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Interaction between shelf layout and marketing effectiveness

and its impact on optimizing shelf arrangements

Abstract

Allocating the proper amount of shelf space to stock keeping units [SKUs] is an increasingly
relevant and difficult topic for managers. Shelf space is a scarce resource and it has to be
distributed across a larger and larger number of items. It is in particular important because the
amount of space allocated to a specific item has a substantial impact on the sales level of that
item. This relation between shelf space and sales has been widely documented in the literature.
However, besides the amount of space, the exact location of the SKU on the shelf is also an
important moderator of sales. At the same time, the effectiveness of marketing instruments
of an SKU may also depend on the shelf layout. In practice, retailers recognize that these
dependencies exist. However, they often revert to rules of thumb to actually arrange their shelf
layout.

We propose a new model to optimize shelf arrangements in which we use a complete set
of shelf descriptors. The goal of the paper is twofold. First of all, we aim to gain insight into
the dependencies of SKU sales and SKU marketing effectiveness on the shelf layout. Second,
we use these insights to improve the shelf layout in a practical setting. The basis of our model
is a standard sales equation that explains sales from item-specific marketing-effect parameters
and intercepts. In a Hierarchical Bayes fashion, we augment this model with a second equation
that relates the effect parameters to shelf and SKU descriptors. We estimate the parameters
of the two-level model using Bayesian methodology, in particular Gibbs sampling. Next, we
optimize the total profit over the shelf arrangement. Using the posterior draws from our Gibbs
sampling algorithm, we can generate the probability distribution of sales and profit in the
optimization period for any feasible shelf arrangement. To find the optimal shelf arrangement,
we use simulated annealing. This heuristic approach has proven to be able to effectively search
an enormous solution space.

Our results indicate that our model is able to fit and forecast the sales levels quite accurately.
Next, when applying the simulated annealing algorithm to the shelf layout, we appear to be
able to increase profits for all the stores analyzed. We compare our approach to commonly used
shelf optimization rules of thumb. Most sensible rules of thumb also increase expected profits
(although not as much as our optimization algorithm). In particular, it is beneficial to put
high-margin items close to the beginning of the aisle (or the “racetrack”). Finally, we provide
managerial implications and directions for further research.

Keywords: shelf management, sales models, Hierarchical Bayes, Markov Chain Monte Carlo,
Simulated Annealing.
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1 Introduction

Retailers have limited shelf space available. The choice of which items to stock and the

allocation of scarce shelf space among the stocked items are relevant issues to the retailer.

For individual SKUs these decisions are important determinants of the sales and the

marketing effectiveness. At the aggregate level, shelf allocation is an important factor

in the revenue, cost and eventual profit of a product category. Complementary to the

amount of space to allocate to an item, there is the problem of the location of the item

on the shelf. For example, items on the lower shelf usually get less consumer attention

than items on upper shelves. The items on the lower shelves may therefore have lower

sales and may also benefit less from promotions.

Finding the profit-maximizing shelf arrangement and, at the same time, meeting the

requirements of manufacturers, is far from easy. Additional to the items currently in the

assortment, there are also line extensions that are fighting for share of sales and share

of shelf. This further complicates the retailer’s optimization problem. A prerequisite to

the actual shelf optimization, is a proper measurement of the effect of shelf layout on

sales and marketing effectiveness. An adequate shelf management model would be a very

useful aid to retailers to estimate these relations and to support their decisions and their

negotiations with manufacturers.

In this paper, we propose such a shelf management model. The basis of our model

is a standard sales equation that explains (the logarithm of) sales from item-specific

marketing-effect parameters and intercepts. In a Hierarchical Bayes [HB] fashion, this

model is augmented with a second equation that relates the marketing-effect parameters

to shelf and SKU descriptors. This second equation provides the link between shelf

allocation on the one hand and sales and marketing effectiveness on the other hand.

We estimate the parameters of the two-level model using the Bayesian methodology, in

particular Gibbs sampling. The estimated model parameters measure the effect of shelf

layout on baseline sales and on the effectiveness of marketing instruments such as price

and promotions. We use graphs to visualize these (non-linear) effects. To investigate how
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the model performs in forecasting sales, we predict sales for a hold-out sample containing

five weeks of data. Furthermore, and most importantly, the model is used to optimize

shelf allocation. For this, we consider Simulated Annealing, for its ease of implementation

and the ability to search across a large and complex solution space as well as for its ability

to avoid getting stuck in a local optimum.

The remainder of this paper is organized as follows. In Section 2, we review the current

literature on shelf management. We also indicate the added value of our approach with

respect to the current literature. In Section 3, we discuss our approach in words. Next,

we present the technicalities of our model in Section 4. Subsequently, we illustrate our

shelf management approach using a database concerning the canned soup category. It

contains a rich description of the shelf space and location on the shelf of a large number

of products, where the shelf layouts were manipulated in an experimental setting. We

conclude in Section 6.

2 Literature

In the 1960s and 1970s, a number of experiments were conducted to measure the effect of

shelf space on sales, see for example Brown and Tucker (1961), Cox (1970) and Curhan

(1972). These authors only considered the problem of measuring this effect. Models to

(partly) solve the shelf management problem have been proposed in the past decades.

Corstjens and Doyle (1981, 1983) were the first to optimize store profitability with re-

spect to space allocation. They consider both the main and the cross-space elasticities

in their multiplicative demand function, and specify a cost function that moderates the

profitability of the allocation. This shelf-space optimization problem is solved within a

geometrical programming framework. In a comparison of their approach with alternative

procedures they find that their general model leads to significantly different allocation

rules and better profit performance.

