

Edinburgh Research Explorer

Interaction between Record Matching and Data Repairing

Citation for published version:
Fan, W, Ma, S, Tang, N & Yu, W 2014, 'Interaction between Record Matching and Data Repairing', Journal
of Data and Information Quality, vol. 4, no. 4, pp. 16. https://doi.org/10.1145/2567657

Digital Object Identifier (DOI):
10.1145/2567657

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Data and Information Quality

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1145/2567657
https://doi.org/10.1145/2567657
https://www.research.ed.ac.uk/en/publications/1db8f6bc-6e4b-4551-a36c-3d1d2abc68c4

A

Interaction between Record Matching and Data Repairing

Wenfei Fan, University of Edinburgh, and SKLSDE Lab, Beihang University

Shuai Ma, SKLSDE Lab, Beihang University

Nan Tang, QCRI

Wenyuan Yu, University of Edinburgh

Central to a data cleaning system are record matching and data repairing. Matching aims to identify tuples

that refer to the same real-world object, and repairing is to make a database consistent by fixing errors

in the data by using integrity constraints. These are typically treated as separate processes in current

data cleaning systems, based on heuristic solutions. This paper studies a new problem in connection with

data cleaning, namely, the interaction between record matching and data repairing. We show that repairing

can effectively help us identify matches, and vice versa. To capture the interaction, we provide a uniform

framework that seamlessly unifies repairing andmatching operations, to clean a database based on integrity

constraints, matching rules and master data. We give a full treatment of fundamental problems associated

with data cleaning via matching and repairing, including the static analyses of constraints and rules taken

together, and the complexity, termination and determinism analyses of data cleaning. We show that these

problems are hard, ranging from NP-complete or coNP-complete, to PSPACE-complete. Nevertheless, we

propose efficient algorithms to clean data via both matching and repairing. The algorithms find deterministic

fixes and reliable fixes based on confidence and entropy analyses, respectively, which are more accurate than

fixes generated by heuristics. Heuristic fixes are produced only when deterministic or reliable fixes are

unavailable. We experimentally verify that our techniques can significantly improve the accuracy of record

matching and data repairing that are taken as separate processes, using real-life and synthetic data.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Data cleaning

General Terms: Design, Algorithm, Performance

Additional Key Words and Phrases: Data repairing, Record matching, Conditional functional dependency,

Matching dependency

1. INTRODUCTION

It has long been recognized that data residing in a database is often dirty [Redman
1998]. Dirty data inflicts a daunting cost: it costs US businesses 600 billion dollars
each year [Eckerson 2002]. With this comes the need for data cleaning systems. As
an example, data cleaning tools deliver “an overall business value of more than 600
million GBP” each year at BT [Otto and Weber 2009]. In light of this, the market for
data cleaning systems is growing at 17% annually, which substantially outpaces the
7% average of other IT segments [Gartner 2007].

There are two central issues about data cleaning:

◦ Recordingmatching is to identify tuples that refer to the same real-world entity [El-
magarmid et al. 2007; Herzog et al. 2009].

◦ Data repairing is to find another database (a candidate repair) that is consistent
and minimally differs from the original data, by detecting and fixing errors in the
data [Arenas et al. 2003; Fellegi and Holt 1976].

Most data cleaning systems in the market support record matching, and some also
provide the functionality of data repairing. These systems treat matching and repair-
ing as separate and independent processes. However, the two processes typically inter-
act with each other: repairing helps us identify matches and vice versa, as illustrated
by the example below.

Example 1.1. Consider two databases Dm and D from a UK bank: Dm maintains
customer information collected when credit cards are issued, and is treated as clean

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 W. Fan, S. Ma, N. Tang & W. Yu

FN LN St city AC zip tel dob gd

s1 Mark Smith 10 Oak St Edi 131 EH8 9LE 3256778 10/10/1987 Male
s2 Robert Brady 5 Wren St Ldn 020 WC1H 9SE 3887644 12/08/1975 Male

(a) Master data Dm: An instance of schema card

FN LN St city AC post phn gd item when where

t1 M. Smith 10 Oak St Ldn 131 EH8 9LE 9999999 Male watch, 350 GBP 11am 28/08/10 UK
cf (0.9) (1.0) (0.9) (0.5) (0.9) (0.9) (0.0) (0.8) (1.0) (1.0) (1.0)
t2 Max Smith Po Box 25 Edi 131 EH8 9AB 3256778 Male DVD, 800 INR 8pm 28/09/10 India
cf (0.7) (1.0) (0.5) (0.9) (0.7) (0.6) (0.8) (0.8) (1.0) (1.0) (1.0)
t3 Bob Brady 5 Wren St Edi 020 WC1H 9SE 3887834 Male iPhone, 599 GBP 6pm 06/11/09 UK
cf (0.6) (1.0) (0.9) (0.2) (0.9) (0.8) (0.9) (0.8) (1.0) (1.0) (1.0)
t4 Robert Brady null Ldn 020 WC1E 7HX 3887644 Male ring, 2,100 USD 1pm 06/11/09 USA
cf (0.7) (1.0) (0.0) (0.5) (0.7) (0.3) (0.7) (0.8) (1.0) (1.0) (1.0)

(b) Database D: An instance of schema tran

Fig. 1. Example master data and database

master data [Loshin 2009]; andD consists of transaction records of credit cards, which
may be dirty. The databases Dm and D are specified by schemas card and tran given
below, respectively:

card(FN, LN, St, city,AC, zip, tel, dob, gd),
tran(FN, LN, St, city,AC, post, phn, gd, item,when,where).

Here a card tuple specifies a UK credit card holder identified by his first name (FN),
last name (LN), address (street (St), city, zip code), area code (AC), phone (tel), date
of birth (dob) and gender (gd). A tran tuple is a record of a purchased item paid by a
credit card at place where and at time when, by a UK customer who is identified by his
name (FN, LN), address (St, city, post code), area code (AC), phone (phn) and gender (gd).
Example instances of both card and tran relations are shown in Figures. 1(a) and 1(b),
which are fractions of master data Dm and transaction records D, respectively (the cf
rows in Fig. 1(b) will be discussed later).
Following [Fan et al. 2008; Fan et al. 2011], we use conditional functional depen-

dencies (CFDs [Fan et al. 2008]) ϕ1–ϕ4 to specify the consistency of the tran data in D,
and we employ a matching dependency (MD [Fan et al. 2011]) ψ as a rule for matching
tuples across D and master card data Dm:

ϕ1: tran([AC = 131] → [city = Edi]),
ϕ2: tran([AC = 020] → [city = Ldn]),
ϕ3: tran([city, phn] → [St,AC, post]),
ϕ4: tran([FN = Bob] → [FN = Robert]),

ψ: tran[LN, city, St, post] = card[LN, city, St, zip] ∧ tran[FN] ≈ card[FN]
→ tran[FN, phn] ⇋ card[FN, tel],

where (1) CFD ϕ1 (resp. ϕ2) asserts that, for any tran tuple, if its area code is 131
(resp. 020), the city must be Edi (resp. Ldn); (2) CFD ϕ3 is a traditional functional
dependency (FD), asserting that city and phone number uniquely determine street,
area code and postal code; (3) CFD ϕ4 is a data standardization rule: if the first name
is Bob, then it should be “normalized” to be Robert; and (4) MD ψ assures that for any
tuple in D and any tuple in Dm, if they have the same last name and address, and if
their first names are similar, then their phone and FN attributes can be identified.
Consider tuples t3 and t4 in D. The bank suspects that the two refer to the same per-

son. If so, then these transaction records show that the same person made purchases
in the UK and in the US at about the same time (counting the 5-hour time difference
between the two countries). This indicates that a fraud has likely been committed.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:3

Observe that t3 and t4 are quite different in their FN, city, St, post and Phn attributes.
No rule allows us to identify the two tuples directly. Nonetheless, they can indeed be
matched by a sequence of interleaved matching and repairing operations:
(a) get a repair t′3 of t3 such that t′3[city] = Ldn via CFD ϕ2, and t′3[FN] = Robert by

normalization with ϕ4;
(b) match t′3 with master tuple s2 of Dm, to which ψ can be applied;
(c) as a result of the matching operation, get a repair t′′3 of t3 by correcting t′′3 [phn] with

the master data s2[tel]; and
(d) find a repair t′4 of t4 via the FD ϕ3: since t

′′
3 and t4 agree on their city and phn at-

tributes, ϕ3 can be applied. This allows us to enrich t4[St] and fix t4[post] by taking
corresponding values from t′′3 , which have been assured correct with the master data
in step (c).
At this point t′′3 and t′4 agree on every attribute in connection with personal informa-

tion. It is now evident that they indeed refer to the same person; hence a fraud.
Observe that not only repairing helps matching (e.g., from step (a) to step (b)), but

matching also helps us repair the data (e.g., step (d) is doable only after the matching
operation in step (b)). 2

This example tells us the following. (1) When taken together, record matching and
data repairing perform much better than being treated as separate processes. (2) To
make practical use of their interaction, matching and repairing operations should be
interleaved. It does not help much to run these processes consecutively one after an-
other. There has been a host of work on record matching (e.g., [Arasu et al. 2009;
Beskales et al. 2009; Chaudhuri et al. 2003; Fan et al. 2011; Hernandez and Stolfo
1998; Whang et al. 2009]; see [Elmagarmid et al. 2007; Herzog et al. 2009] for surveys)
as well as on data repairing (e.g., [Arenas et al. 2003; Bohannon et al. 2005; Cong et al.
2007; Fan et al. 2010; Fellegi and Holt 1976; Mayfield et al. 2010; Yakout et al. 2010]).
However, the problem of unifying record matching and data repairing to improve the
accuracy of data has not been well addressed.

Contributions. We make a first effort to clean data by unifying record matching and
data repairing, and to provide a data cleaning solution that stresses the accuracy.

(1) We investigate a new problem, stated as follows.
Given a database D, master data Dm, and data quality rules consisting of a set Σ of

CFDs and a set Γ of matching rules, the data cleaning problem is to find a repair Dr of
D such that (a) Dr is consistent (i.e., satisfying the set Σ of CFDs), (b) no more tuples
in Dr can be updated by matching them to master tuples in Dm via the rules of Γ, and
(c) Dr minimally differs from the original data D.
As opposed to record matching or data repairing, the data cleaning problem aims to

fix errors in the data by unifying matching and repairing, and by leveraging master
data. Here master data (a.k.a. reference data) is a single repository of high-quality
data that provides various applications with a synchronized, consistent view of its core
business entities [Loshin 2009]. It is being widely used in industry, supported by many
corporations, e.g., IBM, SAP, Microsoft and Oracle. To identify the tuples from D and
Dm, we use matching rules that are an extension ofMDs [Fan et al. 2011] by supporting
negative rules (e.g., a male and a female may not refer to the same person) [Arasu et al.
2009; Whang et al. 2009].

(2) We propose a uniform framework for data cleaning. We treat both CFDs and MDs as
cleaning rules, which tell us how to fix errors. This yields a rule-based logical frame-
work, which allows us to seamlessly interleave repairing and matching operations. To
assure the accuracy of fixes, we make use of (a) the confidence values placed by the
user in the accuracy of the data, (b) entropy measuring the certainty of data, by the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 W. Fan, S. Ma, N. Tang & W. Yu

self-information of the data itself [Cover and Thomas 1991; Srivastava and Venkata-
subramanian 2010], and (c) master data [Loshin 2009]. We distinguish three classes
of fixes: (i) deterministic fixes for corrections derived from attributes that are asserted
correct based on the confidence; (ii) reliable fixes for those derived using entropy; and
(iii) possible fixes for those generated by heuristics. The former two classes are more
accurate than the last class of fixes, i.e., possible fixes.

(3) We investigate fundamental problems associated with data cleaning via both
matching and repairing. We show the following. (a) When CFDs and matching rules
are taken together, the classical decision problems for dependencies, namely, the con-
sistency and implication analyses, are NP-complete and coNP-complete, respectively.
These problems have the same complexity as their counterparts for CFDs [Fan et al.
2008], i.e., adding matching rules does not incur extra complexity. (b) The data clean-
ing problem is NP-complete. Worse still, it is approximation-hard, i.e., it is beyond
reach in practice to find a polynomial-time (PTIME) algorithm with a constant approx-
imation ratio [Wegener and Pruim 2005] unless P = NP. (c) It is more challenging to
decide whether a data cleaning process can terminate and whether different cleaning
processes yield the same fixes: these problems are both PSPACE-complete.

(4) In light of the inherent complexity, we propose a three-phase solution consisting
of three algorithms. (a) One algorithm identifies deterministic fixes that are accurate,
based on the confidence analysis and master data. (b) When confidence is low or un-
available, we provide another algorithm to compute reliable fixes by employing infor-
mation entropy, inferring evidence from data itself to improve the accuracy. (c) To fix
the remaining errors, we extend the heuristic based method [Cong et al. 2007] to find
a consistent repair of the dirty data. These methods are complementary to each other,
and can be used either alone or together.

(5) We experimentally evaluate the quality and scalability of our data cleaning meth-
ods with both matching and repairing, using real-life datasets (DBLP and hospital data
from US Dept. of Health & Human Services), as well as synthetic data (TPC-H). We
find that our methods substantially outperform matching and repairing taken as sep-
arate processes in the accuracy of fixes. Moreover, deterministic fixes and reliable fixes
are far more accurate than fixes generated by heuristic methods. Despite the high com-
plexity of the cleaning problem, we also find that our algorithms scale reasonably well
with the size of the data.

We contend that a unified process for repairing and matching is important and feasi-
ble in practice, and that it should logically become part of data cleaning systems. While
master data is desirable in the process, it is not a must. Whenmaster data is absent, al-
though deterministic fixes may have lower accuracy, reliable and heuristic fixes would
not degrade substantially. Indeed, in its absence, our approach can be adapted by in-
terleaving (a) record matching in a single data table with MDs, as described in [Fan
et al. 2011], and (b) data repairing with CFDs.

Organization. Section 2 reviews CFDs and extends MDs. Section 3 introduces the
framework for data cleaning. Section 4 studies the fundamental problems for data
cleaning. Algorithms for finding deterministic and reliable fixes are provided in Sec-
tions 5 and 6, respectively. Section 7 discusses possible fixes with heuristics. Section 8
reports experimental study. Section 9 identifies open issues.

Related work. This work extends [Fan et al. 2011] by including (1) proofs of all the
fundamental problems in connection with data cleaning (Sections 3 and 4); (2) a de-
tailed analysis of optimization techniques for deterministic fixes (Section 5.2); (3) anal-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:5

ysis of possible fixes based on heuristics (Section 7); and (4) new experimental study
using synthetic data for scalability. None of these was given in [Fan et al. 2011]. Some
of the proofs are nontrivial and are interesting in their own right.
Record matching is also known as record linkage, entity resolution, merge-purge

and duplicate detection [Arasu et al. 2009; Beskales et al. 2009; Chaudhuri et al. 2003;
Fan et al. 2011; Hernandez and Stolfo 1998; Whang et al. 2009; Weis and Naumann
2005; Dong et al. 2005; Guo et al. 2010; Cao et al. 2011; Christen 2012], and object
identification (see [Herzog et al. 2009; Elmagarmid et al. 2007] for surveys), among
which a line of these work focus on the scalability issue, e.g., [Hernandez and Stolfo
1998; Cao et al. 2011; Christen 2012]. There has also been work on speeding-up the
computation of particular similarity metrics, e.g., edit distance [Wang et al. 2010; Xiao
et al. 2008], Jaccard similarity [Xiao et al. 2011] and fuzzy token matching based sim-
ilarity [Wang et al. 2011], and on the similarity computation of a collection of sparse
vectors [Bayardo et al. 2007] as well. Some of the techniques can be incorporated into
our framework to improve the performance of similarity checking with MDs.
Matching rules are studied in [Bertossi et al. 2011; Fan et al. 2011; Hernandez and

Stolfo 1998] (positive) and [Arasu et al. 2009; Whang et al. 2009] (negative). Data re-
pairing was first studied in [Arenas et al. 2003; Fellegi and Holt 1976]. A variety of
constraints have been used to specify data consistency in data repairing, e.g., FDs [Wi-
jsen 2005], FDs and INDs [Bohannon et al. 2005], and CFDs [Cong et al. 2007; Fan
et al. 2008] (see [Fan 2008] for a survey). In this work, we employ CFDs, and extend
MDs of [Fan et al. 2011] with negative rules.
The consistency and implication problems have been studied for CFDs [Fan et al.

