kit (Qiagen, Hilden, Germany) according to

manufacturer’s instructions. 15 ng of bisulfite-treated

DNA was subsequently used in PCR amplification using

the PyroMark PCR Kit (Qiagen, Hilden, Germany).

Reverse primers were biotinylated to get biotin-labeled

PCR products. Finally, DNA sequences were pyrose-

quenced using the PyroMark Q24 Advanced instrument

(Qiagen, Hilden, Germany). First, streptavidin-coated

Sepharose beads (High Performance, GE Healthcare,

Uppsala, Sweden) were used to immobilize the biotin-

labeled PCR products. Subsequently, PCR products were

captured by the PyroMark vacuum Q24 workstation,

washed and denaturated. The single stranded PCR prod-

ucts were mixed and were annealed with their corre-

sponding sequencing primer. After the pyrosequencing

run was finished, the results were analyzed using the Pyro-

Mark Q24 Advanced software (Qiagen, Hilden, Germany).

Biotinylated-reverse, forward, and sequencing primers

were designed using the PyroMark Assay Design 2.0

software (Qiagen, Hilden, Germany) (Additional file 1).

Mediation analysis

For a subset of sig-DMPs and sig-DMRs we analyzed (1)

whether methylation is a mediator between exposure in

PON1 192R-allele carriers and leptin levels; and (2)

whether methylation is a mediator between exposure in

PON1 192R-allele carriers and body fat accumulation

(using delta BMI-score (from birth to school age), and

percentage body fat as endpoints). Mediation analysis

was restricted to the subset of the methylation data that

overlap between the list of sig-DMPs (interaction model)

and sig-DMRs. The analysis was performed by the pro-

cedure described by Baron and Kenny (1986) [60].

Leptin concentrations were logarithmically (ln) trans-

formed prior to analysis. In mediation analysis consider-

ing body fat percentage and leptin, the models were

adjusted for sex. As sex was already considered when

calculating BMI Z score, associations considering medi-

ation between pesticide exposure and BMI Z score were

not adjusted for sex.

To demonstrate mediation, four requirements must be

met: (model 1) the dependent outcome variable (leptin or

a body fat measure) should be significantly associated with

pesticide exposure (independent variable); (model 2) the

DNA methylation mark (mediator) should be significantly

associated with pesticide exposure; (model 3) the

dependent variable should be significantly associated with

the DNA methylation mark; and (model 4) the DNA

methylation mark should be a significant predictor of the

outcome variable, while controlling for pesticide exposure.

The estimated exposure-related change in the outcome

variables in model 4 should be less than in model 1 to

demonstrate partial mediation, and drop to zero to dem-

onstrate full mediation. A P value below 0.05 was used as

a cut-off for statistical significance in each of the models.

Functionally relevant mediators, i.e., mediators that have

been reported to be involved in development of weight

gain/obesity, insulin resistance/diabetes, cardiovascular

disease, and/or fetal growth retardation were subjected to

further statistical analysis. R-package “mediation” was

used to calculate the significance of the causal mediation

effect using a bootstrapping approach [61]. It should be

noted that the age of the children varied between 6 and

11 years at the follow-up examination where blood was

collected. As child age might affect methylation levels, the

exposed and unexposed children selected for this study

were age-matched within each genotype.

Functional analysis

Ingenuity Pathway Analysis (IPA, Ingenuity Systems®)

was used for biological interpretation. The overlap be-

tween sig-DMPs and sig-DMRs was determined and
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used as input for canonical pathway analysis. A Fisher’s

exact test was used to determine whether the gene lists

include more genes associated with a given pathway as

compared to random chance (P value ≤ 0.05).

The DisGeNet platform (http://www.disgenet.org/)

was used to screen for gene disease associations [62].

The database (currently) contains 429111 gene disease

associations for which the platform provides a reli-

ability score (DisGeNET Score). This score ranges

from 0 to 1 and takes into account the number and

type of sources (level of curation, organisms), and the

number of publications supporting the association

(for further details we refer to the DisGeNet website).

For this manuscript, we extracted the associations

with a score above 0.1. By this criterion, 34180 gene

disease associations remain in the database. Associ-

ated diseases were mapped to the overlapping list of

genes between sig-DMPs and sig-DMRs.

