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Abstract: The present investigation is to focus on the effect of Hall current and rotation in a modified couple stress theory of

elastic half space due to ramp-type loading in a homogeneous, isotropic, thermoelastic diffusive medium. The mathematical

formulation is prepared for different theories of thermoelastic diffusion, including the Coriolis and centrifugal forces. The

Laplace and Fourier transforms techniques are applied to obtain the solutions of the governing equations. The components of

displacement, stresses, temperature change and mass concentration are obtained in the transformed domain. The numerical

inversion technique has been used to obtain the solutions in the physical domain. Effects of Hall current and rotation are

shown on the resulting quantities. Some particular cases are also discussed in the present problem.
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I. INTRODUCTION

Couple-stress theory is an extended continuum theory that

includes the effects of a couple per unit area on a material

volume, in addition to the classical direct and shear forces

per unit area. This immediately admits the possibility of a

symmetric stress tensor, since shear stress no longer has to

be conjugate in order to ensure rotational equilibrium. Some

researchers investigated some problems on the couple stress

theory which were not paid enough attention for a long time

comparing with classical elasticity.

The classical couple stress theory, originated by Toupin

[1], Mindlin and Tiersten [2] and Koiter [3], is one of the

nonclassical theories containing two higher-order material

length scale parameters in addition to the two classical Lame

constants for isotropic elastic materials in its constitutive

equation. Zhao et al. [4] discussed the problem of weak con-

tinuity condition of FEM for the axisymmetric couple stress

theory and an 18-DOF triangular axisymmetric element. Also,

Reddy [5] studied microstructure-dependent couple stress the-

ories of functionally graded beams. Recently, the boundary

element formulation for plane problems in couple stress elas-

ticity discussed by Hadjesfandiari and Dargush, [6].

Yang et al. [7] introduced the modified couple stress the-

ory. Beside the two conventional equilibrium relationships

in the classical couple stress, they proposed an additional

relation to constrain the couple. This relation considers the

balance of moment of rotational momentum. This assump-

tion make the couple stress tensor symmetric.Recently the

couple stress theory has attracted much attention because it

describes the size effect of materials, whose theoretical and

numerical method of analysis becomes a new research spot

(e.g., Shankar et al. [8], Babaoglu and Erbay [9], Diebels S,

Steeb H. [10] and Kulesh et al. [11]).
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Park and Gao [12] developed an Euler–Bernoulli beam

model based on the modified couple stress theory and uni-

axial stress–strain relationships. Ma et al. [13] developed

Euler–Bernoulli and Timoshenko beam models based on the

modified couple stress theory and three-dimensional stress–

strain relationships. Marin [14] discussed the problem of

dipolar materials with stretch. Tsiatas [15] studied the static

bending analysis of isotropic micro-Kirchhoff plates using

the modified couple-stress theory and on the basis of the

principle of minimum potential energy.

Ma et al. [16] developed the Mindlin plate model using the

modified couple-stress theory and on the basis of Hamilton’s

principle. Asghari [17] studied the geometrically nonlinear

micro-plate formulation based on the modified couple stress

theory. Marin and Gabrial [18] studied weak solutions in elas-

ticity of dipolar bodies with stretch. Simsek and Reddy [19]

investigated the bending and vibration of fuctionally graded

microbeams using a new higher order beam theory and the

modified couple stress theory. Marin et al. [20] investigated

the problem of nonsimple material problems addressed by

the Lagrange’s identity. Recently, the size dependent buck-

ling analysis of microbeams based on themodified couple

stresss theory with high order theories and general bound-

ary conditions have been studied by Mohammad-Abadi and

Daneshmehr [21]. Shaat et al. [22] studied the size-dependent

bending analysis of Kirchhoff nano-plates based on the modi-

fied couple-stress theory including surface effects. Ghorban-

pour Arani et al. [23] discussed the problem of vibration of

bioliquid-filled microtubules embedded in cytoplasm includ-

ing surface effects using the modified couple stress theory.

