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Converging lines of evidence indicates that smoking and internet gaming disorder (IGD)

affect spontaneous brain activity, respectively. However, little is known about whether

these two factors work together on the human brain. In this study, we investigated the

interaction between smoking and IGD on local spontaneous brain activity using amplitude

of low-frequency fluctuation (ALFF) based on resting-state fMRI (rs-fMRI). Forty-six

cigarette smokers, 38 IGD individuals, 34 participants with both IGD and cigarette

smoking (IGD-Smoking), and 60 healthy individuals involved in the study. Voxel-wise

analysis of covariance of ALFF revealed that there were significant interactions between

IGD by smoking in the right medial pre-frontal cortex (MPFC)/ventral striatum, bilateral

cerebellar, and visual-related regions as well as the left temporal gyrus. In the right

MPFC/ventral striatum and left temporal gyrus, ALFF in smoking group was significantly

higher than healthy group while there were no significant ALFF differences between

IGD-Smoking group and IGD group. While in the bilateral cerebellar and visual-related

regions, ALFF in the smoking group was significantly lower than healthy group while ALFF

in IGD-Smoking group did not show significant difference with IGD group. In addition, in

the smoking group, ALFF of the right MPFC/ventral striatum was associated positively

with anxiety and depression scores while the ALFF value in the smoking group had a trend

toward negative correlation with SDS scores in the bilateral cerebellar and visual-related

regions. The ALFF value in the smoking group was associated positively with anxiety

score in the left temporal gyrus. These findings indicate that smoking and IGD interacted

with each other in the human brain. Our results, in terms of spontaneous brain activity,

may imply the fact that IGD people are more tended to get smoking. Moreover, it is

possible to predict that smokers may be more easily to get internet addiction than

healthy people.
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INTRODUCTION

Addiction is a complex phenomenon involving psychological and
social consequences such as dependence, tolerance, sensitization,
and craving (1, 2). Internet gaming disorder (IGD) is classified
as an addictive disorder in the Diagnostic and Statistical Manual
of Mental Disorders (5th Edition, DSM-5), characterized by
the use of online games in a manner that leads to significant
distress and functional impairments of general life (3). Smoking
is one of the largest single causes of preventable morbidity and
natural mortality, which may also cause cognitive decline and
dementia (4). IGD and smoking, the typical representative of
behavioral and substance addiction, respectively, have common
core clinical features: diminished control and a hedonic quality
over the problematic behavior, unsuccessful trying to stop,
and impairment of major life functioning (5), and may share
similar neural circuits including the reward circuits, memory and
learning circuits, cognitive control loops (6, 7).

Studies based on questionnaires suggest that the youthful
initiation of internet addiction in teenage students could be
predicted by smoking (8–10). Subjects with both nicotine
dependence and IGD demonstrated a greater degree of
urge activities in the anterior cingulate cortex (ACC) and
parahippocampus in comparison to the controls (11). Another
study showed that compared with the non-smokers with IGD,
smokers with IGD had motivation and executive function
changes (12). Additionally, compared with healthy controls, both
IGD and smoking groups showed significantly different resting-
state functional connectivity (rsFC). Significant rsFC differences
were also found between IGD and smoking groups (13).

Resting-state fMRI (rs-fMRI) has been shown to study
spontaneous brain activity by assessing the baseline brain
activity based on the low-frequency (<0.1Hz) fluctuations
of blood oxygenation level-dependent signals. Amplitude
of low-frequency fluctuation (ALFF) has been applied to
detect abnormalities of brain activity in IGD individuals and
smokers, respectively, by measuring the local spontaneous
brain activity (14). Compared with healthy controls, IGD
individuals had increased ALFF in brain areas of the bilateral
middle cingulate cortex, right parahippocampal gyrus, left
precuneus, supplementary motor area, and medial orbitofrontal
cortex (OFC) (15). Abnormal OFC and ACC activation might
be associated with cue-induced gaming urge (16). The OFC
connects extensively with the striatum and limbic regions and
it is involved in cognitive and impulse control and reward
processing by assessing the motivational significance of stimuli
and selecting behavior to achieve desired outcomes (15).
So abnormal OFC activity in addiction might be related to
dysfunction of cognitive control ability (15). Activation was
also found in ACC in IGD group when compared to the
control group in resting state (17). ACC involved in modulating
emotion, motivation and attention and monitoring conflicts to
trigger desired execution and control outputs (18). Increased
fractional ALFF (fALFF) was found in the superior temporal
gyrus. The temporal gyrus serves as regulating sense perception
including visual and auditory and its nerve fibers project to
frontal lobe (19). Compared to non-smokers, smokers showed