Results

Descriptive statistics of the study population

Characteristics, inclusive anthropometric data, for the

48 children (6–11 years of age) are presented in Table 1.

In accordance with the findings for the whole cohort

[19], birth weights were significantly lower and mea-

sures of body composition (abdominal circumference,

skin fold thickness), increase in BMI Z score from birth

to school age (delta BMI Z score), diastolic blood pres-

sure, and leptin and insulin concentrations at school

age were significantly higher in the exposed PON1

192QR/RR group compared with the unexposed QR/

RR group. For children with the QQ genotype, none of

the variables was significantly affected by prenatal

pesticide exposure (P > 0.05).

Prenatal pesticide exposure-induced methylation changes

at CpG sites enriched in promoter regions in PON1 192R-

allele carriers

Genome-wide DNA methylation in whole blood samples

from the children was determined by Illumina 450 K

methylation arrays and differential methylation patterns

related to prenatal pesticide exposure and PON1 Q192R

genotype were analyzed. First differential methylation

was detected at the single CpG level using two multiple

linear regression models (Fig. 1). Because relative cell

type composition was not associated with pesticide

exposure and PON1 Q192R genotype (Additional file 5),

differences in cellular composition were not further con-

sidered in the workflow of statistical analysis. Allowing

effect modification by PON1 Q192R genotype, 767 sig-

DMPs were identified of which 128 were hypermethy-

lated and 639 hypomethylated in prenatally exposed

PON1 192R allele carriers. When effect modification was

not assumed, and the interaction term between exposure

and PON1 genotype was removed from the models, 70

sig-DMPs of which 44 were hypermethylated and 26

hypomethylated in prenatally exposed PON1 192R-allele

carriers were identified. Hierarchical clustering of the

samples using all the sig-DMPs demonstrated a clear

cluster of exposed PON1 192R-allele carriers (Fig. 2).

Confidence in detection of differentially methylated

genes was increased by further analysis showing that the

changes in methylation were not restricted to single

CpGs, but were often located in regions or so called dif-

ferentially methylated regions (DMRs). 5002 sig-DMRs

were identified, of which 2264 were hypermethylated

and 2738 hypomethylated in the exposed PON1 192R

carrier group compared to the other groups. Allowing

interaction between exposure and PON1 Q192R geno-

type to determine sig-DMPs, 547 out of 767 sites

Fig. 2 Heatmap clustering representation of the sig-DMPs. Heatmap of the methylation values from the sig-DMPs showing a clear cluster of prenatal
pesticide exposed PON1-192 R-carrier samples (orange group). Hierarchical clustering is based on the euclidean distance and average linkage metric.

Higher methylation values are colored in yellow, while lower methylation values are colored in blue
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(71.3%) were overlapping with the list of sig-DMRs

(Additional file 6). When effect modification was not

considered, 57 out of 70 sites (81.4%) were overlapping

(Additional file 7).

The pyrosequencing methylation percentages con-

firmed the robustness of Illumina results. They showed

significant positive correlations with the Illumina 450 K

beta values for all measured CpG probes (Fig. 3), except

for two probes in the LEP gene (cg00840332 and

cg26814075) which were borderline significant (P value:

0.07 and 0.16, respectively). The reason for this less

strong correlation between the Illumina and the pyrose-

quencing LEP methylation is probably the lower inter-

individual methylation variability in this region compared

to GPR39 and PPARG.

In accordance with the Illumina results, the pyrose-

quencing LEP methylation values were not associated

with pesticide exposure and/or PON1 Q192R geno-

type. Furthermore, the serum leptin concentrations

were not correlated with LEP methylation status (data

not shown). For GPR39, the region analyzed with

pyrosequencing contained three Illumina cg-probes

(cg17172683, cg11552903, and cg18444763), which

showed a high correlation (r > 0.78) between the Illu-

mina beta values and the pyrosequencing methylation

percentages. For most CpGs in the pyrosequencing

region, we could verify a significant exposure effect,

and in each CpG site, prenatally exposed children with

the QR/RR genotype had the lowest mean methylation

value (Additional files 8 and 9). In the PPARG pro-

moter, a region was selected containing one Illumina

cg-probe (cg01412654). Also here, the correlation

between the 450 K Illumina beta values and the

pyrosequencing methylation percentages was strong.