Bultez and Naert (1988) build on the work of Corstjens and Doyle (1981, 1983) in

their SH.A.R.P. (Shelf Allocation for Retailer’s Profit) model. The authors derive an
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expression for the optimal shelf space to be allocated to an SKU. This expression depends

on the cross-space elasticities between the items. Commonly used rules of thumb for space

allocation are compared and shown to be special, though inferior, cases of the optimal

rule derived. The authors apply the model to experimental data with six brands and find

that the proposed model improves upon current profit levels and that it is better than

the rules of thumb. The optimization only focuses on the shelf space devoted to an item,

and does not include other shelf layout descriptors such as shelf height and the horizontal

position of an item on the shelf, nor does it include marketing instruments such as feature

and price.

Drèze et al. (1994) conduct a series of field experiments in which they measure the ef-

fectiveness of two shelf management techniques: “space-to-movement”, where the shelf is

customized based on historic store-specific movement patterns, and “product reorganiza-

tion”, where product placement is manipulated to facilitate cross-category merchandizing

or ease-of-shopping. The authors find sales gains of about 4% with the first manipulation

and 5-6% with the second. The impact of shelf positioning and facing allocations on sales

of individual items is also analyzed. In particular, location appears to have a large impact

on sales. For example, in most categories, products perform best when placed at eye level.

Borin et al. (1994) develop a category management model formulated as a constrained

optimization problem, with assortment and allocation of space as the decision variables.

The parameters of the model are based on judgmental estimates, that is, they are not

based on an econometric model. In the next step, the authors use simulated annealing to

improve the shelf layout for two data sets. The two data-sets analyzed contain 6 SKUs

and 18 SKUs, respectively. In a follow-up study (Borin and Farris, 1995), the authors

examine the sensitivity of the analysis to errors in the judgements. More specifically,

they find the maximum degree of error that may be introduced before the model yields

assortments and shelf allocation that are inferior compared to those produced by the

merchandizing rule of thumb to set share-of-shelf equal to share-of-sales. Their results

show that as much as 50% variation in the estimates of parameters is allowed before the
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model appears unusable.

In a more or less separate stream of research, optimization routines for shelf allocation

have been investigated. Several routines have been proposed to optimize the shelf layouts.

Yang and Chen (1999) use a simplified version of the integer programming model of

Corstjens and Doyle (1981), whereas Yang (2001) uses the knapsack algorithm. Lim et al.

(2004) build on this work by optimizing profits with two metaheuristic approaches, that

is, Tabu Search and Squeaky-Wheel Optimization. Their method appears to outperform

Yang’s heuristic. However, by using simulated sales data and by using fixed and known

parameters, these approaches assume that the effect of shelf layout on sales is given. In a

real-life situation, this is of course not true and one needs to estimate the relation between

sales and shelf layout for a particular situation.

In this paper, we propose a Hierarchical Bayes [HB] model to estimate the interaction

between shelf layout and sales and the interaction between marketing instrument effec-

tiveness. In an HB model, the parameters for individual items are assumed to be samples

from a common distribution, with possibly different means. In this way, the parame-

ter estimates for the separate SKUs will be “shrunk” towards reasonable values, thereby

dampening some of the undesirable variation that separate, independent, estimators could

have. The (marketing) literature contains many papers using hierarchical models, see for

example, Blattberg and George (1991), Montgomery (1997) and Boatwright et al. (1999).

In these papers it is documented that the hierarchical model reduces the problem of

coefficient instability across equations and that it improves predictive power.

Based on this model we develop an optimization procedure for shelf management

using simulated annealing. In contrast to the existing literature, we explicitly account for

a moderating effect of shelf layout on marketing-mix elasticities. Furthermore, instead

of restricting the analysis to shelf space, we also consider other shelf descriptors such as

the number of items stacked on top of each other and the horizontal and vertical position

of an item on the shelf. Moreover, we develop our model for a large number of items.

Instead of considering the market at the brand level, we consider the individual SKUs.
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Finally, we appropriately take into account uncertainty in sales and uncertainty in the

model parameters. We believe that this situation comes closer to actual practice.

To summarize, our modeling and optimization approach is in various ways related to

previous papers in the literature. We extend most previous shelf optimization approaches

in at least one out of four important ways (i) we account for dependencies between shelf

characteristics and marketing-mix elasticities, (ii) we use a rich description of the shelf

layout instead of just focusing on shelf space, (iii) we optimize the layout while taking

into account the uncertainty in sales and model parameters, and (iv) our model can easily

be considered for a large number of items. In Table 1 we give an overview of the present

literature and their most important features.

3 Our approach

The model we propose in this paper aims to accurately measure the effect of shelf space and

shelf placement on sales levels and on marketing instrument effectiveness. Furthermore,

we avoid unnecessary simplifications in the shelf optimization.

First of all, we describe the set of shelf descriptors we use in our model. Following

most papers cited above, we have the number of facings as an important determinant of

demand. In addition, we use the shelf number, expecting that products that are higher

on the shelf have higher visibility. At the same time, some decreasing returns of shelf

height may also appear. To capture this, we also use the distance to the middle shelf

(usually the third shelf) as a moderating variable. Thirdly, we use the distance of an item

to the end of the shelf as a shelf descriptor. Products that are closer to the beginning of

the shelf may benefit from people reaching the item quicker coming from the back isle,

or the “racetrack” (Larson et al., 2005). On the other hand, we may find the opposite

effect in that items that are in the middle, get more attention from consumers, who may

often end up in the middle of the shelf for the category. To capture these potential non-

linear position effects, we also add the distance to the middle of the shelf to our set of

shelf descriptors. Next to characteristics of the shelf layout, characteristics of the product
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itself, such as item width and brand name, are also incorporated as we expect they will

also influence demand and elasticities.

The basis of our model is a standard sales equation that explains (log)sales from

item- and time-specific intercepts and marketing-effect parameters. We augment the

sales equation with a second equation that relates the intercepts and effect parameters

to shelf and SKU descriptors. To estimate the parameters of this two-level HB model,

we use MCMC methodology, in particular Gibbs sampling. We use graphs to display the

potentially complicated non-linear effects captured by our model. To investigate how well

the model performs in describing and forecasting the sales (and thus, profits in the shelf

optimization), we predict sales for a hold-out sample of five weeks of data. A comparison

of our forecasts to the actual sales and to forecasted sales using SKU-level regressions

provides information on the absolute and relative performance of our model.