Recently, nonlinear bending and post-buckling of extensible

microscalebeams based on the modified couple stress theory

have been studied by Wang et al. [24].

Thermodiffusion in an elastic solid is due to the coupling

of the fields of temperature, mass diffusion and strain. Heat

and mass exchange with the environment during the pro-

cess of thermodiffusion in an elastic solid. The concept of

thermodiffusion is used to describe the processes of thermo-

mechanical treatment of metals (carboning, nitriding steel,

etc.) and these processes are thermally activated, and their

diffusing substances include nitrogen, carbon, etc. They are

accompanied by deformations of the solid. Podstrigach [25]

considered the problem of thermodiffustion in classical elas-

tic material and investigated the fundamental corollaries and

differential equations. Nowacki [26-29] developed the theory

of thermoelastic diffusion by using coupled thermoelastic

model. Sherief et al. [30] developed the theory of generalized

thermoelastic diffusion that predicts finite speeds of prop-

agation for thermoelastic and diffusive waves. Sherief and

Saleh [31] worked on a problem of thermoelastic half space

with a permeating substance in contact with the bounding

plane in the context of the theory of generalized thermoe-

lastic diffusion with one relaxation time. Recently, Kumar

and Kansal [32] derived the basic equations in generalized

thermoelastic diffusion for Green Lindsay (GL-model) theory

and discussed the Lamb waves.

The foundations of magnetoelasticity were presented by

Knopoff [33] and Chadwick [34] and developed by Kaliski

and Petykiewicz [35]. An increasing attention is being de-

voted to the interaction between magnetic field and strain

field in a thermoelastic solid due to its many applications in

the fields of geophysics, plasma physics and related topics. In

all papers quoted above it was assumed that the interactions

between the two fields take place by means of the Lorentz

forces appearing in the equations of motion and by means of

a term entering Ohm’s law and describing the electric field

produced by the velocity of a material particle moving in a

magnetic field.

When the magnetic field is very strong, the conductiv-

ity will be a tensor and the effect of Hall current cannot be

neglected. The conductivity normal to the magnetic field is

reduced due to the free spiraling of electrons and ions about

the magnetic lines of force before suffering collisions, and

a current is induced in a direction normal to both the elec-

tric and magnetic fields. This phenomenon is called the Hall

effect. In all of the above investigations, the effects of Hall

current have not been considered. Effects of Hall current and

rotation on magneto-microploar generalized thermoelastic-

ity due to ramp-type heating was studied by Zakaria [36].

Zakaria [37] also investigated the effect of Hall current on

generalized magneto-thermoelasticity micropolar solid sub-

jected to ramp-type heating.

The present investigation is to determine the components

of displacement, stresses, temperature change and mass con-

centration in a modified couple stress generalized thermoe-

lastic with mass diffusion under the influence of Hall current

and rotation by applying Laplace and Fourier transforms. The

ramp-type loading is applied on the mechanical boundaries to

get the solution in the complete form. Some particular cases

are also derived from the present investigation.

II. BASIC EQUATIONS

Following [7, 32, 36], the field equations in a modified

couple stress thermoelastic medium with mass diffusion in

the absence of body forces, body couples, heat and mass

diffusion sources are given by:

(i) Constitutive relations

tij =λekkδij + 2µeij −
1

2
ekijmlk,l

−β1

(
1 + τ1

∂

∂t

)
Tδij − β2

(
1 + τ1

∂

∂t

)
Cδij ,

(1)

mij = 2αχij , (2)

χij =
1

2
(wi,j + wj,i) , (3)
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wi =
1

2
eipq uq,p , (4)

(ii) Equations of motion in the rotation frame of reference are

(
λ+ µ+

α

4
∆
)
∇ (∇.u)+

(
µ−

α

4
∆
)
∇2

u

−β1

(
1 + τ1

∂

∂t

)
∇T − β2

(
1 + τ1

∂

∂t

)
∇C + F =

=ρ (ü+Ω× (Ω×u) + 2 (Ω×u̇)) ,
(5)