However, DNA methylation in this region was not as-

sociated with pesticide exposure and/or PON1 Q192R

genotype and did not correlate with PON1 activity

(data not shown). A region in the OPCML gene was

found to be higher methylated in prenatal pesticide-

exposed children carrying the PON1 192R-allele. The

significant interaction effect between pesticide expos-

ure and PON1 Q192R genotype could be successfully

verified by pyrosequencing. The pyrosequencing

methylation values were significantly higher methyl-

ated in exposed children compared to unexposed

children carrying the PON1 192R-allele for most of

the CpG sites in the region (Additional file 9).

Next, we questioned whether the sig-DMPs were

enriched or depleted in a specific genomic location

(Fig. 4). Sig-DMPs for which interaction between expos-

ure and PON1 Q192R genotype was seen, were enriched

in promoter regions (200 and 1500 bp upstream of tran-

scription start sites) and depleted in gene bodies, 3′

UTRs and intergenic regions. This was also evident

Fig. 3 Correlation between the Illumina 450 K beta values and the pyrosequencing methylation percentages. The Pearson’s correlation coefficient
for each CpG probe is indicated between brackets. CpG probes cg00840332, cg19594666, and cg26814075 are located in the LEP gene, cg17172683,

cg11552903, and cg18444763 in the GPR39 gene, cg01412654 in the PPARG gene, and cg06908202, and cg16919708 in the OPCML gene
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when we overlapped the sig-DMPs with different chro-

matin states, where we observed enrichment in active

and poised promoters, while DMPs were depleted in

regions like transcriptional elongation, weak transcribed,

and heterochromatin regions. Furthermore, DMPs were

significantly more located in CpG islands and less ob-

served in CpG poor regions. Sig-DMPs found in the

models without an interaction term were not enriched

or depleted in a particular genomic region.

We also looked for enrichment in TFBS using available

ChIP ENCODE data from the UCSC genome browser.

Thirty-nine of the 161 TFBS were significantly enriched for

the model with interaction (Bonferroni adjusted P value <

0.05) while no enrichment was found for the sig-DMPs

found in the model without interaction (Additional file 10).

DNA methylation differences were enriched for genes

involved in neuro-endocrine signaling pathways

Overlapping the list of sig-DMPs with the list of sig-DMRs

we obtained a robust and a high confidence list of differen-

tially methylated genes (N = 446). This list was used as an

input for ingenuity pathway analysis. The top enriched

canonical pathways (based on P value) were dopamine-

DARPP32 feedback cAMP signaling, corticotrophin releas-

ing hormone signaling, nNOS signaling in neurons, CDK5

signaling, and neuregulin signaling (Table 2). In the context

of this manuscript, other significantly enriched pathways

such as mTOR signaling (rank 9, −log(P value) = 1.85) and

type II diabetes mellitus signaling (rank 16, −log(P value) =

1.51) are also highly relevant.

DNA methylation (partially) mediates associations

between pesticide exposure and higher leptin

concentrations, body fat content, and delta BMI Z scores

The list of genes that overlaps between sig-DMPs (as

identified by the interaction model) and sig-DMRs

was also used as input for mediation analysis. We

identified, respectively, 20, 31, and 45 candidate

methylation marks that (partly) mediate the effect be-

tween pesticide exposure and serum leptin concentra-

tions; delta BMI Z score; and body fat content. Based

on applied cut-off criteria, we were not able to iden-

tify methylation marks that mediate the effect on

BMI Z score. Currently known gene disease associa-

tions allowed to extract mediators that were reported

to be involved in development of weight gain/obesity,

insulin resistance/diabetes, cardiovascular disease,

and/or fetal growth retardation. This subset of media-

tors is given in Table 3. Based on Baron and Kenny’s

steps to analyze mediation, the association between

pesticide exposure and delta BMI Z score was par-

tially mediated by hypomethylation of UQCRC2,

MTNR1B and GRIN2A, and by hypermethylation of

FABP4 and LRP8. Methylation of UQCRC2 and LRP8

was also a partial mediator in the association between

Fig. 4 Genomic location of sig-DMPs. DMPs were mapped to gene elements (top left), CpG islands (top right), and chromatin state segmentations
(bottom). Asterisks indicate significant enrichment or depletion in comparison with all Illumina probes (gray bars) measured by the Fisher’s exact

