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Abstract
The presence ofwaves is proven to be ubiquitouswithin nocturnal stable boundary layers over
complex terrain, where turbulence is in a continuous, although weak, state of activity. The
typical approach based on Reynolds decomposition is unable to disaggregate waves from
turbulence contributions, thus hiding any information about the production/destruction of
turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition
approach to disaggregate the mean, wave, and turbulence contributions within near-surface
boundary-layer flows,with the aimof unveiling the role ofwavemotion as a source and/or sink
of turbulence kinetic and potential energies in the respective explicit budgets. By exploring
the balance between buoyancy (driving waves) and shear (driving turbulence), a simple
interpretation paradigm is introduced to distinguish two layers, namely the near-ground and
far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed
or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case
study to detail the role of wave motions on the kinetic and potential energy budgets within
the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are
calculated, relying on a variance–covariance analysis to further comprehend the balance of
energy production/destruction in each sublayer. With this investigation, we propose a simple
interpretation scheme to capture and interpret the extent of the complex interaction between
waves and turbulence in nocturnal stable boundary layers.
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1 Introduction

Nocturnal boundary layers are typically characterized by a stable thermal stratification and
by terrain-following flows. The typical shape of the flow streamlines depends on the terrain
complexity, i.e., the collection of heterogeneity responsible for the irregularity with respect
to flow over flat terrain. Different atmospheric phenomena can be referred to as typical
for a stable boundary layer (SBL) regardless of the terrain homogeneity. Among others,
it is common to observe non-turbulent submesoscale motions. The submesoscale motions
are a class of atmospheric phenomena whose spectral scale range between the micro-α scale
(order of hundredmetres) and themeso-γ scale (order of few thousandmetres) of theOrlanski
(1975) classification (Mahrt 2009).Thesemotions candisplayvarious structures such as steps,
ramps, pulses, waves, or complex patterns that cannot be approximated by a single shape
(Mahrt 2010; Belušić andMahrt 2012; Kang et al. 2014). Of particular interest, the wave-like
submesoscale motions are ubiquitous in the SBL. Following the classification proposed by
Sun et al. (2015b), the wave activity within the SBL can be summarized into two categories
according to the restoring force: the vorticity waves (driven by transverse vorticity), and the
buoyancy waves (governed by buoyant forces). Vorticity waves are typically associated with
Kelvin–Helmholtz instability, shear instability, and inflection points in the wind profile, and
their growth is governed by their own instability. Buoyancy waves are driven by vertical
displacement of the flow streamlines triggered by the flow interaction with either a physical
obstacle (such as topography or a roughness element) or disturbed density interfaces caused
by cold pools, density currents, turbulent patches, or convective systems.

In addition to non-turbulent motions, the atmospheric flows over complex terrain are
known to be in a weak but continuous state of turbulence due to the breakdown of critical
internal waves. This process is less effective over flat terrain, where turbulence remains highly
intermittent and patchy (Fernando 2010). The coexistence of turbulence and submesoscale
motions in the SBL has been inferred from the bimodal shape of the power spectra of the
velocity and temperature variances (Vickers and Mahrt 2006; Hiscox et al. 2010; Liang
et al. 2014; Stiperski et al. 2019). In the presence of turbulence and submesoscale motions,
the power spectra are typically subdivided into two ranges of frequencies by a spectral gap
ranging between 60 s and 450 s depending on the atmospheric stability, the geographical
location, and the terrain complexity. Considering an SBL, characteristic spectral-gap times
close to 60 s were found over vegetated canopies (Campos et al. 2009) and complex terrains
(Stiperski et al. 2019), while reaching 450 s under intense shear over arid deserts (Liang
et al. 2014). An estimation of the spectral-gap scale can be obtained from the inverse of the
Ozmidov scale, which is physically interpreted as the size of the largest eddy unaffected by
buoyancy (Mater et al. 2013); as such, it can be used to separate the buoyancy subrange from
the inertial subrange, and thus the submesoscale motions from the turbulence contributions.
A more direct method involves the estimation of a cut-off frequency on the observed spectra,
as directly evaluated from measurements.

The interaction between buoyancy and inertial subranges is the key to understand how
submesoscale motions drive turbulence and how turbulence influences the evolution of the
submesoscale motions (Staquet and Sommeria 2002). Laboratory experiments (Dohan and
Sutherland 2003) and numerical investigations (Renfrew 2004; Largeron et al. 2013) have
detected the formation of submesoscale waves in katabatic flows caused by turbulent jets
breaking into it. Sun et al. (2012), and more recently Cava et al. (2015, 2019), observed a
degradation of buoyancy waves close to the terrain caused by turbulence mixing due to shear.
Conversely, it is undeniable that submesoscale motions can cause sufficient shear for gener-
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ating local turbulence patches (Baklanov et al. 2011; Mahrt et al. 2012). The vorticity waves
can trigger intermittent turbulence driving turbulent events embedded in each transverse vor-
ticity roll (Sun et al. 2015b). The buoyancywaves can generate intermittent turbulence in time
and space after their breakdown (Einaudi et al. 1978; Sun et al. 2015a) and by periodically
reducing the near-surface Richardson number of very stable flows below its critical value
(Finnigan 1999).

Despite the discussion of the relationship between turbulence and waves in the literature,
open questions still remain regarding the nature of their interaction and the consequences on
flow structure, energy distribution, and mutual exchange. Although the research of an overall
mechanism explaining the turbulence–wave interaction is a fascinating topic, we can ask
ourselves how is the turbulence–wave interaction involved in the energy cascade? How are
the energy budgets modified as a consequence of this interaction? Few studies (e.g., Finnigan
and Einaudi 1981; Finnigan et al. 1984) have delved into the topic by adopting a triple-
decomposition approach (originally developed by Reynolds and Hussain 1972). Different
from the Reynolds decomposition, this approach enables separation of a periodic motion
from the small-scale turbulence and evaluation of their interaction. However, the triple-
decomposition approach envisages the existence of a single reference oscillator with constant
amplitude and frequency; as such, it provides limited application to field experiments, even
accounting for more recent improvements (e.g., Finnigan 1988). Nevertheless, this approach
still provides a useful conceptual framework of the complex wave–turbulence interaction,
thus proving a valid support for its interpretation.

In this paper, we adopt a practical approach based on different averaging time intervals
to disaggregate and evaluate the low-frequency wave activity and high-frequency turbulence
within a nocturnal SBL flow, proposing an interpretation scheme to capture the extents of the
wave–turbulence interaction. The case study is provided by real-world measurements of a
valley flow collected at Dugway Proving Ground (north-western Utah) during the Mountain
Terrain Atmospheric Modeling and Observations (MATERHORN) Program (Fernando et al.
2015).

Below, Sect. 2 describes the theoretical framework adopted to compute the energy budgets
in the presence of waves. Section 3 describes the measurement site, the equipment, the data
processing, and the methods used to evaluate the wave activity and turbulence contributions.
Section 4 is devoted to the discussion of the potency of the wave contributions in the near-
surface budgets. Finally, Sect. 5 draws the conclusions.

2 Energy Budgets in the Presence of Waves

2.1 The Theoretical Frame of the Triple Decomposition

The typical approach for dealingwith atmospheric turbulence prescribes theReynolds decom-
position to separate the contribution of turbulence from the mean flow. As known, this
decomposition states that a state variable A characterizing a flow in the atmospheric boundary
layer can be split into an average value and a fluctuation whose mean is zero. The average
value is associated with the mean flow, while the fluctuation accounts for the turbulence, rep-
resenting all temporal and spatial scales in ranges dependent on the averaging interval. The
Reynolds decomposition involves the whole active part of the spectra, and thus it is unable
to disaggregate wave from turbulence contributions. In other words, wave motions and tur-
bulence can evolve on different characteristic times that a double decomposition is unable to
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38 F. Barbano et al.

discern. The use of a triple decomposition would allow the elucidation of the effects of a spe-
cific periodic motion and that of turbulence in the budget equations. Specifically, Reynolds
and Hussain (1972), Finnigan and Einaudi (1981), and Finnigan et al. (1984) propose and use
a triple decomposition to be applied to the velocity, temperature, and pressure fields in order
to disaggregate a specific periodic motion from turbulence. The characterization of the state
variables uses two different averages: a time average identified by brackets 〈 〉 and a phase
average (i.e., the average over a large ensemble of points having the same phase with respect
to a reference oscillator) identified by the overline symbol −. Therefore, in the presence of a
wave, the state variable A becomes A = 〈A〉 + ã + a′; as a consequence, the fluctuation is
a = ã + a′ where a′ refers to the small-scale turbulence and ã to the wave. To characterize
these new contributions, Reynolds and Hussain (1972) used the phase average to obtain a
second average contribution that reads a = 〈A〉 + ã. As the fluctuation includes only wave
and small-scale turbulence, the phase average rejects this last contribution representing the
organized motions from the observation. As defined for the Reynolds decomposition, the
triple-decomposed quantities undergo different basic properties, as described by Reynolds
and Hussain (1972) and Finnigan et al. (1984). Defining B = 〈B〉 + b̃ + b′, the triple-
decomposition properties read:

i . a′ = 0, i i . 〈ã〉 = 0, i i i . 〈a′〉 = 0,
iv. 〈〈A〉B〉 = 〈A〉〈B〉, v. ãB = ãB, vi . 〈A〉B = 〈A〉B,

vi i . 〈A〉 = 〈A〉, vi i i . 〈A〉 = 〈A〉, i x . 〈ãb′〉 = 〈ãb′〉 = 0.

Conditions i. and iii. state the complete random nature of the small-scale turbulence, while
the wave part has just a zero time average (condition ii.) to maintain as null the time-averaged
fluctuation.Conditions iv. to viii. state the invariance of themean-flowcontribution to time and
phase averages, as well as for the wave part to the sole phase average. The last condition (ix.)
asserts the statistical independence of the wave from the small-scale turbulence (Reynolds
and Hussain 1972).

2.2 The Practical Frame of the Double Time Average

The formal theory of the Reynolds decomposition suggests the use of ensemble averages to
separate the fluctuations from the mean. Practical application to field measurements often
uses a time average due to the limitation of the instrumental apparati, choosing an averaging
time interval long enough to include all the possible realizations. For the current investi-
gation, we adopt this last formulation using different averaging time intervals in order to
disaggregate the fluctuations and filter the wave from the small-scale turbulence. Using a
single averaging interval prevents the separation between wave and small-scale turbulence
because conventional averaging times (as 5 or 30 min) include the contribution of the waves
(Smedman 1988).