2008] and MDs [Fan et al. 2011] separately. In this work we study these problems for
MDs and CFDs put together. It is known that data repairing is NP-complete [Bohannon
et al. 2005; Cong et al. 2007]. We show that data cleaning via repairing and matching is
NP-complete and approximation-hard.We also study the termination and determinism
analyses of data cleaning, which are not considered in [Bohannon et al. 2005; Cong
et al. 2007].
Several repairing algorithms have been proposed [Bohannon et al. 2005; Cong et al.

2007; Fan et al. 2010; Fellegi and Holt 1976; Mayfield et al. 2010; Yakout et al. 2010].
Heuristic methods are developed in [Bohannon et al. 2005; Cong et al. 2007; Fellegi
and Holt 1976], based on FDs and INDs [Bohannon et al. 2005], CFDs [Fan et al. 2008],
and edit rules [Fellegi and Holt 1976]. The methods of [Bohannon et al. 2005; Cong
et al. 2007] employ confidence placed by users to guide a repairing process. Statistical
inference is studied in [Mayfield et al. 2010] to derive missing values. To ensure the
accuracy of repairs generated, [Mayfield et al. 2010; Yakout et al. 2010] require to
consult users. In contrast to the previous work, we (a) unify repairing and matching,
(b) use confidence just to derive deterministic fixes, and (c) leverage master data and
entropy to improve the accuracy. Closer to our work is [Fan et al. 2010], also based on
master data. It differs from our work in the following. (i) While [Fan et al. 2010] aims
to fix a single tuple via matching with editing rules (derived from MDs), we repair a
database via both matching (MDs) and repairing (CFDs), a task far more challenging.
(ii) While [Fan et al. 2010] only relies on confidence to warrant the accuracy, we use
entropy analysis when the confidence is either low or unavailable.
There have also been efforts to interleave merging and matching [Weis and Nau-

mann 2005; Dong et al. 2005; Whang et al. 2009; Guo et al. 2010]. Among these, (1)
[Guo et al. 2010] proposes to use uniqueness constraints to cluster objects from multi-
ple data sources, and employs machine learning techniques to discover the true values
of the objects; it differs from this work in the set of constraints used; and (2) [Weis and
Naumann 2005; Dong et al. 2005; Whang et al. 2009] investigate record matching in
the presence of errors in the data, and advocate the need for data repairing to match

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 W. Fan, S. Ma, N. Tang & W. Yu

records. The merge/fusion operations adopted there are more restrictive than updates
(value modifications) suggested by cleaning rules of this work. Furthermore, when no
matches are found, no merge or fusion can be conducted, whereas this work may still
repair data with CFDs.
There has also been a host of work on ETL tools (see [Herzog et al. 2009] for a

survey), which support data transformations, and can be employed to merge and fix
data [Naumann et al. 2006], although they are typically not based on a constraint the-
ory, and focus on syntactic errors in specific domains instead of semantic errors [Rahm
and Do 2000]. These are complementary to data repairing and this work.
Information entropy measures the degree of uncertainty [Cover and Thomas 1991]:

the smaller the entropy is, the more certain the data is. It has proved effective in, e.g.,
database design, schema matching, data anonymization and data clustering [Srivas-
tava and Venkatasubramanian 2010]. We make a first effort to use it in data cleaning:
we mark a fix reliable if its entropy is below a predefined threshold.

2. DATA QUALITY RULES

We first review CFDs [Fan et al. 2008], which specify the consistency of data for data re-
pairing. We then extend MDs [Fan et al. 2011] to match tuples across (a possibly dirty)
database D and master data Dm. Both CFDs and MDs can be automatically discovered
from data via profiling algorithms (see e.g., [Fan et al. 2011; Song and Chen 2009]).

2.1. Conditional Functional Dependencies

Following [Fan et al. 2008], we define a conditional functional dependency (CFD) ϕ on
relation instances of schema R as a pair R(X → Y , tp), where
(1) X → Y is a standard FD on instances of R, referred to as the FD embedded in ϕ; and
(2) tp is a pattern tuple with attributes in X and Y , where for each A in X ∪ Y , tp[A] is

either a constant in the domain dom(A) of attribute A, or an unnamed variable ‘ ’
that draws values from dom(A).

We separate theX and Y attributes in tp with ‘‖’, and refer toX and Y as the left-hand
side (LHS) and right-hand side (RHS) of ϕ, respectively.

Example 2.1. CFDs ϕ1, ϕ3 and ϕ4 given in Example 1 can be formally expressed as:

ϕ1 : tran([AC] → [city], tp1 = (131 ‖ Edi)),
ϕ3 : tran([city, phn] → [St,AC, post], tp3 = (, ‖ , ,))
ϕ4: tran([FN] → [FN], tp4 = (Bob ‖ Robert))

CFD ϕ2 differs from ϕ1 only in its pattern tuple. Note that FDs are a special case of
CFDs in which pattern tuples consist of only wildcards, e.g., ϕ3 above. 2

To give the formal semantics of CFDs, we use an operator≍ defined on constants and
‘ ’: v1 ≍ v2 if either v1 = v2, or one of v1, v2 is ‘ ’. The operator ≍ naturally extends to
tuples, e.g., (131, Edi) ≍ (, Edi) but (020, Ldn) 6≍ (, Edi).
Consider an instance D of R. We say that D satisfies the CFD ϕ, denoted by D |= ϕ,

iff for all tuples t1, t2 in D, if t1[X] = t2[X] ≍ tp[X], then t1[Y] = t2[Y] ≍ tp[Y].

Example 2.2. Recall the tran instance D of Fig. 1(b) and the CFDs of Example 2.1.
Observe that D 6|= ϕ1 since tuple t1[AC] = tp1 [AC], but t1[city] 6= tp1 [city], i.e., the single
tuple t1 violates ϕ1. Similarly, D 6|= ϕ4, since t3 does not satisfy ϕ4. Intuitively, CFD ϕ4

says that no tuple t can have t[FN] = Bob (it has to be changed to Robert). In contrast,
D |= ϕ3, since there exist no distinct tuples in D that agree on city and phn. 2

We say that an instance D of R satisfies a set Σ of CFDs, denoted by D |= Σ, if D |= ϕ
for each ϕ ∈ Σ.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:7

2.2. Positive and Negative Matching Dependencies

Following [Fan et al. 2011; Hernandez and Stolfo 1998], we define matching dependen-
cies (MDs) in terms of a set Υ of similarity predicates, e.g., q-grams, Jaro distance or
edit distance (see [Elmagarmid et al. 2007] for a survey). We define positive MDs and
negative MDs across a data relation schema R and a master relation schema Rm.

Positive MDs. A positive MD ψ on (R,Rm) is defined as:

∧

j∈[1,k]

(R[Aj] ≈j Rm[Bj]) →
∧

i∈[1,h]

(R[Ei] ⇋ Rm[Fi]),

where (1) for each j ∈ [1, k], Aj and Bj are attributes of R and Rm, respectively, with
the same domain; similarly for Ei and Fi (i ∈ [1, h]); and (2) ≈j is a similarity predicate
in Υ that is defined in the domain of R[Aj] and Rm[Bj]. We refer to

∧
j∈[1,k](R[Aj] ≈j

Rm[Bj]) and
∧
i∈[1,h](R[Ei] ⇋ Rm[Fi]) as the LHS (premise) and RHS of ψ, respectively.

Note that MDs were originally defined on one or more unreliable data sources
(see [Fan et al. 2011] for a detailed discussion of their dynamic semantics). In con-
trast, we focus on matching tuples across a dirty data source D and a master relation
Dm. To handle this, we refine the semantics of MDs as follows.
For a tuple t ∈ D and a tuple s ∈ Dm, if for each j ∈ [1, k], the attribute values t[Aj]

and s[Bj] are similar, i.e., t[Aj] ≈j s[Bj], then t[Ei] is changed to s[Fi], using values
drawn from the clean master data, for each i ∈ [1, h].
We say that an instance D of R satisfies the MD ψ w.r.t. master data Dm, denoted by

(D,Dm) |= ψ, iff for all tuples t inD and all tuples s inDm, if t[Aj] ≈j s[Bj] for j ∈ [1, k],
then t[Ei] = s[Fi] for all i ∈ [1, h]. Intuitively, (D,Dm)|=ψ if no more tuples from D can
be matched and updated with master tuples in Dm.

Example 2.3. Recall MD ψ given in Example 1.1. Consider an instance D1 of tran
consisting of a single tuple t′1, where t′1[city] = Ldn and t′1[A] = t1[A] for all the other at-
tributes, for tuple t1 given in Fig. 1(b). Then (D1, Dm) 6|= ψ, since t′1[FN, phn] 6= s1[FN, tel]
while t′1[LN, city, St, post] = s1[LN, city, St,Zip] and t′1[FN] ≈ s1[FN]. This suggests that
we should correct t′1[FN, phn] using the master data s1[FN, tel]. 2

Negative MDs. Along the same lines as [Arasu et al. 2009; Whang et al. 2009], we
define a negative MD ψ− as follows:

∧

j∈[1,k]

(R[Aj] 6= Rm[Bj]) →
∨

i∈[1,h]

(R[Ei] 6⇋ Rm[Fi]).

It states that for any tuple t ∈ D and any tuple s ∈ Dm, if t[Aj] 6= s[Bj] (j ∈ [1, k]), then
t and s may not be identified as the same entity.

Example 2.4. A negative MD defined on (tran, card) is:

ψ−
1 : tran[gd] 6= card[gd] →

∨
i∈[1,7](tran[Ai] 6⇋ card[Bi]),

where (Ai, Bi) ranges over (FN,FN), (LN, LN), (St, St), (AC,AC), (city, city), (post, zip) and
(phn, tel). It says that a male and a female may not refer to the same person. 2

We say that an instance D of R satisfies the negative MD ψ− w.r.t. a master relation
Dm, denoted by (D,Dm) |= ψ−, if for all tuples t in D and all tuples s in Dm, if t[Aj] 6=
s[Bj] for all j ∈ [1, k], then there exists i ∈ [1, h] such that t[Ei] 6= s[Fi].
An instance D of R satisfies a set Γ of (positive, negative) MDs w.r.t. master dataDm,

denoted by (D,Dm) |= Γ, if (D,Dm) |= ψ for all ψ ∈ Γ.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 W. Fan, S. Ma, N. Tang & W. Yu

Normalized CFDs and MDs. Given a CFD (resp. positive MD) ξ, we use LHS(ξ) and
RHS(ξ) to denote the LHS and RHS of ξ, respectively. It is called normalized if |RHS(ξ)|
= 1, i.e., its right-hand side consists of a single attribute (resp. attribute pair).
As shown in [Fan et al. 2008; Fan et al. 2011], every CFD ξ (resp. positive MD) can be

expressed as an equivalent set Sξ of normalized CFDs (resp. positive MDs), such that
the cardinality of Sξ is bounded by the size of RHS(ξ). For instance, CFDs ϕ1, ϕ2 and ϕ4

of Example 1.1 are normalized. While ϕ3 is not normalized, it can be converted to an
equivalent set of CFDs of the form ([city, phn]→Ai, tpi

), where Ai ranges over St, AC and
post, and tpi

consists of wildcards only; similarly for MD ψ.

Embedding negative MDs. We say that a set Γ of MDs is equivalent to another set Γ′ of

MDs, denoted by Γ ≡ Γ′, if for any instance D of R, (D,Dm) |= Γ iff (D,Dm) |= Γ′.
The following example suggests that negative MDs can be converted to equivalent

positive MDs. As a result, there is no need to treat them separately.

Example 2.5. Consider MD ψ in Example 1.1 and negative MD ψ− in Example 2.4.
We define ψ′ by incorporating the premise (gd) of ψ− into the premise of ψ:

ψ′: tran[LN, city, St, post, gd] = card[LN, city, St, zip, gd] ∧ tran[FN] ≈ card[FN]
→ tran[FN, phn] ⇋ card[FN, tel].

Then no tuples with different genders can be identified as the same person, which is
precisely what ψ− aims to enforce. In other words, the positive MD ψ′ is equivalent to
the positive MD ψ and the negative MD ψ−. 2

Indeed, it suffices to consider only positive MDs.

Proposition 2.6: Given a nonempty set Γ+
m of positive MDs and a set Γ−

m of negative
MDs, there exists a set Γm of positive MDs that is equivalent to Γ+

m ∪ Γ−
m and can be

computed in O(|Γ+
m||Γ−

m|) time. 2

PROOF. We show this by presenting an algorithm that given as input Γ+
m and Γ−

m,
computes Γm that is equivalent to Γ+

m ∪ Γ−
m, in O(|Γ+

m||Γ−
m|) time.

(1) We first present the algorithm. Assume w.l.o.g. that each MD in Γ+
m is normalized.

(a) We use a set Γm, initially empty.
(b) For each positive MD ψ = LHS(ψ) → (R[E] ⇋ Rm[F]) in Γ+

m, a new positive MD ψ′ is
generated as follows.
◦ First, let L = LHS(ψ).
◦ Second, for each negativeMD ψ− in the form of

∧
j∈[1,k](R[Aj] 6= Rm[Bj]) → (R[E] 6⇋

Rm[F]) in Γ−
m, let L =

∧
j∈[1,k](R[Aj] = Rm[Bj])

∧
L.

◦ Finally, after all negative MDs in Γ−
m are processed, let ψ′ = L → (R[E] ⇋ Rm[F])

and Γm = (Γm \ {ψ}) ∪ {ψ′}.
(c) Return Γm after all positive MDs in Γ+

m are processed.

(2) We then show that the algorithm is correct, i.e., (a) it is in O(|Γ+
m||Γ−

m|) time and
(b) Γm ≡ Γ+

m ∪ Γ−
m. For (a), observe that (i) each positive MD in Γ+

m is scanned once,
and (ii) for each positive MD, all negative MDs are scanned once. This tells us that the
algorithm above indeed runs in O(|Γ+

m||Γ−
m|) time. For (b), one can easily verify that Γm

is equivalent to Γ+
m ∪ Γ−

m by induction on the number of negative MDs in Γ−
m.

In light of these, in the sequel we consider normalized CFDs and positive MDs only.

3. A UNIFORM FRAMEWORK FOR DATA CLEANING

We propose a rule-based framework for data cleaning. It treats CFDs and MDs uni-
formly as cleaning rules, which tell us how to fix errors, and seamlessly interleaves

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:9

matching and repairing operations (Section 3.1). Using cleaning rules we introduce a
tri-level data cleaning solution, which generates fixes with various levels of accuracy,
depending on the information available about the data (Section 3.2).
Consider a (possibly dirty) relation D of schema R, a master relation Dm of schema

Rm, and a set Θ = Σ ∪ Γ of data quality rules, where Σ is a set of CFDs defined on R,
and Γ is a set of MDs defined on (R,Rm).

3.1. A Rule-based Logical Framework

We first state the data cleaning problem, and then define cleaning rules derived from
CFDs and MDs.

Data cleaning. Following [Arenas et al. 2003], we state the data cleaning problem,
referred to as DCP, as follows. It takesD,Dm and Θ as input, and computes a repairDr

of D, i.e., another database such that (a) Dr |= Σ, (b) (Dr, Dm) |= Γ, and (c) cost(Dr, D)
is minimum. Intuitively, (a) Dr should be consistent, (b) no more tuples in Dr can be
updated by matching rules, and (c) Dr is accurate and is close to the original data D.
Following [Cong et al. 2007], we define cost(Dr, D) as:

∑

t∈D

∑

A∈attr(R)

t(A).cf ∗
disA(t[A], t′[A])

max(|t[A]|, |t′[A]|)

where (a) tuple t′ ∈ Dr is the repair of tuple t ∈ D, (b) disA(v, v′) is the distance between
values v, v′ ∈ dom(A); the smaller the distance is, the closer the two values are to each
other; (c) |t[A]| denotes the size of t[A]; and (d) t[A].cf is the confidence placed by the
user in the accuracy of the attribute t[A] (see the cf rows in Fig. 1(b)).
The quality metric says that the higher the confidence of attribute t[A] is and the more

distant v′ is from v, the more costly the change is. Thus, the smaller cost(Dr, D) is, the
more accurate and closer to the original dataDr is. We use dis(v, v′)/max(|v|, |v′|) to mea-
sure the similarity of v and v′ to ensure that, e.g., longer strings with 1-character dif-
ference are closer than shorter strings with 1-character difference. As shown in [Cong
et al. 2007], confidence can be derived via provenance analysis. For instance, informa-
tion that has been inspected and approved by domain experts has higher confidence
than unreviewed data predicted by programs [Bolleman et al. 2010]. This is reinforced
by recent work on determining the reliability of data sources (e.g., [Dong et al. 2010]).