decreased fALFF in the precuneus and cerebellum anterior lobe
(20, 21). Diminished regional homogeneity of bilateral cuneus
and lingual gyrus was found in heroin-dependent individuals
(22) and regional cerebral blood flow of bilateral cuneus was
also decreased in opioid addiction (23). The major function
of bilateral cuneus is visual processing and inhibitory control.
This abnormity may suggest the impaired inhibitory control
ability in addicted subjects. All these reports have studied the
effects of IGD or smoking on ALFF in brain areas, respectively.
However, less is known about the changes on spontaneous brain
activity when subjects have both IGD and smoking disorders
and whether they work on human brain independently or
interactively in alterations of brain functions.

The primary goals of this study were to explore the effects
of smoking and IGD on spontaneous brain activity. Given the
high IGD risk associated with smoking and high smoking risk
associated with IGD mentioned in many studies (9, 24), we
hypothesized that IGD and smoking were not independently
working on human brain. Therefore, in this study we investigate
the interaction between smoking and IGD on the spontaneous
brain activity. Four groups of healthy controls, smokers, IGD
and IGD-Smoking individuals were under resting-state fMRI
scanning. ALFF was calculated and the voxel-wise two-way
analysis of covariance (ANCOVA) was performed to investigate
the interaction between smoking and IGD.

MATERIALS AND METHODS

Subjects
One hundred and eighty-five right-handed subjects, including 62
healthy controls (age range: 16–28 years), 50 cigarette smokers
(age range: 18–29 years), 39 IGD addicts (age range: 16–27
years), and 34 participants with both IGD and cigarette smoking
(IGD-Smoking) (age range: 16–28 years) were involved in this
study. Psychiatric medical disorders were screened by the Mini
International Neuropsychiatric Interview for (25). All subjects
did not have any drug abuse or dependence, psychiatric or
neurological diseases history (other than nicotine and internet
dependence for smokers and IGD individuals, respectively), or
intellectual disability. All participants were cleared of substance
addiction by a urine drug screening. Smokers were defined
as those who smoked at least 10 cigarettes a day during the
last year. Fagerström test for nicotine dependence (FTND) was
used to evaluate the severity of smoking addiction (26). None
of the smokers had been abstinent for more than 3 months
in the previous year. Non-smokers smoked no more than five
cigarettes during their lifetime. The IGD participants were
enrolled from the psychological outpatient clinic at the Shanghai
Mental Health Center and were interviewed by two experienced
psychiatrists with the criteria of modified Young’s Diagnostic
Questionnaire for Internet Addiction (YDQ) (27). Ko et al.
Internet Addiction Scale (CIAS) was performed to access the
severity of internet addiction (28). Before MRI scanning, all
participants were assessed by questionnaires of the Self-rating
Anxiety Scale (SAS) (29), Self-rating Depression Scale (SDS) (30)
and Barratt Impulsiveness Scale (BIS) (31).
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Image Acquisition
All subjects were scanned by a 3.0-Tesla GE Signa HDx
(Milwaukee, WI, United States) with a standard 8-channel
head coil and the head motion and scanner noise were
minimized by foam pads. The parameters of the echo-planar
imaging sequence for the rs-fMRI data collection were as
follows: repetition time/echo time: 2,000/24ms; matrix: 64 ×

64; flip angle: 90◦; field of view: 230 × 230 mm2; 4mm
with no gap; 34 slices. The rs-fMRI scanning lasted for
440 s and 220 volumes were obtained. All participants were
instructed to lie still, keep their eyes closed but not to fall
asleep during MRI scanning. All the resulted images were
visually accessed by two experienced neuroradiologists to exclude
pathological findings.

Data Pre-Processing
Images were pre-processed by the Data Processing Assistant
for Resting-State fMRI (32). The first 10 time points of each
subject were excluded and the remaining 210 volumes were
corrected for the acquisition time delay. Participants with a
maximum head motion >2mm in the x, y, or z direction or a
head rotation >2◦ or mean framewise displacement larger than
0.2mm were excluded. Using this criterion, 2 healthy controls,
4 smokers and 1 IGD addict were discarded, and a total of
one hundred and seventy-eight subjects (60 healthy controls,
46 cigarette smokers, 38 IGD addicts, and 34 IGD-Smoking
participants) were ultimately used in the ALFF analysis. The
regression of head motion effects was carried out by Friston 24-
parameter model (33). After that, the images normalization to
the Montreal Neurological Institute (MNI) space and resampling
to a 3-mm isotropic voxel and the smoothing procedure with
a 6mm full width at half maximum Gaussian kernel to reduce
noises was performed. Linear and quadratic trends as well as
white matter and corticospinal fluid signals were then removed.
Finally, individual ALFF map was calculated within a mask
without non-brain tissue, divided by its mean ALFF for further
statistical analysis.