The identification of the averaging intervals is described as follows. We use a conven-
tional 30-min average to define the quantities related to the mean flow 〈A〉. As suggested by
Smedman (1988), the fluctuation resulting from a = A − 〈A〉 (as resulting from a Reynolds
decomposition) are indeed the sum of wave and turbulence contributions. To filter the wave,
a second averaging interval is identified from the power spectra. The presence of a spectral
gap in the power spectra is a common feature of the equilibrium between wave and small-
scale turbulence. The characteristic frequency of the spectral gap is used as the cutting time
between wave and small-scale turbulence, leading to the identification of the small-scale
turbulence averaging interval as we discuss in Sect. 3.2. Therefore, we apply a 2-min average
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to the measurements in order to filter the wave from the small-scale turbulence, followed
by a second average of the obtained 15 values to get the 30-min average of the small-scale
turbulent quantities 〈a′b′〉. The 2-min average used to filter the waves is in line with the
spectral-gap time scales within nocturnal SBLs introduced in Sect. 1. Finally, by taking
the difference between the total fluctuations 〈a〉 obtained from the Reynolds decomposition
and the small-scale turbulence 〈a′〉 from the double time average, we have an estimation of
the contribution associated with the wave activity 〈ã〉. Although less formal, this practical
approach is more suitable for field-experiment applications as it releases the evaluation of
the wave activity from the specific wave type, which makes it preferable in this context.

2.3 Kinetic and Potential Energy Budgets in the Presence ofWaves

The triple decomposition described in Sect. 2.1 is invoked in the computation of the energy
budgets. We start from the governing equations in Eq. 1 (in order, continuity, momentum,
and potential temperature equation)

∂Ui

∂xi
= 0, (1a)

DUi

Dt
= − ∂P

∂xi
+ β�δi3 + ν

∂2Ui

∂x j∂x j
, (1b)

D�

Dt
= ν�

∂2�

∂x j∂x j
, (1c)

to derive the kinetic energy and potential-temperature variance. Here,Ui is the wind velocity
with components in the directions xi , t is time, P the pressure, � the potential temperature,
ν and ν� the kinematic viscosity and thermal diffusivity, δi3 the Kronecker delta, and β =
g/�0 (with g the acceleration due to gravity and �0 the reference potential temperature
at the surface). The triple decomposition is applied to the velocity, pressure and potential
temperature so that the variables

Ui = 〈Ui 〉 + ũi + u′
i ,

P = 〈P〉 + p̃ + p′, (2a)

and

� = 〈�〉 + �̃ + �′, (2b)

are then substituted into Eq. 1 to separate the contributions. The equations for the first-
order moments of the wind velocity in Eq. 2a and the potential temperature in Eq. 2b are
derived for the mean, wave, and small-scale turbulence contributions separately, following
the decomposition properties in Sect. 2.1. The equations for the kinetic energies are then
obtained by multiplying the resulting first-order moment equations for the mean, wave, and
small-scale turbulence contributions respectively by 〈Uk〉, ũk and u′

k , and then taking the
phase and the time averages of the second-order moment equation, considering i = k. A
similar procedure is applied to the equations for the potential temperature to derive that of
the potential-temperature variances and ultimately the potential energies (see Appendix 1 for
the detailed derivation).
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The equation for the wave mean kinetic energy reads

1

2

D〈ũi ũi 〉
Dt

︸ ︷︷ ︸

I

= − 1

2

∂

∂x j
〈ũi ũi ũ j 〉

︸ ︷︷ ︸

II

− ∂

∂xi
〈 p̃ũi 〉

︸ ︷︷ ︸

III

−〈ũ j ũi 〉∂〈Ui 〉
∂x j

︸ ︷︷ ︸

IV

+β〈ũi �̃〉δi3
︸ ︷︷ ︸

V

− ∂

∂x j

〈

ũi u′
j u

′
i

〉

︸ ︷︷ ︸

VI

+
〈

u′
j u

′
i
∂ ũi
∂x j

〉

︸ ︷︷ ︸

VII

, (3)

while the equation for the small-scale mean turbulence kinetic energy (TKE) is

1

2

D〈u′
i u

′
i 〉

Dt
︸ ︷︷ ︸

I

= − 1

2

∂

∂x j
〈u′

i u
′
i u

′
j 〉

︸ ︷︷ ︸

II

− ∂

∂xi
〈p′u′

i 〉
︸ ︷︷ ︸

III

−〈u′
j u

′
i 〉

∂〈Ui 〉
∂x j

︸ ︷︷ ︸

IV

+β〈u′
i�

′〉δi3
︸ ︷︷ ︸

V

− ∂

∂x j

〈

ũ j u′
i u

′
i

〉

︸ ︷︷ ︸

VI

−
〈

u′
j u

′
i
∂ ũi
∂x j

〉

︸ ︷︷ ︸

VII

− ν

〈

∂u′
i

∂x j

∂u′
i

∂x j

〉

︸ ︷︷ ︸

VIII

. (4)

Both equations show a total derivative (terms I), transport (terms II), pressure covariance
divergence (terms III), shear production (terms IV), and buoyancy (termsV) of kinetic energy
associated with the wave (Eq. 3) and the small-scale turbulence (Eq. 4). The viscous term
associated with the wave kinetic energy is neglected in Eq. 3, assuming a large Reynolds
number, while the TKE dissipation εT is directly computed as in termVIII of Eq. 4. Terms VI
andVII in both equations couple the wave and small-scale turbulence contributions as mutual
interactions between the processes. Specifically, terms VII appear with opposite signs in the
wave and small-scale turbulence equations, similarly to the shear production associated to
the mean flow. Therefore, terms VII can be interpreted as wave-shear production,

Π =
〈

u′
j u

′
i
∂ ũi
∂x j

〉

, (5)

representing the production of small-scale turbulence energy in phase with the wave. Fol-
lowing Finnigan and Einaudi (1981), Π < 0 away from the surface, meaning that the wave
is feeding the small-scale turbulence. Therefore, we may expect Π ≈ 0 at the surface with
negligible wave–turbulence interaction.

Term VI in Eq. 3,

ΠW = − ∂

∂x j

〈

ũi u′
j u

′
i

〉

, (6)

represents the transport of small-scale turbulence energy in phase with the wave. Conversely,
term VI in Eq. 4

ΠT = ∂

∂x j

〈

ũ j u′
i u

′
i

〉

(7)

can be interpreted as the advection of the wave-like part of the small-scale TKE in phase with
the wave (Finnigan and Einaudi 1981). While the value of ΠT is typically close to zero, the
single-layer local value of ΠW < 0 (Finnigan and Einaudi 1981). It is worth mentioning that
both termsΠT andΠW are divergences of third-ordermoments accounting for the interaction
betweenwave and small-scale turbulence. Their local effects can not be neglected in principle,
and we will retain both in the following analysis. Recalling that the total fluctuation part EK
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of the kinetic energy is the sum of the wave EW and the small-scale turbulence ET , the
fluctuation energy can be written as EK = EW + ET or 1

2uiui = 1
2 ũi ũi + 1

2u
′
i u

′
i . Thus, the

equation for the kinetic energy of the total fluctuation is obtained summing Eqs. 3 and 4 as

1

2

D〈uiui 〉
Dt

︸ ︷︷ ︸

I

+ ∂

∂x j

[〈

ũ j

(

ũi ũi
2

+ p̃

)〉

+
〈

u′
j

(

u′
i u

′
i

2
+ p′

)〉]

︸ ︷︷ ︸

II

= −〈u jui 〉∂Ui

∂x j
︸ ︷︷ ︸

III

+β〈�ui 〉δi3
︸ ︷︷ ︸

VI

− εT
︸︷︷︸

V

+ΠW − ΠT
︸ ︷︷ ︸

χK

, (8)

where χK describes the mutual interactions between wave and small-scale turbulence. The
fluctuation budget in Eq. 8 is the counterpart, accounting for waves and turbulence, of the
one obtained from the Reynolds decomposition, with the single terms expressing the same
meaning (I is the total derivative, II the transport and pressure divergence, III production,
IV buoyancy, V dissipation) with the addition of the term describing the wave–turbulence
interactions. Quantities between square brackets in term II are the third-order moments of
the wave and small-scale turbulence fluctuations, taken independently of each other. The
TKE dissipation εT is associated with the smaller scales of motion and thus with the inertial
subrange (Grachev et al. 2016); the χK term accounts for the spectral flux of energy due
to the exchanges among scales. Following the Reynolds-decomposition approach, there is
a continuous production of turbulence transferred from the mean shear (and buoyancy) that
is dissipated into internal energy (Monin and Yaglom 1971). In the presence of a wave, the
oscillatory motion distorts the turbulent field while subtracting energy from the mean flow,
altering the energy budgets of the small-scale turbulence.