(iii) Equation of heat conduction

K∗△T − ρce

(
∂

∂t
+ τ0

∂2

∂t2

)
T

−aT0

(
∂

∂t
+ γ

∂2

∂t2

)
C = T0β1

(
∂

∂t
+ τ0η0

∂2

∂t2

)
(∇.u) ,

(6)

(iv) Equation of mass diffusion

Dβ2△ (∇.u) +Da

(
1 + τ1

∂

∂t

)
△T

+

(
∂

∂t
+ τ0η0

∂2

∂t2

)
C −Db∆

(
1 + τ1

∂

∂t

)
C = 0.

(7)

Here, the medium is rotating with angular velocity, where

Ω=Ων̂, where ν̂ is the unit vector along the axis of rotation

and these equations of motion include two additional terms,

namely,

(i) The centripetal acceleration Ω× (Ω×u) due to time-

varying motion,

(ii) The Coriolis acceleration 2 (Ω×u̇),
where λ, µ are material constants, α is the couple stress pa-

rameter and ρ is the density, β
1
= (3λ+ 2µ)αt , β2 =

(3λ+ 2µ)αc, Here αt , αc are the coefficients of linear

thermal expansion and diffusion expansion, respectively,

u=(u1, u2, u3) is the components of displacement vector,

T is the temperature change, C is the mass concentration,

Ω is the rotation, K∗ is the coefficient of thermal conduc-

tivity, ce is the specific heat at constant strain, a is the co-

efficient describing the measure of thermoelastic diffusion,

T0 is the reference temperature assumed to be such that

|T/T0| ≪ 1, D is the thermoelastic diffusion constant, b
is the coefficient describing the measure of mass diffusion

effects, tij are the components of stress tensor, mij are the

components of couple-stress, eij are the components of strain

tensor, ∆ is the Laplacian operator,∇ is del operator, χij

is symmetric curvature tensor, δij is Kronecker’s delta, eijk
is alternate tensor, wi is the rotational vector, Here τ0, τ1

are the diffusion relaxation times with τ1 ≥ τ0 ≥ 0 and

τ0, τ1 are thermal relaxation times with τ1 ≥ τ0 ≥ 0. Here

τ1 = τ1 = 0, η0 = 1, γ = τ0, for Lord-Shulman (L-S)

model and η0 = 0, γ = τ0, for Green Lindsay (G-L) model.

Following Zakaria [36], the generalized Ohm’s law including

Hall current:

J =
σ0

1 +m2

[
E+ µ0 (u̇×H)−

µ0

ene

(J×H)

]
, (8)

and F = µ0 (J×H) is the Lorentz force, where J is the

current density vector, µ0 is the magnetic permeability, H

is the total magnetic field vector, E is the intensity vector

of the magnetic field, m = ωete is the Hall parameter, te is

the electron collision time, ωe = eB0/me is the electronic

frequency, e is the charge of an electron, B0 is the magnetic in-

duction, me is the mass of the electron, σ0 = e2nete/me

is the electrical conductivity and ne is the number density

of electrons.

III. FORMULATION AND SOLUTION

OF THE PROBLEM

A homogeneous isotropic, modified couple stress general-

ized thermoelastic elastic body with mass diffusion occupying

the region of a half-space x3 ≥ 0 is taken. We consider a rect-

angular Cartesian coordinate system (x1, x2 , x3) having

origin on the surface x3 = 0. We consider a plane deforma-

tion problem with all the field quantities depending only on

(x1, x3, t). The half-surface is subjected to ramp-type load-

ing on the bounding plane x3 = 0 along with isothermal and

isoconcentrated boundaries.