Next, we optimize the total profit for the final week by changing the shelf arrangement.

Using the posterior draws of the model parameters from our Gibbs sampling algorithm,

we can obtain the probability distribution of sales and profit in the optimization period

for any feasible shelf arrangement. We evaluate the shelf allocations using the mean of

the posterior gross profit distribution. Note that this measure gives the expected profit

over all sources of uncertainty, that is, uncertainty in sales as well as uncertainty in the

(estimated) parameters. The minimum number of facings for each item equals one. We

do not allow items to have zero facings, that is, we do not consider assortment decisions.

We believe the model and the data are not suited for these decisions, since it is very likely

that moving from two to one facings implies a different elasticity than moving from one

to zero facings. Since item deletions are not observed in the data, it is not possible to go

this far in the optimization.

There are many ways to search for the optimal shelf arrangement. Given the com-

plexity of the problem, an algorithm that yields a guaranteed optimal solution is hard, if

not impossible, to obtain. Therefore, we opt for simulated annealing, which is a heuris-

tic approach, to search for the optimal shelf arrangement. The algorithm starts with a
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random shelf arrangement and then searches the neighborhood of the current solution

for better ones. To avoid getting stuck in local maxima, an inferior solution may also be

temporarily accepted, but the probability of this decreases as the algorithm proceeds, see

Johnson et al. (1989).

4 A new model for shelf management

In this section we describe our modeling and optimization approach in detail. In Section

4.1, we discuss the model. Technical details concerning the estimation of the model

parameters are presented in the Appendix. Next, in Section 4.2 we describe how we

optimize the shelf layout.

4.1 Representation of the sales model

First we introduce some notation. We denote the number of SKUs in the market by I, the

number of observations for SKU i by Ti, and the number of item attributes by L. Among

the L attributes, there are C ≤ L shelf characteristics such as the number of facings,

the shelf number and the distance to the end of the shelf. To explain sales we have K

explanatory variables, such as price and promotion. Let ln Si,t be the natural log of sales

of SKU i at time t = 1, ..., Ti. We model the log sales by a standard log-linear model (see

for example Wittink et al., 1988), that is,

ln Si,t = X ′
i,tβi,t + εi,t, i = 1, . . . , I, t = 1, . . . , Ti (1)

where Xi,t denotes a (K + 1) × 1 dimensional vector containing an intercept and the K

explanatory variables for SKU i at time t and where βi,t = (β0,i,t, . . . , βK,i,t)
′ with βk,i,t

the coefficient measuring the effect of the k-th explanatory variable for SKU i at time t.

The vector of explanatory variables will in general contain (log-transformed) marketing

instruments such as price, feature and 0/1 dummy variables such as promotion. We let

the error term εi,t be independently distributed N(0, σ2
i ).
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All β parameters in (1) potentially differ across SKUs and across time. To describe how

these parameters vary over these two dimensions, we add a second layer to the model.

In this layer we specify a model for the marketing-effect parameters. As explanatory

variables in this second-level model, we use item-specific attribute data and shelf-layout

descriptives, both of which may, in general, vary over time. Of these attributes, the shelf

characteristics are most likely to change. This can for example happen due to a relocation

of items during the observational period. We denote the observed attributes of item i by

an (L + 1) × 1 vector Zi,t. This vector contains an intercept, the SKU characteristics,

and the shelf layout characteristics at time t. We introduce the following linear relation

between the item-specific parameters and the attribute space, that is,

βi,t = γZi,t + ηi, ηi ∼ N(0, Ση) (2)

where γ is a (K + 1) × (L + 1) matrix of parameters. The coefficients γk,l represent the

effect of attribute l on the effect size of marketing instrument k. For k = 0 the coefficients

represent the effects of the SKU characteristics on the intercept of the sales equation. In

other words, these coefficients give the direct effect of the shelf layout on sales. Note that

the current literature usually restricts the analysis to only these effects (Corstjens and

Doyle, 1981; Yang and Chen, 1999; Yang, 2001; Lim et al., 2004). Also, most papers only

use facings as a shelf layout descriptor.

Of course, there may be relevant attributes that we do not observe, or there may

be intangible attributes such as brand equity that also influence the baseline sales and

the marketing-instrument effectiveness. We represent the joint effect of such attributes

by a normally distributed disturbance term in (2), that is, ηi = (ηi,0, ηi,1, . . . , ηi,K)′ ∼
N(0, Ση). Note that we assume that these intangible characteristics are fixed over time.

This implies that we assume that a relocation of the products will not affect ηi. The

degree of uncertainty may differ across instruments, and we therefore allow the variance

of ηi,k to depend on k. Furthermore, we may expect that some unobserved attributes

simultaneously affect multiple marketing instruments. For example, if an item has a high

feature effectiveness it may also be very effective with display. Such relations will lead to
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positive correlations between ηi,k and ηi,h. To capture such correlations we allow Ση to be

non-diagonal.

An alternative view on (2) is that an SKU can be represented by a specific point in an

attribute space. The second layer of our model then specifies a (linear) mapping from the

attribute space to the model parameters in (1). Furthermore, by explicitly recognizing

that items that are close in attribute space will have similar parameters, we efficiently

make use of the data to estimate marketing-effectiveness parameters.

In sum, the combination of (1) and (2) gives our attribute-based sales model. The

joint estimation of these two equations gives more precise estimates of the attribute map-

ping than a two-step approach, in which (1) would be estimated separately per SKU and

where the resulting estimates of βi would then be regressed on SKU and shelf character-

istics. Our HB approach yields more accurate estimates as it combines all the available

information and accounts for uncertainty in estimates of the marketing instrument effec-

tiveness. Furthermore, in a two-step approach it would be difficult to deal with changes in

characteristics of the shelf allocation. In the Appendix, we discuss an MCMC algorithm

that can be used to estimate the model parameters and which, as a by-product, gives

draws from the distribution of all parameters conditional on the data.