Similar to the kinetic energy computation, the equations for the mean potential-
temperature variance associated with the wave reads

1

2

D〈�̃2〉
Dt

︸ ︷︷ ︸

I

+ 1

2

∂〈ũ j �̃
2〉

∂x j
︸ ︷︷ ︸

II

= −〈�̃ũ j 〉∂〈�〉
∂x j

︸ ︷︷ ︸

III

− ∂

∂x j

〈

�̃u′
j�

′
〉

︸ ︷︷ ︸

IV

+
〈

u′
j�

′ ∂

∂x j
�̃

〉

︸ ︷︷ ︸

V

, (9)

while the small-scale turbulence mean potential-temperature variance equation reads

1

2

D〈�′2〉
Dt

︸ ︷︷ ︸

I

+ 1

2

∂

∂x j
〈u′

j�
′2〉

︸ ︷︷ ︸

II

= −〈�′u′
j 〉

∂〈�〉
∂x j

︸ ︷︷ ︸

III

− ∂

∂x j

〈

ũ j�′2
〉

︸ ︷︷ ︸

IV

−
〈

�′u′
j
∂�̃

∂x j

〉

︸ ︷︷ ︸

V

− ν�

〈

∂�′

∂xk

∂�′

∂xk

〉

︸ ︷︷ ︸

VI

. (10)

It appears evident that even in the absence of the small-scale turbulence heat flux, the waves
can feed the temperature variance of the small-scale turbulence.Again, both equations depend
on the total derivative (terms I), transport (terms II), and transfer from the mean flow (terms
III) of the potential-temperature variance associated with the wave (Eq. 9) and the small-
scale turbulence (Eq. 10), respectively. The viscosity associated with the wave is neglected,
while the turbulent potential-temperature dissipation ε� is directly computed as term VI
of Eq. 10. Once again, terms IV and V in both equations couple the wave with the small-
scale turbulence, describing exchange processes between them. Terms V appear with an
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opposite sign in the equations, representing the small-scale turbulence potential-temperature
productions subtracted from the wave. Defining these terms as

Π� =
〈

u′
j�

′ ∂�̃

∂x j

〉

, (11)

they represent an exchange of small-scale turbulence energy in phase with the wave. Term
IV in Eq. 9 can be defined as

Π�W = − ∂

∂x j

〈

�̃u′
j�

′
〉

, (12)

representing the transport of small-scale turbulence potential-temperature variance in phase
with the wave. Term IV in Eq. 10,

Π�T = ∂

∂x j

〈

ũ j�′2
〉

, (13)

can be interpreted as advection of the wave-like potential-temperature variance in phase with
the wave (Finnigan and Einaudi 1981). The total fluctuation of the potential-temperature
variance results from the sum of the wave and the small-scale turbulence contributions, so
that �2 = �̃2 + �′2. As such, the equation for the total variance of potential temperature is
obtained summing Eqs. 9 and 10 as

1

2

D〈�2〉
Dt

︸ ︷︷ ︸

I

+ 1

2

∂

∂x j

[

〈ũ j �̃
2〉 + 〈u′

j�
′2〉

]

︸ ︷︷ ︸

II

= −〈�u j 〉∂〈�〉
∂x j

︸ ︷︷ ︸

III

− ε�
︸︷︷︸

IV

+Π�W − Π�T
︸ ︷︷ ︸

χ�

. (14)

The interpretation of the various terms of Eq. 14 is analogous to the one given for the
kinetic energy budget Eq. 8: again, the interaction between wave and small-scale turbulence
is described by χ�, which represents the potential-temperature variance spectral flux.

The simplified Eq. 14 can easily compute the potential energy of the total fluctuations by
multiplying each term byβ(d〈�〉/dz)−1. The result envisages the energy given in potential to
the fluid particle, which is vertically displaced by means of a potential-temperature variation
(Bolgiano 1962; Tampieri 2017). Defining the potential energy of fluctuations EPK and the
potential-energy dissipation εp as

EPK = 1

2
β

(

d〈�〉
dz

)−1

〈�2〉 and εp = β

(

d〈�〉
dz

)−1

ε�, (15)

respectively (Zilitinkevich et al. 2013), Eq. 14 can be rewritten as

DEPK

Dt
+ 1

2
β
d

dz

[

〈ũ j �̃
2〉 + 〈u′

j�
′2〉

]
(

d〈�〉
dz

)−1

= −β〈u j�〉

−εp + β

(

d〈�〉
dz

)−1

χ�. (16)

Note again that the potential energy of fluctuations can be rewritten as the sum of wave EPW

and small-scale turbulence EPT , so that EPK = EPW + EPT .
In conclusion, the triple decomposition has allowed us to address the explicit contributions

and interactions between waves and small-scale turbulence within the energy budgets.

123



Interaction Between Waves and Turbulence... 43

2.4 The Energy Budgets at the Surface: A Paradigm of the Stable Layer

The theoretical framework introduced so far has potential application in atmospheric turbulent
flows in the presence of waves. A typical environment is represented by the nocturnal SBL,
where waves have been often observed. A typical approach to study turbulence and waves
in real environments is the measurement of the fundamental variables through ground-based
instrumentation, mostly fast-sampling sensors mounted on tens-of-metres high towers. This
approach formally details the boundary layer and the effect of the terrain on the atmospheric
processes. The interaction with the terrain has a well-known impact on the flow caused by the
increasing friction. Given that stability is a typical factor regulating the wave intensity (Monti
et al. 2002), the approaching terrain is observed to reduce the wave intensity as well (Cava
et al. 2019). Moreover, as shear increases approaching the ground, we can expect a smaller
influence of the wave compared to the small-scale turbulence. A simplified evaluation based
on order of magnitudes may help to visualize this concept.

Let us assume that the kinetic energy of the small-scale turbulence ET is mainly produced
by the shear and modulated by buoyancy, while neglecting the turbulent transport under the
assumption that turbulence and non-turbulent motions are close to local equilibrium (see
Sect. 3.4). In very simplified form, the budget equation can be written as a balance between
shear production, buoyancy and dissipation ε as

τ
dU

dz

(

1 + β〈w�〉
τdU/dz

)

− ε = 0, (17)

where τ = (〈wu〉2 + 〈wv〉2)1/2 is the vertical stress, 〈w�〉 is the kinematic heat flux, andU
is the wind speed. Under weakly or moderately stable conditions, dissipation can be rewritten
according to Basu et al. (2021) as

ε = αB ET
dU

dz
, (18)

withαB = 0.23.Note that the absolute value of dU/dz represents the inverse of the turbulence
relaxation time (dU/dz ∝ EK /ε, see for example Zilitinkevich et al. 2013) and, in the
framework of this parametrization must be considered positive by definition. This ensures
we avoid having a non-physical negative dissipation. Assuming a flux–gradient relationship
for τ = KMdU/dz and 〈w�〉 = −P−1

R KMd�/dz (KM is the eddy viscosity and PR the
Prandtl number), introducing the gradient Richardson number

Ri = βd�/dz

(dU/dz)2
(19)

and using Eqs. 17 and 18 can be used to make explicit the small-scale TKE as

ET = τ

αB

(

1 − P−1
R Ri

)

. (20)

Note that Eq. 20 denotes a local relationship which holds even if τ and Ri are z-dependent.
Under weakly stable conditions, the Prandtl number is a constant (Zilitinkevich et al. 2013),

and the ratio ET /τ = 1/αB

(

1 − P−1
R Ri

)

= f (Ri) is a function of the Richardson number

only. It is worth noting that under neutral stratification (i.e., Ri = 0), ET /τ = 1/αB in
line with results from Monin and Yaglom (1971). Following Zilitinkevich et al. (2013),
this last relation remains approximately true for Ri ≤ 0.1. On the other hand, buoyancy
waves are typically observed under stable conditions (especially over sloping terrain), where
buoyancy waves are initiated by vertical displacement of the flow streamlines resulting from
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Fig. 1 Paradigm of turbulent flows in nocturnal SBLs in the presence of waves. The kinetic EK and potential
EPK energies generated within a nocturnal flow (a) involve different contributions of wave and small-scale
turbulence in the near-ground (NGS) and far-ground (FGS) sublayers (b), with the latter resulting in the
addition of the Π terms to the dissipations as a result of the wave and small-scale turbulence interaction (c).
The sketch encompasses the example of a nocturnal low-level jet directed along the valley axis, identified with
green arrows in (a), under stable stratification

the interaction with either a physical obstacle (such as topography) or disturbed density
interfaces caused by cold pools, density currents, turbulent patches, or convective systems
among others (Sun et al. 2015b). For buoyancy waves, an estimation of EW is given by Gill
(1982) as

EW = N 2H2

2
, (21)

where N is the Brunt–Väisälä frequency and H is the length scale of the streamline vertical
displacement. By taking the ratio between Eq. 20 and Eq. 21, we obtain

RE
T ,W = ET

EW
= 2

τ f (Ri)

N 2H2 , (22)

where RE
T ,W is the ratio between the kinetic energies of small-scale turbulence and waves.

Below, this ratio is adopted for different quantities and contributions, so that Rx
y1,y2 is the ratio

between the quantities xy1/xy2 , with y1 and y2 as K , T , and W , while x can be E , EP , τ , or
〈w�〉. Equation 22 describes a local relationship; herein, the energy ratio, the vertical stress,
the Richardson number and the Brunt–Väisälä frequency are all functions of the elevation
z. Equation 22 shows that the ratio between the kinetic energy of the small-scale turbulence
and the kinetic energy of the waves increases as the shear increases, and decreases with
increasing stability. As such, while with decreasing stability we expect a decreasing effect
of the waves, this brief discussion concludes that we can observe a progressively smaller
influence of waves on the energy budget approaching the ground where the shear is expected
to increase and the wave energy is expected to be absorbed/dissipated or reflected.

Following these findings, we asked ourselves whether a separation may exist, dividing
the atmospheric depth close to the surface into near and far sublayers with respect to the
ground. Our question finds an answer in the stable-layer paradigm represented in Fig. 1.
As a stably stratified temperature inversion layer grows together with a stratified flow at the
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surface (usually developing into a low-level jet even on complex terrain), waves and small-
scale turbulence develop from different contributions (buoyancy and shear respectively) and
interact at the submesoscale. As a consequence, two sublayers can develop at the surface
when wave activity is observed in a turbulent flow. The near-ground sublayer (NGS) is the
atmospheric depth where the wave impact is smaller (or even negligible) than the small-scale
turbulence and the double-decomposition approach satisfies the energy budgets. Specifically,
the turbulence energy production is driven by the mean flow and dissipation results from the
inertial subrange. Conversely, the far-ground sublayer (FGS) develops above the NGS, where
waves and turbulence both contribute to the energy balances, and the triple-decomposition
approach is preferred. The turbulence energy production is driven by both the mean flow
and waves, and the true dissipation (from the inertial subrange) is enhanced by the energy
exchanges with the waves (Π’s terms in Fig. 1). As a result, the waves can feed or be fed by
turbulence.