Cleaning rules. A variety of integrity constraints have been studied for data repair-
ing (e.g., [Bohannon et al. 2005; Cong et al. 2007; Fan et al. 2008; Wijsen 2005]). As
observed by [Fan et al. 2010], while these constraints help us determine whether data
is dirty, i.e., whether errors are present, they do not tell us how to correct the errors.
To make better practical use of constraints in data cleaning, we define cleaning rules,

which tell us what attributes should be updated and to what value they should be
changed. From each MD in Γ and each CFD in Σ, we derive a cleaning rule as follows,
based on fuzzy logic [Klir and Folger 1988].

(1) MDs. Consider an MD ψ =
∧
j∈[1,k](R[Aj]≈j Rm[Bj])→(R[E]⇋Rm[F]). The cleaning

rule derived from ψ, denoted by γψ, applies a master tuple s∈Dm to a tuple t ∈ D if
t[Aj]≈j s[Bj] for each j ∈ [1, k]. It updates t by letting (a) t[E] := s[F] and (b) t[C].cf := d
for each C∈E, where d is the minimum t[Aj].cf for all j∈ [1, k] if ≈j is ‘=’.
That is, the cleaning rule γψ corrects t[E] with the clean master value s[F], and infers

the new confidence of t[E] following fuzzy logic [Klir and Folger 1988]. Intuitively, the
confidence of an attribute value is about how confident a variable is correct (i.e., in the
concept of fuzzy set membership), instead of how probable a variable is correct (i.e., in

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 W. Fan, S. Ma, N. Tang & W. Yu

D'

Master

data D

Data

quality

rules

Dirty

Data D

Deterministic fixes

Confidence-based
Reliable fixes

Entropy-based
Possible fixes

Heuristic-based

D'' D

Userm

confidence
entropy

≥ η

δ≤

r

Fig. 2. Framework Overview

the concept of subjective probability). Hence, we update the confidence by taking the
minimum rather than the product of the confidences in the premise of the MDs.

(2) Constant CFDs. Consider a CFD ϕc = R(X → A, tp1), where tp1 [A] is a constant. The
cleaning rule derived from ϕc applies to a tuple t ∈ D if t[X] ≍ tp1 [X] but t[A] 6= tp1 [A].
It updates t by letting (a) t[A] := tp1 [A], and (b) t[A].cf = d. Here d is the minimum t[A′].cf
for all A′ ∈ X along the same lines as above. That is, the cleaning rule corrects t[A]
with the constant in the CFD.

(3) Variable CFDs. Consider a CFD ϕv = (Y → B, tp2), where tp2 [B] is a wildcard ‘ ’. The
cleaning rule derived from ϕv is used to apply a tuple t2 ∈ D to another tuple t1 ∈ D,
where t1[Y] = t2[Y] ≍ tp2 [Y] but t1[B] 6= t2[B]. It updates t1 by letting (a) t1[B] := t2[B],
and (b) t1[B].cf be the minimum of t1[B

′].cf and t2[B
′].cf for all B′ ∈ Y .

While cleaning rules derived from MDs are similar to editing rules of [Fan et al.
2010], rules derived from (constant or variables) CFDs are not studied there. We use
confidence and infer new confidences based on fuzzy logic [Klir and Folger 1988]. There
are various ways to enforce the dependency, which will be discussed shortly.

A uniform framework. By treating both CFDs and MDs as cleaning rules, one can uni-

formly interleave matching and repairing operations, to facilitate their interactions.

Example 3.1. As shown in Example 1.1, to clean tuples t3 and t4 of Fig. 1(b), one
needs to interleave matching and repairing. These can be readily done by using clean-
ing rules derived from ϕ2, ϕ4, ψ and ϕ3. Indeed, the cleaning process described in
Example 1.1 is actually carried out by applying these rules. There is no need to distin-
guish between matching and repairing in cleaning process. 2

3.2. A Tri-level Data Cleaning Solution

Based on cleaning rules, we develop a data cleaning system, referred to as UniClean. It
takes as input a dirty relation D, a master relation Dm, a set of cleaning rules derived
from Θ, as well as thresholds η, δ ∈ [0, 1] set by the users for confidence and entropy,
respectively. It generates a repair Dr of D with a small cost(Dr, D), such that Dr |= Σ
and (Dr, Dm) |= Γ.
As opposed to previous repairing systems [Bohannon et al. 2005; Cong et al. 2007;

Fan et al. 2010; Fellegi and Holt 1976; Mayfield et al. 2010; Yakout et al. 2010], UniClean
generates fixes by unifying matching and repairing processes, via cleaning rules. Fur-
thermore, it stresses the accuracy by distinguishing these fixes with three levels of
accuracy. Indeed, various fixes are found by executing three algorithms consecutively,
as shown in Fig. 2 and illustrated below.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:11

(1) Deterministic fixes based on confidences. It identifies erroneous attributes t[A] to

which there exists a fix with high confidence, referred to as a deterministic fix. It cor-
rects those errors based on confidence: it uses a cleaning rule γ to update t[A] only if
all the attributes of t in the premise of γ have confidence above the threshold η, and
moreover, t[A] is changed to a (master data) value v on which the confidence is also
above η. It is evident that such fixes are accurate up to η. Moreover, when the rule and
the (master) data value v are asserted correct, the fix to t[A] is typically unique (see
Section 5 for details).

(2) Reliable fixes based on entropy. For the attributes with low or unavailable confi-

dence, we correct them based on the relative certainty of the data, measured by en-
tropy. Entropy has proved effective in data transmission [Hamming 1950] and com-
pression [Ziv and Lempel 1978], among other things. We use entropy to clean data: we
apply a cleaning rule γ to update an erroneous attribute t[A] only if the entropy of γ
for certain attributes of t is below the given threshold δ. Fixes generated via entropy
are accurate to a certain degree, and are marked as reliable fixes.

(3) Possible fixes. Not all errors can be fixed in the first two phases. For the remaining

errors, we adopt heuristic methods to generate fixes, referred to as possible fixes. To
this end we extend the method of [Cong et al. 2007], by supporting cleaning rules de-
rived from both CFDs andMDs. It can be verified that the heuristic method always finds
a repair Dr of D such that Dr |= Σ, (Dr, Dm) |= Γ, while keeping all the deterministic
fixes produced earlier unchanged.
At the end of the process, fixes are marked with three distinct signs, indicating de-

terministic, reliable and possible, respectively. We shall present methods based on con-
fidence and entropy in Sections 5 and 6, respectively, followed by a brief discussion of
possible fixes in Section 7.

Remark. There is no need to iterate the processes for the three types of fixes. Indeed,
after the process for identifying reliable fixes, no fixes can be deterministic since the
latter is based on the outcome of the former process, and reliable fixes may contain
errors. Moreover, after the process to find heuristic fixes, all inconsistencies are fixed
and hence, no inconsistencies may be detected by the rules anymore.

4. FUNDAMENTAL PROBLEMS FOR DATA CLEANING

We now investigate fundamental problems associated with data cleaning. We first
study the consistency and implication problems for CFDs andMDs taken together, from
which cleaning rules are derived. We then establish the complexity bounds of the data
cleaning problem as well as its termination and determinism analyses. These prob-
lems are not only of theoretical interest, but are also important to the development of
data cleaning algorithms, as will be seen in later sections.
The main conclusion of this section is that data cleaning via matching and repair-

ing is inherently difficult: all these problems are intractable. Consider a relation D, a
master relation Dm, and a set Θ = Σ ∪ Γ of CFDs and MDs, as stated in Section 3.

4.1. Reasoning about Data Quality Rules

There are two classical problems associated with data quality rules.

Consistency. The consistency problem is to determine, given Dm and Θ = Σ ∪ Γ,
whether there exists a nonempty instance D of R such that D |= Σ and (D,Dm) |= Γ.
Intuitively, this is to determine whether the rules in Θ are dirty themselves. Rules

may be manually designed by human experts or automatically discovered by data
cleaning tools [Fan et al. 2011; Song and Chen 2009]. In either case, it is common that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 W. Fan, S. Ma, N. Tang & W. Yu

the rules may contain mistakes. This highlights the need for the consistency analy-
sis, since it does not make sense to derive cleaning rules from Θ before Θ is assured
consistent itself.

Implication. We say that Θ implies another CFD (resp. MD) ξ, denoted by Θ |= ξ, if for
any instance D of R, whenever D |= Σ and (D,Dm) |= Γ, then D |= ξ (resp. (D,Dm) |=
ξ). The implication problem is to determine, given Dm, Θ and another CFD (or MD) ξ,
whether Θ |= ξ.
Intuitively, the implication analysis helps us find and remove redundant rules from

Θ, i.e., those that are a logical consequence of other rules in Θ, to improve performance.
The consistency and implication problems have been studied for CFDs and MDs sep-

arately. It is known that the consistency problem for MDs is trivial: any set of MDs is
consistent [Fan et al. 2011]. In contrast, there exist CFDs that are inconsistent, and
the consistency analysis of CFDs is NP-complete [Fan et al. 2008]. It is also known
that the implication problem for MDs is in quadratic time [Fan et al. 2011], whereas
the implication problem for CFDs is coNP-complete [Fan et al. 2008]. Below we show
that these problems for CFDs and MDs put together have the same complexity as their
counterparts for CFDs. That is, adding MDs to CFDs does not make our lives harder.

THEOREM 4.1. For CFDs and MDs put together, the consistency problem remains
NP-complete.

PROOF. The lower bound follows from the intractability of its CFD counterpart,
which is NP-complete [Fan et al. 2008]. Indeed, the consistency problem for CFDs is a
special case of the consistency problem for CFDs and MDs put together, when Γ = ∅.
To show that the problem is in NP, consider a master relation Dm of schema Rm, a

set Σ of CFDs on schema R, and a set Γ of MDs on (R,Rm). The upper bound is verified
by establishing a small model property: if Σ∪Γ is consistent, then there exists a single-
tuple instance D = {t} such that D |= Σ and (D,Dm) |= Γ. Indeed, if there exists a
nonempty instance D of R such that (D,Dm) satisfies Σ ∪ Γ, then for any tuple t ∈ D,
Dt = {t} is an instance of R such that (Dt, Dm) satisfies Σ ∪ Γ. Hence it suffices to
consider single-tuple instances D = {t} for deciding whether Σ ∪ Γ is consistent.
Assume w.l.o.g. that the set attr(R) of attributes in R is {A1, . . . , An}. Moreover, for

each i ∈ [1, n], let the active domain adom(Ai) of Ai consist of all constants appearing
in Σ and Dm, plus at most an extra distinct value drawn from the domain dom(Ai)
of Ai, if such a value exists (e.g., when dom(Ai) is a finite domain). Then it is easy to
verify that Σ ∪ Γ is consistent iff there exists a mapping ρ from t[Ai] to adom(Ai) for
each i ∈ [1, n] such that D′ = {(ρ(t[A1]), . . . , ρ(t[An]))}, D′ |= Σ and (D′, Dm) |= Γ.
Along the same lines as the proof of CFDs [Fan et al. 2008], we give an NP algorithm

for checking the consistency of Σ∪Γ as follows: (a) Guess a single tuple t of R such that
t[Ai] ∈ adom(Ai). (b) Check whether D = {t} and Dm satisfy Σ ∪ Γ. Obviously step (b)
can be done in PTIME in the size |Σ ∪ Γ| of Σ ∪ Γ. Thus this algorithm is in NP.
Hence the consistency problem is in NP when CFDs and MDs are put together.

THEOREM 4.2. For CFDs and MDs put together, the problem for deciding whether
Σ ∪ Γ implies ψ remains coNP-complete, when ψ is either a CFD or an MD.

PROOF. We first show that the problem is in coNP, and then we show that the prob-
lem is coNP-hard.

(I) We first consider CFD ψ = (X → A, tp). Similar to the upper bound proof of
Theorem 4.1, the upper bound is verified by establishing a small model property: if
Σ ∪ Γ 6|= ψ, then there exists a relation D of R such that D consists of two tuples t, s
such that t[X] = s[X] ≍ tp[X],D |= Σ and (D,Dm) |= Γ, but (D,Dm) 6|= ψ. Here for each
attribute A ∈ X ∪Y , s[A] ∈ adom(A) and t[A] ∈ adom(A). Then an NP algorithm similar

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:13

to the one given in the proof of Theorem 4.1 suffices to check whether there exists a
relation D′ consisting of two tuples such that D′ |= Σ, (D′, Dm) |= Γ and D′ 6|= ψ.
The proof is similar when ψ is an MD. If Σ ∪ Γ 6|= ψ, then there exists a relation

D of R such that D consists of a single tuple t, where D |= Σ and (D,Dm) |= Γ, but
(D,Dm) 6|= ψ. An NP algorithm can be given for this case. Thus the problem is in coNP.

(II) When ψ is a CFD, the lower bound follows from the intractability of its CFD coun-
terpart, which is known to be coNP-complete [Fan et al. 2008]. Indeed, the implication
problem for CFDs is a special case of the implication problem for CFDs and MDs put
together, when the set Γ of MDs is empty.
We next show that the problem is coNP-hard when ψ is an MD. It suffices to show

that the complement of the problem is NP-hard by reduction from the 3SAT problem,
which is NP-complete (cf. [Garey and Johnson 1979]). An instance φ of 3SAT is of the
form C1 ∧ · · · ∧Cn, where all the variables in φ are x1, . . . , xm, each clause Cj (j ∈ [1, n])
is of the form yj1 ∨ yj2 ∨ yj3 , and moreover, yji is either xpji

or xpji
for pji ∈ [1,m], for

i ∈ [1, 3]. Here we use xpji
to denote the occurrence of a variable in the literal i of clause

Cj . The 3SAT problem is to determine whether φ is satisfiable.
Given an instance φ of the 3SAT problem, we construct two relational schemas R and

Rm, a set of Σ of CFDs defined on R, a set of Γ of MDs on (R,Rm), a master relation Dm

of Rm, and another MD ψ such that Σ ∪ Γ |= ψ iff the 3SAT instance φ is not satisfiable.
(1) We first build the instance of the implication problem.
◦ The two schemas are R(X1, . . . , Xm, Z) and Rm(Z), respectively, in which all the at-

tributes have a Boolean domain {T, F}. Intuitively, for each R tuple t, t[X1, . . . , Xm]
and t[Z] encode a truth assignment for the variables x1, . . . , xm of the 3SAT instance
φ and the truth value of φ under the assignment, respectively.

◦ The set Γ is empty.
◦ The set Σ consists of n CFDs, defined as follows. For each clause Cj = yj1 ∨yj2 ∨yj3 of
φ (j ∈ [1, n]), we define a CFD ψj = (Xpj1

Xpj2
Xpj3

→ Z, tp,j), where tp,j [Xpj1
Xpj2

Xpj3
]

is the unique truth assignment that makes Cj false, and tp,j [Z] = F .
◦ The master relation Dm consists of a single tuple s such that s[Z] = (F).
◦ The MD ψ is ∅ → (R[Z] ⇋ Rm[Z]).
(2) We next show that Σ ∪ Γ |= ψ iff the 3SAT instance φ is not satisfiable.
Assume first that Σ ∪ Γ |= ψ. We show that φ is not satisfiable. We assume that φ is

satisfiable by contradiction. Then there exists a truth assignment ξ of φ that makes φ
true. Let D be an instance of R that consists of a single tuple t such that t[X1, . . . , Xm]
= ξ[x1, . . . , xm] and t[Z] = T . It is easy to verify that D |= Σ and (D,Dm) |= Γ, but
(D,Dm) 6|= ψ. This contradicts the assumption that Σ∪Γ |= ψ. Hence φ is not satisfiable.
Conversely, we assume that φ is not satisfiable. We show that Σ∪ Γ |= ψ. For any in-

stance D of R, if D |= Σ (D,Dm) |= Γ, then for any tuple t ∈ D, t[X1, . . . , Xm] is a truth
assignment that makes φ false. Hence there must exist a CFD ψj = (Xpj1

Xpj2
Xpj3

→
Z, tp,j) (i.e., there existsCj = yj1∨yj2∨yj3 , for some j ∈ [1, n]) such that tp,j [Xpj1

Xpj2
Xpj3

]

= t[Xpj1
Xpj2

Xpj3
] and t[Z] = tp,j [Z] = false. By the definition of ψ, t[Z] = F and

(D,Dm) |= ψ. Hence we have that Σ ∪ Γ |= ψ.
Taken together, (I) and (II) show that the implication problem is coNP-complete for

CFDs and MDs put together, when the data quality rule ψ is either a CFD or an MD.