test (P value < 0.05). Sig–DMPs where the interaction term was significant (blue bars) showed an enrichment in promoter regions and CpG islands.
Sig-DMPs where no interaction was seen (orange bars) showed no significant enrichment or depletion in a particular genomic region
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pesticide exposure and body fat percentage. LRP8 was also

found to mediate the association between pesticide expos-

ure and serum leptin concentration. The P value for

significance of the causal mediation effect is included in

Table 3 and was below 0.1 for all mediators except for

UQCRC2 and GRIN2A. Irrespective of disease association

Table 2 Significant enriched Ingenuity canonical pathways

Rank Ingenuity canonical pathways −log(P value) Ratio Hyper-genes Hypo-genes

1 Dopamine-DARPP32 Feedback in cAMP signaling 3.98 0.07 CREB5, PPP2R2B,
CACNA1A

KCNJ2, NOS1, GRIN2A, GUCY1B3, ADCY2,
PRKCH, GNAI3, CACNA1D, PRKCG

2 Corticotropin releasing Hormone signaling 2.74 0.07 CREB5 JUND, NOS1, GUCY1B3, ADCY2, PRKCH,
GNAI3, PRKCG

3 nNOS signaling in neurons 2.61 0.11 CAPN3 NOS1, GRIN2A, PRKCH, PRKCG

4 CDK5 signaling 2.41 0.07 PPP2R2B, CACNA1A CDK5R1, NGFR, ITGA2, LAMB1, ADCY2

5 Neuregulin signaling 2.06 0.07 EGFR, ERBB3 CDK5R1, ITGA2, PRKCH, PRKCG

6 PCP pathway 2.06 0.08 JUND, FZD10, RSPO3, WNT7B, WNT9B

7 Maturity onset diabetes of young (MODY) signaling 2.03 0.14 CACNA1A GAPDH, CACNA1D

8 Regulation of eIF4 and p70S6K signaling 2.02 0.05 PPP2R2B, FAU RPS16, RPS13, RPS10, ITGA2, IRS1, RPS19

9 mTOR signaling 1.85 0.05 PPP2R2B, FAU RPS16, RPS13, RPS10, IRS1, PRKCH, RPS19, PRKCG

10 Amyotrophic lateral sclerosis signaling 1.84 0.06 CAPN3, CACNA1A NOS1, GRIN2A, NEFM, CACNA1D

11 NF-κB activation by viruses 1.8 0.07 ITGAV, CR2, ITGA2, PRKCH, PRKCG

12 Phosphatidylethanolamine biosynthesis III 1.7 1 PTDSS2

13 Role of CHK proteins in cell cycle checkpoint control 1.61 0.07 PPP2R2B, RFC4 E2F3, CHEK1

14 Synaptic long-term depression 1.6 0.05 IGF1R, PPP2R2B NOS1, GUCY1B3, PRKCH, GNAI3, PRKCG

15 ErbB signaling 1.53 0.06 EGFR, ERBB3 NCK2, PRKCH, PRKCG

16 Type II diabetes mellitus signaling 1.51 0.05 PKM NGFR, ADIPOR2, IRS1, PRKCH, PRKCG

17 G beta gamma signaling 1.49 0.06 EGFR ADCY2, PRKCH, GNAI3, PRKCG

18 p70S6K signaling 1.48 0.05 EGFR, PPP2R2B IRS1, PRKCH, GNAI3, PRKCG

19 Role of osteoblasts, osteoclasts, and
chondrocytes in rheumatoid arthritis

1.47 0.04 FZD10, NGFR, SMAD5, WNT7B, ITGA2, IL1RAP,
WNT9B, TCF7L2, NFATC1

20 Molecular mechanisms of cancer 1.46 0.04 RASGRF1, ITGA2, WNT7B, IRS1, E2F3, GNAI3,
FZD10, SMAD5, ADCY2, WNT9B, PRKCH,
CHEK1, PRKCG