4.2 Shelf optimization

The output of the Gibbs sampling algorithm allows us to draw inference on the posterior

distribution of any function of the parameters. The total profit of the category for a par-

ticular week and store is one example of such a function. Our model contains a complete

set of shelf arrangement descriptors in the number of facings, shelf height and distance to

the end of the shelf. We can therefore obtain the posterior distribution of the profit based

on the current shelf layout as well as based on any feasible alternative layout, which is

key to our approach. Note that the posterior profit distributions are conditional on the

(in-sample) data and they represent both the uncertainty in the sales levels themselves

as the uncertainty in the parameters. In turn, we can use these distributions to optimize
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the total profit for the final week (out of sample), conditional on the data. In this paper

we use the mean of the posterior profit distribution to measure the quality of the associ-

ated shelf arrangement. As an alternative, one could also consider the mode, or even the

5%-percentile of the profit distribution. The latter corresponds to maximizing the profit

under the “worst-case scenario”.

4.2.1 The shelf optimization problem

In our representation of the layout, items are allocated a number of facings on a specific

shelf with a specified distance to the end of the shelf. The number of products stacked on

top of each other will be determined based on the available shelf height and the dimensions

of the item, that is,

Zi,stack =

⌊
ShelfHeight(Zi,shelf)

Zi,height

⌋
,∀i, (3)

where bxc gives the floor of x.

Let E[Si(Zi)] be the expected sales for item i, given its shelf allocation and item

characteristics Zi. Let mi denote the per unit contribution for item i. Also, let ci(Zi) be

the replenishment cost for carrying item i for a given layout Zi
1. Furthermore, define Π

as the total profit for the category.

Π =
I∑

i=1

(miE[Si(Zi)]− ci(Zi)). (4)

The issue of interest is to maximize Π given several restrictions. The main restrictions

concern the logical consistency of the shelf layout. Formal mathematical restrictions that

correspond to these consistency requirements are difficult to formulate. Previous papers

that did specify formal mathematical restrictions only consider the number of facings as

a decision variable, while the exact location on the shelf is not taken into account. In this

case, the restrictions are much easier to specify in a mathematical programming format.

However, even with more shelf descriptors, all restrictions are easy to check in practice, for

1This in turn also depends on the expected sales given layout Zi, as more sales means more replen-
ishment activity.
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example, (i) each SKU must be assigned to a shelf, and (ii) the total width of shelf space

used by items may not exceed the total shelf space available; (iii) the shelf space allocated

to a particular SKU may not (partly) overlap with another SKU. If one would optimize

the layout using, for example, linear programming all these restrictions would have to be

translated into formal mathematical equations. We choose to approach these restrictions

in a different way. In the search for the optimal shelf layout we only consider feasible

layouts. Thereby we make sure that the layout always satisfies the given constraints.

If needed, additional restrictions can easily be added for the particular retailer’s sit-

uation at hand. For example, it may be interesting to add restrictions on the capacity

of the shelf space allocated to SKUs. In some cases the capacity of the allocated shelf

space must at least be equal to the minimum packout. That is, in case of restocking of

the item one full packout has to fit on the shelf. Incorporating such a restriction in our

optimization strategy is very simple. We again just have to make sure that we do not

consider layouts that violate these restrictions.

Given the enormous number of possible combinations of facings, shelf numbers and

the other decision variables, it is impossible to find a closed-form solution for this opti-

mization problem, in particular if the number of SKUs is large. The geometrical program-

ming framework, or branch-and-bound procedure, as employed by Corstjens and Doyle

(1981), would also have a hard time finding an optimal solution in the high-dimensional

space. Therefore, a heuristic optimization technique as Simulated Annealing is necessary

to search for the profit-maximizing shelf layout in a practical retailer situation.

4.2.2 Simulated Annealing applied to shelf optimization

Simulated Annealing [SA] was proposed by Kirkpatrick et al. (1983). One of the ad-

vantages of this algorithm is that in each step a feasible solution is guaranteed. In our

setting this means that the layout in each iteration will comply with all logical consistency

restrictions. In each iteration of the algorithm new layouts in the neighborhood of the

current solution are considered. If a candidate solution performs better than the current
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one, the current solution is discarded in favor of the candidate. With SA, an inferior

candidate solution may also be accepted, but this happens with a certain probability.

This probability is decreasing in the difference in profit between the two solutions and it

also decreases as the algorithm proceeds. In terms of the SA algorithm, this probability

depends on the so-called temperature of the system, which decreases as the algorithm

progresses. By allowing for the acceptance of inferior solutions, the algorithm lowers the

probability of becoming trapped at local minima. At the end the final solution is the best

candidate solution found during the progress of the algorithm.

The Simulated Annealing algorithm amounts to a pair of nested loops. The outer

loop controls the acceptance probability of inferior candidate solutions and the inner loop

considers a fixed number of candidate solutions. The way in which the temperature

(acceptance probability) is decreased is known as the cooling schedule. A commonly used

cooling schedule is the proportional cooling schedule (Tnew = rTold) where r < 1. For a

maximization problem, the Simulated Annealing algorithm in pseudo-code is displayed in

Figure 1. We refer to Johnson et al. (1989) for a more detailed description of SA.

1. Get an initial shelf layout W . Set W best = W .

2. Get an initial temperature T > 0

3. While not yet frozen do

(a) Perform the following loop Q times

i. Pick a random neighbor W ′ of W .
ii. If Profit(W’) > Profit(W best) then set W best = W .
iii. Let ∆ = Profit(W ′) - Profit(W ).
iv. if ∆ ≥ 0 then W = W ′.
v. if ∆ < 0 then set W = W ′ with probability exp(∆/T ).

(b) Set T = rT (reduce temperature).