Statistical Analysis
The voxel-wise two-way (IGD and smoking) ANCOVA
controlling for age, gender, years of education and mean
frame-wise displacement was performed to investigate the
main effects as well as the interaction between smoking
and IGD on ALFF. The multiple comparisons correction
of statistical F-maps was performed with family-wise error
(FWE) cluster-corrected (p < 0.05) when using a primary
voxel determining threshold of p < 0.001 to protect against
false-positive findings. Then ALFF values from significant
clusters showing interaction effects were extracted to
perform the post-hoc pairwise comparison controlling for
age, gender, educational level and head motion and a Bonferroni
correction level of 0.0083 (0.05/6) was applied to protect
against false-positive findings. The correlation analysis with
ALFF among groups as dependent variable and variables
related to smoking such as duration of smoking, age at first
smoking, and FTND and IGD related variables (CIAS),
questionnaire scores of SAS, SDS, BIS and its three dimensions

controlling for age, gender, educational level, and head motion
was performed to investigate whether the altered ALFF
was related to the smoking and IGD related features and
questionnaire scores. Results with p < 0.05 (uncorrected) were
considered significant.

RESULTS

Demographic and Clinical Measures
The four groups showed significant sex differences according to
the Chi-square test (p = 0.008). Other demographic and clinical
differences of subjects among groups was evaluated with a two-
way ANOVA in age, education level, CIAS, SAS, SDS, and BIS.
There was significantmain effect of IGD (p= 0.006) and smoking
(p < 0.001) and IGD by smoking interaction (p = 0.004) on
age. Significant main effect of IGD (p < 0.001) and smoking
(p = 0.003) and no significant IGD by smoking interaction
(p= 0.06) were also found in years of education (Table 1).

Duration of smoking and age at first smoking in smoking
group was longer (p = 0.01, p = 0.03, respectively), than that
in IGD-Smoking individuals. IGD-Smoking group had higher
FTND score than smoking group (p = 0.04). The main effect of
IGD on CIAS (p < 0.001), SAS (p < 0.001), SDS (p < 0.001), BIS
(p < 0.001) was significant. CIAS (p < 0.001), SAS (p < 0.001),
SDS (p < 0.001), BIS (p = 0.039) in smokers were lower
than non-smokers.

Interaction Effects Between IGD and
Smoking
Significant IGD and smoking interaction effects on ALFF were
identified in the right medial pre-frontal cortex (MPFC) (i.e.,
orbital frontal gyrus and anterior cingulate cortex) extending
to the ventral striatum, bilateral cerebellar and visual-related
regions (i.e., lingual and calcarine gyrus and cuneus) as well as
the left temporal gyrus (Figure 1 and Table 2).

Effect of IGD on Healthy and Smoking
Groups
The post-hoc pairwise comparison controlling for age, gender,
educational level, and head motion (Bonferroni correction,
p < 0.0083) demonstrated that ALFF showed no statistical
differences between IGD group and healthy group (IGD group:
0.86 ± 0.03; Healthy group: 0.78 ± 0.03; p = 0.441) while
IGD-Smoking group showed significantly lower ALFF when
compared to smoking group (IGD-Smoking group: 0.76 ± 0.04;
Smoking group: 1.13 ± 0.03; p = 1.16 × 10−12) in the right
MPFC/ventral striatum (Figure 2A). In the bilateral cerebellar
and visual-related regions, IGD group showed no statistical
differences of ALFF with healthy group (IGD group: 1.35± 0.06;
Healthy group: 1.55 ± 0.05; p = 0.081) while IGD-Smoking
group showed significantly higher ALFF when compared to
smoking group (IGD-Smoking group: 1.60 ± 0.07; Smoking
group: 1.13 ± 0.05; p = 2.32 × 10−7, Figure 2B). As for the
left temporal gyrus, IGD group showed no statistical differences
of ALFF with healthy group (IGD group: 0.52 ± 0.02; Healthy
group: 0.45± 0.02; p= 0.20) while IGD-Smoking group showed
significantly lower ALFF when compared to smoking group
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TABLE 1 | Demographic and clinical characteristics of four groups.