In the sequel we consider only collections Σ of CFDs and MDs that are consistent.

4.2. Analyzing the Data Cleaning Problem

Recall the data cleaning problem (DCP) from Section 3.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 W. Fan, S. Ma, N. Tang & W. Yu

Complexity bounds. One wants to know how costly it is to compute a repair Dr.
Below we show that it is intractable to decide whether there exists a repair Dr with
cost(Dr, D) below a predefine bound. Worse still, it is infeasible in practice to find a
PTIME approximation algorithm with performance guarantee. Indeed, the problem is
not even in APX, the class of problems that allow PTIME approximation algorithms
with approximation ratio bounded by a constant.

THEOREM 4.3. (1) The data cleaning problem (DCP) is NP-complete. (2) Unless P =
NP, for any constant ǫ, there exists no PTIME ǫ-approximation algorithm for DCP.

PROOF. (1) This can be easily verified along the same lines as for FDs [Bohannon
et al. 2005] or CFDs [Fan et al. 2008]. The upper bound is verified by giving an NP

algorithm, and the lower bound is obvious since the problem is already NP-hard for
CFDs only [Cong et al. 2007].

(2) This is verified by reduction from 3SAT, using gap techniques [Wegener and Pruim
2005]. Given any constant ǫ > 1 and any 3SAT instance φ as described in the proof
of Theorem 4.2, we first construct an instance of DCP that consists of two schemas R
and Rm, a set of Σ of CFDs defined on R, a set of Γ of MDs on (R,Rm), an instance
Dm of Rm, and an instance D of R such that D 6|= Σ or (D,Dm) 6|= Γ. Assume w.l.o.g.
that Do is the repair of D with optimal cost such that Do |= Σ and (Do, Dm) |= Γ. We
then show that there exists an algorithm for DCP that finds a repair Dr of D such that
cost(Dr, D) ≤ ǫ · cost(Do, D) iff there exists a PTIME algorithm to determine whether
3SAT instances φ are satisfiable. From these it follows that unless P = NP, for any
constant ǫ, there exists no PTIME ǫ-approximation algorithm for DCP. Note that here ǫ
must be larger than 1 as DCP is a minimization problem.
(a) We first construct the DCP instance.
◦ We define schema R(X1, . . . , Xm, C1,1, . . ., C1,r, . . ., Cn,1, . . ., Cn,r), where r = ⌈ǫ ·m⌉

+ 1, i.e., the second smallest positive integer no less than ǫ ·m, and all the attributes
in R have a Boolean domain {T, F}. Intuitively, for each R tuple t, t[X1, . . . , Xm] and
t[Cj,1] = . . . = t[Cj,r] (j ∈ [1, n]) encode a truth assignment for the variables x1, . . . , xm
of the 3SAT instance φ and the truth value of clause Cj under the assignment, re-
spectively.

◦ The set Σ consists of n CFDs given as follows. For each clause Cj (j ∈ [1, n]) of the
form yj1 ∨ yj2 ∨ yj3 in φ, we define a traditional FD ψj = Xpj1

Xpj2
Xpj3

→ Cj,1 . . . Cj,r.
Note that FDs are a special case of CFDs.

◦ The instance D consists of n + 1 tuples. For each clause Cj (j ∈ [1, n]) of the form
yj1 ∨ yj2 ∨ yj3 in φ, let ξj be the unique truth assignment that makes clause Cj false,
and ξj(x) = T for all remaining variables x not in clause Cj . We then define a tuple tj
of R in terms of ξj such that (a) for each i ∈ [1,m], tj [Xi] = ξj(xi), (b) tj [Cj,1, . . . , Cj,r]
= (F, . . . , F), and (c) for each remaining clause Ci of φ (i 6= j ∧ i ∈ [1, n]), tj [Ci,1] = . . .
= tj [Ci,r] is the corresponding truth value under the assignment ξj .
We further add to D an extra tuple t such that (a) for each j ∈ [1, n], t[Cj,1, . . . , Cj,r]
= (T , . . ., T), and (b) for each i ∈ [1,m], t[Xi] is randomly assigned to T or F .

◦ The schema of Rm is arbitrary since it is irrelevant, and the set Γ of MDs is empty.
Assume that all attributes have a fixed default confidence cf. Observe that to find a

repair Dr of D with minimum cost, it is necessary to change tuple t, rather than the
other tuples tj (j ∈ [1, n]) in D.

(b) We then show that there exists an algorithmwith approximation ratio ǫ for the DCP

instance iff there exists a PTIME algorithm for the 3SAT instance φ.
Assume first that the 3SAT instance φ is satisfiable. If there exists a polynomial time

approximation algorithm with approximation ration ǫ, then we can find a tuple t′ that
disagrees with t in less than ⌈ǫ · opt⌉ fields, where opt is the optimum cost, and it is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:15

simply the number of modified fields of t. Indeed, since φ is satisfiable, there exists a
truth assignment ξ of variables x1, . . . , xm that makes φ true. From this, it is easy to see
that opt ≤ m. This implies that we can find a tuple t′ in polynomial time by updating
t[X1, . . . , Xm] to ξ[x1, . . . , xm] such that (i) the tuple t′ differs from tuple t in less than
⌈ǫ ·m⌉ fields, and moreover, (ii) D \ {t} ∪ {t′} |= Σ.
Conversely, assume that the 3SAT instance φ is not satisfiable. Then for all truth

assignments of variables x1, . . . , xm in the instance φ, there exists a clause Cj (1 ≤ j ≤
n) such that ξ(Cj) is false. Thus, for each tuple t′ such that D \ {t} ∪ {t′} |= Σ, tuple t′

must disagree with tuple t in at least ⌈ǫ ·m⌉ + 1 fields.
Putting these together, we have a PTIME algorithm for determining whether the

3SAT instance φ is satisfiable. If we can find a tuple t′ such that (a) tuple t′ differs from
tuple t in less than ⌈ǫ · m⌉ fields, and (b) D \ {t} ∪ {t′} |= Σ, then the instance φ is
satisfiable. If we can find a tuple t′ such that (a) tuple t′ differs from tuple t in at least
⌈ǫ ·m⌉ + 1 fields, and (b) D \ {t} ∪ {t′} |= Σ, then the instance φ is not satisfiable. This
contradicts the fact that the 3SAT problem is NP-complete. Therefore, unless P = NP,
for any constant ǫ, there exists no PTIME ǫ-approximation algorithm for DCP.

The proof of Theorem 4.3 reveals the following.

Corollary 4.4:Unless P =NP, for any constant ǫ, there exists no PTIME ǫ-approximation
algorithm for DCP, even for CFDs only, in the absence of MDs. 2

Proposition 4.5: Unless P = NP, for any constant ǫ, there exists no PTIME ǫ-
approximation algorithm for DCP, even for MDs only, in the absence of CFDs. 2

PROOF. This can also be verified by reduction from 3SAT, using gap techniques [We-
gener and Pruim 2005]. The proof is similar to the one of Theorem 4.3. The only differ-
ence is the DCP instance, which is constructed as follows.
◦ The schema of R is the same as the one in the proof of Theorem 4.3.
◦ The instance D of R consists of a single tuple, the same as the R tuple t in the proof

of Theorem 4.3.
◦ The schema Rm is the same as R.
◦ The master data Dm consists of n tuples, the same as the R tuples {t1, . . . , tn} in the

proof of Theorem 4.3.
◦ The set Γ consists of n MDs. For each FD Xpj1

Xpj2
Xpj3

→ Cj,1 . . . Cj,r in the

set Σ of CFDs in the proof of Theorem 4.3, we create an MD R[Xpj1
Xpj2

Xpj3
] =

Rm[Xpj1
Xpj2

Xpj3
] → R[Cj,1 . . . Cj,r] ⇋ Rm[Cj,1 . . . Cj,r] in Γ .

Following a similar argument to the one in the proof of Theorem 4.3, we have that
unless P = NP, for any constant ǫ, there exists no PTIME ǫ-approximation algorithm for
DCP in the absence of CFDs.

It is known that data repairing alone is already NP-complete for FDs [Bohannon
et al. 2005]. Theorem 4.3 tells us that when matching with MDs is incorporated, the
problem is intractable and approximation-hard.

Termination and determinism analyses. There are two natural questions arising
from rule-based data cleaning methods such as the one proposed in Section 3.
The termination problem is to determine whether a rule-based process stops. That

is, it reaches a fixpoint, such that no cleaning rules can be further applied.
The determinism problem asks whether all terminating cleaning processes end up

with the same repair, i.e., all of them reach a unique fixpoint.
The need for studying these problems is evident. A rule-based process is often non-

deterministic: multiple rules can be applied at the same time. We want to know that
whether the output of the process is independent of the order of the rules applied.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 W. Fan, S. Ma, N. Tang & W. Yu

Worse still, it is known that even for repairing only, a rule-based method may lead to
an infinite process [Cong et al. 2007].

Example 4.6. Consider CFD ϕ1 = tran([AC]→ [city], tp1 =(131 ‖ Edi)) given in Exam-
ple 2.1, and CFD ϕ5 = tran([post]→ [city], tp5 = (EH8 9AB ‖ Ldn)). Consider D1 consisting
of a single tuple t2 in Fig. 1. Then a repairing process for D1 with ϕ1 and ϕ5 may fail
to terminate: it changes t2[city] to Edi and Ldn back and forth. 2

No matter how important, it is beyond reach in practice to find efficient solutions to
these two problems.

THEOREM 4.7. The termination problem is PSPACE-complete for rule-based data
cleaning based on CFDs and MDs.

PROOF. We first verify the lower bound of the problem by reduction from the halt-
ing problem for linear bound automata, which is PSPACE-complete [Aiken et al. 1993].
We then show the upper bound by providing an algorithm, which uses polynomial
space in the size of input.

(I) We first show that the problem is PSPACE-hard by reduction from the halting prob-
lem for linear bound automata. A linear bounded automaton is a 6-tuple 〈Q, Υ, Λ, q0,
F , δ〉, where (a) Q is a finite set of states, (b) Υ is a finite tape alphabet, (c) blank ∈ Υ is
the blank symbol, (d) Λ ⊆ (Υ \ {blank}) is a finite input alphabet, (e) q0 ∈ Q is the start
state, (f) F ⊆ Q is the set of halting states, and (g) δ : Q× Υ → Q× Λ × {Left,Right} is
the next move function. Given a linear bounded automaton M with input alphabet Λ
and a string x ∈ Λ∗, the halting problem asks whetherM halts on input x.
Given an automatonM and input string x of length n, we first construct an instance

for the termination problem: two schemas Rm (master relation) and R, a set Σ of CFDs

on R, a set Γ of MDs on (R,Rm), an instance Dm of Rm, and an instance D of R. We
then show that M accepts x if and only if the repairing process terminates for the
constructed instance of the termination problem.
(1) The schema is R(A, I,Ab, Anxt, Ib, Inxt, Cb, Cnxt, A1, . . ., An), where n = |x|, i.e., the
length of the input string x. All R attributes have finite domains: (a) attributes A,
Ab and Anxt have finite domain Q; (b) attributes I, Ib and Inxt have finite domain
{1, . . . , n}; and (c) all the remaining attributes have finite domain Υ.
Intuitively, for an R tuple t, (a) t[A1, . . . , An] denotes the current tape content of

M , initially the input string x, (b) t[A] is the current state of M , (c) t[I] is the current
position of the tape head ofM , and, moreover, (d) t[Ab], t[Anxt], t[Ib], t[Inxt], t[Cb], t[Cnxt]
are used to help encode the transition function δ ofM , as will be seen shortly.
(2) The relation D = {t}, where t = (q0, 1, q0, q0, 1, 1, blank, blank, x[1], . . ., x[n]), where
x[i] is the i-th symbol in the input string x.
(3) The set Σ consists of 6(n− 1) CFDs.
◦ For each q∈Q\F and s∈Υ such that δ(q×s) = q′×s′×Left, Σ includes a set of 3(n− 1)

CFDs, given as follows. For each i ∈ [2, n],
ϕ(L,i,1) = R(AAiI → AbCbIb, (q, s, i ‖ q, s, i)),
ϕ(L,i,2) = R(AAiIAbCbIb → AnxtCnxtInxt, (q, s, i, q, s, i ‖ q′, s′, i− 1)), and
ϕ(L,i,3) = R(AbCbIbAnxtCnxtInxt → AAiI, (q, s, i, q′, s′, i− 1 ‖ q′, s′, i− 1)).
Intuitively, these CFDs together encode the transition δ(q×s) = q′×s′×Left, by (a)
updating the values of attributesA andAi to q and s, respectively, and (b) decreasing
the value of I by 1.

◦ For each q∈Q\F and s∈Υ such that δ(q×s)= q′×s′×Right, Σ includes set of 3(n− 1)
CFDs. More specifically, for each i ∈ [1, n− 1],
ϕ(R,i,1) = R(AAiI → AbCbIb, (q, s, i ‖ q, s, i)),

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:17

ϕ(R,i,2) = R(AAiIAbCbIb → AnxtCnxtInxt, (q, s, i, q, s, i ‖ q′, s′, i+ 1)), and
ϕ(R,i,3) = R(AbCbIbAnxtCnxtInxt → AAiI, (q, s, i, q′, s′, i+ 1 ‖ q′, s′, i+ 1)).
Similarly, these CFDs together encode the transition δ(q×s) = q′×s′×Right, by (a)
updating the values of attributes A andAi to q and s, respectively, and (b) increasing
the value of I by 1.

(4) The set Γ of MDs is empty. In addition, the master schema Rm and the master
relation Dm are simply omitted as they are not needed in this reduction.
It is easy to verify that these CFDs indeed simulate the computation of a linear

bounded automaton M . Hence, M halts on x iff the rule-based data cleaning process
terminates on the constructed instance.

(II) We next show the upper bound of the terminating problem. Consider the data
cleaning system UniClean discussed in Section 3.2, which could be treated as a PSPACE

algorithm for the terminating problem. Observe that (a) the rule-based data cleaning
process is non-deterministic, and (b) it uses space linear in the size of the input of
the problem, i.e., the size of the dirty relation D, master relation Dm, repair Dr and
the cleaning rules Θ. By Savitch’s theorem [Savitch 1970], there is a deterministic
quadratic-space algorithm for the rule-based data cleaning process, and therefore, the
termination problem is in PSPACE.

THEOREM 4.8. The determinism problem is PSPACE-complete for rule-based data
cleaning based on CFDs and MDs.

PROOF. We first show the upper bound by providing an algorithm, which uses poly-
nomial space in the size of input. We then verify the lower bound of the problem by
reduction from the halting problem for linear bound automata [Aiken et al. 1993].

(I) We show that the problem is in PSPACE, by presenting an NPSPACE algorithm that
checks whether there are two terminating processes that yield distinct fixpoints. Given
a master relation Dm of schema Rm, a (possibly) dirty relation D of schema R, a set Σ
of CFDs on R, and a set Γ of MDs on (R,Rm), the algorithm works as follows:
(1) Guess two R instances D1 and D2 that both consist of only constants appearing in
D,Σ and Dm, and both have the same number of tuples as D.
(2) Check whether D1 6= D2, D1 |= Σ, (D1, Dm) |= Γ, D2 |= Σ and (D2, Dm) |= Γ. If so,
continue. Otherwise it rejects the guess and goes back to step (1).