4. Return W best.

Figure 1: Simulated annealing for profit maximization problem
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Generally, a difficult aspect with Simulated Annealing is to determine how many

candidate solutions to consider at each temperature (Q). In theory one could reduce Q as

the temperature drops. In practice, the balance between the maximum step size and the

number of Monte Carlo steps is important. Both depend very much on the characteristics

of the search space. In our application, we will choose a small step size and keep Q

constant, as described below.

For our shelf optimization problem, we let the SA algorithm start at the best of

many randomly generated layouts. We generate a preset number of layouts at random

and choose the one that has the highest predicted profit as the starting point. One can

generate as many layouts as desired. This makes it (even) less likely for the algorithm

to get trapped in local optima. To gain insight in good starting temperatures, cooling

schedules and a good search length Q, we experiment with various settings. As long as

the settings are not such that the optimization terminates very quickly, there appear to be

only small differences among settings. Therefore, we choose to report those that generate

the best profit in a reasonable computation time. We use a value of 0.8 for r and 50 for

Q.

In the search for a neighborhood solution W ′, we employ two methods. The first

method generates a new layout by interchanging two randomly chosen SKUs as far as

their shelf height and position on that shelf are concerned. The number of facings for

each SKU is then adapted upwards or downwards according to the space available in the

new location. The second method randomly selects a shelf and on this shelf it randomly

selects two SKUs. If feasible, the first SKU loses one facing while the other gains one. If

this does not work, for instance when the first SKU is already at the minimum number

of facings allowed, the other way around is tried, that is, the first SKU gains one facing

while the other loses one. If this is also not feasible, a new shelf and a new set of items

are randomly drawn. As items may have different package widths, an extra check here is

needed to make sure the items still fit on the shelf. If not, the gaining item loses its extra

facing again. By searching the space in this way, we use the smallest step size available.
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Larger steps would involve interchanging several items at once, or using larger facing

increases and decreases. Although computation time increases, we prefer small steps, as

it prevents missing out on potentially promising solutions.

5 Illustration

To illustrate our method we present a detailed analysis of an interesting and extensive

data set. In Section 5.1 we briefly describe the data. Section 5.2 concerns the estimation

results and the forecasting performance of our model. In Section 5.3, we illustrate how

our model can be used to optimize the shelf layout in each of the stores in our data set.

5.1 Data description

The data analyzed in this paper is a scanner data set with the sales levels of canned soup.

The data concerns one of the categories studied by Drèze et al. (1994). The experiments

in this study were carried out at Dominick’s Finer Foods, a leading supermarket chain in

Chicago. Sixty stores participated in the tests, where each store was randomly assigned

to a control or test condition. There were two test conditions – “space-to-movement”,

where the shelf sets are customized based on store-specific movement patterns, and “prod-

uct reorganization”, where product placement is manipulated to facilitate cross-category

merchandizing or ease-of-shopping. We choose to analyze the canned soup category as this

category has a large number of items and shows relatively frequent price changes. Fur-

thermore, this category has large variation in shelf layout since one of the test conditions

was to alphabetize the items on the shelf.

In our analysis, we only look at stores that have data in the test condition. We have

36,044 observations for 407 canned soup SKUs, for five randomly selected test stores.

Three stores carry 81 each and two carry 82 each of these items. There may be overlap

between these items, but we treat them separately, as items in different stores will differ

in their position on the shelf and even if an item would have the exact same location, it is

unlikely that it will have the same demand and elasticity parameters. For each SKU we

17



have around 100 weeks of observations. As explanatory variables in the sales equation, we

use an intercept, price, and a promotion variable, which is a combination of the variables

bonus-buy and display available in the database.

The unique feature of this dataset is that we have information on a number of shelf

characteristics and item attributes. Several of these variables appear to correlate strongly

with each other. After iteratively removing halves of the pairs that correlate most, ten

attributes remain. We list these attributes in Table 2. We include both facings and

ln(facings) to model the potentially diminishing effects of the number of facings on mar-

keting instrument effectiveness. If the available data would allow this, one can extend

this list with additional item characteristics, such as flavor, type (condensed or not) and

package type (for example, Easy Open lid or not). These variables could contribute to

the explanatory power of our model and yield additional insights.

Table 2: Available variables in attributes equation. More variables were available in the
dataset, but removed due to too much correlation with shown variables.

Variable Description

Facings
facings Number of facings on shelf in units
ln(facings) Log of number of facings on shelf in units a

Vertical measures
Shelf number Shelf number (1 being the bottom shelf)
Vertical distance to middle Distance of shelf variable to the middle shelf

Horizontal measures
Distance to shelf end (racetrack) Distance to the beginning of the shelf, measured in inches
Horizontal distance to middle Distance of item to the middle of the shelf, measured in inches

Capacity
Depth Depth of shelf in units
Stack The number of items that are stacked on top of each other

Item characteristics
Item width Width of item in inches
Campbell Item is from the Campbell brand (1=yes, 0=no)

a Included to model diminishing effects
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5.2 Estimation and forecast results

In this subsection, we discuss the estimation results for our model, and report the out-of-

sample forecast performance.

5.2.1 Estimation

As explanatory variables in the sales equation we use an intercept, log price and promo-

tion. The parameters associated with these variables are each item- and time-specific.

In the model, changes in the parameters across time for a specific item are completely

attributed to changes in its characteristics. Obviously, differences across items can only

partly be explained by differences in characteristics. The random component in (2) allows

for unexplained differences in the parameters across items. Shrinkage estimation in the

hierarchical structure allows us to estimate these parameters with sufficient accuracy. For

the estimation of the parameters, we generate 20,000 iterations of the Gibbs sampler for

burn in and 20,000 iterations for analysis, where we retain every tenth draw to reduce the

effects of autocorrelation between consecutive draws. The (unreported) iteration plots

are inspected to see whether the sampler has converged.