21 nNOS signaling in skeletal muscle cells 1.45 0.13 CAPN3 NOS1

22 Factors promoting cardiogenesis in vertebrates 1.42 0.05 FZD10, SMAD5, PRKCH, TCF7L2, PRKCG

23 RAR activation 1.41 0.04 REL, ERCC2, SMAD5, NR2F1, ADCY2, PRKCH,
RARB, PRKCG

24 Choline degradation I 1.4 0.5 CHDH

25 Sulfate activation for sulfonation 1.4 0.5 PAPSS2

26 Mismatch repair in eukaryotes 1.4 0.13 RFC4 MLH1

27 Glioma signaling 1.37 0.05 IGF1R, EGFR PRKCH, E2F3, PRKCG

28 Netrin signaling 1.36 0.08 UNC5C, NCK2, NFATC1

29 Cellular effects of sildenafil (Viagra) 1.33 0.05 CACNG6, CACNA1A KCNN1, GUCY1B3, ADCY2, CACNA1D

30 GNRH signaling 1.33 0.05 EGFR, CREB5 ADCY2, PRKCH, GNAI3, PRKCG

31 Protein kinase A signaling 1.31 0.03 HIST1H1A, CREB5 PTPN9, TIMM50, NFATC1, GNAI3, AKAP12, NGFR,
PTP4A1, ADCY2, PRKCH, TCF7L2, PRKCG

32 Ovarian cancer signaling 1.31 0.05 EGFR FZD10, WNT7B, MLH1, WNT9B, TCF7L2

33 Colorectal cancer metastasis signaling 1.3 0.04 EGFR ADRBK1, APPL1, FZD10, WNT7B, MLH1, ADCY2,
WNT9B, TCF7L2

34 Agrin interactions at neuromuscular junction 1.3 0.06 EGFR, ERBB3 ITGA2, LAMB1

35 Growth hormone signaling 1.3 0.06 IGF1R IRS1, PRKCH, PRKCG
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of interest, the full list of potential mediators is provided

in Additional file 11 which also includes the outcome of

the statistical analysis.

DNA methylation at the PON1 promoter is affected by the

PON1-108CT SNP (rs705379) and negatively correlated

with paraoxonase 1 activity

Beside the genome-wide DNA methylation effects of

the PON1 Q192R genotype, we also observed a wide

variation in DNA methylation in the PON1 promoter

itself for nine Illumina cg-probes. Prenatal pesticide

exposure and/or PON1 Q192R genotype did not affect

PON1 promoter methylation status. However, another

polymorphism (rs705379, PON1 -108CT) in the pro-

moter region of PON1 could explain a large extent of

this variation (Fig. 5). Individuals homozygous for the

T-allele showed higher methylation values compared

with the homozygous C-allele carriers. As expected,

heterozygous individuals had an intermediate methyla-

tion value. Furthermore, the paraoxonase 1 activity

was significantly associated with DNA methylation in

the PON1 promoter region, with higher methylation

values resulting in lower paraoxonase 1 activity

(Fig. 6). PON1 Q192R genotype had the strongest

effect on PON1 activity, while variation in PON1

promoter methylation led to a smaller but significant

effect on PON1 activity.

Discussion

We found that prenatal pesticide exposure was associ-

ated with a differential DNA methylation profile in chil-

dren carrying the PON1 192R-allele compared to

children with the PON1 192QQ genotype and unex-

posed children. 767 sig-DMPs were identified of which

128 were hypermethylated and 639 hypomethylated in

prenatally exposed PON1 192R-allele carriers. The pro-

files of PON1 192R-allele carriers are clustered together.

As far as we know, our study is the first one to demon-

strate a link between epigenetics and genetic susceptibil-

ity towards pesticide exposure in fetal life. Our study

supports a linkage of a differential methylation pattern

and higher body fat content and serum leptin concentra-

tions in school age children dependent on both PON1

Q192R genotype and prenatal pesticide exposure.

The majority of the detected sig-DMPs were hypo-

methylated in exposed children with the PON1 192QR/

Fig. 5 Association between PON1 methylation and PON1 C-108T SNP. Individuals homozygous for the T allele showed higher methylation values

(beta values) as compared with C-allele carriers. P values shown are those from the one-way ANOVA analysis
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RR genotype. Interestingly, these DMPs were mainly lo-

cated in gene promoters, CpG islands and transcription

factor-binding sites, suggesting a possible direct link

with gene expression. To increase the confidence of our

findings, we also screened for differentially methylated

regions. Most of the single CpG sites were part of a

DMR suggesting that these were independent of tech-

nical variation and could be considered as reliable.

