

Dinesh K. Pai University of British Columbia Rutgers University [with Paul G. Kry]

The AHI Audio-Haptic Interface

Contact Interaction	
with Integrated Audio	
and Haptics	
Derek DiFilippo	
Dinesh K. Pai	
University of British Columbia) I

<section-header><section-header><text><text>

Motivation: Whole hand interaction with the Tango

[Pai, et al. World Haptics 05]

- Whole hand passive haptic interface
- 32 x 8 capacitive sensor,
 3 axis accelerometer

Motivation: Motion capture animation techniques difficult to use with contact

Motivation: Whole hand interaction with the Tango

Motivation

- Need to capture how humans move
 - Impedance (stiffness) of muscles...

[Feldman 66; Hogan 84; Bizzi et al. 92; etc.]

- Feed-forward control
- Brain actively controls the passive behavior of the musculoskeletal system
 - Depends on task, geometry, intent, style
 - Important for stability

Overview Example

Overview Example

- Estimate the Interaction Trajectory
 - Compliance (inverse of stiffness)
 - Reference trajectory (motion without contact)

Compliance Estimation

Previous work

Arms [Xu, Hollerbach, Hunter 91; Gomi, Kawato 96; etc.]

Fingers [Hajian 97; Milner, Franklin 98; Hasser, Cutkosky 02]

- · Stiffness, some measure damping and inertia too
- End points, joints, static poses, during movement
- Approach in common is perturbation

- Complicates capture, changes the motion

Compliance Estimation without extra perturbation

- Contact provides a natural perturbation
 - Exploits slow speed of spinal reflexes

Assumptions & Limitations

- Independent compliance estimations
- Natural perturbation must be observable
- Complex 'pre-programmed' motion

Validation						
$f(t)=m\ddot{z}(t)+b\dot{z}(t)+kz(t)+f_0$						
Parameter	Exploring	Scratching				
f ₀ (N)	0.677	1.345	valu <u>es in</u>	s reasonable given previous studies ; Milner et al. 98;		
m (kg)	0.017	0.018	[Hajian 97 Kuchanba			
b (Ns/m)	2.04	3.86	Ruchenbe			
k (N/m)	89.16	257.04				
			OUR METHOD	k _G		

Interaction Synthesis

- Quasi-static simulation
 - Alternative is fully dynamic simulation
 - Capture already contains character's dynamics
 - Focus on synthesizing contact perturbations
 - Compute the new forces with Coulomb friction

Grip Adjustment

- Object unexpectedly heavier than expected
 - Tighten grip by reducing compliances after a small delay

Grip Adjustment

- Expected changes
 - Similar motor program, adjusted due to object appearance
 - Gradually reduce compliance when slip is imminent

Thanks to the support of

- NSF grants IIS-0308157, EIA-0215887, ACI-0205671, EIA-0321057
- NIH CRCNS 1R01NS050942
- Canada Research Chair