The marketing effectiveness parameter βi,t varies across items and time. Even though

the values do not change each and every period, there are obviously too many values to

display in a table. A histogram per marketing instrument, as given in Figure 2, summa-

rizes the dimensions ’item’ and ’time’ in an insightful way. The number of observations

that constitute the histogram, is equal to
∑I

i=1 Ti = 36, 044. We see the expected signs for

each of the three explanatory variables. The intercept is positive for all observations. The

price effect is negative for most periods and items. Finally, the promotion variable has

the expected positive effect for most items and periods. From this figure, it may be hard

to see what the actual expected β parameter values are for all items in the data set. We

list the posterior mean of the average β over all items and time periods (1
I

∑
i

1
Ti

∑
t βit)

in Table 3. From this table it is clear that over all items and time periods the parameters

have the expected signs.
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Figure 2: Histogram per marketing instrument across all βi,t.

Table 4 shows the posterior means for γ, that is, the parameters linking the attributes

to the effectiveness of own marketing instruments. We will investigate these estimates

both with the numbers in the table and with graphs for the attributes that appear in a

non-linear fashion in the model, i.e., facings, shelf and distance to shelf end. From the

numerical estimates, it can be seen that the logarithm of the number of facings has a

positive influence on the intercept in the sales equation (0.513). This indicates that items

that have many facings, have a higher expected sales level when there is no promotion,

feature activity, or otherwise. This is the effect that was studied in the previous literature

on shelf management.2 The number of facings appears to make the price effect stronger.

2In practice, there could be some feedback effects working here as well. An item with a high sales
level may be granted more shelf space in the store, and thus result in more facings for the item. This
feedback effect is not analyzed in our model, since with the experimental data, it is expected to be less
of a concern, see Corstjens and Doyle (1981) and Bultez and Naert (1988), where the same assumption
is made.
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Table 3: Posterior means (and standard deviations) for 1
I

∑
i

1
Ti

∑
t βit

Variable Mean St. Dev.

intercept 5.625 0.079
price -0.813 0.063
promotion 0.164 0.028

Table 4: Posterior means (and standard deviations)a for γ. The numbers in the cells reflect
the effect of a layout characteristic (left) on a marketing mix instrument (top).

Variable Intercept Price Promotion

Intercept 9.480*** (1.276) -1.443 (1.446) 3.265*** (1.002)

Number of facings -0.038** (0.017) 0.114*** (0.02) -0.035* (0.019)
Log(number of facings) 0.513*** (0.114) -0.608*** (0.11) 0.080 (0.117)

Shelf number (1,...,5) 0.168*** (0.047) -0.252*** (0.05) -0.127*** (0.053)
Vertical distance to middle shelf -0.092*** (0.030) 0.041 (0.03) 0.054 (0.036)

Horizontal distance to racetrack -0.003*** (0.001) 0.003*** (0.00) -0.002*** (0.001)
Horizontal distance to shelf middle 0.009*** (0.001) -0.009*** (0.00) -0.002*** (0.001)

Shelf depth in units -0.230*** (0.062) 0.246*** (0.06) -0.127** (0.062)
Stack in units 0.146 (0.091) -0.222** (0.10) -0.061 (0.095)

Item width in inches -1.892*** (0.418) 0.542 (0.47) -0.558** (0.216)
Campbell dummy 1.457*** (0.216) -0.785*** (0.20) 0.150 (0.095)

a *, **, *** Zero not contained in 90%, 95% or 99% highest posterior density region, respectively.

To further investigate the effects of the two facing variables available in the model, we

calculate the effects of varying values for the number of facings on the posterior mean of

β. The results of these effects are depicted in Figure 3. The first graph shows the effect

facings have on βi’s intercept, that is, the direct effect of facings on sales. As discussed

above, a higher number of facings causes a higher intercept, which in turn results in more

sales. However, this effect levels off as the number of facings increases. Apparently, the
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effect of the number of facings on sales exhibits diminishing returns. Next, in the second

graph (top right), the effect of facings on the price-parameter is displayed. For a low

number of facings, the price elasticity appears to be higher than -0.5. This could be

caused by the fact that items that have only 1 or 2 facings may be niche brands, which

are purchased by only a few customers who really search for an SKU and are generally

speaking relatively price insensitive. However, the price sensitivity increases as the number

of facings goes up. Apparently, having more facings makes the SKU more visible, causing

an increased awareness of the price level and thus creating more price sensitivity among

customers. Again this effect levels off as the number of facings increases further. Finally,

the third panel of Figure 3 shows the impact of facings on the promotion effectiveness.

Interestingly, items that have more facings, have a slightly weaker promotion effect. For

items that are already visible on the shelf, a promotion does not generate much additional

attention.

The shelf height also seems to correlate positively with sales. This can be seen from the

value of 0.168 for the effect of shelf on the intercept (see Table 4). Just as with facings, we

see that a higher value (i.e. a higher shelf location) makes consumers more price sensitive.

This is no surprise, as consumers see the prices for higher located products more easily

than for those at the bottom shelf. This can also be seen from Figure 4. Even though our

variable “distance to middle shelf” allows for a nonlinear impact of shelf height, the effect

appears to be pretty much linear. This is in particular true for price where the variable

“vertical distance to the middle shelf” was non-significant in Table 4.

The distance to the shelf end has a negative effect on sales, i.e., the further away

an item is from the racetrack, the lower the expected sales. The horizontal distance to

the middle of the shelf has a small positive effect, so being further from the middle may

increase sales. The combined expected effect can be seen in Figure 5. Obviously, being

close to the racetrack is optimal. Note however that the price sensitivity is highest for

these items, as is promotional sensitivity. Being in the middle may hurt sales, although

it makes consumers less price sensitive. Promotion effectiveness decreases as items move
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Figure 3: Impact of different number of facings on marketing-effectiveness parameters (dashed
lines show 95% HPD).

beyond the middle of the shelf. In Table 4 we see that the more products are stacked on

top of each other, the stronger the price effect. The brand Campbell has higher expected

sales and consumers appear to be more price sensitive for this brand.