(3) Check whether both D1 and D2 can be generated fromD, by guessing and applying
rules derived from Σ and Γ. That is, if the data cleaning process reaches a fixpoint for
D, then it compares whetherD1 orD2 is the same as the fixpoint. If so, it returns ‘false’
since distinct D1 and D2 can be generated from D. Otherwise it rejects the guess and
goes back to step (1).
One can readily verify the correctness of the algorithm. That is, if it returns ‘false’,

then the problem is not deterministic, and if the problem is not deterministic, then the
algorithm returns ‘false’. Note that there are finite number of R instances D as the
rule-based data cleaning only uses constants appearing in D,Σ and Dm. Hence all the
three steps above can be done in PSPACE, and the algorithm runs in PSPACE.

(II) We next show that the problem is PSPACE-hard by reduction from the halting prob-
lem for linear bound automata. The reduction is similar to its counterpart given in the
proof of Theorem 4.7 for the termination problem, except that here we add the follow-
ing CFDs, which assure that when the rule-based data cleaning process terminates, it
always generates the same result. For each halting state s ∈ F , we include CFDs ϕ(s,1)

= R(A→ Ab, (s ‖ ♮)) and ϕ(s,2) = R(Ab → attr(R), (♮ ‖ ♮, . . . , ♮)). Here ♮ is a fresh distinct
symbol. That is, all terminating processes end up with the same repair (♮, . . . , ♮). Then

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 W. Fan, S. Ma, N. Tang & W. Yu

Symbols Semantics

Θ = Σ ∪ Γ A set Σ of CFDs and a set Γ of MDs
Confidence threshold, update threshold, andη, δ1, δ2

entropy threshold, respectively
ρ Selection operator in relational algebra
π Projection operator in relational algebra

The set {t | t ∈ D, t[Y] = ȳ} for each ȳ in∆(ȳ)
πY (ρY≍tp[Y]D) w.r.t. CFD (Y → B, tp)

Fig. 3. Summary of notations

along the same lines as the proof for the termination problem given above, it can be
verified that the determinism problem is PSPACE-hard.

Moreover, along the same lines as Corollary 4.4 and Proposition 4.5, by encoding
CFDs with MDs, one can easily verify the following.

Corollary 4.9: The termination and determinism problems are both PSPACE-complete
for rule-based data cleaning based on either CFDs or MDs only. 2

Remark. All the complexity results given above remain intact even in the absence
of master data and matching dependencies (MDs). In particular, for CFDs alone, the
data cleaning problem DCP is already NP-complete and approximation hard, and the
termination problem and determinism problem are already PSPACE-complete. In other
words, incorporating MDs and master data does not complicate data cleaning process.

5. DETERMINISTIC FIXES WITH DATA CONFIDENCE

As shown in Fig. 2, system UniClean first identifies deterministic fixes based on con-
fidence analysis and master data. In this section, we define deterministic fixes (Sec-
tion 5.1), and present an efficient algorithm to find them (Section 5.2). In Fig. 3 we
also summarize some notations to be used in this Section and Section 6, for the ease of
reference.

5.1. Deterministic Fixes

We define deterministic fixes w.r.t. a confidence threshold η, which may be determined
by domain experts. When η is high enough, e.g., if it is close to 1, an attribute t[A]
is considered correct if t[A].cf ≥ η. We refer to such attributes as asserted attributes.
Recall from Section 3 the definition of cleaning rules derived from MDs and CFDs. In
the first phase of UniClean, we apply a cleaning rule γ to the tuples in a database D
only when the attributes in the premise (i.e., LHS) of γ are all asserted. We say that a
fix is deterministic w.r.t. γ and η if it is generated as follows, based on how γ is derived.

(1) From an MD ψ=
∧
j∈[1,k](R[Aj]≈jRm[Bj])→ (R[E]⇋Rm[F]). Suppose that γ applies

a tuple s∈Dm to a tuple t∈D, and generates a fix t[E] := s[F] (see Section 3.1). Then
the fix is deterministic if t[Aj].cf ≥ η for all j ∈ [1, k] and moreover, t[E].cf < η. That is,
t[E] is changed to the master value s[F] only if (a) all the premise attributes t[Aj]’s are
asserted, and (b) t[E] is not yet asserted.

(2) From a constant CFD ϕc = R(X → A, tp1). Suppose that γ applies to a tuple t ∈ D
and changes t[A] to the constant tp1 [A] in ϕc. Then the fix is deterministic if t[Ai].cf ≥ η
for all Ai ∈ X and t[A].cf < η.

(3) From a variable CFD ϕv = (Y → B, tp). For each ȳ in πY (ρY≍tp[Y]D), we define ∆(ȳ)
to be the set {t | t ∈ D, t[Y] = ȳ}, where π and ρ are the projection and selection

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:19

operators, respectively, in relational algebra [Abiteboul et al. 1995]. That is, for all
t1, t2 in ∆(ȳ), t1[Y] = t2[Y] = ȳ ≍ tp[Y].
Suppose that γ applies a tuple t2 in ∆(ȳ) to another tuple t1 in ∆(ȳ) for some ȳ, and

changes t1[B] to t2[B]. Then the fix is deterministic if (a) for all Bi ∈ Y , t1[Bi].cf ≥ η
and t2[Bi].cf ≥ η, (b) t2[B].cf ≥ η, and moreover, (c) t2 is the only tuple in ∆(ȳ) with
t2[B].cf ≥ η (hence t1[B].cf < η). That is, all the premise attributes of γ are asserted,
and t2[B] is the only value of B-attribute in ∆(ȳ) that is assumed correct, while t1[B]
is suspected erroneous.

When master data, data cleaning rules and confidence levels placed on the data
are all asserted correct, one can verify that the fix to t[E] via an MD (resp. t[A] via a
constant CFD and t1[B] via a variable CFD) is unique, by the definition of determin-
istic fixes and along the same lines as [Fan et al. 2010]. In the sequel we assume the
correctness of master data, data cleaning rules and confidence levels when studying
deterministic fixes, to simplify the discussions.

Observe that when attribute t[A] is updated by a deterministic fix, its confidence
t[A].cf is upgraded to be the minimum of the confidences of the premise attributes (see
discussions in Section 3.1). As a result, t[A] is also asserted correct (up to confidence η),
since all premise attributes have confidence values above η. In turn t[A] can be used
to generate deterministic fixes for other attributes in the cleaning process. In other
words, the process for finding deterministic fixes in a database D is recursive.
Nevertheless, in the rest of this section we show that deterministic fixes can be found

in PTIME, stated below.

THEOREM 5.1. Given master data Dm and a set Θ of CFDs and MDs, all determin-
istic fixes in a relation D can be found in O(|D||Dm|size(Θ)) time, where size(Θ) is Θ’s
length.

5.2. Confidence-based Data Cleaning

We prove Theorem 5.1 by providing an algorithm for deterministic fixes that runs in
O(|D||Dm|size(Θ)) time. We now present the algorithm, followed by indexing structures
and procedures that it employs.

Algorithm. The algorithm, referred to as cRepair, is shown in Fig. 4. It takes as input
a set Σ of CFDs, a set Γ of MDs, master data Dm, a dirty relation D, and a confidence
threshold η. It returns a partially cleaned repair D′ with deterministic fixes marked.
Algorithm cRepair first initializes variables and auxiliary indexing structures

(lines 1–6). It then recursively computes deterministic fixes (lines 7–15), by invok-
ing procedures vCFDInfer (line 12), cCFDInfer (line 13), or MDInfer (line 14), for rules
derived from variable CFDs, constant CFDs, or MDs, respectively. It checks each tuple
at most once w.r.t. each rule, makes more attributes asserted at each step, and uses
these attributes to identify more deterministic fixes recursively. It terminates when no
more deterministic fixes can be found (line 15). Finally, a partially cleaned database
D′ is returned in which all deterministic fixes are marked (line 16).

Indexing structures. The algorithm uses the following indexing structures, to im-
prove performance.

Hash tables. We maintain a hash table for each variable CFD ϕ =R(Y → B, tp), denoted
as Hϕ. Given an ȳ ∈ ρY≍tp[Y](D) as the key, it returns a pair (list, val) as the value, i.e.,

H(ȳ) = (list, val), where (a) list consists of all the tuples t in ∆(ȳ) such that t[Bi].cf ≥ η
for each attribute Bi ∈ Y , and (b) val is t[B] if it is the only item in ∆(ȳ) with t[B].cf ≥ η;
otherwise, val is nil. Notably, there exist no two t1, t2 in ∆(ȳ) such that t1[B] 6= t2[B],
t1[B].cf ≥ η and t2[B].cf ≥ η, if the confidence placed by users is correct.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 W. Fan, S. Ma, N. Tang & W. Yu

Algorithm cRepair

Input: CFDs Σ, MDs Γ, master data Dm, dirty data D, and confidence threshold η.
Output: A partial repair D′ of D with deterministic fixes.

1. D′ := D; Hξ := ∅ for each variable CFD ξ ∈ Σ;
2. for each t ∈ D′ do
3. Q[t] := ∅; P[t] := ∅;
4. count[t, ξ] :=0 for each ξ ∈ Σ ∪ Γ;
5. for each attribute A ∈ attr(Σ ∪ Γ) do
6. if t[A].cf ≥ η then update(t, A);
7. repeat
8. for each tuple t ∈ D′ do
9. while Q[t] is not empty do
10. ξ := Q[t].pop();
11. case ξ of
12. (1) variable CFD: vCFDInfer(t, ξ, η);
13. (2) constant CFD: cCFDInfer(t, ξ, η);
14. (3) MD: MDInfer(t, ξ, η, ,Dm);
15.until Q[t′] is empty for any t′ ∈ D′;
16. return D′.

Fig. 4. Algorithm cRepair

Queues. We maintain for each tuple t a queue of rules that can be applied to t, de-
noted as Q[t]. More specifically, Q[t] contains all rules ξ ∈ Θ, where t[C].cf ≥ η for all
attributes C in LHS(ξ). That is, the premise of ξ is asserted in t.

Hash sets. For each tuple t∈D, P[t] stores the set of variable CFDs ϕ∈Q[t] such that
Hϕ(t[LHS(ϕ)]).val=nil, i.e., no B attribute in ∆(t[LHS(ϕ)]) has a high enough confidence.

Counters. For each tuple t ∈ D and each rule ξ ∈ Θ, count[t, ξ] maintains the number of
current distinct values of the attributes C ∈ LHS(ξ) such that t[C].cf ≥ η.

Procedures. We now present the procedures used in cRepair as shown in Fig. 5. Since
those indexing structures are used in all these procedures, we simply denote the queue,
hash set and counter as Q[t], P[t] and count[t, ξ], respectively, without explicitly speci-
fying them as part of the input.

Procedure update. Given a new deterministic fix for t[A], it propagates the change, in

order to find the other deterministic fixes with t[A]. (a) For each rule ξ, if A ∈ LHS(ξ),
count[t, ξ] is increased by 1 as one more attribute becomes asserted (lines 1-2). (b) If all
attributes in LHS(ξ) are asserted, ξ is inserted into the queue Q[t] (line 3). (c) For a
variable CFD ξ′ ∈ P[t], if RHS(ξ′) is A and Hξ′(t[LHS(ξ′)]).val = nil, the newly asserted
t[A] makes it possible for tuples in Hξ′(t[LHS(ξ′)]).list to have a deterministic fix. Thus
ξ′ is removed from P[t] and added to Q[t] (lines 4–5).

Procedure vCFDInfer. For a tuple t, a variable CFD ξ and a confidence threshold η, it
finds a deterministic fix for t by applying ξ. If the tuple t and the pattern tuple t(p,ξ)
match on their LHS(ξ) attributes, it does the following.

(a) If t[RHS(ξ)].cf ≥ η and no B-attribute values in Hξ(t[LHS(ξ)]).list are asserted
(line 1), it takes t[RHS(ξ)] as the B value in the set (line 2), and propagates the change
via procedure update (lines 3–5).

(b) If t[RHS(ξ)] < η and there is an asserted B-attribute value val in Hξ(t[LHS(ξ)]).list

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:21

Procedure update(t, A)
Input: A new deterministic fix t[A].
Output: Updated indexing structures.

1. for each ξ ∈ Σ ∪ Γ such that A ∈ LHS(ξ) do
2. count[t, ξ] := count[t, ξ] + 1;
3. if count[t, ξ] = |LHS(ξ)| then Q[t].push(ξ);
4. for each variable CFD ξ′ ∈ Σ ∩ P[t] with RHS(ξ′) = A do
5. P[t].remove(ξ′);
6. if H[ξ′].get(t[LHS(ξ′)]).val = nil then Q[t].push(ξ′);

Procedure vCFDInfer (t, ξ, η)
Input: Tuple t, variable CFD ξ, and confidence threshold η.
Output: Deterministic fixes and updated indexing structures.

1. if t[LHS(ξ)] ≍ t(p,ξ)[LHS(ξ)] and t[RHS(ξ)].cf ≥ η
and H[ξ].get(t[LHS(ξ)]).val = nil then

2. H[ξ].get(t[LHS(ξ)]).val := t[RHS(ξ)];
3. for each t′ ∈ H[ξ].get(t[LHS(ξ)]).list do
4. t′[RHS(ξ)] := t[RHS(ξ)]; t′[RHS(ξ)].cf := η;
5. update(t′,RHS(ξ));
6. else if t[LHS(ξ)] ≍ t(p,ξ)[LHS(ξ)] and t[RHS(ξ)].cf < η then
7. if H[ξ].get(t).val 6= nil then
8. t[RHS(ξ)] := H[ξ].get(t[LHS(ξ)]).val;
9. update(t,RHS(ξ)); t′[RHS(ξ)].cf := η;
10. else H[ξ].get(t[LHS(ξ)]).list.add(t); P[t].add(ξ);

Procedure cCFDInfer (t, ξ, η)
Input: Tuple t, constant CFD ξ, and confidence threshold η.
Output: Deterministic fixes and updated indexing structures.

1. if t[LHS(ξ)] ≍ t(p,ξ)[LHS(ξ)] then
2. t[RHS(ξ)] := t(p,ξ)[RHS(ξ)]; update(t,RHS(ξ));

Procedure MDInfer (t, ξ, η, Dm)

Input: Tuple t, constant CFD ξ, confidence threshold η and master data Dm.
Output: Deterministic fixes and updated indexing structures.

1. if ∃tm ∈ Dm (t[LHS(ξ)] ≍ξ tm[LHS(ξ)]) then
2. t[RHS(ξ)] := tm[RHS(ξ)]; update(t,RHS(ξ));

Fig. 5. Procedures of cRepair

(lines 6-7), it makes a deterministic fix by t[RHS(ξ)] := val (line 8), and propagates the
change via procedure update (line 9).

(c) If t[RHS(ξ)] < η and there are no asserted B-attribute values in Hξ(t[LHS(ξ)]).list,
then there are no deterministic fixes that can be made at this moment. Hence, tuple t
is simply added to Hξ(t[LHS(ξ)]).list and P[t], for later checking (line 10).

Procedures cCFDInfer and MDInfer. The first procedure takes as input a tuple t, a con-
stant CFD ξ and a confidence threshold η. The second one takes as input t, η, master
data Dm and an MD ξ. They find deterministic fixes by applying the rules derived from

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 W. Fan, S. Ma, N. Tang & W. Yu

ξ, as described in Section 3.1. The changes made are propagated by invoking procedure
update(t,RHS(ξ)).

Example 5.2. Consider master dataDm and relationD of Fig. 1, and cleaning rules
Θ consisting of ξ1, ξ2 and ξ3 derived from CFDs ϕ1, ϕ3 and MD ψ in Example 1.1, re-
spectively. Let η be fixed to 0.8. Using Θ and Dm, cRepair finds deterministic fixes for
t1, t2 ∈ D w.r.t. η as follows.

(1) After initialization (lines 1–6), we have the following: (a) Hξ2 = ∅; (b) Q[t1] = {ξ1},
Q[t2] = {ξ2}; (c) P[t1] = P[t2] = ∅; and (d) count[t1, ξ1] = 1, count[t1, ξ2] = 0, count[t1, ξ3] = 3,
count[t2, ξ1] = 0, count[t2, ξ2] = 2, and count[t2, ξ3] = 2.

(2) After ξ2 ∈ Q[t2] is inspected (line 12), we have that Q[t2] = ∅, P[t2] = {ξ2}, and
Hξ2(t2[city, phn]) = ({t2}, nil).

(3) After ξ1 ∈ Q[t1] is applied (line 13), Q[t1] = {ξ3}, count[t1, ξ2] = 1 and count[t1, ξ3] = 4.
This step finds a deterministic fix t1[city] := Edi. It also upgrades t1[city].cf to 0.8.