For two dimensional problem, we take

ui = (u1 (x1, x3, t) , 0, u3 (x1, x3, t)) ,

T (x1, x3, t) , C (x1, x3, t) . (9)

Let us assume that the magnetic field H and the angular

velocity Ω acts in the direction of x2 axis as

H=(0, H0, 0) , (10)

Ω=(0,Ω, 0). (11)

We also assume that E = 0, and the generalized Ohm’s law

J2 = 0 everywhere in the medium.

With these considerations, the current density components

J1 and J3 are given by

J1 =
σ0B0

1 +m2

(
m
∂u1

∂t
−

∂u3

∂t

)
, (12)

J3 =
σ0B0

1 +m2

(
∂u1

∂t
+m

∂u3

∂t

)
. (13)
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We define the dimensionless quantities:

x
′

i =
ω∗

c1
xi, u

′

i =
ω∗

c1
ui, t

′

= ω∗t, t
′

ij =
tij
βT0

,

m
′

ij =
ω∗mij

c1βT0

, γ
′

= ω∗γ, τ
′

1
= ω∗τ1, τ

′

0
= ω∗τ0,

τ0
′

= ω∗ τ0, τ1
′

= ω∗τ1, T
′

=
β1T

ρc2
1

,

C
′

=
β2C

ρc2
1

, Ω
′

=
Ω

ω∗
, M =

σ0B
2

0

ρω∗
,

c2
1
=

λ+ 2µ

ρ
, ω∗2 =

λ

(µt2 + ρα)
,

(14)

where c1 is longitudinal wave velocity in the media and M is

the Hartmann number or magnetic parameter respectively.

The displacement components u1 (x1, x3, t) and

u3 (x1, x3, t) are related to the scalar potentials Φ (x1, x3, t)
and Ψ(x1, x3, t) in a dimensionless form as

u1 =
∂Φ

∂x1

−
∂Ψ

∂x3

, u3 =
∂Φ

∂x3

+
∂Ψ

∂x1

. (15)

We define the Laplace and Fourier transform as

f (x1, x3, s) =

∫
∞

0

f (x1, x3, t)e
−stdt,

f̂ (ξ, x3, s) =

∫
∞

−∞

f (x1, x3, s)e
iξx1dx1 (16)

Making use of (14) in (5)-(7) with the aid of (9)-(13), (15)

and applying the Laplace and Fourier transforms defined by

(16) on the resulting equation (after simplification), we obtain

{
AD10 +BD8 + CD6 + ED4 + FD2 +G

}

×
{
Φ̂, Ψ̂, T̂ , Ĉ

}
= 0

(17)

where A,B,C,E, F and G are given in Appendix (I).

The solution of the equation (17) satisfying the radiation

conditions that Φ̂, Ψ̂, T̂ and Ĉ tend to zero as x3 tends to

infinity can be written as

(
Φ̂, Ψ̂, T̂ , Ĉ

)
(x3, ξ, s) =

=

5∑

i=1

(1, Ri, Si, P i)Aie
−mix3 ,

(18)

where

Ri =

5∑

i=1

δ7
[(2a9ξ2 + 1)m2

i − a1m4

i − (δ5 + δ6ξ4 + ξ2)]
,

Si =

5∑

i=1

[
δ8

(
m2

i − ξ2
) (

δ11 − δ12
(
m2

i − ξ2
)2)

+ δ10
(
m2

i − ξ2
)2]

[ (
m2

i − ξ2 − δ9
) (

δ11 − δ12
(
m2

i − ξ2
))

− δ2δ10
(
m2

i − ξ2
) ]

,

Pi =

5∑

i=1

−
(
m2

i − ξ2
)2 {

δ2δ8 +
(
m2

i − ξ2 − δ9
)}

(
m2

i − ξ2 − δ9
) (

δ11 − δ12
(
m2

i − ξ2
))

− δ2δ10
(
m2

i − ξ2
)
,

i = 1, 2, 3, 4, 5.