Finally, Table 5 shows the posterior means for Ση. From these estimates we con-

clude that there is quite a large proportion of the differences in baseline sales and price

elasticities across the items, that we cannot explain using item and shelf characteristics.

5.2.2 Forecasting

In each run of the Gibbs sampler, we simulate sales forecasts for the last five periods in

the data set. These data are not used for parameter estimation. We use the posterior
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Figure 4: Impact of shelf number (varying from 1 to 5) on marketing-effectiveness parameters
(dashed lines show 95% HPD).

mode of these forecasts as the out-of-sample prediction. The correlation between actual

and predicted sales equals 88%. When we compare our HB model with a model which

concerns a regression per item, we see that our model performs about 4%-points better,

both in-sample and out-of-sample. This is most likely due to the extra information used in

the attributes and shelf characteristics. The real power of this extra information however

amounts to our ability to optimize the shelf arrangement, as we will see in the next

subsection.
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Figure 5: Impact of distance to shelf end on marketing-effectiveness parameters (dashed lines
show 95% HPD).

5.3 Shelf optimization

We perform the optimization of the shelf layout for each of the five stores separately. The

replenishment costs ci(Zi) in equation (4) are currently assumed to be equal to 0.3 To

start up the SA search process, we generate 10,000 random shelf arrangements and have

the algorithm start at the arrangement that has the highest mean profit.

Besides our profit-optimization routine, we also compute profits for commonly applied

rules of thumb. Since these rules do not completely prescribe the shelf layout, we generate

3This setting can easily be changed. Experiments with different settings in the ci-function showed
substantively identical results.
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Table 5: Posterior means (and standard deviations)a for Ση

Mean intercept price promotion

intercept 1.720*** (0.216) -0.957*** (0.163) -0.044 (0.054)
price -0.957*** (0.163) 0.865*** (0.132) 0.047 (0.032)
promotion -0.044 (0.054) 0.047 (0.032) 0.076*** (0.012)

a *, **, *** Zero not contained in 90%, 95% or 99% highest posterior
density region, respectively.

10,000 random layouts based on each rule at hand. The profit for the best of each of these

10,000 layouts is displayed in Table 6. The first is “share-of-shelf equals share-of-log-sales”.

We have chosen the version of this rule with log-sales, since in practice the large items

hardly ever get their share of sales in shelf space, and smaller items usually get more

than their sales share justifies. The second rule of thumb is “share-of-shelf equals share-

of-margin”. Retailers often devote more shelf space to products that have high margins,

rather than sell much. This rule does not appear to work very well, as can be seen in

Table 6. Varying the position of high-margin items also has its consequences. As can be

seen in the table, putting high-margin items close to the beginning of the shelf results in

higher profits. The reason for this, as shown by Larson et al. (2005), is that shoppers do

not always travel the entire aisle. In fact, once they enter an aisle, shoppers rarely make

it to the other end. Instead, they travel by short excursions into and out of the aisle

rather than traversing its entire length. This may lead them to purchase more from the

beginning of the aisle than from the middle.

For the five stores in our data set, the SA algorithm manages to find profit increases

relative to the current situation, that is, profit increases vary from 10% to 15%. Further-

more, the SA algorithm performs better than the rules of thumb described above, with

increases ranging from 6% to 20%. Note that while the rules-of-thumb did not lead to

an increase in profit for stores 1 and 4, our optimization method does succeed in finding

better shelf layouts. When inspecting the optimized shelves for all stores, we find that
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items that gain profit do not necessarily have an increased number of facings. It may

also happen that it is put on a different shelf, closer to the racetrack, or a combination of

these things. In Figure 6 we display the number of facings an item had before and after

optimization.

We expect the reported profit increases to decrease when more retailer-specific re-

strictions are built into the model. Possible restrictions would be to put all Campbell

soup cans in the same area, or to have the private label at eye-height. Our optimization

algorithm can easily cope with these restrictions, by not considering neighboring layouts

that violate these restrictions.

Effects of Optimization on Number of Facings
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Figure 6: Number of facings before and after optimization for store 5. Black bubbles reflect
items that have reduced profit after optimization, white bubbles are used for items that have
increased profit after optimization.
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Table 6: Profit results for current layout, various rules of thumb and optimization algorithm.

Layout Resulting maximum profit
Store 1 Store 2 Store 3 Store 4 Store 5

Current layouta $ 3,410 $ 2,340 $ 1,713 $ 3,114 $ 2,442

Rule of thumb
Share of shelf = share of salesb $ 3,281 $ 2,488 $ 1,726 $ 2,954 $ 2,512
Share of shelf = share of marginb $ 3,202 $ 2,414 $ 1,624 $ 2,922 $ 2,342

Put high margin items close to racetrackc $ 3,347 $ 2,548 $ 1,763 $ 2,874 $ 2,449
Put high margin items far from racetrackc $ 2,980 $ 2,228 $ 1,677 $ 2,772 $ 2,330

Optimization
Optimized layoutd $ 3,742 $ 2,696 $ 1,943 $ 3,557 $ 2,792
Improvement over current layout 10% 15% 13% 14% 14%
Improvement over best rule of thumb 12% 6% 10% 20% 11%

a Profit based on predicted sales (not actual).
b Achieved by generating 10,000 random layouts, where an item gets devoted the share of shelf

space based on sales or margins. The profit for the best of each of these 10,000 layouts is
displayed.

c Same as “Share of shelf = share of margin”, in addition, high-margin items are put close to
beginning or end of shelf (where the beginning is the back-isle or “racetrack”).

d The profit for the optimized layout results after running our simulated annealing algorithm.

6 Conclusion and further research

In this paper we have presented a new approach to optimize shelf arrangements. By

introducing shelf characteristics in an Hierarchical Bayes fashion into a sales model, we

were able to model the direct effect of the shelf layout on sales as well as the moderating

effect of the layout on the marketing instrument effects. After estimating the model

parameters on experimental data, we found that the shelf layout has significant effects on

baseline sales and marketing effectiveness. This not only holds for the number of facings

allocated to an item, but also other shelf descriptors such as shelf height and distance to

the end of the aisle. Our HB-setup allowed for interesting (graphical) insights into the

effects of shelf-layout on often-used marketing instruments such as price and promotion.