IGD group

(n = 38)

IGD-smoking

group (n = 34)

HC group

(n = 60)

Smoking group

(n = 46)

p-value

IGD Smoking IGD*

smoking

Age 19.66 ± 2.60 22.94 ± 2.93 22.29 ± 3.48 22.88 ± 2.78 0.006 <0.001 0.004

Gender (M/F) 26//12 33//1 41//19 31//15 – – 0.008a

Education 10.74 ± 1.75 10.29 ± 2.10 14.76 ± 3.39 11.83 ± 2.50 <0.001 0.003 0.06

Duration of smoking – 3.75 ± 1.88 – 5.18 ± 2.92 – – –

Age at first smoking – 19.19 ± 2.83 – 17.70 ± 3.01 – – –

FTND – 6.68 ± 2.07 – 6.28 ± 2.25 – – –

CIAS score 72.68 ± 10.27 81.26 ± 10.69 43.83 ± 10.83 49.93 ± 10.57 <0.001 <0.001 0.45

SAS score 48.89 ± 9.57 57.24 ± 11.56 40.53 ± 7.40 47.59 ± 9.93 <0.001 <0.001 0.66

SDS score 52.08 ± 9.41 58.00 ± 8.90 44.32 ± 8.62 50.65 ± 9.70 <0.001 <0.001 0.88

BIS-11 score 61.63 ± 8.19 64.12 ± 8.62 52.80 ± 6.91 55.67 ± 10.00 <0.001 0.039 0.88

BIS-attentional

impulsiveness score

15.16 ± 2.69 15.97 ± 2.90 12.98 ± 2.30 13.13 ± 2.80 <0.001 0.24 0.41

BIS-motor

impulsiveness score

20.63 ± 4.46 21.82 ± 3.64 17.92 ± 2.96 19.91 ± 4.00 <0.001 0.006 0.48

BIS-Non-planning

impulsiveness score

26.16 ± 3.48 26.50 ± 4.66 21.90 ± 4.47 22.63 ± 5.62 <0.001 0.45 0.79

aThe Chi-square test showed significant sex differences within the four groups (p = 0.008).

Values are expressed as mean ± standard deviation. The age, educational level, age at first cigarette, and duration of smoking are displayed in years. FTND, Fagerström Test of Nicotine

Dependence; CIAS, Chen internet addiction scale; SAS, Self-rating Anxiety Scale; SDS, Self-rating Depression Scale; BIS-11, Barratt Impulsiveness Scale, version 11. The definition of

educational level was the number of years of scholarship since primary school.

(IGD-Smoking group: 0.47 ± 0.03; Smoking group: 0.65 ± 0.02;
p= 1.00× 10−6, Figure 2C).

Effect of Smoking on Healthy and IGD
Groups
The post-hoc pairwise comparison controlling for age, gender,
educational level, and head motion (Bonferroni correction,
p < 0.0083) also showed that ALFF in smoking group was
significantly higher than healthy group in the rightMPFC/ventral
striatum (p = 3.61 × 1 0−15) and the left temporal gyrus
(p = 8.55 × 10−10) while IGD-Smoking group showed no
statistical differences of ALFF when compared to IGD group
(p-value was 0.439 and 0.855, respectively) (Figures 2A,C). In
the bilateral cerebellar and visual-related regions, smoking group
showed significantly lower ALFF than healthy group (p = 1.17
× 10−7). Moreover, the ALFF difference between IGD-Smoking

and IGD group (p = 0.038) did not survive the Bonferroni

correction at p < 0.0083 (Figure 2B).

In addition, compared to the healthy control group, smoking

caused significantly larger ALFF changes than IGD in the right

MPFC/ventral striatum (p = 5.55 × 10−8, Figure 2A), as well

as the left temporal gyrus (p = 0.001, Figure 2C). Although

the difference between IGD and smoking group did not survive
the Bonferroni correction at p < 0.0083, it was approaching

significance (p = 0.047) in the bilateral cerebellar and visual-

related regions (Figure 2B). However, ALFF in IGD-Smoking
group was not significantly different with healthy group in these
regions (p= 1.00).