Technical reliability of the outcomes from the 450 K

Illumina methylation array was successfully confirmed

by bisulfite pyrosequencing of corresponding CpG probe

regions of four selected genes, i.e., LEP, PPARG, GPR39,

and OPCML for which corresponding probes were

available.

LEP was chosen because we previously found leptin to

be a potential mediator of the association between pre-

natal pesticide exposure and body fat accumulation in

children with the PON1 192R-allele [20]. In addition,

multiple studies demonstrated associations between LEP

DNA methylation and BMI, birth weight, and choles-

terol concentrations [42–44]. LEP was also found to be

differentially methylated in the offspring of mothers suf-

fering from the Dutch winter famine [45]. However, our

pyrosequencing results did not demonstrate a correl-

ation between leptin DNA methylation and leptin serum

concentrations, and prenatal pesticide exposure was not

associated with changes in leptin DNA methylation. This

suggests that the higher leptin concentration observed in

exposed children with the R-allele is not due to a direct

effect on DNA methylation of the leptin gene itself. An-

other gene whose methylation was confirmed by pyro-

sequencing was PPARG, a nuclear receptor controlling

the expression of genes involved in lipid storage and

glucose metabolism and target for obesogenic com-

pounds [50–53]. Furthermore, PPARγ is involved in the

regulation of PON1 expression [54–56]. However, we

did not find a correlation between PPARG DNA methy-

lation and PON1 activity (data not shown). In our

Fig. 6 Association between PON1 activity and PON1 methylation. The P values of the main effect for methylation are displayed using the linear

model PON1 activity ~M value + PON1-192 genotype + sex. Red colored samples are PON1 192 R-allele carriers, and samples in blue are children
with the PON1 192QQ genotype
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dataset, prenatal pesticide exposure did not seem to

change PPARG methylation levels irrespective of

PON1 Q192R genotype.

Reduced GPR39 DNA methylation observed in pre-

natally pesticide exposed R-allele carriers was confirmed

with pyrosequencing. GPR39 is receptor for obestatin (be-

longing to the ghrelin receptor family), involved in regula-

tion of appetite and glucose homeostasis [63, 64] and

associated with obesity [49]. Furthermore, GPR39 knock-

out mice showed an increased fat accumulation due to

changes in lipolysis and energy expenditure [49]. So, mis-

regulation of this gene due to methylation changes might

lead to an obese phenotype. To our knowledge, no other

study has yet reported methylation differences in this re-

gion associated with obesity or metabolic disorders or

showed links with pesticide exposure.

The higher methylation values of the OPCML DMR in

exposed children carrying the PON1 192R-allele could

be confirmed by pyrosequencing. OPCML encodes for a

protein belonging to the IgLON family. OPCML was

shown to be a tumor suppressor and inactivated by

DNA methylation in a variety of cancer types [65–68].

There is also a link with metabolic diseases, as SNPs in

this gene were found to be associated with obesity traits,

coronary artery calcified plaque, and visceral adipose/

subcutaneous adipose ratio [57–59].

Further analysis revealed that the differences in DNA

methylation were most pronounced in genes involved in

neuro-endocrine signaling pathways, including “dopa-

mine-DARPP32 feedback in cAMP signaling”, “cortico-

tropin releasing hormone signaling”, “nNOS signaling in

neurons”, and “CDK5 signaling”. These pathways are

important in the control of food intake and energy bal-

ance. Dopamine signaling, for example, is one of the key

players in the reward pathway, also controlling food

intake and preferences. Reduced dopamine signaling is

assumed to induce overeating [69, 70]. In mice, a high-

fat diet during pregnancy resulted in altered gene

expression and DNA methylation of the dopamine trans-

porter gene in the offspring, leading to an increased

preference for sucrose and fat [71]. Another study found

similar results in prenatally stressed rats given a high

fat-sucrose diet [72]. These studies suggest that prenatal

and early life conditions may influence food intake and

food preferences later in life through modulation of the

dopamine pathway [73–77]. Organophosphate insecti-

cides have been shown to modulate dopamine signaling

[78]. Furthermore, low-dose exposure of neonatal rats

caused metabolic dysfunction resembling prediabetes,

and in adulthood, exposed animals gained excess weight

when fed a high fat diet compared to unexposed rats on

the same diet [79].