Our managerial implications derived from these graphs are the following. As expected,
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an SKU with more facings has higher sales. However, the additional benefits of one extra

facing does decrease. Also, price-effects appear to be weaker for niche SKUs, i.e. items

with few facings. Finally, the results show that promotion effects are weak when products

have more facings or are located further away from the racetrack. These are implications

that could not be derived from previously proposed sales and shelf management models.

Furthermore, our approach allowed us to optimize the shelf arrangement by cleverly

searching through the huge dimensions of the search space that a reasonably large sized

category provides. The Simulated Annealing algorithm managed to find increases in

profits for all stores in our data set. Optimized profits were also higher when compared to

several rules of thumb. Most sensible rules of thumb also increase profits when compared

to the current layout. It helps in particular to give high-margin items more shelf space

and stock them closer to the beginning of the aisle (or the racetrack). Our optimization

technique allows for the identification of high-potential SKUs that could give more profit

to the retailer when put on the proper location on the shelf.

We provide several directions for further research. It would be interesting to analyze

more stores for the current category and also other categories. Furthermore, if there is

sufficient variation in the observed data, one could combine shelf optimization with price

optimization. At any rate, we like to see our model as a useful tool in analyzing the

effects of shelf layout on marketing instrument effectiveness, optimizing the shelf layout,

and determining the value of SKUs to the retailer.
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Appendix: Parameter estimation

This appendix describes the algorithm for sampling from a Markov Chain that has the

posterior distribution of the model parameters as its stationary distribution, see (Tierney,

1994; Casella and George, 1992). In particular we use the Gibbs sampling technique of

Geman and Geman (1984) with data augmentation, see Tanner and Wong (1987). The

latent variables ηi, i = 1, . . . , I are sampled alongside with the model parameters. In our

model we define ηi as the latent variable of interest instead of βi,t as the changes in βi,t

over time are deterministic.

The likelihood function corresponding to the model in (1) and (2) equals

L(data|θ) =
I∏

i=1

∫

ηi

T∏
t=1

φ(εi,t(γ, ηi); 0, σ
2
i )φ(ηi; 0, Ση)dηi, (A.1)

where θ = (vec(γ)′, σ2
1, . . . , σ

2
I , vec(Ση)

′) is the vector of all model parameters and

εi,t(γ, ηi) = ln Si,t −X ′
i,t(γZi,t + ηi). (A.2)

We impose flat priors on all parameters but the covariance of ηi. For this covariance

we use an inverted Wishart prior. The full prior distribution equals

p(γ, σ2
1, . . . , σ

2
I , Ση) ∝

I∏
i=1

σ−2
i × f(Ση; λ, S), (A.3)

where f(Σ; λ, S) is the density function of an inverted Wishart distribution with λ degrees

of freedom and scale parameter S evaluated at Σ. Although the influence of this prior

on the posterior distribution is only marginal, the performance of the MCMC chain is

significantly improved by imposing the inverted Wishart prior, see Hobert and Casella

(1996).

Sampling of γγγ

After combining (1) and (2) and stacking the equations over t we obtain

ln Si = X∗
i
′




γZi1

γZi2
...

γZi,Ti


 + X ′

iηi + εi, (A.4)
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where ln Si = (ln Si1, . . . , ln Si,Ti
)′, Xi = (Xi1, . . . , Xi,Ti

), εi = (εi1, . . . , εi,Ti
)′ and

X∗
i =




Xi1

Xi2

. . .

Xi,Ti


 . (A.5)

After some manipulations (A.4) becomes

ln Si −X ′
iηi = X∗

i
′(Z ′

i ⊗ IK+1)vec(γ) + εi, (A.6)

where Zi = (Zi1, . . . , Zi,Ti
), and where Im denotes a m-dimensional identity matrix. This

equation can compactly be written as

Wi = Vivec(γ) + εi, (A.7)

where εi ∼ N(0, σ2
i ITi

). From (A.7) it is easy to derive that the full conditional posterior

distribution of vec(γ) is normal with mean

(
I∑

i=1

1

σ2
i

V ′
i Vi

)−1 (
I∑

i=1

1

σ2
i

V ′
i Wi

)
, (A.8)

and variance (
I∑

i=1

1

σ2
i

V ′
i Vi

)−1

, (A.9)

see, for example, Zellner (1971, Chapter III).

Sampling of ηiηiηi

The relevant equations for sampling ηi for i = 1, . . . , I are

1

σi

[
ln Si −X∗

i
′vec(γZi)

]
=

1

σi

X ′
iηi +

1

σi

εi

0 = Σ−1/2
η ηi + νi,

(A.10)

where νi ∼ N(0, IK+1). The second line in (A.10) represents the second layer of our

model. We see that the full conditional posterior distribution of ηi conditional on γ and

σ2
i is normal. Denoting the first equation of (A.10) by Ỹi = X̃iηi + ε̃i, the mean of this

posterior distribution is (X̃ ′
iX̃i + Σ−1

η )−1X̃ ′
iỸi and the variance equals (X̃ ′

iX̃i + Σ−1
η )−1.
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Sampling of σσσ2
i

Conditional on the data and the other parameters, σ2
i has an inverted Gamma-2 distri-

bution with scale parameter
∑Ti

t=1 εit(γ, ηi)
2 and degrees of freedom Ti. To sample σ2

i we

use that ∑Ti

t=1 εit(γ, ηi)
2

σ2
i

∼ χ2(Ti), (A.11)

where εi,t is given in (A.2).

Sampling of ΣηΣηΣη

Conditional on the other parameters, the covariance matrix Ση can be sampled from an

inverted Wishart distribution with scale parameter
∑I

i=1 ηiη
′
i + S and degrees of freedom

I + λ.
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