Correlations Between ALFF and Clinical
Characteristics
The ALFF values from significant clusters showing interaction
effects were extracted to perform correlation analysis with clinical
characteristics controlling for age, gender, educational level
and head motion (Figure 3). We found that the participants
in smoking group with higher ALFF values exhibited higher
SAS (r = 0.313; p = 0.043), SDS (r = 0.372; p = 0.015)
and motor impulsiveness dimension of BIS-11 (r = 0.364;
p = 0.018) scores in the right MPFC/ventral striatum and
SDS (r = −0.349; p = 0.024) scores in the bilateral cerebellar
and visual-related regions, and higher SAS score (p = 0.049,
r= 0.305) the left temporal gyrus. ALFF of other three groups did
not show significant correlation with smoking related variables
(i.e., duration of smoking, age at first smoking, and FTND), IGD
related variables (CIAS) and questionnaire scores of SAS, SDS,
BIS, and its three dimensions.

DISCUSSION

As far as we know, this is the first study to explore interaction
between smoking and IGD on spontaneous brain activity using
rs-fMRI. Our findings demonstrated that there were significant
smoking by IGD interactions on ALFF in the right MPFC/ventral
striatum, left temporal gyrus, and bilateral cerebellar and visual-
related regions. Specifically, in the right MPFC/ventral striatum
and left temporal gyrus, ALFF in smoking group was significantly
higher than healthy group while there were no significant ALFF
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FIGURE 1 | Results of ANCOVA analysis controlling for age, gender, educational level, and head motion. Brain regions showed group differences among the four

groups of healthy controls, smokers, internet gaming disorder (IGD), and IGD-Smoking individuals in amplitude of low-frequency fluctuation (ALFF) (p < 0.05,

FWE-corrected). The brain regions mainly involved in the right medial pre-frontal cortex (MPFC, i.e., orbital frontal gyrus and anterior cingulate cortex) extending to

ventral striatum, bilateral cerebellar, and visual-related regions (i.e., lingual and calcarine gyrus and cuneus) as well as the left temporal gyrus.

differences between IGD-Smoking group and IGD group. There
were no significant ALFF differences between IGD group and
healthy group while IGD-Smoking group showed significantly
lower ALFF than smoking group. However, in the bilateral
cerebellar and visual-related regions, ALFF in smoking group
was significantly lower than healthy group while ALFF in IGD-
Smoking group did not show significant difference with IGD
group. There were no significant ALFF differences between IGD
group and healthy group while IGD-Smoking group showed
significantly higher ALFF than smoking group. Taken together,
these findings suggest that smoking and IGD interact with each
other while they work in human brain, especially in reward and
motivation functions related regions.

Smoking group demonstrated significantly higher SAS, SDS,
and impulsivity scores, which is consistent with previous studies
that smoking was associated with anxiety and depression with
smoking (34). Anxiety was one of the strongest predictors
of nicotine intake and nicotine-seeking behavior (35) and
significantly related to the severity of cigarette dependence
and unsuccessful attempts to quit (36). Similar reports have
been made of depression that compared with persons without
depression, depressed individuals are more likely to smoke
and relapse, less likely to quit (37). In turn, smoking appears
to increase the risk for the development of depression (38).
On the side of initiation and of the persistence of internet
addiction, depression was also an important predicting factor
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TABLE 2 | Regions showing significant amplitude of low-frequency fluctuation (ALFF) differences among the four groups of healthy control, smokers, internet gaming

disorder (IGD), IGD-Smoking individuals (p < 0.05, FWE-corrected).

Identified brain regions Peak coordinates (MNI) Side Peak F Cluster size

(voxels)

X Y Z

Medial pre-frontal cortex (i.e.,

orbital frontal cortex and anterior

cingulate cortex)/ventral striatum

15 33 −15 R 36.81 863

Cerebellar and visual-related

regions (i.e., calcarine, cuneus,

and lingual gyrus)

−12 −51 −15 B 28.39 502

Inferior temporal gyrus −42 −33 −21 L 25.28 71

Analysis of covariance (ANCOVA) controlling for age, years of education, and mean frame-wise displacement was performed to investigate the interaction between smoking and IGD

on ALFF.