An estimation of the separation height zc can be derived from Eq. 17 under well-defined
assumptions. If the vertical stress τ is independent from z, it can be reasonably assumed
as equal to the square of the friction velocity u∗. Accordingly, the wind profile takes the
log-linear form

dU

dz
= u∗

κz

(

1 + α
z

�

)

, (23)

where κ = 0.37 is the von Kármán constant, � is the Obukhov length, and α = 4.7. Substi-
tuting τ = u2∗ and Eq. 23 into the term between round brackets of Eq. 17, we obtain

(

1 + β〈w�〉
τdU/dz

)

= 1 − z

�

(

1 + α
z

�

)−1
. (24)

Thus, Eq. 17 with Eqs. 24 and 18 reads

u2∗
[

1 − z

�

(

1 + α
z

�

)−1
]

− αB ET = 0, (25)

which gives a relation where the small-scale TKE changes with the elevation only

ET = u2∗
αB

[

1 − z

�

(

1 + α
z

�

)−1
]

. (26)

Similarly, by assuming the investigated atmospheric layer has a constant stability, the Brunt–
Väisälä frequency can be approximated by its constant value in this layer. Taking again the
ratio between this latest version of the small-scale TKE (Eq. 26) and the wave kinetic energy,
we get

RE
T ,W = 2

u2∗
αB

[

1 − z
�

(

1 + α z
�

)−1
]

H2N 2 . (27)

Since the separation height zc determines the borderline between the NGS and FGS, it also
identifies where the kinetic energy of the small-scale turbulence equals that of the wave.
Therefore, RE

T ,W (zc) = 1. Solving Eq. 27 for z = zc, we can have an estimation of the
separation height in the form

zc = �

(

2
u2∗
αB

− H2N 2
) (

αN 2H2 + 2
u2∗
αB

)−1

. (28)
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When the observation height is below the theoretical value (z < zc), RE
T ,W > 1 and the

small-scale turbulence dominates over the wave contribution; when z > zc, RE
T ,W < 1 and

the wave contribution becomes important. The evaluation of the separation height can also
be performed a posteriori from the measurements of the kinetic energies, by visualizing the
elevation where ET = EW .

Finally, by solving Eq. 22 for z = zc, we can estimate the streamline vertical displacement
H as

H =
(

2 f (Ri(zc))τ (zc)

N (zc)2

)1/2

, (29)

and we can argue on the possible form and nature of the wave motions we are dealing with.

3 Data andMethods

3.1 A Case Study from the Sagebrush Field Site

To evaluate the wave–turbulence reciprocal interactions, we selected a specific dataset from
the Dugway Valley testbed within the MATERHORN Program (Fernando et al. 2015). Mea-
surements are collected from the flux tower and the tethered balloon located at the Sagebrush
field site, located within the valley floor at latitude 40.121360, longitude −113.129070, and
altitude 1316 m (Fig. 2) during the night between the 11–12May 2013. The tethered-balloon
(TTS111, Väisälä, Helsinki, Finland; Fernando 2017) soundings allow the nocturnal-flow
profiling within a 400-m atmospheric layer, providing measurements of the wind speed and
air temperature (among others) with a vertical resolution of 1 m. The 20-m flux tower (Pace
et al. 2017) allows to delve into the near-surface interactions, detailing the nocturnal flows
characteristics through five equipped levels (0.5 m, 2 m, 5 m, 10 m, and 20 m) of sonic
anemometers (81000, Young Company, Traverse City, U.S.) sampling at 20 Hz, and temper-
ature and relative-humidity probes (HMP45C-L, Campbell Scientific, Logan, U.S.) sampling
at 1 Hz. Below, we refer to the atmospheric depth between 0.5 m and 20 m as the observed
layer.

The collected data have been preliminarily processed to check the dataset against possible
instrumental malfunctioning, non-physical data saving, or instrumental fails. Specifically, a
wind velocity value is considered reliable if the measured components range within ±20 m
s−1; a range of ±40 ◦C is applied to the temperature measurements. The sonic-anemometer
measurements are further despiked using a data-removal procedure (Hejstrup 1993) applied
to every 30-min data interval (Vickers and Mahrt 1997). This procedure assumes that each
interval follows a Gaussian distribution of independent data characterized by a mean (x) and
a standard deviation (σ ). Values above the threshold Cσ = 3.5σ (Vickers and Mahrt 1997;
Schmid et al. 2000) are marked as spikes and replaced by the linearly interpolated value
within the same 30-min interval. The despiked wind components are then double-rotated to
align the wind vector to the mean streamline direction (McMillen 1988). Finally, tethered-
balloon profiles are smoothed with a 10-m running average to filter the small fluctuations in
the signal.

Notwithstanding the information we intend to extrapolate from the data, a final 30-min
average is applied to the flux-tower measurements, unless specified otherwise. A more
detailed description of the averaging procedures complying with the scope of the computa-
tions is given in Sect. 3.2. When the investigated quantity is the wind direction, the average is
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Fig. 2 a Sagebrush measurement site (purple star) within the Dugway Valley testbed (Source: https://www.
google.com/maps/). b Tethered-balloon and c flux-tower view at the Sagebrush site (photographs source:
University of Utah 2017)

replaced by the mode over the same temporal or spatial intervals. For the whole investigation,
UTC is used, but it is worth mentioning the local time is MDT = UTC - 6 h.

The period 11–12 May 2013 was classified as quiescent (i.e., wind speed less than 5
ms−1 at 700 hPa; Fernando et al. 2015), and no-synoptic forcing is expected within the
valley. During the night, the development of a well-stratified valley flow is observed starting
at 0300UTC, resulting in a low-level jet appearing around0500UTCandpropagating towards
the down-valley direction (north-west along the valley axis), with the jet peak reaching its
maximum speed at 50m around 1100UTC and disappearing almost completely at 1400UTC
(Fig. 3a). The evolution of the low-level jet (i.e., the intensification of the vertical wind-speed
gradient, the deepening of the atmospheric layer of the jet peak and the increasing maximum
speed) follows the intensification and growth of the temperature inversion layer (Fig. 3b).

Fig. 3 Contour plot of the wind speed (a) and potential temperature (b) linearly interpolated from the tethered-
balloon soundings (solid black lines). Dashed black lines identify sunset and sunrise
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Fig. 4 5-min-averaged wind speedU (a), potential temperature � (b) and wind directionWD evolution from
the sonic-anemometer data of the flux-tower (light blue at 0.5 m, red at 2 m, yellow at 5 m, purple at 10 m and
green at 20 m). Night is shaded in grey

Beneath the jet peak, oscillatorymotions are observed in the wind-speed time series (Fig. 4a),
and interpreted as the result of wave activity at the surface. As a local fluctuation of the mean
flow, this wave activity can be arguably associated with buoyancy waves (as suggested by
Serafin et al. 2018). A verification is provided by Brogno et al. (2021), where an inertial-
gravity wave was observed within the same night here investigated. The typical periods TW
of these waves are retrieved from Fig. 4a (as suggested by Sun et al. 2015b) by computing
the time differences between each crest and trough observed in the wind-speed time series,
and then doubling these values. As a result, these periods are in the range of 103 s ≤ TW ≤
3×103 s, suggesting the wave activity can be either attributed to inertial-gravity and/or low-
frequency internal waves (similar to those observed by Monti et al. 2002). This wave activity
is likely caused by the complex interaction between the wind field and the local roughness of
the valley, and/or by the entrainment of surface currents within the valley. An example of the
second formation mechanism is observed at 0730 UTC and 0930 UTC, when the entrainment
of a lateral flow close to the surface (only evident within the first 10 m above the ground,
Fig. 4c) causes a sudden decrease of the wind speed (Fig. 4a), which propagates upwards as
the valley flow has to readjust to the perturbation. This causes a sudden displacement of the
flow streamline triggering the formation of the wave (Brogno et al. 2021). Overall, the wave
activity seems not to affect the thermal aspects, as the temperature evolves in an unperturbed
thermal inversion lasting through the night (Fig. 4b).

Given this insight on the nature of the observed wave activity, we remark that we are not
explicitly computing the wave terms obtained with the triple decomposition, but we used
a practical frame to evaluate the wave activity as a non-turbulent perturbation field whose
reference time scale is smaller than that of the mean flow. Therefore, the present investigation
should be independent from the wave type or characteristics, as long as the waves perturb
(and are perturbed by) the turbulence behaviour.

3.2 Evaluation ofWave and Small-Scale Turbulence Contributions

The research of wave-like motions in a time-dependent dataset has been addressed by using
specific filters to disaggregate the wave contribution from the mean and turbulence fields.
A simple method suggests to use different averaging windows to evaluate an investigated
quantity, in order to isolate a specific contribution. As an example, the 30-min average applied
to the current nocturnal data allows filtering of the large-scale variability, as the mean flow
is close to stationary within this time interval. The same approach is herein used to filter the
wave andmeanmotions from the time series, retaining the small-scale turbulence contribution
alone. A certain wave activity has already been discussed in Sect. 3.1 and associated with
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characteristic wave periods in the range 103 s≤ TW ≤ 3×103 s. Here we seek a wave-filtering
averaging interval within the power spectral variances of the velocity components uu, vv,
ww, and potential temperature �2, and the vertical covariances wu, wv, and w�. Power
spectra and cospectra are computed from sonic-anemometer measurements at each flux-
tower level using the fast-Fourier transform with a hamming window 0500–1200 UTC with
no overlap, and their dimensionless forms are plotted as a function of the non-dimensional
frequency n = f zU−1. The nocturnal subperiod 0500–1200 UTC is chosen throughout the
following investigations to avoid transitional dynamics typical at sunrise and sunset (those
occurring at 0233 UTC and 1214 UTC respectively), and during the initial growth of the
inversion layer between 0233 UTC and 0500 UTC when the valley-flow dynamic is likely
to superimpose the wave and small-scale turbulence activities. The non-dimensional form
of the spectra allows a direct comparison with the literature (e.g., Kaimal and Finnigan
1994), thus enabling the evaluation of the frequency range exposed to the wave activity.
Considering Nx a general normalizing factor and Sx either a variance or a covariance spectra
of x = uu, vv,ww,�2, τ, w�, the reference spectra read

f Sx ( f )

Nx
= Cxn

(1 + Dxn)γ
, (30)

where the values ofCx and Dx are taken from theKansas spectra (Kaimal and Finnigan 1994)
and γ changes according to the analyzed quantity x , with the exception of the potential-
temperature variance for which only the inertial-subrange tendency is given in Kaimal and
Finnigan (1994). Therefore, the values ofC�2 = 28.2 and D�2 = 12.3 are obtained by fitting
themeasured spectrawith Eq. 30 and forcing the fit to follow the expected tendencyCS