IV. BOUNDARY CONDITIONS

(i) Mechanical boundary conditions, we suppose that the

boundary plane x3 = 0 is subjected to ramp-type normal

loading, which depends on the coordinate x1 and the time t
of the form

t33 = −F G (t)F (x1), (19)

where

G (t) =





0 t ≤ 0
t
t0

0 < t ≤ t0

1 t > t0

(20)

F (x1) = H (R− |x1|) , (21)

where H is Heaviside unit step function, R and F are constant

and t0 is the ramp-type parameter.

Applying Laplace and Fourier transforms defined by (16)

on (19) with the aid of (20) and (21), we obtain

F̂ (ξ) =
2

ξ
sin(ξR ), (22)

t̂33 = −F̂

(
(1− e−st0)

t0s2

)
F̂ (ξ) = −F̂1 (ξ, s) . (23)

(ii) Vanishing of tangential stress

t31 = 0. (24)

(iii) Vanishing of tangential couple stress

m32 = 0. (25)

(iv) Isothermal boundary condition, i.e.

T = 0 at x3 = 0. (26)

(v) Mass concentration boundary condition, we consider the

boundary plane x3 = 0 is iso-concentrated surface, so

C = 0. (27)
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where

t33 =
λ

β1T0

[(
∂u1

∂x1

)
+

(
1 +

2µ

λ

)(
∂u3

∂x3

)

−
ρc2

1

λ

{(
1 + τ1

∂

∂t

)
T +

(
1 + τ1

∂

∂t

)
C

}]
,

(28)

t31 =
µ

β1T0

(
∂u1

∂x3

+
∂u3

∂x1

)
−

αω∗2

4c2
1
β1T0

×

[(
∂2

∂x2

1

+
∂2

∂x2

3

)(
∂u1

∂x3

−
∂u3

∂x1

)]
,

(29)

m32 =
αω∗2

2c2
1
β1T0

(
∂2u1

∂x2

3

−
∂2u3

∂x1∂x3

)
. (30)

Making use of (18) in the boundary conditions (19)-(27)

and with the aid of (15), (16) and (28)-(30), we obtain the

expressions for components of displacement, stress, tempera-

ture change and mass concentration as

û1 =
−F̂1 (ξ, s)

△

[
K1△1e

−m1x3 −K2△2e
−m2x3

+K3△3e
−m3x3 −K4△4e

−m4x3+K5△5e
−m5x3

]
,

(31)

û3 =
F̂1 (ξ, s)

△

[
T1△1e

−m1x3 − T2△2e
−m2x3

+T3△3e
−m3x3 − T4△4e

−m4x3+T 5△5e
−m5x3

]
,

(32)

t̂33 = −b1
F̂1 (ξ, s)

△

[
L1△1e

−m1x3 − L2△2e
−m2x3

+L3△3e
−m3x3 − L4△4e

−m4x3 + L5△5e
−m5x3

]
,

(33)

t̂31 =
− F̂1 (ξ, s)

△

[
M1△1e

−m1x3 −M2△2e
−m2x3

+M3△3e
−m3x3 −M4△4e

−m4x3 +M5△5e
−m5x3

]
,

(34)

m̂32 = −V 3

F̂1 (ξ, s)

△

[
N1△1e

−m1x3 −N2△2e
−m2x3

+N3△3e
−m3x3 −N4△4e

−m4x3 + △5e
−m5x3

]
,

(35)

T̂ = −
F̂1 (ξ, s)

△

[
S1△1e

−m1x3 − S2△2e
−m2x3

+S3△3e
−m3x3 − S4△4e

−m4x3 + S5△5e
−m5x3

]
,

(36)

Ĉ = −
F̂1 (ξ, s)

△

[
P1△1e

−m1x3 − P2△2e
−m2x3

+P3△3e
−m3x3 − P4△4e

−m4x3 + P 5△5e
−m5x3

]
,

(37)

where △, △i, Ki , Ti , Li, Mi, Ni , b1, V1, V2 and V3

are given in Appendix (II).