FIGURE 2 | Post-hoc analyses of ALFF values among the four groups. (A) The brain regions involved in the right MPFC/ventral striatum. ALFF in smoking group was

significantly higher than healthy group (p = 3.61 × 10−15) while no significant ALFF differences between IGD-Smoking and IGD group were found (p = 0.439). There

were no significant ALFF differences between IGD group and healthy group (p = 0.441) while IGD-Smoking group showed significantly lower ALFF than smoking

group (p = 1.16 × 10−12). Moreover, ALFF in smoking group exhibited significantly higher value than IGD group (p = 5.55 × 10−8). (B) The brain regions involved the

bilateral cerebellar and visual-related regions. ALFF in smoking group was significantly lower than healthy group (p = 1.17 × 10−7) while the difference between

IGD–Smoking and IGD group did not survive the Bonferroni correction at p < 0.0083 (p = 0.038). No significant ALFF differences between IGD and healthy group was

found (p = 0.081) while IGD-Smoking group showed significantly higher ALFF than smoking group (p = 2.32 × 10−7). (C) The brain regions involved the left temporal

gyrus. ALFF in smoking group was significantly higher than healthy group (p = 8.55×10−10) while no significant ALFF differences between IGD-Smoking group and

IGD group were found (p = 0.855). There were no significant ALFF differences between IGD group and healthy group (p = 0.20) while IGD-Smoking group showed

significantly lower ALFF than smoking group (p = 1.00 × 10−6). Moreover, ALFF in smoking group exhibited significantly higher value than IGD group (p = 0.001). The

graphs above the column group were the involved brain regions. **p < 0.05/6 = 0.0083 (Bonferroni correction).

(9) and it increased linearly with YDQ score (39). In addition,
there were significant correlations between internet addiction
with depression and anxiety (40). Specific internet addicts
showed higher social anxiety (41). In addition, impulsivity
components differentially predicted tobacco use (42) and
higher impulsivity determined by the BIS increased adolescents’
odds of being smokers (43) and smokers reported higher
impulsivity on the BIS-11 than never smokers (44). No
significant correlation between SAS and SDS with IGD or

IGD-Smoking in this study might be due to the small
sample size.

The finding that in the right MPFC/ventral striatum and
left temporal gyrus, smoking group had significantly higher
ALFF than healthy group is consistent with the observation of
increased activation in the ACC and superior temporal gyrus
in the nicotine group compared with the controls (45). It
suggested that compared to healthy group, these brain regions
were more vulnerable to smoking. However, no significant ALFF
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FIGURE 3 | The correlation analysis between ALFF values and clinical characteristics controlling for age, gender, educational level, and head motion. The ALFF value

in the smoking group was associated positively with SAS (A), SDS (B) and motor impulsiveness dimension of BIS-11 scores (C) in the right MPFC/ventral striatum.

(D) The ALFF value in the smoking group had a trend toward negative correlation with SDS score in the bilateral cerebellar and visual-related regions of lingual and

calcarine gyrus and cuneus. (E)The ALFF value in the smoking group was associated positively with SAS score in the left temporal gyrus.

differences between IGD-Smoking group and IGD group in
these brain areas were found. In other words, when both IGD
and smoking co-existed, ALFF of these brain regions were
identical to that of the healthy control group. These two results
demonstrated that when smoking occurred in the healthy and
IGD group, the changes of the spontaneous brain activity were
different between these two groups. It was reported that the
youthful initiation of internet addiction in teenage students could
be predicted by smoking, and substance use like smoking is
likely to exacerbate internet addiction initiation and persistence
(9). In addition, Sung et al. (24) proposed that smoking may
associate with high risk of internet addiction. More interestingly,
compared to schizophrenia non-smokers, schizophrenia smokers
demonstrated reversed intrinsic brain activity in the pre-frontal
cortex. In short, smoking had different effects on healthy and
IGD group.

Additionally, in the same brain regions, we found no
significant ALFF differences between IGD group and healthy
group. Although many studies had found that IGD group had
significant differences with healthy controls on the spontaneous
brain activity in the right orbital frontal gyrus (46), the right
ACC (19), and the temporal gyrus (47). The inconsistency

with our finding may arise from the sample characteristics or
correction method. For example, in this study, we using FWE
correction in the two-way ANCOVA to find significant clusters
and Bonferroni correction in the post-hoc pairwise comparison
while the correction method was Alphasim correction in the
report of Lin et al. (47). The study also revealed that IGD-
Smoking group showed significantly lower ALFF than smoking
group. Sung et al. (24) also suggested that compared with low-
risk group for internet addiction, smoking rates were significantly
higher among high-risk group for internet addiction. This cannot
be explained that IGD causes smoking. It might be that they
have the similar causal factors. This may make the phenomenon
that IGD individuals in the internet cafes often tended to be
smokers and the ALFF of IGD—Smoking group did not show
significant difference with healthy controls better understood.
To sum up, these results in this study illustrated that when
healthy and smoking group were addicted to IGD, the changes
of the spontaneous brain activity were different between these
two groups.