�2n
−2/3

within the inertial subrange. The specific normalizing factors depend on the analyzed quantity.
For the velocity-component variances, Nuu,vv,ww = u2∗φ

2/3
ε where φε = κzεT /u3∗ is the

dimensionless form of the dissipation εT . Similarly for the potential-temperature variance,
N�2 = �2∗φNφ

−1/3
ε where �∗ = −w�/u∗ and φN = κzε�/u∗�2∗ is the dimensionless

form of the potential-temperature dissipation ε�. Note that the values of both εT and ε� are
obtained from the inertial subrange of the along-stream and potential-temperature variance
spectra, as described in Sect. 3.3. Finally, for the cospectra of τ and w� the normalizing
factors reduce to Nτ = u2∗ and Nw� = u∗�∗, respectively. The measured variance and
covariance spectra are shown in Figs. 5 and 6 respectively, alongwith the respective reference
from Eq. 30. Since the analysis of the time series has shown that the characteristic period
of the wave activity is likely changing within the 103 s ≤ TW ≤ 3×103 s range, we did
not expect an individual spectral peak. Nevertheless, local spectral peaks can be observed
at f ≈ 10−3 s−1 in the horizontal-velocity variances and both covariances at 10 m and 20
m, where the wave activity is expected to be more evident. The presence of a certain wave
activity is corroborated by behaviour of the observed spectra with respect to the expected
ones. Except for the vertical velocity component, two frequency ranges can be recognized.
For n ≥ 10−2, the spectra follow the theoretical ones, revealing the presence of an inertial
subrange in the data and suggesting the turbulent nature of the high frequencies. For n <

10−2, the spectral levels are larger than expected, suggesting the presence of energetic non-
turbulencewavemotions. As oftentimes observed in the literature (e.g., Schiavon et al. 2019),
the vertical velocity component is marginally modified by the wave activity. The division
between low and high frequencies is emphasized by a spectral gap dividing wave and small-
scale contributions between f = 6 × 10−3 s−1 and f = 2 × 10−2 s−1 (corresponding to
periods in the range 50 ÷ 167 s), with a characteristic cutting frequency at 1 ÷ 2×10−2

s−1 (50 ÷ 100 s). It is worth mentioning that the evidence of a spectral gap persists within
smaller intervals (i.e., each 30-min window the night can be divided into), suggesting the
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Fig. 5 Non-dimensional spectra of uu (a), vv (b), ww (c), and �2 (d) as a function of the non-dimensional
frequency for all tower levels (0.5 m in blue, 2 m in red, 5 m in yellow, 10 in purple, and 20 m in green). Black
dashed lines represent the reference spectra from Eq. 30. The green vertical bands describe the variability
within the 20-m layer of the mean value of the Ozmidov scale through the night

Fig. 6 Non-dimensional spectra of τ (a) and w� (b) as a function of the non-dimensional frequency for all
tower levels (0.5 m in blue, 2 m in red, 5 m in yellow, 10 in purple, and 20 m in green). Black dashed lines
represent the reference spectra from Eq. 30. The green vertical bands describe the variability within the 20-m
layer of the mean value of the Ozmidov scale through the night

low–high frequency separation robustness against typical nocturnal processes. The location
of the spectral gap is also in agreement with the Ozmidov frequency fOz ≈ 8.8×10−3 s−1

computed from measurements as
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fOz =
(

ε
1/2
T

N 3/2

1

|U|

)−1

, (31)

and averaged over the 0500–1200 UTC time period. The reciprocal time scale TOz = 114 s
suggests that the time scale of the spectral gap is close to 2 min. Note that the Ozmidov fre-
quency is obtained from theOzmidovwavenumber following the Taylor hypothesis on frozen
turbulence. The Ozmidov frequency, together with the evidence of a spectral gap, marks the
discontinuity in a bimodal contribution to the flow energy, associated with wave motions
(low frequencies) and small-scale turbulence (high frequencies). The use of the reverse of
the spectral-gap frequency is a valid option to filter the wave contribution without losing the
turbulence one (Smedman 1988), strengthened by the superposition with the Ozmidov scale,
which is sometimes suggested as the cut-off frequency even in absence of a spectral gap (as
reported by Finnigan 1988). Therefore, we adopted a preliminary 2-min-averaging interval to
filter the wave contribution, followed by a 30-min average to align to the original 30-min data
average. In the following sections, quantities directly averaged over 30-min intervals (i.e., the
total fluctuations sum of wave and small-scale turbulence contributions) are indicated with
the subscript K (e.g., the kinetic energy EK ), the small-scale turbulence (2-min followed by
30-min averages) with subscript T (e.g., the small-scale TKE ET ), and the wave contribution
(identified as the difference between K and T quantities) with the subscript W (e.g., wave
kinetic energy EW ).

3.3 The Dissipation Terms within the Energy Budgets

To evaluate the kinetic-energy dissipation εT directly from the energy spectra, we interpolate
the common formulation for the along-stream energy spectra Su within the inertial subrange
(e.g., Grachev et al. 2016) with the same interval within the observed spectra. The inertial
subrange is identified directly from the observed 30-min spectra in the interval 0500–1200
UTC to estimate the kinetic-energy dissipation for each 30-min record as

εT =
(

f Sinu
cinuu (κz)2/3 n−2/3

)3/2

(32)

where Sinu are the observed spectral values of Su within the inertial subrange and cinuu =
αK /(2πκ)2/3 ≈ 0.31 (with αK = 0.55 the Kolmogorov constant and κ = 0.37 the von
Kármán constant). From a linear regression, the optimal value of εT is retrieved and used
to asses the likelihood of the computation, using the coefficient of determination (for each
30-min spectra between 0500 UTC and 1200 UTC) between Sinu (made explicit from Eq. 32
with the computed εT ) and the observed spectra in the inertial subrange.

The same procedure is adopted to extract the potential-temperature-variance dissipation
ε� from the inertial subrange of the potential-temperature energy spectra, so that

ε� = f Sin�
cin
�2 (κz)2/3 ε

−1/3
T n−2/3

(33)

where Sin� is the observed spectrum in the inertial subrange and cinuu = βK /(2πκ)2/3 ≈ 0.46,
with βK = 0.8 the Kolmogorov (Obukhov–Corrsin) constant. Using the same regression
method for the kinetic-energy dissipation, the optimal value of ε� is the best guess of the
time-dependent ratio in Eq. 33 evaluated at each frequency.

123



52 F. Barbano et al.

As a final note, within the inertial subrange the right-hand side of Eq. 30 can be approx-
imated as CS

x n
1−γ , with CS

x ≈ Cx/(Dx )
γ being the slope coefficient. By evaluating the

spectra for uu and �2 according to the left-hand side of Eq. 30 for the inertial subrange only,
we obtain the coefficient values CS

uu = 0.33 and CS
�2 = 0.49, respectively. Both values are

in line with cinuu and cin
�2 and with the Kansas spectra (Kaimal and Finnigan 1994), further

consolidating the inertial subrange identification.

3.4 A Note on the Equilibrium BetweenWave and Small-Scale Turbulence

The presence of wave activity within the flow is typically associated with non-stationary
regimes. A typical consequence of non-stationarity is the lack of equilibrium between the
turbulent and non-turbulent components of the motions, due to their scale overlap (Mahrt
and Bou-Zeid 2020). Commonly, the presence of a spectral gap is necessary to infer local
equilibrium conditions. As an example, Vercauteren et al. (2016) observed a spectral gap
separating the scales of turbulent and non-turbulent motions, allowing local equilibrium. We
can therefore argue that in the presence of a spectral gap we have an equilibrium between
different scales if the characteristic times of turbulent and non-turbulent motions are well
separated. Considering nocturnal (0500–1200 UTC, identified as 〈 〉n) and vertical (in the
atmospheric layer �z = 20 − 0.5 m observed by the flux-tower instrumentation, identified
as 〈 〉�z) averages, the characteristic time scale of turbulence,

Tr =
〈

EK

εT

〉

n,�z
= 15 s, (34)

is much smaller than the time scales of the mean flow fields, (as computed by Finnigan and
Einaudi 1981)

T� =
〈

�z��

|〈w�〉|
〉

n,�z
= 7 × 103 s and TU =

〈

�z�U

τ

〉

n,�z
= 8 × 103 s, (35)

ensuring the equilibrium between turbulence and its largest energy-containing scale. We
have already observed that the typical wave period is in the range 103 s ≤ TW ≤ 3×103 s,
revealing that turbulence and wave time scales are very well separated, and thus within a
state of equilibrium. The evidence of a local equilibrium between the motion scales supports
the assumption used to introduce our paradigm (Sect. 2.4) and will help in the resulting
discussion.

4 Results

4.1 Near-Ground and Far-Ground Sublayers

In Sect. 2.4 we hypothesize the existence of a NGS, where the shear-produced turbulence
kinetic energy overcomes the wave kinetic energy, and a FGS, where wave and small-scale
turbulence both contribute to the energybudgetwith thefirst being a dominant factor.Basedon
the typical dependences of the wave EW and small-scale turbulence ET kinetic energies, we
evaluate a simple relation (Eq. 28) to compute the separation height zc where the ratio RE

T ,W =
1, i.e., the separation between NGS and FGS. Equation 28 relies on the assumption that both
buoyancy and vertical stress (and therefore shear according to the flux-gradient relationship)
are constant within the atmospheric layer scanned by the flux-tower instrumentations. This
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Fig. 7 Nocturnal-averaged Brunt–Väisälä frequency 〈N 〉n (a) and wind speed 〈�U 〉n (b) profiles. The profile
of the Brunt–Väisälä frequency is compared with its mean value (dashed black line), while the wind speed is
compared to the log-linear profile under stable conditions (Eq. 23, blue line)

Fig. 8 Nocturnal-averaged (0500–1200 UTC) profiles of a the kinetic energy 〈E〉 and b the potential energy
〈EP 〉 of the total fluctuations (cyan), wave (green), and small-scale turbulence (orange). The subscript y in
both panels stands for K , W , and T . Errorbars are the standard deviations propagated following the error
theory. Wave and small-scale turbulence profiles are shifted of 0.4 m downwards and upwards respectively, to
avoid symbols superposition. The dashed black lines highlight the interpolated value of the separation height
zc

assumption is supported by Fig. 7, where the nocturnal-averaged Brunt–Väisälä frequency
〈N 〉n shows a constant profile and that of the wind speed 〈�U 〉n (expressed as the difference
between the wind speed at each flux-tower level and that at z1 = 0.5 m) is well approximated
by the log-linear profile (Eq. 23). Equation 28 further requires an estimation of the vertical
displacement H of the flow streamline caused by the driving mechanisms of the wave. On
the other hand, the evaluation of H requires the knowledge of zc (see Eq. 29). To solve this
loop, we first evaluate zc from the nocturnal-averaged profiles of the potential and kinetic
energies and with that we compute H according to Eq. 29. Finally, we use Eq. 28 to verify
the value of the separation height zc.