(4) When ξ3 ∈ Q[t1] is used (line 14), it makes a deterministic fix t1[phn] := s1[tel], and
sets t1[phn].cf = 0.8. Now we have that Q[t1] = {ξ2} and count[t1, ξ2] = 2.

(5) When ξ2 ∈ Q[t1] is used (line 14), it finds a deterministic fix by letting t2[St] = t1[St]
:= 10 Oak St, and t2[St].cf := 0.8. Now we obtain Q[t1] = ∅ and P[t2] = ∅.

(6) Finally, the process terminates since Q[t1]=Q[t2]=∅. Similarly, for tuples t3, t4∈D,
cRepair finds a deterministic fix by setting t3[city] :=Ldn and t3[city].cf :=0.8. 2

Correctness. (1) Algorithm cRepair always terminates. Indeed, each attribute value
of a tuple is updated at most once. (2) The algorithm returns all deterministic fixes,
since it recursively uses all rules that are applicable to deterministic fixes, until no
rules can be applied. Moreover, by the definition of deterministic fixes, the algorithm
generates deterministic fixes only. Note that during the process, each tuple is visited
at most twice, by considering the following cases.
◦ Cleaning rules derived from constant CFDs and MDs. When any of these is applied
to a tuple t ∈ D, the process is independent of any other tuples in D. Hence, each
tuple in D is visited only once.

◦ Cleaning rules derived from variable CFDs. There are two conditions for a rule de-
rived from a variable CFD ϕ = (X → B, tp) to be applicable to a tuple t:
(i) t[X] is asserted, and
(ii) there exists a tuple t′ ∈ D, such that t′[X ∪B] is asserted and moreover, t′[B] is

the only asserted B attribute for all tuples in ∆(t[X]).
When both (i) and (ii) are satisfied, t[B] will be replaced by t′[B]. Hence, vCFDInfer
will visit a tuple t at most twice: when t[X] is asserted, and when the first tuple t′ is
updated by means of t, in which t′[X ∪B] is asserted.
Based on the analysis above, one can readily verify that for deterministic fixes, the

order in which rules are applied does not impact the quality of the final result. More-
over, the order has no impact on the efficiency either. Indeed, (1) applying the rules in
different orders yield the same set of deterministic fixes, (2) each attribute value of a
tuple is updated at most once, and (3) the cost of the update operation is decided by
the rule applied and the tuples involved, independent of other rules and tuples.

Similarity checking for MDs. For cleaning rules derived from MDs, similarity check-
ing between tuples across relations is required, where similarity is typically defined
on strings (i.e., attribute values in tuples) employing various string metrics, e.g., Ham-
ming/Edit distance, such that two strings are considered to be similar if the difference
between their values is within a pre-defined threshold K in the metric. Unfortunately,
traditional database indices, e.g., B+-tree and hash tables that are designed for exact

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:23

matching, cannot be carried over to our problem. In the following, we shall present
techniques for similarity checking that can efficiently deal with either a small or a
large threshold K. The techniques can also used to conduct exact matching for its
close connection with Hamming/Edit and longest common substring (LCS).
Before we present our techniques, let us first review previous work on suffix-tree

based indices based on Hamming/Edit distance [Tsur 2010; Cole et al. 2004]. These
indices are efficient for matching tuples within a threshold K. More specifically, [Tsur
2010] can reduce the time for checking the similarity of an input string v and master
data Dm from O(|Dm||v|) to O(m+ log log n + #-matches), where K is a constant, m
is the number of tuples in Dm and n is the length of the longest indexed string in Dm.
Nevertheless, these indices treat K as a constant, and need exponential time in K.
Hence, they are only effective for small K.
WhenK is relatively large, we develop another technique based on the idea of block-

ing. More specifically, instead of traversing the entire set of tuples in Dm, we use in-
dices to find top-l tuples in Dm that possibly match an input string, where l is a con-
stant determined by users. Blocking is based on the length of LCS, since two strings
u and v have a Hamming/Edit distance within K only if the length of their LCS is at
least max(|u|, |v|)/(K + 1), where max(|u|, |v|) is the length of the longer string between
u and v. Note that l is relatively small, since for a given string in real-life, there are
often few matching strings in the active domain. In our experimental study, we find
that l ≤ 20 typically suffices. The technique above can reduce the search space from
Dm to l tuples, for any given string.
In light of this, we generalize suffix trees as an index for LCS. For each attribute

that needs similarity checking, a generalized suffix tree is maintained on those strings
in the active domain of the attribute in Dm. Note that each node in the generalized
suffix tree corresponds to a common substring s, for which a set of strings that contain
s are maintained. To look up a string v of length |v|, we can extract the subtree T of the
suffix tree that only contains branches related to v, which contains at most |v|2 nodes.
We traverse T bottom-up to pick top-l similar strings in terms of the length of the LCS.
In this way, we can identify l similar values from Dm in O(l|v|2) time, and reduce the
search space from |Dm| to a constant number l of values.
Our experimental study verifies that these techniques significantly improve the per-

formance (see Section 8).

Complexity. Each tuple t in D is examined at most twice for each CFD in Σ, and
is checked at most |Dm| times for each MD. From these it follows that cRepair is in
O(|D||Dm|size(Σ ∪ Γ)) time. By employing the optimization methods given above, the
time complexity of cRepair can be reduced to O(|D|size(Σ ∪ Γ)).
From the analyses given above Theorem 5.1 follows.

6. RELIABLE FIXES WITH INFORMATION ENTROPY

Deterministic fixes may not exist for some attributes, e.g., those attributes for which
the confidences are low or unreliable. To find accurate fixes for such attributes, UniClean
looks for evidence from data itself instead of confidence, using entropy to measure the
degree of certainty. Below we first define entropy for data cleaning (Section 6.1), and
then present an algorithm to find reliable fixes using entropy (Section 6.2). We also
present an indexing structure underlining the algorithm (Section 6.3).

6.1. Measuring Certainty with Entropy

We start with an overview of the standard information entropy, and then define en-
tropy for resolving conflicts.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 W. Fan, S. Ma, N. Tang & W. Yu

Algorithm eRepair

Input: CFDs Σ, MDs Γ, master data Dm, dirty data D,
update threshold δ1, entropy threshold δ2.

Output: A partial repair D′ of D with reliable fixes.
1. O := the order of Σ ∪ Γ, sorted via their dependency graph;
2. D′ := D;
3. repeat
4. for (i = 1; i ≤ |Σ ∪ Γ|; i++) do
5. ξ := the i-th rule in O;
6. case ξ of
7. (1) variable CFD: D′ := vCFDReslove(D′, ξ, δ1, δ2);
8. (2) constant CFD:D′ := cCFDReslove(D′, ξ, δ1);
9. (3) MD: D′ := MDReslove(D′, Dm, ξ, δ1);
10.until there are no changes in D′;
11. return D′.

Fig. 6. Algorithm eRepair

Entropy. The entropy of a discrete random variable X with possible values in
{x1, . . . , xn} is defined as follows [Cover and Thomas 1991; Srivastava and Venkata-
subramanian 2010]:

H(X) = Σni=1(pi ∗ log 1/pi),

where pi is the probability of xi for i ∈ [1, n]. The entropy measures the degree of the
certainty of the value of X : when H(X) is sufficiently small, it is highly accurate that
the value of X is the xj having the largest probability pj . The less H(X) is, the more
accurate the prediction is.

Entropy for variable CFDs. We use entropy to resolve data conflicts. Consider a CFD

ϕ = R(Y → B, tp) defined on a relation D, where tp[B] is a wildcard. Note that a
deterministic fix may not exist when, e.g., there are t1, t2 in ∆(ȳ) (see Fig. 3) such that
t1[B] 6= t2[B] but both have high confidence. Indeed, using the cleaning rule derived
from ϕ, one may either let t1[B] := t2[B] by applying t2 to t1, or let t2[B] := t1[B] by
applying t1 to t2.
To find an accurate fix, we define the entropy of ϕ for Y = ȳ, denoted by H(ϕ|Y = ȳ),

as follows:

H(ϕ|Y = ȳ) = Σki=1(
cntY B(ȳ, bi)

|∆(ȳ)|
∗ logk

|∆(ȳ)|

cntY B(ȳ, bi)
),

where (a) k = |πB(∆(ȳ))|, the number of distinct B values in ∆(ȳ), (b) for each i ∈ [1, k],
bi ∈ πB(∆(ȳ)), (c) cntY B(ȳ, bi) denotes the number of tuples t ∈ ∆(ȳ) with t[B] = bi, and
(d) |∆(ȳ)| is the number of tuples in ∆(ȳ).
Intuitively, we treat X (ϕ|Y = ȳ) as a random variable for the value of the B attribute

in ∆(ȳ), with a set πB(∆(ȳ)) of possible values. The probability for bi to be the value

is pi = cntY B(ȳ,bi)
|∆(ȳ)| . When H(ϕ|Y = ȳ) is small enough, it is highly accurate to resolve

the conflict by letting t[B] = bj for all t ∈ ∆(ȳ), where bj is the one with the highest
probability, i.e., cntY B(ȳ, bj) is maximum among all bi ∈ πB(∆(ȳ)).
In particular, H(ϕ|Y = ȳ) = 1 when cntY B(ȳ, bi) = cntBA(ȳ, bj) for all distinct bi, bj ∈

πB(∆(ȳ)). Note that if H(ϕ|Y = ȳ) = 0 for all ȳ ∈ πY (ρY≍tp[Y]D), then D |= ϕ.

6.2. Entropy-based Data Cleaning

We next present an algorithm based on entropy, followed by its main procedures and
auxiliary structures.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:25

Algorithm. The algorithm, referred to as eRepair, is shown in Fig. 6. Given a set Σ of
CFDs, a set Γ of MDs, a master relation Dm, dirty data D, and two thresholds δ1 and
δ2 for update frequency and entropy, respectively, algorithm eRepair finds reliable fixes
forD and returns a (partially cleaned) database D′ in which reliable fixes are marked.
The deterministic fixes found earlier by cRepair remain unchanged in the process.
In a nutshell, algorithm eRepair first sorts data cleaning rules derived from the CFDs

and MDs, such that rules with relatively bigger impact are applied early. Following
the order, it then applies the rules one by one, until no more reliable fixes can be
found. More specifically, it first finds an order O on the rules in Σ ∪ Γ (line 1). It then
repeatedly applies the rules in the order O to resolve conflicts in D (lines 3–10), by
invoking procedures vCFDReslove (line 7), cCFDReslove (line 8) or MDReslove (line 9),
based on the types of the rules (lines 5-6). It terminates when either no more rules can
be applied or all data values have been changed more than δ1 times, i.e., when there is
no enough information to make reliable fixes (line 10). A partially cleaned database is
then returned in which reliable fixes are marked (line 11).

Procedures. We next present the procedures of eRepair.

Sorting cleaning rules. To avoid unnecessary computation, we sort Σ ∪ Γ based on its

dependency graph G = (V,E). Each rule of Σ∪Γ is a node in V , and there is an edge
from a rule ξ1 to another ξ2 if ξ2 can be applied after the application of ξ1. There exists
an edge (u, v) ∈ E from node u to node v if RHS(ξu) ∩ LHS(ξv) 6= ∅. Intuitively, edge
(u, v) indicates that whether ξv can be applied depends on the outcome of applying ξu.
Hence, ξu should be applied before ξv. For instance, the dependency graph of the CFDs

and MDs given in Example 1.1 is shown in Fig. 7.
Based on the dependency graph G, we sort the rules as follows. (1) Find strongly

connected components (SCCs) in G, in linear time [Cormen et al. 2001]. (2) By treating
each SCC as a single node, we convert G into a DAG. (3) Find a topological order on the
nodes in the DAG. That is, a rule ξ1 is applied before another ξ2 if the application of ξ1
affects the application of ξ2. (4) Finally, the nodes in each SCC are further sorted based
on the ratio of its out-degree to in-degree, in a decreasing order. The higher the ratio
is, the more effects it has on other nodes.

Example 6.1. The dependency graph G depicted in Fig. 7 is an SCC. The ratios of
out-degree to in-degree of the nodes ϕ1, ϕ2, ϕ3, ϕ4 and ψ are 2

1 ,
2
1 ,

1
1 ,

3
3 and 2

4 , respec-
tively. Hence the order O of these rules is ϕ1 > ϕ2 > ϕ3 > ϕ4 > ψ, where those nodes
with the same ratio are sorted randomly. 2

We next present the details of the procedures.

Procedure vCFDReslove. It applies the cleaning rule derived from a variable CFD ξ =
R(Y → B, tp). For each set ∆(ȳ) with ȳ in πY (ρY≍tp[Y]D), if H(ξ|Y = ȳ) is smaller

than the entropy threshold δ2, it picks the value b ∈πB(∆(ȳ)) that has the maximum
cntY B(ȳ, b). Then for each tuple t ∈ ∆(ȳ), if t[B] has been changed less than δ1 times,
i.e., when t[B] is not often changed by rules that may not converge on its value, t[B] is
changed to b. As remarked earlier, when the entropy H(ξ|Y = ȳ) is small enough, it is
highly accurate to resolve the conflicts in πB(∆(ȳ)) by assigning b as their value.

Procedure cCFDReslove. It applies the cleaning rule derived from a constant CFD ξ =
R(X → A, tp1). For each tuple t ∈ D, if (a) t[X] ≍ tp1 [X], (b) t[A] 6= tp1 [A], and (c) t[A]
has been changed for less than δ1 times, then t[A] is changed to the constant tp1 [A].

Procedure MDReslove. It applies the cleaning rule derived from an MD ξ =
∧
j∈[1,k]

(R[Aj] ≈j Rm[Bj]) → R[E] ⇋ Rm[F]. For each tuple t ∈ D, if there exists a mas-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 W. Fan, S. Ma, N. Tang & W. Yu

Fig. 7. Example dependency graph

A B C E F H
t1: a1 b1 c1 e1 f1 h1

t2: a1 b1 c1 e1 f2 h2

t3: a1 b1 c1 e1 f3 h3

t4: a1 b1 c1 e2 f1 h3

t5: a2 b2 c2 e1 f2 h4

t6: a2 b2 c2 e2 f1 h4

t7: a2 b2 c3 e3 f3 h5

t8: a2 b2 c4 e3 f3 h6

Fig. 8. Example relation of schema R

ter tuple s ∈ Dm such that (a) t[Aj] ≈j s[Bj] for j ∈ [1, k], (b) t[E] 6= s[F], and (c) t[E]
has been changed less than δ1 times, then it assigns the master value s[F] to t[E].
These procedures do not change those data values that are marked deterministic

fixes by algorithm cRepair.

Example 6.2. Consider an instance of schema R(ABCEFH) shown in Fig. 8, and a
variable CFD φ = R(ABC → E, tp1), where tp1 consists of wildcards only, i.e., φ is an FD.
Observe that (a) H(φ|ABC = (a1, b1, c1)) ≈ 0.8, (b) H(φ|ABC = (a2, b2, c2)) is 1, and (c)
H(φ|ABC = (a2, b2, c3)) and H(φ|ABC = (a2, b2, c4)) are both 0.
From these we can see the following. (1) For ∆(ABC = (a2, b2, c3)) and ∆(ABC =

(a2, b2, c4)), the entropy is 0; hence these sets of tuples do not violate φ, i.e., there is
no need to fix these tuples. (2) The fix based on H(φ|ABC = (a1, b1, c1)) is relatively
accurate, but not those based on H(φ|ABC = (a2, b2, c2)). Hence algorithm eRepair will
only change t4[E] to e1, and marks it as a reliable fix. 2

Complexity. The outer loop (lines 3–10) in algorithm eRepair runs in O(δ1|D|) time.
Each inner loop (lines 4–9) takes O(|D||Σ| + k|D|size(Γ)) time using the optimization
techniques of Section 5, where k is a constant. Thus, the algorithm takes O(δ1|D|2|Σ|
+ δ1k|D|2size(Γ)) time in total.