In this study, there was significant interaction between
IGD and smoking in the right MPFC/ventral striatum and
left temporal gyrus. The MPFC is considered as promoting
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goal-directed behavior by assessing the incentive-significant
stimuli and choosing to generating the desired results (48–50).
It integrates the body signals to help make decisions which
involved in creating and maintaining the expectations of rewards
associated with reinforcement (51). The activity of medial OFC
and ACC was highly correlated with the subjective valuation
of drug-related stimuli (52) and showed increased activity after
individuals receiving a reward or before an expected reward
immediately (53). The glucose metabolic activity of OFC in IGD
adolescents also showed abnormal increase when compared with
controls. (54). So the brain activity in the frontal gyrus might be
perceived as amarker to reflect the reduced cognition and control
ability of addiction (15) and enhanced reward sensitivity (46).
Increased functional connectivity of OFC was also observed in
cannabis users (55). However, in heroin-dependent individuals,
regional homogeneity was diminished in the medial OFC (22). In
methamphetamine users, metabolic activity of OFC was reduced
(56). The medial OFC is a part of the limbic system, which
is involved in decision making and expectation (57). In these
studies, the OFC demonstrated conflicting results, which, on the
one hand, may be due to the small sample size and different
addictive substance with different mechanism. On the other
hand, ALFF measures the average value over a period of time,
which could not reflect the dynamic property of real brain signal.
Further dynamic investigation will be developed to obtain more
evidence to understand the potential neural mechanism behind
addiction disorder.

Activation was also found in ACC in IGD group when
compared to the control group in an event-related fMRI study
(58). Another fMRI study found that global cerebral blood flow
in IGD subjects appeared to be significantly higher in ACC
which may related to attention and arousal mediation (59). ACC
involves in making the information of emotion and motivation,
regulation of reward-seeking behavior as well as attention salient
(60, 61) and processing memory and encoding the motivation of
substance cue (62, 63). It is crucial in monitoring the meaning
of the stimulus relative to the target. Once the appetite cues
are identified, ACC will determine whether and how strong the
behavioral response is (64, 65). As for other kinds of addiction
disorders, for instance, in alcohol use disorders activated the
left cingulate gyrus and left superior temporal gyrus was
founded (62). Significant activation of ACC was also observed
in cocaine abusers (66). However, Volkow et al. found decreased
metabolism in cingulate gyrus and OFC in cocaine abusers.
Cocaine abusers also showed significant decreases in DA release
which leads to decreased activation of reward circuits and further
leads to compulsive drug administration to perpetuate cocaine
use as a means to compensate for this deficit (67). Several studies
demonstrated that the ACC is associated with selective attention
(68, 69) which is a prerequisite for signaling reward (70). As
a part of a corticostriatal circuit, the ACC plays an important
role in stimulus–reward learning (71, 72). Once appetitive
(and aversive) cues are identified by the visual cortex and
motivational/attentional centers, ACC are activated to reinforce
the processing (73). The ACC activationwas also observed during
cognitive processes which could be dysfunctional after anterior
cingulotomy in human (74).

Increased fractional ALFF (fALFF) was found in the
superior temporal gyrus and the volume of temporal lobe were
significantly reduced in addiction persons (19). The primary
function of the temporal lobe is regulating sensory perception
including processing vision and auditory. The activated inferior
temporal gyrus might serves as positive intensifying factor to
reveal oneself contacting addiction behavior repetitively (19).
What’s more, the ALFF value in the smoking group was
associated positively with SAS and SDS scores in these brain
regions, indicating the more anxious, depressed, the higher ALFF
in the smoking group. At the same while, the ALFF value in the
smoking group was associated positively with SAS score in the
left temporal gyrus. Given the function of these brain regions, we
hypothesized that smoking might be due to anxiety, depression.
Additionally, it also illustrates that ALFF can be regarded as a
reliable marker in the exploration of the brain function.