Corticotropin-releasing hormone (CRH) is a neuro-

peptide secreted in response to stress. However, a role

for CRH in regulating energy balance and food intake

has also been described [80–82] including a relation to

the action of leptin [83].

Also NOS1 neurons are involved in energy balance

and food intake [84–86]. Knock-out of NOS1 in leptin

receptor- and NOS1-expressing hypothalamic neurons

results in hyperphagic obesity, decreased energy expend-

iture, and hyperglycemia in mice [85]. Interestingly,

organophosphates have been shown to alter NOS1-

expressing neurons during development in mice [87, 88].

Neureguline 1 treatment in rodents has been shown to

increase serum leptin concentrations, prevent weight

gain, and lower food intake. Hence, affecting this path-

way may also change food intake and energy metabolism

[89, 90].

A limitation of this study is that the methylation pro-

file is measured at the same time as health outcomes

and causality as such cannot be proven. Some of the

genes that relate to the sig-DMPs are involved in neuro-

endocrine pathways that regulate appetite and energy

balance, but this study cannot rule out if these sig-DMPs

are a consequence of alterations of food habits and phys-

ical activity among the exposed children with the PON1

192R-allele or an underlying mechanism. However, the

mediation analysis suggested that some of the differen-

tially methylated marks are on the mechanistic pathway

between prenatal pesticide exposure and the measured

outcomes. This result suggests that, at least in some,

CpG sites a change in methylation might contribute to

metabolic disturbances later in life. Furthermore, the

association was not significant between pesticide expos-

ure and BMI Z score as such, but between pesticide ex-

posure and delta BMI Z score which integrates fat

accumulation from birth and onwards to school age.

Interestingly, some of the mediator marks could be

linked to specific genes that were reported earlier to play

a role in the development of weight gain/obesity, insulin

resistance/diabetes, cardiovascular disease, and/or fetal

growth retardation: UQCRC2, MTNR1B, GRIN2A,

FABP4, and LRP8. FABP4 encodes for a member of the

fatty acid-binding protein family regulating lipid traffick-

ing, signaling, and metabolism. Different studies have

demonstrated the role of this protein in obesity, type 2

diabetes and atherosclerosis development [91–93]. In

ApoE deficient mice with hyperhomocysteine FABP4

DNA methylation is reduced in the aorta compared to

wild type mice, leading to a higher gene expression [94,

95]. UQCRC2 encodes a protein which is part of the

ubiquinol-cytochrome c reductase complex in the mito-

chondria. UQCRC2 was shown to be downregulated in

individuals who were susceptible to weight gain and

obesity development [96]. The melatonin receptor 1B

(MTNR1B) has a main function in regulating circadian

rhythm. Interestingly, several polymorphisms in the
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MTNR1B gene are associated with type 2 diabetes, fast-

ing glucose concentration, and insulin secretion [97–99].

GRIN2A encodes for a NMDA glutamate receptor sub-

unit. Polymorphisms in the GRIN2A gene are associated

with epilepsy and different neurological and mental

disorders [100–104]. A decreased gene expression of

GRIN2A in rats after intrauterine growth retardation

suggests a possible role for this gene in fetal growth and

development [105]. LRP8 encodes for a member of the

LDL receptor family. Common polymorphisms in the

LRP8 gene are associated with coronary artery disease,

myocardial infarction, and high birth weight [106–110].

Thus, the mediation analysis suggests a mechanistic role

of epigenetics in the development of an adverse metabolic

risk profile among the prenatally exposed children with

the PON1 R-allele as previously reported for these chil-

dren [19] and confirmed in the selected subset of children.

A few studies have investigated associations between

PON1 genotype and metabolic disturbances in children.

A recent study showed a higher risk of insulin resistance

(HOMA-IR) in Mexican children with the RR-genotype

as compared to children with the QQ or QR genotypes

although BMI did not differ between the groups [111].

Among Mexican-American children from an agricultural

community in California, a trend of increased BMI Z

scores with increased number of PON1 192Q alleles was

seen [112]. However, potential interactions between

PON1 genotype and prenatal exposure to pesticides, or

other environmental contaminants, were not investi-

gated in these studies. In our cohort, unexposed QQ-

homozygote children also tended to have higher body fat

content than unexposed R-carriers, but prenatally pesti-

cide exposed children with the R-allele accumulated

more fat during childhood and had a more unhealthy

metabolic risk profile at school age than unexposed chil-

dren and exposed children with the QQ genotype [19].