6.3. Resolving Conflicts with a 2-in-1 Structure

We can efficiently identify tuples that match the LHS of constant CFDs by building an
index on the LHS attributes in the database D. We can also efficiently find tuples that
match the LHS of MDs by leveraging the suffix tree structure developed in Section 5.
However, for variable CFDs, two issues still remain: (a) detecting violations and (b)
computing entropy. These are rather costly and have to be recomputed when data is
updated in the cleaning process. To do these we develop a 2-in-1 structure, which can
be easily maintained.
Let ΣV be the set of variables CFDs in Σ, and attr(ΣV) be the set of attributes ap-

pearing in ΣV . For each CFD ϕ = R(Y → B, tp) in ΣV , we build a structure consisting
of a hash table and an AVL tree [Cormen et al. 2001] T as follows.

Hash table HTab. Recall ∆(ȳ) = {t | t ∈ D, t[Y] = ȳ} for ȳ ∈ πY (ρY≍tp[Y]D) described

earlier. For each ∆(ȳ), we insert an entry (key, val) into HTab, where key = ȳ, and val
is a pointer linking to a node u = (ǫ, l, r, o), where (a) u.ǫ = H(ϕ|Y = ȳ), (b) u.l is the
value-count pair (ȳ, |∆(ȳ)|), (c) u.r is the set {(b, cntY B(ȳ, b)) | b ∈ πB(∆(ȳ))}, and (d) u.o
is the set of (partial) tuple IDs {t.id | t ∈ ∆(ȳ)}.

AVL tree T . For each ȳ ∈ πY (ρY≍tp[Y]D) with entropyH(ϕ|Y = ȳ) 6= 0, we create a node

v = HTab(ȳ) in T , a pointer to the node u for ∆(ȳ) in HTab. For each node v in T , its left
child vl.ǫ ≤ v.ǫ and its right child vr.ǫ ≥ v.ǫ.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:27

Fig. 9. Example data structure for variable CFDs

Note that both the number |HTab| of entries in the hash table HTab and the number
|T | of nodes in the AVL tree T are bounded by the number |D| of tuples in D.

Example 6.3. Consider the relation in Fig. 8 and the variable CFD φ given in Ex-
ample 6.2. The hash table HTab and the AVL tree T for φ are shown in Fig. 9. 2

We next show how to use and maintain the structures.

(1) Lookup cost. For the CFD ϕ, it takes (a) O(log |T |) time to identify the set ∆(ȳ) of

tuples with minimum entropyH(ϕ|Y = ȳ) in the AVL tree T , and (b) O(1) time to check
whether two tuples in D satisfy ϕ by capitalizing the hash table HTab.

(2) Update cost. The initialization of both the hash table HTab and the AVL tree T can

be done by scanning the database D once, and it takes O(|D| log |D||ΣV |) time.
After resolving some conflicts, the structures need to be maintained accordingly.

Consider a set ∆(ȳ) of dirty tuples. When a reliable fix is found for ∆(ȳ) based on
H(ϕ|Y = ȳ), we do the following: (a) remove a node from tree T , which takes O(log |T |)
time, where |T | ≤ |D|; and (b) update the hash tables and trees for all other CFDs,
which takes O(|∆(ȳ)||ΣV | + |∆(ȳ)| log |D|) time in total.

(3) Space cost. The structures take O(|D|size(ΣV)) space for all CFDs in ΣV , where

size(ΣV) is the size of ΣV .
Putting these together, the structures are efficient in both time and space, and are

easy to maintain.

7. POSSIBLE FIXES WITH HEURISTICS

The first two modules of system UniClean identify deterministic fixes and reliable fixes
for a relation D, using master data Dm and cleaning rules derived from CFDs Σ and
MDs Γ. The outcome is a partial repair D′ of D in which those fixes are marked. How-
ever,D′ may still contain errors that are not corrected by deterministic fixes or reliable
fixes. In light of these, we need to fix the remaining errors in D′ and produce a repair
Dr ofD such that Dr |= Σ, (Dr, Dm) |= Γ, and moreover,Dr preserves the deterministic
fixes generated earlier, i.e., such fixes remain unchanged. Observe that the determinis-
tic fixes are assured to be correct up to a confidence level, as shown in Section 5. Hence
we decide to keep deterministic fixes unchanged when generating possible fixes. In

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 W. Fan, S. Ma, N. Tang & W. Yu

contrast, reliable fixes are not guaranteed to be as accurate as deterministic fixes and
hence, we opt to allow them to be changed. Nevertheless, we found that only a few
reliable fixes were changed in our experiments.
To produce Dr, we adopt the heuristic method of [Cong et al. 2007], which uses the

same cost model presented in Section 3.1. We extend the method of [Cong et al. 2007],
referred to as hRepair, by (a) supporting matching with master data Dm and cleaning
rules derived from MDs, (b) preserving the deterministic fixes generated earlier, and
(c) keeping reliable fixes generated earlier as many as possible.
The key idea of heuristic fixes is the usage of equivalent classes [Cong et al. 2007;

Bohannon et al. 2005]. An equivalence class consists of pairs of the form (t, A), where
t identifies a tuple in which A is an attribute. In a database D, each tuple t and each
attribute A in t have an associated equivalence class, denoted by eq(t, A). In a repair a
unique target value is assigned to each equivalence class E, denoted by targ(E). That
is, for all (t, A) ∈ E, t[A] has the same value targ(E). The target value targ(E) can
be either ‘ ’, a constant a, or null, where ‘ ’ indicates that targ(E) is not yet fixed, and
null means that targ(E) is uncertain due to conflict. To resolve CFD violations targ(E)
may be “upgraded” from ‘ ’ to a constant a, or from a to null, but not the other way
around. In particular, targ(E) is not allowed to be changed from one constant to another.
Intuitively, we resolve CFD violations by merging or upgrading the target values of
equivalence classes. The process to handle MD violations is along the same lines, by
incorporating constant values from the master relation Dm.
Following [Cong et al. 2007], we adopt the simple semantics of the SQL standard [In-

ternational Standard ISO/IEC 9075-2:2003(E) 2003] for null: t1[X] = t2[X] evaluates to true
if either one of them contains null. In contrast, when matching a data tuple t and a
pattern tuple tp, t[X] ≍ tp[X] is false if t[X] contains null, i.e., CFDs only apply to those
tuples that precisely match a pattern tuple, which does not contain null. When match-
ing a data tuple with a master tuple using MDs, we also adopt the same approach as
for CFDs.
Observe the following. (a) At each step of the heuristic process to generate possible

fixes, either the total number N of equivalences classes is reduced or the number H of
those classes that are assigned a constant or null is increased. Let k be the number of
(t, A) pairs in D. Since N ≤ k and H ≤ 3 · k (the target value of eq(t, A) can only be ‘ ’,
a constant, or null), the data cleaning process necessarily terminates. Moreover, since
the process proceeds until no more dirty tuples exist, it always finds a repair of D that
satisfies all CFDs and MDs. (b) The repairing process still terminates with a repair if
we keep the deterministic fixes unchanged, by the definition of deterministic fixes and
by capitalizing on null when resolving conflicts.
Putting these together, one can verify the following.

Corollary 7.1: Given a set Σ of CFDs, a set Γ of MDs, master data Dm, and a partial
repairD′ of a relationD with deterministic fixes and reliable fixes, hRepair always finds
a repairDr ofD such thatDr |= Σ, (Dr, Dm) |= Γ, andDr preserves all the deterministic
fixes in D′. 2

Example 7.2. Recall the relation D, CFDs ϕ1–ϕ4 and the MD ψ from Example 1.1.
As shown in Examples 5.2 and 6.2, algorithms cRepair and eRepair identify several
fixes forD. However, the data still has errors, e.g., the tuple t3 inD does not satisfy the
CFD ϕ4 even after t3[city] is fixed. To this end we find possible fixes using hRepair: (a)
t3[FN] := Robert by applying the cleaning rule derived from ϕ4, (b) t3[phn] := 3887644 by
matching the master tuple s2 with the rule derived from the MD ψ, and (c) t4[St, post]
:= t3[St, post] with the rule derived from ϕ3. After these steps we get a repair of D

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:29

that satisfies both the CFDs and MDs, and moreover, retains the deterministic fixes
generated earlier. 2

8. EXPERIMENTAL STUDY

We next present an experimental study of UniClean, which unifies matching and re-
pairing operations. Using both real-life data and synthetic data, we evaluated (1) the
effectiveness of our data cleaning algorithms, (2) the accuracy of deterministic fixes
and reliable fixes, and (3) the scalability of our algorithms with the size of dirty data
and the size of master data.

Experimental Setting. We used two real-life data sets and one synthetic data set.

(1) HOSP data was taken from US Department of Health & Human Services (http:
//www.hospitalcompare.hhs.gov/). It has 100K records with 19 attributes. We manually
designed 23 CFDs and 3 MDs for HOSP, 26 in total.

(2) DBLP data was extracted from DBLP Bibliography (http://www.informatik.uni-trier.
de/∼ley/db/). It consists of 400K tuples, each with 12 attributes. We manually designed
7 CFDs and 3 MDs for DBLP, 10 in total. Note that DBLP has tried to identify and dis-
tinguish authors with the same name. When people with the same name are identified
by DBLP to be different persons, we treat them as different entries. Otherwise, we do
not differentiate them.

(3) TPC-H data was generated from TPC-H benchmark [Transaction Processing Perfor-
mance Council 2013] by joining all tables together into a single table. It consists of
100K tuples, each with 58 attributes. We manually designed 55 FDs, and controlled
the number of CFDs and MDs by adding pattern to the FDs for the experiments for
efficiency. In total 55 CFDs and 10 MDs were used by default.

(4) Dirty datasets were produced by introducing noises to data from the the sources,
controlled by four parameters: (a) |D|: the data size; (b) noi%: the noise rate, which is
the ratio of the number of erroneous attributes to the total number of attributes in D;
(c) dup%: the duplicate rate, i.e., the percentage of tuples in D that can find a match
in the master data; and (d) asr%: the asserted rate. For each attribute A, we randomly
picked asr% of tuples t from the data and set t[A].cf = 1, while letting t′[A].cf = 0 for
the other tuples t′. The default value for asr% is 40%. The sources are used as ground
truth for effectiveness evaluation.

Master data for (1), (2) and (3) was carefully selected from the same data sources so
that they were verified to be correct and consistentw.r.t. the designed rules. Themaster
data are separated from the data sources that we used for introducing dirty datasets.
For (1), we examined the source data, and found that all the tuples were consistent
with the CFDs andMDswe designed. Thus, we treated all the 100K tuples before noises
were introduced as candidate master data. For (2), we randomly selected 100K tuples
from the source data after removing those tuples that were inconsistent with the CFDs

or MDs as candidate master data. For (3), the master data was the data generated by
the generator without introducing noises, which also satisfied the CFDs and MDs. In
all the experiments, we used 20K tuples from candidate master data as Dm by default.

For all the datasets above, the CFDs and MDs were designed manually. In fact, for
datasets where sufficient domain expertise is not available, both CFDs and MDs can be
automatically discovered from data via profiling algorithms (e.g., [Chiang and Miller
2008; Song and Chen 2009]).

Algorithms. We implemented the following algorithms, all in Python: (a) algo-
rithms cRepair, eRepair and hRepair (an extension of algorithm in [Cong et al. 2007])

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 W. Fan, S. Ma, N. Tang & W. Yu

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 4 6 8 10

F
-m

ea
su

re

Noise rate (%)

Uni
Uni(CFD)

Quaid

(a) HOSP: accuracy of repairing

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

F
-m

ea
su

re

Noise rate (%)

Uni
Uni(CFD)

Quaid

(b) DBLP: accuracy of repairing

Fig. 10. Experiment 1: Matching helps repairing

in UniClean; (b) the sorted neighborhood method of [Hernandez and Stolfo 1998], de-
noted by SortN, for record matching based on MDs only; and (c) the heuristic repairing
algorithm of [Cong et al. 2007], denoted by quaid, based on CFDs only. We use Uni to
denote cleaning based on both CFDs and MDs (matching and repairing), and Uni(CFD)
to denote cleaning using CFDs (repairing) only.
We used edit distance for similarity test, defined as the minimum number of single-

character insertions, deletions and substitutions needed to convert a value from v to v′.

Quality measuring. We adopted precision, recall and F -measure, which are com-
monly used in information retrieval. For record matching, (a) precision is the ratio
of true matches (true positives) correctly found by an algorithm to all the duplicates
found, and (b) recall is the ratio of true matches correctly found to all the matches be-
tween a dataset and master data. On the other hand, for data repairing, (a) precision is
the ratio of attributes correctly updated to the number of all the attributes updated,
and (b) recall is the ratio of attributes corrected to the number of all erroneous at-
tributes. The F-measure is defined as:

F-measure = 2 · (precision · recall)/(precision + recall).

All experiments were conducted on a Linux machine with a 3.0GHz Intel CPU and
4GB of Memory. Each experiment was run more than 5 times, and the average is
reported here.

Experimental Results. We conducted five sets of experiments: (a) in the first two

sets of experiments, we compared the effectiveness of our cleaning methods with both
matching and repairing against its counterpart with only matching or only repairing;
(b) we evaluated the accuracy of deterministic fixes, reliable fixes and possible fixes
in the third set of experiments; (c) we evaluated the impact of the duplicate rate and
asserted rate on the percentage of deterministic fixes found by our algorithm cRepair in
the fourth set of experiments; and (d) the last set of experiments tested the scalability
of Uni with both the size of dirty data and the size of master data. In all the experi-
ments, we set the threshold for entropy and confidence to be 0.8 and 1.0, respectively.
Note that TPC-H is a synthetic data, and we used it mainly for efficiency study. In other
words, for effectiveness study, we only used real-life data, HOSP and DBLP.
We next report our experimental findings.

Exp-1: Matching helps repairing. In the first set of experiments we show that
matching indeed helps repairing. We compare the quality (F-measure) of fixes gener-
ated by Uni, Uni(CFD) and quaid. Fixing the duplicate rate dup% = 40%, we varied the
noise rate noi% from 2% to 10%. Observe that dup% is only related to matching viaMDs.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:31

 70
 75
 80
 85
 90
 95

 100

2 4 6 8 10

M
at

ch
ed

 a
tt

ri
bu

te
s

(%
)

Noise rate (%)

SortN(MD)
Uni

(a) HOSP: accuracy of matching

 40

 50

 60

 70

 80

 90

2 4 6 8 10

M
at

ch
ed

 a
tt

ri
bu

te
s

(%
)

Noise rate (%)

SortN(MD)
Uni

(b) DBLP: accuracy of matching

Fig. 11. Experiment 2: Repairing helps matching

To favor Uni(CFD) and quaid, which use CFDs only, we focused on the impact of various
noise rates.
The results on HOSP data and DBLP data are reported in Figures 10(a) and 10(b),

respectively, which tell us the following. (1) Uni clearly outperforms Uni(CFD) and quaid
by up to 15% and 30%, respectively. This verifies that matching indeed helps repair-
ing. (2) The F-measure typically decreases when noi% increases for all three approaches.
However, Uni with matching is less sensitive to noi%, which is another benefit of uni-
fying repairing with matching. (3) Even with CFDs only, our method Uni(CFD) still
outperforms quaid, as expected. This is because quaid only generates possible fixes with
heuristic, while Uni(CFD) finds both deterministic fixes and reliable fixes. This also
verifies that deterministic and reliable fixes are more accurate than possible fixes.

Exp-2: Repairing helps matching. In the second set of experiment, we show that re-
pairing indeed helps matching. We evaluated the quality (F-measure) of matches found
by (a) Uni and (b) SortN using MDs, denoted by SortN(MD). We used the same setting as
in Exp-1. We also conducted experiments by varying the duplicate rate, but found that
its impact was very small; hence we do not report it here.
The results are reported in Figures 11(a) and 11(b) for HOSP and DBLP, respec-

tively. We find the following. (a) Uni outperforms SortN(MD) by up to 15%, verifying
that repairing indeed helps matching. (b) The F-measure decreases when the noise rate
increases for both approaches. However, Uni with repairing is less sensitive to noi%,
which is consistent with our observation in the last set of experiments.