In the bilateral cerebellar and visual-related regions of lingual
and calcarine gyrus and cuneus, we found that ALFF in
smoking group was significantly lower than healthy group.
Activity in the bilateral cuneus and lingual gyrus was also found
diminished in heroin-dependent individuals (22). However,
ALFF in IGD–Smoking group did not show significant difference
with IGD group. These two findings demonstrated that when
smoking had different effects of spontaneous brain activity on
healthy and IGD group. In addition, this study also illustrated
no significant ALFF differences between healthy group and IGD
group while IGD–Smoking group showed significantly higher
ALFF than smoking group. All these results pointed out the
interaction between IGD and smoking. A functional MRI study
supported that the cerebellum serves as cognitive functions
(75). Researchers have found a correlation between structural
abnormalities in the cerebellum and the clinical manifestations
of certain psychiatric disorders. The cerebellum has lots of
functional connection with the brain, which, to some extent,
contributes to regulating the cognition, emotions and thinking.
There are also reports which found the cerebellar structural
abnormalities is correlated with certain mental illness (76). The
decreased activation of cerebellum of our study might suggest the
impairment of cerebellum in IGD individuals and smokers with
abnormality of cognitive functions. The cuneus involves in visual
processing inhibitory control centers. The regional homogeneity
of heroin-dependent individuals was found diminished in the
bilateral cuneus (22). Moreover, the ALFF value in the smoking
group had a trend toward negative correlation with SDS score in
the bilateral cerebellar and visual-related regions of lingual and
calcarine gyrus and cuneus, suggesting that smokers with lower
ALFF values in these brain regions felt more depressed.

Whether smoking caused significant ALFF changes in healthy
group but not in IGD group, or IGD caused significant
ALFF changes in smoking group but not in healthy group,
it demonstrated the interaction of the two factors and the
different combined effect from the single effect of one factor.
IGD was related to smoking (40). More interestingly, nicotine
addiction effect independent of other addictions like gambling
(77) and disease like schizophrenia (78) and IGD associated
with harmful alcohol use among college students was also
found (17, 79). Compulsive internet use might have a causal
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relationship with changes in substance use in female (80). Yen
proposed that the comorbidity of internet addiction and other
substance addiction might indicate the predictive relationship
between them (81). IGD and smoking might share the similar
neurobiological mechanisms (8, 10). IGD and smoking is the
typical representative of behavioral and substance addiction,
respectively. The underlying mechanism about their different
performance in different populations are still unknown, so
further researches are need to determine.

Furthermore, in the significant brain areas of ANCOVA, we
also found that compared to healthy controls, the increased
ALFF in smoking group was significantly larger than IGD group
in the right MPFC/ventral striatum. It illustrated that healthy
controls might be more sensitive to smoking than IGD. The
reason might be that in smokers, substance like nicotine or other
aspects in cigarette worked while there wasn’t any substance in
IGD individuals.

This study has several limitations. First, the possible influences
of alcohol cannot be excluded, as alcohol consumption was not
quantitatively evaluated. Although most subjects self-reported
no or seldom daily alcohol consumption, whether the subjects
deceptively reported of alcohol dependence could not confirmed.
Therefore, the possible effects of alcohol use on the interactions
between smoking and IGD need to be studied in the future.
Second, variables of age, sex and education level were not
well-matched among the four groups although they went to
the statistical procedure as controlling factors. Several studies
showed sex-specific effects of cigarette smoking on rsFC (82)
and IGD on ALFF and rsFC (83). Child abuse increases risk
for substance use in part (84) and there were significantly
differences in light and heavy smokers (20). Although they served
as covariates, we cannot completely exclude the potential impacts
of these factors. Third, no significant correlation remained after
Bonferroni correction. This might be related to the small sample
size and future research of large sample size is needed to
help us to get deep understanding of the relationship between
common scales of psychological disorder and IGD and Smoking.
Finally, although this resting-state fMRI study investigated
interaction between smoking and IGD on spontaneous brain
activity, future task dependent examination will help us to
have a better understanding of the neural mechanism of IGD
and smoking.

In conclusion, we demonstrated that smoking and IGD were
not independent and they actually interacted with each other on

spontaneous brain activity, mainly characterized by significant
interaction in the right MPFC (i.e., orbital frontal gyrus, anterior
cingulate cortex and medial frontal gyrus) extending to the right
ventral striatum, bilateral cerebellar and visual-related regions
(i.e., lingual and calcarine gyrus and cuneus) as well as the left
temporal gyrus. Our results may imply the fact that IGD people
are more tended to get smoking addiction. It may also be possible
to predict that smoking addiction person may be more easily
to get internet addiction than healthy people. Our findings may
have the possibility to improve our understanding of the latent
neurological theory and mechanism by which several addictive
factors work together on human brain.
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