Figure 8a shows the relative impact of each kinetic-energy contribution during the inves-
tigated night. While not negligible, the wave contribution decreases towards the ground,
becoming predominant only within the FGS, where it is expected to modify the kinetic-
energy budget. A similar behaviour is also observed for the potential energy in Fig. 8b,
where the wave is the dominant fluctuation within the FGS, while it resembles the small-
scale turbulence in the NGS. From the observations so far, we can conclude that the wave
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Fig. 9 a Kinetic energy of the total fluctuations 〈EK 〉 as a function of the difference between small-scale
turbulence 〈ET 〉 and wave 〈EW 〉 kinetic energies normalized on 〈EK 〉. Plus symbols represents the 30-min
averages, dots with error bars the nocturnal average over the period 0500–1200 UTC with errors derived from
the standard deviations. b Shows the ratio ET /τ as a function of Ri . The black dashed line identifies the
expected value f (Ri) = 1/αB at Ri = 0. Data are 2-min averaged. In both panels, colours define the sonic
levels (0.5 m in cyan, 2 m in red, 5 m in yellow, 10 m in purple, and 20 m in green)

has a strong impact on the velocity and temperature variances, drastically modifying the
turbulence field away from the ground.

From these averaged profiles, the separation height falls somewhere between 2 m and
5 m, where we have the criss-cross of the wave and small-scale turbulence profiles. By
applying a shape-preserving interpolation of the difference between wave and small-scale
turbulence profiles, we obtained a rough approximation of the separation height at zc ≈ 3
m. The value of zc is in line with Fig. 9a, which shows a self-comparison of between the
time-dependent kinetic energies of wave and small-scale turbulence. In Fig. 9a, the kinetic
energy of the total fluctuations 〈EK 〉 is displayed as a function of the difference between
small-scale turbulence and wave kinetic energies normalized on the total one. For 〈RE

T ,W 〉
> 1, (small-scale turbulence larger than wave fluctuations) the abscissa becomes positive as
the small-scale turbulence contribute the most to the kinetic-energy budget. For 〈RE

T ,W 〉 <

1, (wave larger than small-scale-turbulence fluctuations) the abscissa becomes negative and
the wave contribution is no longer negligible. In the first case, measurements are confined
at z < zc, while being at z > zc in the second, confirming the behaviour observed from
the profiles. With an estimation of zc, the remaining unknown for the computation of H is
f (Ri), which can be evaluated from the ratio ET /τ according to Eq. 20. Figure 9b shows
that ET /τ is mostly independent from the Richardson number, especially for Ri < 0.1 where
the 2-m and 5-m measurements are located and their distributions collapse on the expected
value f (Ri) = 1/αB . Finally, Eq. 29 gives a value of H = (5 ± 1) m evaluated with the
averaged quantities measured at 2 m and 5 m, weighted on the distance to the approximated
value of zc. This result is in line with the observations from the time series in Sect. 3.1, where
we described the wave activity being triggered by the valley roughness and density currents
confined in a few metres above the ground. As a verification, the separation height computed
using Eq. 28 with nocturnal- and layer-averaged quantities gives a value of zc = (3 ± 1) m.

4.2 Wave and Small-Scale Turbulence Fluctuations

The separation height zc defines the depth of the NGS, where the kinetic energy of the total
fluctuations ismostly driven by the small-scale turbulence, andfixes the beginning of the FGS,
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where waves become the main contributor. Following the recent study by Schiavon (2020),
the presence of waves affects the horizontal components of the total fluctuation kinetic energy
while leaving the vertical component almost untouched. The spectral analysis performed in
Sect. 3.2 aligns with the evidence from this study, despite the fact that we are investigating a
flow in complex terrain. Figure 10a, b shows these different behaviours between horizontal
〈uuy +vvy〉 and vertical 〈wwy〉 velocity components (with y being alternativelyW , T or K ),
with the first defining the behaviour of the whole kinetic energy already observed in Fig. 9a.
Measurements in Fig. 10b are mostly close to the abscissa value of 1, meaning the waves do
not affect the vertical component of the TKE. Note that values of Fig. 10b abscissa larger
than 1 mean 〈wwW 〉 < 1 (and 〈wwK 〉 < 〈wwT 〉), with the waves inefficiently subtracting
vertical momentum from the mean flow.

A different paradigm applies to the vertical covariances, where the wave impact remains
small regardless of the sublayer we are supposedly in (as shown in Fig. 11). Over a nocturnal

Fig. 10 aQuadratic sum of the horizontal components of the total fluctuation kinetic energy 〈uuK +vvK 〉 as a
function of the difference between small-scale turbulence 〈uuT +vvT 〉 and wave 〈uuW +vvW 〉 quadratic sum
of the horizontal components normalized on 〈uuK +vvK 〉. bAnalogous to panel a for the vertical component
〈wwK 〉 of the fluctuation kinetic energy. In both panels, plus symbols represents the 30-min averages, dots
with error bars the nocturnal average over the period 0500–1200 UTC with errors derived from the standard
deviations. Colours define the sonic levels (0.5 m in cyan, 2 m in red, 5 m in yellow, 10 m in purple, and 20
m in green)

Fig. 11 Nocturnal-averaged (0500–1200 UTC) profiles of a the stress tensor 〈τ 〉 and b the heat flux 〈w�〉 of
the total fluctuations (cyan), wave (green), and small-scale turbulence (orange). The subscript y in both panels
stands for K , W , and T . Wave and small-scale turbulence profiles are shifted 0.4 m downwards and upwards
respectively, to avoid symbols superposition. The dashed black lines highlight the interpolated value of the
separation height zc
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average, the vertical covariances are indeed mostly dominated by the small-scale turbu-
lence. The only exceptions can be found at the 20-m measurement level, where the flow is
affected by the largest eddies, and the separation between wave and small-scale turbulence
becomes more irrelevant. However, no separation height can be observed in opposition to
the variances’ behaviours, allowing the formation of interesting variance–covariance inter-
actions/separations in the budget.

The existence of a variance–covariance activity is a symptom of the different ways waves
and small-scale turbulence can interact in such a small atmospheric depth. Figure 12 displays
the ratio of the variances as a fuction of the covariance ratios. In otherwords, Fig. 12 shows the
effects of the production/destruction terms of each energy budget on the respective energy.
In Fig. 12a, the ratio 〈RE

K ,T 〉 is displayed as a function of the stress-tensor and heat-flux

ratios (〈Rτ
K ,T 〉+ |〈Rw�

K ,T 〉|)/2. Similarly, Fig. 12b shows the potential-temperature-variance

ratio 〈R�
K ,T 〉 as a function of the heat-flux ratio |〈Rw�

K ,T 〉|. The reciprocal behaviour of vari-
ances and covariances defines four possible fluctuation regimes. The no-perturbation regime
is established for small values of both variances and covariances, meaning the wave effect
on the production/destruction terms of the budgets are small/negligible, with the correspond-
ing small/negligible impacts on kinetic and potential energies. Conversely, the perturbation
regime occurs where both values of variances and covariances are large, corresponding
to a large/dominant wave effect on both production/destruction terms and both energies
(small/negligible and large/dominant are intendedwith respect to the small-scale turbulence).
In between, two cross-regimes are also possible, where variances and covariances have an
opposite tendency. The variance-perturbed regime corresponds to large variances with small
covariances, and describes a large/dominant effect of the wave on the kinetic and potential
energies despite a small/negligible impact on the production/destruction terms of the bud-
get. Finally, the covariance-perturbed regime (corresponding to large covariances inducing
small variances) describes an increase of the production/destruction terms of the budgets
with minimum impact on the kinetic and potential energies. The first two regimes describe
a direct correspondence between wave activity and modification of the energy budgets. The
wave activity proportionally enhances kinetic and potential energies as well as the produc-
tion/destruction terms in the respective budget. Within the covariance-perturbed regime, the
wave activity only involves the production and loss terms, creating a sort of balance between
them, which does not modify the energy amounts. Within the variance-perturbed regime,
the energy variations may be induced by external contributions, such as divergences of the
third-order moments and flow unsteadiness.

The boundaries of the fluctuation regimes are identified by means of typical values. As
far as the kinetic energy is concerned, the variance threshold (separating small from large
values of energy variances) is 2〈RE

K ,T 〉n,Δz (twice the ratio of total fluctuation and small-scale

turbulence kinetic energies averaged over the night and measured layer). Since 〈RE
K ,T 〉n,Δz

represents the typical nocturnal contribution of the small-scale turbulence on the total fluctu-
ation kinetic energy, we expect 2〈RE

K ,T 〉n,Δz to be an appropriate threshold as it ensures wave
and small-scale turbulence to equally contribute to the kinetic energy of the total fluctuations.
The value of 〈RE

K ,T 〉n,Δz has been revealed as inadequate for separating the covariances (see
discussion on Fig. 11), but we consider twice the nocturnal- and observed-layer-averaged
covariance ratios 〈Rτ

K ,T+ |Rw�
K ,T |〉n,Δz to be a more accurate threshold (where the factor

2 is consistent with the previous discussion). In analogy, we consider 2〈|R�
K ,T |〉n,Δz and

2〈|Rw�
K ,T |〉n,Δz respectively as the variance and covariance thresholds for the potential energy.