Exp-3: Accuracy of deterministic fixes and reliable fixes. We now evaluate the
accuracy (precision and recall) of (a) deterministic fixes generated in the first phase of
UniClean, denoted by cRepair, (b) deterministic fixes and reliable fixes generated in the
first two phases of UniClean, denoted by cRepair + eRepair, and (c) all fixes generated by
Uni. Fixing dup% = 40%, we varied noi% from 2% to 10%. The results are reported in
Figures 12(a)–12(d).
The results tell us the following: (a) Deterministic fixes have the highest precision,

and are insensitive to the noise rate noi%. However, their recall is low, since cRepair is
“picky”: it only generates fixes with asserted attributes. (b) Fixes generated by Uni have
the lowest precision, but the highest recall, as expected. Furthermore, their precision
is quite sensitive to noi%. This is because the last step of UniClean is by heuristics,
which generates possible fixes. (c) The precision and recall of deterministic fixes and
reliable fixes by cRepair + eRepair are in the between, as expected. Furthermore, their
precision is also sensitive to noi%. From these we can see that the precision of reliable

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 W. Fan, S. Ma, N. Tang & W. Yu

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2 4 6 8 10

P
re

ci
si

on

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(a) HOSP: precision (3 phases)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

2 4 6 8 10

R
ec

al
l

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(b) HOSP: recall (3 phases)

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2 4 6 8 10

P
re

ci
si

on

Noise rate (%)

cRepair
cRepair+eRpair

Uni

(c) DBLP: precision (3 phases)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 4 6 8 10
R

ec
al

l

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(d) DBLP: recall (3 phases)

Fig. 12. Experiment 3: Accuracy of deterministic fixes and reliable fixes

 20
 30
 40
 50
 60
 70
 80

20 40 60 80 100

D
et

er
m

in
is

ti
c

fi
xe

s
(%

)

Duplicate rate (%)

HOSP
DBLP

(a) Deterministic fixes on dup%

 0

 20

 40

 60

 80

 100

0 20 40 60 80

D
et

er
m

in
is

ti
c

fi
xe

s
(%

)

Asserted attributes by users (%)

HOSP
DBLP

(b) Deterministic fixes on asr%

Fig. 13. Experiment 4: Impact of dup% and asr% on deterministic fixes

fixes and possible fixes is sensitive to noi%, but not their recall. Moreover, when noi%
is less than 4%, their precision is rather indifferent to noi%.

Exp-4: Impact of dup% and asr% on deterministic fixes. In this set of experiments
we evaluated the percentage of deterministic fixes found by algorithm cRepair.
Fixing the asserted rate asr% = 40%, we varied the duplicate rate dup% from 20%

to 100%. Figure 13(a) shows the results. We find that the larger dup% is, the more
deterministic fixes are found, as expected.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:33

 200
 400
 600
 800

 1000
 1200
 1400

20 40 60 80 100

T
im

e
(s

ec
on

d)

of tuples x 1000

cRepair
cRepair+eRepair

Uni

(a) HOSP: varying |D|

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

20 40 60 80 100

T
im

e
(s

ec
on

d)

of tuples x 1000

cRepair
cRepair+eRepair

Uni

(b) HOSP: varying |Dm|

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

80 160 240 320 400

T
im

e
(s

ec
on

d)

of tuples x 1000

cRepair
cRepair+eRepair

Uni

(c) DBLP: varying |D|

 200
 400
 600
 800

 1000
 1200
 1400
 1600

80 160 240 320 400

T
im

e
(s

ec
on

d)

of tuples x 1000

cRepair
cRepair+eRepair

Uni

(d) DBLP: varying |Dm|

 400
 800

 1200
 1600
 2000
 2400
 2800
 3200

20 40 60 80 100

T
im

e
(s

ec
on

d)

of tuples x 1000

cRepair
cRepair+eRepair

Uni

(e) TPCH: varying |D|

 400
 800

 1200
 1600
 2000
 2400
 2800
 3200

20 40 60 80 100

T
im

e
(s

ec
on

d)

of tuples x 1000

cRepair
cRepair+eRepair

Uni

(f) TPCH: varying |Dm|

 400
 800

 1200
 1600
 2000
 2400
 2800
 3200
 3600

55 110 165 220 275

T
im

e
(s

ec
on

d)

|Σ|

cRepair
cRepair+eRepair

Uni

(g) TPCH: varying |Σ|

 400
 800

 1200
 1600
 2000
 2400
 2800
 3200
 3600

10 20 30 40 50

T
im

e
(s

ec
on

d)

|Γ|

cRepair
cRepair+eRepair

Uni

(h) TPCH: varying |Γ|

Fig. 14. Experiment 5: Scalability

Fixing dup% = 40%, we varied asr% from 0% to 80%. The results are shown in
Fig. 13(b), which tell us that the number of deterministic fixes found by cRepair highly
depends on asr%. This is because to find deterministic fixes, cleaning rules are only
applied to asserted attributes.

Exp-5: Scalability. The last set of experiments evaluated the scalability of Uni with
the size |D| of dirty data, the size |Dm| of master data, the number of CFDs |Σ| and
the number of MDs |Γ|. We fixed noi% = 6% and dup% = 40% in these experiments. The
results are reported in Figures 14(a) and 14(b) for HOSP, 14(c) and 14(d) for DBLP, and
14(e), 14(f), 14(g) and 14(h) for TPC-H.
Figures 14(a) (resp. 14(b)) shows three curves for HOSP data: the running time of

cRepair, cRepair + eRepair and cRepair + eRepair + hRepair (total time of Uni) by fixing
|Dm| = 20K (resp. |D| = 20K) and varying |D| (resp. |Dm|) from 20K to 100K. The
results show that with the suffix tree blocking, Uni scales reasonably well with |D| and
|Dm|. Each step (cRepair, eRepair or hRepair) of Uni takes comparable time. Without the
suffix tree blocking, it scales much worse. Indeed, when |D| or |Dm| is 20K, it took
more than 5 hours; thus we omit the curve in the figures. These results verify the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 W. Fan, S. Ma, N. Tang & W. Yu

effectiveness of our indexing structures and optimization techniques. The results are
consistent for DBLP (resp. TPCH) data, as shown in Figures 14(c) (resp. 14(e)) and 14(d)
(resp. 14(f)).
Figures 14(g) (resp. 14(h)) reports the running time of cRepair, cRepair + eRepair and

cRepair + eRepair + hRepair on TPCH when varying the number of CFDs |Σ| (resp. MDs

|Γ|) from 55 to 275 (resp. 10 to 50). One can see that Uni scales well with both |Σ| and |Γ|.
In fact Uni scales much better than quaid [Cong et al. 2007]: quaid took more than 10

hours when |D| is 80K on HOSP, while it took Uni about 11 minutes.

Summary. From the experimental results we find the following. (a) Data cleaning

by unifying matching and repairing operations substantially improves the quality of
fixes: it outperforms matching and repairing taken as independent processes by up to
30% and 15%, respectively. (b) Deterministic fixes and reliable fixes are highly accu-
rate. For example, when the noise rate is no more than 4%, their precision is close to
100%. The precision decreases slowly when increasing noise rate. These tell us that it
is feasible to find accurate fixes for real-life applications. (c) Candidate repairs gener-
ated by system UniClean are of high-quality: their precision is about 96%. (d) Our data
cleaning methods scale reasonably well with the size of data, the size of master data,
the number of CFDs and the number of MDs.

9. CONCLUSION

We have taken a first step toward unifying record matching and data repairing, an
important issue that has been overlooked by and large. We have proposed a uniform
framework for interleavingmatching and repairing operations, based on cleaning rules
derived from CFDs and MDs. We have established the complexity bounds of several
fundamental problems associated with data cleaning based on both matching and re-
pairing. We have also proposed deterministic fixes and reliable fixes, and developed
effective methods to find these fixes based on confidence and entropy. Our experimen-
tal results have verified that our techniques substantially improve the quality of fixes
generated by repairing and matching taken separately.
We are currently experimenting with larger real-life datasets. We are also exploring

optimization techniques to improve the efficiency of our algorithms. Another topic for
future work is to study cleaning of multiple relations of which the consistency is spec-
ified by constraints across relations, e.g., (conditional) inclusion dependencies [Bravo
et al. 2007], an issue more intriguing than cleaning a single relation.

Acknowledgments. Fan is supported in part by 973 Programs 2012CB316200,
2014CB340302, NSFC 61133002, China, and EPSRC EP/J015377/1, UK. Ma is supported
in part by NSFC grant 61322207, NGFR 973 grant 2014CB340304 and MOST grant
2012BAH46B04. Fan and Ma are also supported in part by Guangdong Innovative Re-
search Team Program 2011D005 and Shenzhen Peacock Program 1105100030834361 of
China.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.

AIKEN, A., KOZEN, D., VARDI, M. Y., AND WIMMERS, E. L. 1993. The complexity of set constraints. In
CSL.

ARASU, A., RE, C., AND SUCIU, D. 2009. Large-scale deduplication with constraints using Dedupalog. In
ICDE.

ARENAS, M., BERTOSSI, L. E., AND CHOMICKI, J. 2003. Answer sets for consistent query answering in
inconsistent databases. TPLP 3, 4-5, 393–424.

BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In WWW.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Interaction between Record Matching and Data Repairing A:35

BERTOSSI, L. E., KOLAHI, S., AND LAKSHMANAN, L. V. S. 2011. Data cleaning and query answering with
matching dependencies and matching functions. In ICDT.

BESKALES, G., SOLIMAN, M. A., ILYAS, I. F., AND BEN-DAVID, S. 2009. Modeling and querying possible
repairs in duplicate detection. PVLDB 2, 1, 598–609.

BOHANNON, P., FAN, W., FLASTER, M., AND RASTOGI, R. 2005. A cost-based model and effective heuristic
for repairing constraints by value modification. In SIGMOD.

BOLLEMAN, J., GATEAU, A., GEHANT, S., AND REDASCHI, N. 2010. Provenance and evidence in uniprotkb.
In SWAT4LS.

BRAVO, L., FAN, W., AND MA, S. 2007. Extending dependencies with conditions. In VLDB.

CAO, Y., CHEN, Z., ZHU, J., YUE, P., LIN, C.-Y., AND YU, Y. 2011. Leveraging unlabeled data to scale
blocking for record linkage. In IJCAI.

CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for
online data cleaning. In SIGMOD.

CHIANG, F. AND MILLER, R. 2008. Discovering data quality rules. In VLDB.

CHRISTEN, P. 2012. A survey of indexing techniques for scalable record linkage and deduplication. IEEE
Trans. Knowl. Data Eng. 24, 9, 1537–1555.

COLE, R., GOTTLIEB, L.-A., AND LEWENSTEIN, M. 2004. Dictionary matching and indexing with errors
and don’t cares. In STOC.

CONG, G., FAN, W., GEERTS, F., JIA, X., AND MA, S. 2007. Improving data quality: Consistency and accu-
racy. In VLDB.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms. The
MIT Press.

COVER, T. M. AND THOMAS, J. A. 1991. Elements of Information Theory. Wiley-Interscience.

DONG, X., BERTI-EQUILLE, L., HU, Y., AND SRIVASTAVA, D. 2010. Global detection of complex copying
relationships between sources. PVLDB 3, 1, 1358–1369.

DONG, X., HALEVY, A. Y., AND MADHAVAN, J. 2005. Reference reconciliation in complex information spaces.
In SIGMOD.

ECKERSON, W. W. 2002. Data Quality and the Bottom Line: Achieving Business Success through a Com-
mitment to High Quality Data. Tech. rep., The Data Warehousing Institute.

ELMAGARMID, A. K., IPEIROTIS, P. G., AND VERYKIOS, V. S. 2007. Duplicate record detection: A survey.
TKDE 19, 1, 1–16.

FAN, W. 2008. Dependencies revisited for improving data quality. In PODS.

FAN, W., GAO, H., JIA, X., LI, J., AND MA, S. 2011a. Dynamic constraints for record matching. VLDB
J. 20, 4, 495–520.

FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2008. Conditional functional dependencies for
capturing data inconsistencies. TODS 33, 1.

FAN, W., GEERTS, F., LI, J., AND XIONG, M. 2011b. Discovering conditional functional dependencies.
TKDE 23, 5, 683–698.

FAN, W., LI, J., MA, S., TANG, N., AND YU, W. 2010. Towards certain fixes with editing rules and master
data. PVLDB 3, 1, 173–184.

FAN, W., LI, J., MA, S., TANG, N., AND YU, W. 2011c. Interaction between record matching and data repair-
ing. In SIGMOD.

FELLEGI, I. AND HOLT, D. 1976. A systematic approach to automatic edit and imputation. J. American
Statistical Association 71, 353, 17–35.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company.

GARTNER. 2007. Forecast: Data quality tools, worldwide, 2006-2011. Tech. rep., Gartner.

GUO, S., DONG, X., SRIVASTAVA, D., AND ZAJAC, R. 2010. Record linkage with uniqueness constraints and
erroneous values. PVLDB 3, 1, 417–428.

HAMMING, R. W. 1950. Error detecting and error correcting codes. Bell System Technical Journal 29, 2,
147–160.

HERNANDEZ, M. A. AND STOLFO, S. 1998. Real-World Data is Dirty: Data Cleansing and the Merge/Purge
Problem. Data Mining and Knowledge Discovery 2, 1, 9–37.

HERZOG, T. N., SCHEUREN, F. J., AND WINKLER, W. E. 2009. Data Quality and Record Linkage Techniques.
Springer.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 W. Fan, S. Ma, N. Tang & W. Yu

INTERNATIONAL STANDARD ISO/IEC 9075-2:2003(E). 2003. Information technology: Database languages,
SQL Part 2 (Foundation, 2nd edition).

KLIR, G. J. AND FOLGER, T. A. 1988. Fuzzy sets, uncertainty, and information. Englewood Cliffs, N.J: Pren-
tice Hall.

LOSHIN, D. 2009. Master Data Management. Knowledge Integrity, Inc.

MAYFIELD, C., NEVILLE, J., AND PRABHAKAR, S. 2010. ERACER: a database approach for statistical infer-
ence and data cleaning. In SIGMOD.

NAUMANN, F., BILKE, A., BLEIHOLDER, J., AND WEIS, M. 2006. Data fusion in three steps: Resolving
schema, tuple, and value inconsistencies. IEEE Data Eng. Bull. 29, 2, 21–31.

OTTO, B. AND WEBER, K. 2009. From health checks to the seven sisters: The data quality journey at BT.
BT TR-BE HSG/CC CDQ/8.

RAHM, E. AND DO, H. H. 2000. Data cleaning: Problems and current approaches. IEEE Data Eng.
Bull. 23, 4, 3–13.

REDMAN, T. 1998. The impact of poor data quality on the typical enterprise. Commun. ACM 2, 79–82.

SAVITCH, W. J. 1970. Relationships between Nondeterministic and Deterministic Tape Complexities.
JCSS 4, 177–192.

SONG, S. AND CHEN, L. 2009. Discovering matching dependencies. In CIKM.

SRIVASTAVA, D. AND VENKATASUBRAMANIAN, S. 2010. Information theory for data management. In SIG-
MOD.

TRANSACTION PROCESSING PERFORMANCE COUNCIL. 2001-2013. TPC-H benchmark.
http://www.tpc.org.

TSUR, D. 2010. Fast index for approximate string matching. J. of Discrete Algorithms 8, 4, 339–345.

WANG, J., LI, G., AND FENG, J. 2010. Trie-join: Efficient trie-based string similarity joins with edit-distance
constraints. PVLDB 3, 1, 1219–1230.

WANG, J., LI, G., AND FENG, J. 2011. Fast-join: An efficient method for fuzzy token matching based string
similarity join. In ICDE.

WEGENER, I. AND PRUIM, R. 2005. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer.

WEIS, M. AND NAUMANN, F. 2005. Dogmatix tracks down duplicates in XML. In SIGMOD.

WHANG, S. E., BENJELLOUN, O., AND GARCIA-MOLINA, H. 2009. Generic entity resolution with negative
rules. VLDB J. 18, 6, 1261–1277.

WIJSEN, J. 2005. Database repairing using updates. TODS 30, 3, 722–768.

XIAO, C., WANG, W., AND LIN, X. 2008. Ed-join: an efficient algorithm for similarity joins with edit distance
constraints. PVLDB 1, 1, 933–944.

XIAO, C., WANG, W., LIN, X., YU, J. X., AND WANG, G. 2011. Efficient similarity joins for near-duplicate
detection. ACM Trans. Database Syst. 36, 3, 15.

YAKOUT, M., ELMAGARMID, A. K., NEVILLE, J., AND OUZZANI, M. 2010. GDR: a system for guided data
repair. In SIGMOD.

ZIV, J. AND LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE TIT 24, 5,
530–536.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