We also demonstrated that methylation in the PON1

promoter itself is affected by a SNP (PON1 -108CT,

rs705379). In addition, PON1 methylation values were

negatively associated with paraoxonase 1 activity. These

results are in agreement with the outcome of a recent

study from Huen and colleagues [113]. They found

methylation in the same nine CpG sites to be associated

with the PON1 -108CT polymorphism and also reported

an inverse association with AREase activity as a measure

of PON1 expression, both in newborns and 9-year-old

children. Furthermore, they demonstrated that PON1

methylation mediates the relationship between PON1

expression and the promoter -108 genotype. However,

the effect of prenatal pesticide exposure on the health

outcomes shown in Table 1 was not modulated by

PON1 -108CT genotype (data not shown).

Our findings indicate that the higher vulnerability

among children with the R-allele towards prenatal

pesticide exposure might be mediated by genotype-

specific epigenetic alterations. However, a limitation of

this study is that we cannot identify individual pesticides

related to these findings, since the study design did not

allow bio-monitoring of pesticide exposure in the

mothers, and the exposure classification of the mothers

encompassed more than 100 pesticides used in different

mixtures [11].

However, the existence of mixed exposure is a real-

world situation, and the longitudinal design, the blinded

exposure classification, and the blinded clinical examina-

tions, and genotyping minimized the possible impact of

exposure misclassification and bias.

Since PON1 is known to detoxify some organophos-

phate insecticides (e.g., chlorpyrifos), and these sub-

stances were frequently applied in the mothers’ working

areas, organophosphate insecticides could be assumed to

be responsible for the observed effects. However, the

mechanism is unclear and does not seem to be related

to the hydrolysis efficiency, since R-carriers have higher

paraoxonase activity than QQ homozygotes. Besides, at

relatively low exposure levels, as in this study, the cap-

acity to detoxify organophosphates is considered to be

independent of the PON1 Q192R genotype [114], and

furthermore, serum PON1 activity was reported to be

low in newborns and may be even lower before birth, as

indicated by lower activity in premature compared to

term babies [115, 116]. Thus, differences in fetal detoxi-

fication of pesticides related to PON1 genotype might

not be a likely explanation of the exposure-related differ-

ence in methylation pattern between children with the

QR/RR and QQ genotype.

Another limitation of the study is that DNA methyla-

tion analyses were performed in white blood cells as sur-

rogates for the target tissues. We do not know whether

the differences in DNA methylation patterns found in

blood mirror a similar change in adipose tissue, for ex-

ample. A recent study from Huang et al. demonstrated

several potential limitations in using methylation profiles

in blood to mirror the corresponding profile in target

tissues by comparing paired blood and adipose tissue

methylation profiles [117]. Furthermore, the compos-

ition of blood cell types may be variable and might affect

the DNA methylation analyses. In our dataset, prenatal

pesticide exposure and/or PON1 Q192R genotype did

not affect the relative blood cell counts determined by

the reference-based method of Houseman. Cell counts

were not included in the models due to the small sample

size of the study. Since we found that some of the health

effects (mainly leptin) were associated with cell type

count (Additional file 12), we cannot exclude that the

results of the mediation analysis were biased by differ-

ences in cell type composition. Based on the data of

Reinius et al. [39], methylation of only two CpG probes
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(cg18202502 and cg15134033) in Table 3 were slightly

associated with cell types (data not shown). Methylation

in the other CpG probes in Table 3 was not significantly

different between the blood cell types.

Finally, the small number of subjects included in this

exploratory study is a clear weakness because of the lim-

ited statistical power. Despite these constraints, our find-

ings suggest that DNA methylation might be a link

between prenatal pesticide exposure and cardio-

metabolic risk profile in children carrying the PON1

192R-allele. The findings deserve further investigation in

a larger study with quantitative data on pesticide expos-

ure. Whether this DNA methylation pattern is unique to

pesticide exposure or is shared by other adverse prenatal

environmental factors also needs further investigation.

Conclusions
In summary, our data indicate that DNA methylation

may be an underlying mechanism explaining an adverse

cardio-metabolic risk profile in prenatally pesticide-

exposed children carrying the PON1 192R-allele.
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