In particular, the first is considered as accurate in representing the variances threshold for the
potential energy, as it identifieswherewave and small-scale turbulence has an equal impact on
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Fig. 12 a Total fluctuation and small-scale turbulence kinetic energy ratio 〈RE
K ,T 〉 as a function of the mean

production/destruction terms given by stress-tensor and heat-flux ratios (〈Rτ
K ,T 〉+|〈Rw�

K ,T 〉|)/2. b Total fluc-

tuation and small-scale turbulence potential-temperature-variance ratio 〈R�
K ,T 〉 as a function of the mean

production/destruction term given by the heat-flux ratios |〈Rw�
K ,T 〉|. Background colours identify the pertur-

bation regimes: no perturbation in green, perturbation in pink, covariance perturbation in blue and variance
perturbation in grey. Data colours identify the sonic level (0.5 m in cyan, 2 m in red, 5 m in yellow, 10 m in
purple, and 20 m in green). The dashed lines are the regime thresholds

the total potential-temperature fluctuations (and thus corresponding to the wave–turbulence
balance observed in the NGS of Fig. 8b).

As evident for both kinetic and potential energies (see Fig. 12), the no-perturbation regime
establishes as the most typical, describing the majority of the NGS evolution. Measurements
in the FGS also occupy the perturbed regimes. It is not rare to have large covariances lead-
ing or not to large kinetic energy, especially in the farthermost measurement level from the
ground. On the contrary, several variance-perturbed data are observed as far as the poten-
tial temperature is concerned, suggesting the potential temperature may receive a relevant
contribution from larger scales (small frequencies) enhancing their variances.

4.3 The Energy Budgets in the Surface-Layer Approximation

To evaluate the kinetic- and potential-energy budgets, we adopt the surface-layer approxi-
mation to consider as negligible the horizontal derivatives and the mean vertical component
of the wind velocity. Although rough, this approximation allows removal of those terms of
the budget that are often rather difficult to evaluate in the field. As such, most field experi-
ments prefer to detail the vertical structure of the surface layer rather than the horizontal one,
forcing the computation to be independent of the advection. The negligible mean vertical
velocity component is instead a quite gentle approximation as it is typically smaller than the
horizontal components. Additionally, we consider stationary conditions and we neglect the
divergence of third-order moments of both waves and small-scale turbulence (terms II and
III in Eqs. 4, 8, 10, and 14), while we retain the Π terms relating to the wave-turbulence
interaction (terms VI and VII in Eq. 4, IV and V in Eq. 10, V and IV in Eqs. 8 and 14). The
steady-state condition is quite typical within nocturnal periods, and it has been verified for
the current case study as both kinetic- and potential-energy tendencies are order of magni-
tudes smaller than production/destruction terms. The choice on the divergence of third-order
moments is twofold: terms involving pressure cannot be computed due to the dataset limita-
tions; most importantly, the observed flow involves an equilibrium state between its motion
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scales (Sect. 3.4). Moreover, observing the regimes in Fig. 12, they are expected to play a
role only for the potential energy, but they will be shown to be ineffective. Applying the
aforementioned approximations, the kinetic-energy budget for the total fluctuations (Eq. 8)
reduces to

− 〈u jw〉d〈U 〉
dz

︸ ︷︷ ︸

P

+β〈w�〉
︸ ︷︷ ︸

B

+ΠW − ΠT
︸ ︷︷ ︸

Re

−εT = 0. (36)

while its counterpart for the small-scale turbulence (Eq. 4) reads

− 〈u′
jw

′〉d〈U 〉
dz

︸ ︷︷ ︸

P

+β〈w′�′〉
︸ ︷︷ ︸

B

−Π − ΠT
︸ ︷︷ ︸

Re

−εT = 0. (37)

With a similar procedure, the potential-energy budgets for the total fluctuations (Eq. 16) and
the small-scale turbulence [Eq. 10, multiplied by β(d〈�〉/dz)−1] read, respectively,

− β〈w�〉
︸ ︷︷ ︸

P

+β

(

d〈�〉
dz

)−1

Π�W − β

(

d〈�〉
dz

)−1

Π�T

︸ ︷︷ ︸

Re

−εp = 0 (38)

and

− β〈w′�′〉
︸ ︷︷ ︸

P

−β

(

d〈�〉
dz

)−1

Π� − β

(

d〈�〉
dz

)−1

Π�T

︸ ︷︷ ︸

Re

−εp = 0. (39)

In these equations, Ps are the production terms, Bs the buoyancy, and Res the residuals.
To address the effect of the waves on the energy budgets, we compute and compare the
approximated budgets in Eqs. 36, 37 and 38, 39 for the total fluctuations and the small-scale
turbulence. As argued in Sect. 3.3, the dissipation term we compute for the budget is directly
calculated from the inertial subrange of the spectra, and therefore is associated with εT and
εp , letting the χK and χP be the residuals. The budgets are integrated on the NGS (0.5–2
m measurement levels) and FGS (5–20 m measurement levels) sublayers, using a weighted
average to compute the different quantities of the FGS budget. The budgets are also compared
with representative ratios between total fluctuations and small-scale turbulence 〈Rx

K ,T 〉, such
as the energies, the stress tensor, and the heat flux (taken in turns as x).

Figure 13 shows the kinetic energy budget, together with the representative ratios, as a
function of time. Within the NGS (Fig. 13a), the total fluctuation and small-scale-turbulence
budgets are almost perfectly superimposed, with small unbalances around 0945 UTC. The
peaks in the 〈Rx

K ,T 〉 ratios within the interval 0915–0945 UTC are associated with a tempo-
rary increase in the wave activity, increasing the surface energy while decreasing the stability
(and loss of energy due to buoyancy). As already observed from the regime investigation (see
discussion about Fig. 12a), waves do not perturb the kinetic-energy budget, as the wave activ-
ity is somehow suppressed and small-scale turbulence becomes the dominant component.
With the absence of the variance-perturbed regime (see Fig. 12a), the vertical divergence
of the third-order moments are expected to be negligible and the kinetic-energy budgets are
closed by the residual terms Π , ΠW , and ΠT (notwithstanding possible advections). Specif-
ically, since Eqs. 36 and 37 show similar budgets, we must haveΠW −ΠT ≈ −Π −ΠT and
therefore ΠW ≈ −Π , suggesting that the wave transport of small-scale turbulence balances
the source/sink activity of the small-scale turbulence. In other words, the wave kinetic energy
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Fig. 13 Kinetic energy budgets of the total fluctuations in black and small-scale turbulence in red (left y-axis),
and ratios Rx

K ,T of kinetic energy (blue), stress tensor (orange), and heat flux (green) (right y-axis) as a
function of time. Panel a shows the NGS, panel b the FGS. The variable y identifies the subscripts K or T ,
while x stands for the variables E , τ or w�

is rapidly suppressed by the small-scale turbulence, in line with the wave absorption observed
by Finnigan and Einaudi (1981).

Differences between the total fluctuation and small-scale-turbulence budgets are more
evident in the FGS (Fig. 13b), where imbalances also become larger, especially in the total
fluctuations. The budget of the small-scale turbulence shows similar oscillations around zero
as observed in the NGS, with two negative peaks corresponding to as much relative 〈Rτ

K ,T 〉
and 〈RE

K ,T 〉maxima and 〈Rw�
K ,T 〉minima. The imbalances in the total-fluctuations budget are

more pronounced than in the NGS, with a tendency towards negative residuals. The peak at
0915–0945 UTC is strongly induced by the wave activity, which turns a NGS dissipation
into a production in the FGS (despite the small-scale turbulence budget remains negative).
The kinetic-energy budget of the total fluctuations is typically larger than that for the small-
scale turbulence (〈RE

K ,T 〉 > 2), corresponding to values of 〈Rτ
K ,T 〉 and 〈Rw�

K ,T 〉 close to 1,
in line with the perturbation regime (wave altering the kinetic energy). In correspondence
of the 〈RE

K ,T 〉 minima (〈RE
K ,T 〉 ≈ 2), 〈Rτ

K ,T 〉 ≈ 〈Rτ
K ,T 〉 ≈ 1 and the FGS falls in the no-

perturbation regime, coupling the behaviour of the NGS. The balance of the residuals is
mostly not achieved, but we mostly expect ΠW − ΠT ≤ 0 and Π + ΠT ≈ 0. Transport and
advection of small-scale turbulence by the wave have a small effect on the turbulence itself
but enhance the fluctuation energy, resulting in the wave feeding energy to the small-scale
turbulence (as observed by Finnigan et al. 1984).

Similar considerations can be done for the potential-energy budgets in Fig. 14. The total-
fluctuation (Eq. 38) and small-scale-turbulence (Eq. 39) budgets in theNGS arewell balanced
and superimposed (Fig. 14a). Thus, the residuals from both equations are Π�W − Π�T ≈
Π� +Π�T ≈ 0, with no wave–turbulence interaction. The peaks in the potential-energy ratio
〈REP

K ,T 〉 (i.e. 〈EPK 〉 > 〈EPT 〉) do not correspond to likewise variations of the forcing ratio

〈Rw�
K ,T 〉. The dynamics of the peaks follow the variance-perturbed regime, as unsteadiness

and/or transport from upper layers may enhance the potential energy. However, these last
contributions (which may be related to the vertical divergence of the third-order moments)
do not unbalance the budgets.

Within the FGS (Fig. 14b), the small-scale-turbulence budget alone is balanced while that
of the total fluctuations have negative residuals (apart from the peak at 0945UTC). Therefore,
the residual of Eq. 39 gives Π� + Π�T ≈ 0, while from Eq. 38 we obtain Π�W − Π�T ≤
0. Again the potential-energy ratio 〈REP

K ,T 〉 ≥ 2, with a dynamic that oscillates between the
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Fig. 14 Potential energy budgets of the total fluctuations in black and small-scale turbulence in red (left y-
axis), and ratios Rx

K ,T of potential energy (blue) and heat flux (green) (right y-axis) as a function of time.
Panel a shows the NGS, panel b the FGS. The variable y identifies the subscripts K or T , while x stands for
the variables EP or w�

variance-perturbed and the perturbation regimes, both of them implying a wave contribution.
Transport and advection of small-scale turbulence by the wave have a small effect on the
turbulence itself but enhance the fluctuation energy (in line with the observations by Finnigan
et al. 1984).

5 Summary and Conclusions

The presence of waves has been proven ubiquitous within stable boundary layers over
complex terrain, where turbulence is typically in a weak but continuous state of activity.
The coexistence of waves and turbulence has proven challenging as their interactions can
cause additional production/destruction of turbulent energy. A typical approach based on the
Reynolds decomposition is inadequate to disaggregate these two contributions, thus causing
unbalances in the energy budget equations.

In this article, we adopted the triple-decomposition approach to disaggregate a nocturnal
boundary-layer flow into mean, wave, and turbulence contributions, and with that com-
pute the correct kinetic- and potential-energy budgets under the rules of our stable-layer
paradigm. Granted by the equilibrium between flow contributions and by the presence of a
spectral gap in the power spectra, we identified the buoyancy-driven non-turbulent compo-
nent (associated with the wave activity) and the inertial turbulent component (the small-scale
turbulence) within each variable spectra. To separate waves from turbulence we adopted two
time-averaging windows, the shortest of which was evaluated according to the spectral gap
of the power spectra and the Ozmidov frequency (which envisages the buoyancy–inertial
subrange ratio). This method enables filtering of the wave motion and makes the turbulence
explicit. Then, we defined a paradigm using the governing forces supplying the waves (buoy-
ancy) and turbulence (shear) kinetic energies to separate the atmospheric depth close to the
surface into two sublayers:

– a near-ground sublayer (NGS) where the wave impact is smaller than turbulence (shear
dominates over buoyancy); within this layer, turbulence energy production is driven
from the mean flow while dissipation is estimated from the inertial subrange, revealing
the double-decomposition approach satisfactory for the energy budgets computation;
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– a far-ground sublayer (FGS) above the NGS, where the wave and turbulence both
contribute to the energy balances (shear and buoyancy are both important); here the
triple-decomposition approach is preferred because it clarifies that the energy produc-
tion/destruction of the small-scale turbulence does not balance the dissipation due to the
additional energy production from wave interaction.

From the comparison between TKE due to shear and that due to waves we also evaluate
the separation height between the two sublayers. The proposed investigation is successfully
tested on a nocturnal low-level jet case study observed in a wide and gentle-sloping valley
during the MATERHORN Program.

The paradigm has proven to efficiently separate a thin layer at the surface where both
kinetic and potential energies are turbulence-produced from a thicker layer above where
the wave contributions are predominant. On the contrary, shear stresses and heat fluxes
(production/destruction terms within the energy budgets) are mostly turbulent-produced,
leading to the formation of four regimes of interaction:

– no-perturbation regime, where the wave has a small effect on both energies and their
production/destruction terms;

– perturbation regime, where an energy modification caused by the wave corresponds to a
variation in the production/destruction terms;

– variance-perturbed regime, where an energy modification caused by the wave does not
correspond to a variation in the production/destruction terms;

– covariance-perturbed regime, where a variation of the production/destruction terms
caused by the wave does not correspond to a variation of energy.

These regimes proved to be valuable tools to understand and interpret the energy budgets
in real environments, where approximations are typically required to overcome the possible
lack of data (especially those required to compute horizontal divergences).

The kinetic- and potential-energy budgets were computed for the two sublayers, compar-
ing total fluctuations (wave and turbulence) with the small-scale turbulence alone. Within
the NGS, the budgets of total fluctuations are superimposed to the small-scale turbulence,
revealing the accuracy of the Reynolds decomposition close to the surface. The balances are
almost closed, with a small fraction of small-scale TKE transported by the wave. The dis-
crepancy introduced by the waves became evident in the FGS, with the wave advecting and
transporting small-scale turbulence and thus enhancing the total energies. In this sublayer,
the triple decomposition provided a better representation of the ongoing interactions.

In conclusion, we have derived a simple paradigm to describe the complexity enclosed in
the nocturnal stable boundary layer, establishing a paradigm able to discern and capture the
interactions between waves and turbulence. With this study, we encourage novel investiga-
tions and applications of this methodology in order to verify its reproducibility in different
contexts.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Appendix 1: Derivation of the First-Order Moments under the Triple-
Decomposition Framework

The computation of the continuity equation is trivial. Substituting the decomposed velocity
in Eq. 2a into Eq. 1a, and applying the phase and time averages we obtain

∂〈Ui 〉
∂xi

= ∂ ũi
∂xi

= ∂u′
i

∂xi
= 0. (40)

To derive the mean velocity 〈Ui 〉 equation, we first apply the phase average and then the time
average to the triple-decomposed Eq. 1b so that

D〈Ui 〉
Dt

︸ ︷︷ ︸

I

= − ∂〈P〉
∂xi

︸ ︷︷ ︸

II

+β〈�〉δi3
︸ ︷︷ ︸

III

− ∂

∂x j

[

〈ũ j ũi 〉 + 〈u′
j u

′
i 〉

]

︸ ︷︷ ︸

IV

, (41)

where the viscous term has been neglected being in conditions of large Reynolds number.
By subtracting Eq. 41 from the phase-averaged triple-decomposed Eq. 1b, we get that for the
wave ũi

Dũi
Dt

︸︷︷︸

I

= − ∂ p̃

∂xi
︸︷︷︸

II

+β�̃δi3
︸ ︷︷ ︸

III

+

− ∂

∂x j

[

ũ j 〈Ui 〉
]

︸ ︷︷ ︸

IV

− ∂

∂x j

[

ũ j ũi − 〈ũ j ũi 〉
]

︸ ︷︷ ︸

V

− ∂

∂x j

[

u′
j u

′
i − 〈u′

j u
′
i 〉

]

︸ ︷︷ ︸

VI

, (42)

where as before the viscous dissipation has been neglected assuming a largeReynolds number
estimated on the basis of thewave length and velocity scales. Finally, by subtracting the phase-
averaged triple-decomposed Eq. 1b from the triple-decomposed governing equation (Eq. 1b),
we obtain for u′

i

Du′
i

Dt
︸︷︷︸

I

= − ∂ p′

∂xi
︸︷︷︸

II

+β�′δi3
︸ ︷︷ ︸

III

+ ν
∂2u′

i

∂x j∂x j
︸ ︷︷ ︸

IV

+

− ∂

∂x j

[

u′
j 〈Ui 〉

]

︸ ︷︷ ︸

V

− ∂

∂x j

[

u′
j u

′
i − u′

j u
′
i

]

︸ ︷︷ ︸

VI

− ∂

∂x j

[

ũ j u
′
i + u′

j ũi
]

︸ ︷︷ ︸

VII

. (43)

The equations for mean flow, wave, and small-scale turbulence contributions share some
similarities: terms I describe thematerial derivative (tendency and advection), terms II are the
pressure divergence, terms III the buoyancy. Coupling terms between different equations can
be found aswell, but rather similar to that obtainedwith theReynolds decomposition. Term IV
in Eq. 41 represents the divergence of the wave and small-scale turbulence fluxes, subtracting
momentum from the mean flow. Terms IV in Eq. 42 and V in Eq. 43 are the divergence of
the mean flow coupled with the wave and the small-scale turbulence respectively. Term IV in
Eq. 43 is the viscous dissipation.However new terms also appear as a consequence of the triple
decomposition. Term V in Eq. 42 is the divergence of the fluctuation of the instantaneous
momentum flux with respect to its mean, while term VI in Eq. 43 is the analogous term
concerning the small-scale turbulence and the departure of the flux from its phase average.
Terms VI in Eq. 42 and VII in Eq. 43 couple the wave to the small-scale turbulence. In
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particular, the expression between square brackets in VI (Eq. 42) is referred in the literature
as

r̃i j = u′
i u

′
j − 〈u′

i u
′
j 〉, (44)

and is interpreted as thewave-like fluctuation in the small-scale turbulence due to the presence
of the waves (for a thorough discussion on r̃i j the reader is referred to Reynolds and Hussain
1972).

Following the same procedure, the potential temperature equation (Eq. 1c) is separated
into the mean, wave and small-scale turbulence contributions. Taking the phase average of
triple-decomposed Eq. 1c we obtain the equation for 〈�〉 + �̃. Taking the time average of
this equation we obtain the equation for 〈�〉

D〈�〉
Dt

︸ ︷︷ ︸

I

= − ∂

∂x j

[

〈ũ j �̃〉 + 〈u′
j�

′〉
]

︸ ︷︷ ︸

II

, (45)

where the viscous term has been neglected. Subtracting Eq. 45 from the equation for 〈�〉+�̃

we get the equation for the wave contribution �̃

D�̃

Dt
︸︷︷︸

I

= − ∂

∂x j

[

ũ j 〈�〉]
︸ ︷︷ ︸

II

− ∂

∂x j

[

ũ j �̃ − 〈ũ j �̃〉
]

︸ ︷︷ ︸

III

− ∂

∂x j

[

u′
j�

′ − 〈u′
j�

′〉
]

︸ ︷︷ ︸

IV

, (46)

where the viscous term has been neglected as we are in high Reynolds number regimes.
By subtracting the equation for � + �̃ from the triple-decomposed governing potential-
temperature equation (Eq. 1c) we obtain the equation for the small-scale turbulence �′

D�′

Dt
︸︷︷︸

I

= − ∂

∂x j

[

u′
j 〈�〉

]

︸ ︷︷ ︸

II

+ ν�

∂2�′

∂x j∂x j
︸ ︷︷ ︸

III

− ∂

∂x j

[

u′
j�

′ − u′
j�

′
]

︸ ︷︷ ︸

IV

− ∂

∂x j

[

ũ j�
′ + u′

j �̃
]

︸ ︷︷ ︸

V

.(47)

Again, the equations for the mean, wave, and small-scale turbulence contributions share
terms I, describing the material derivative, and terms II, coupling the mean contributions to
both wave and small-scale turbulence. Coupling terms between different equations can be
found as well, but rather similar to that obtained with the Reynolds decomposition. Term III
in Eq. 47 is the viscous dissipation. Terms III in Eq. 46 and IV in Eq. 47 are analogous to
term V in Eq. 42 and VI in Eq. 43 respectively, while terms IV in Eq. 46 and V in Eq. 47
couple the wave to the small-scale turbulence. In particular, the expression in square brackets
in term IV of Eq. 46 is referred in the literature as

r̃ j� = u′
j�

′ − 〈u′
j�

′〉, (48)

interpreted as the wave-like fluctuation in the small-scale turbulence due to the heat-flux
variation induced by the wave (Finnigan et al. 1984).

Standard manipulations of the first-order moment and potential-temperature equations
enable the computation of the kinetic and potential energy budgets.
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