V. PARTICULAR CASES

(i) If m = 0, in equations (31)-(37), we obtain the compo-

nents of displacement and stresses in a modified couple stress

thermoelastic with mass diffusion with rotating medium with-

out Hall current effect.

(ii) If the effect of rotation is absent(Ω = 0), in equations

(31)-(37), we obtain the components of displacement and

stresses in a modified couple stress thermoelastic with mass

diffusion with the following changed values of δ1, δ4, δ5 and

δ7 as

δ1 =s2 +
M

(1 +m2)
s− Ω2,

δ4 =s

[
Mm

(1 +m2)
+ 2Ω

]
,

δ5 =−
1

a1

(
M

(1 +m2)
s+ s2 − Ω2

)
,

δ7 =−
s

a1

[
Mm

(1 +m2)
+ 2Ω

]
.

(iv) If τ1 = τ1 = 0, η0 = 1, γ = τ0 in equations (31)-(37),

we obtain the corresponding results for modified couple stress

thermoelastic with mass diffusion under the influence of Hall

current and rotation for the Lord Shulman (L-S) model.

(v) If η0 = 0, γ = τ0 in equations (31)-(37), we obtain the

corresponding results for the modified couple stress thermoe-

lastic with mass diffusion under the influence of Hall current

and rotation for the Green Lindsay (G-L) model.

VI. INVERSION OF THE TRANSFORMATION

To obtain the solution of the problem in a physical do-

main, we must invert the transforms in (31)-(37). Here the

displacement components, normal and tangential stresses and

temperature change are functions of x3, the parameters of

the Laplace and Fourier transforms sand ξ , respectively

and hence are of the form f (ξ, x3, s). To obtain the function

f (x1, x3, t) in the physical domain, we first invert the Fourier

transform using
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f (x1, x3, s) =

∫
∞

−∞

e−iξx1 f̂ (ξ, x3, s)dξ =

=

∫
∞

−∞

(cos (ξx) fe − i sin (ξx) fo) dξ,

(38)

where fe and fo are, respectively, the odd and even points

of f̂ (ξ, x3, s). Thus the expression (38) gives the Laplace

transform f (x1, x3, s) of the function f (x1, x3, t). Follow-

ing Honig and Hirdes [38], the Laplace transform function

f (x1, x3, s) can be inverted to f (x1, x3, t).
The last step is to calculate the integral in equation (38).

The method for evaluating this integral is described by Press

et al. [39]. It involves the use of Romberg’s integration with

adaptive step size. This also uses the results from successive

refinements of the extended trapezoidal rule followed by ex-

trapolation of the results to the limit when the step size tends

to zero.

VII. NUMERICAL RESULTS AND DISCUSSION

For numerical computations, following Sherief and Saleh

[30], we take the copper material (thermoelastic diffusion

solid) as:

λ = 7.76× 1010 Kg m−1s−2,

µ = 3.86× 1010 Kg m−1s−2,

T0 = 0.293× 103 K,

ce = 0.3831 × 103 J Kg−1K−1,

αt = 1.78× 10−5 K−1,

αc = 1.98× 10−4 m3 Kg−1,

a = 1.02× 104 m2 s−2 K−1,

b = 9× 105 Kg−1m5 s−2,

D = 0.85× 10−8 Kg s m−3,

ρ = 8.954× 103 Kg m−3,

K∗ = 0.383× 103 W m−1K−1,

α = .05 Kg m s−2,

t = 0.5 s,

τ0 = 0.01 s,

τ0 = 0.02 s,

τ1 = 0.07 s,

τ1 = 0.08 s.

The Hall current parameters are taken from Zakaria [37]

σ0 = 9.36× 105 Col2sec/Kg m3,

H0 = 105 Col/m sec, B0 = 0.5 KgCol−1sec−1

The software Matlab 7.10.4 has been used to determine

the normal stress, tangential stress, couple stress, temperature

change and mass concentration for different values of Hall

current parameters and rotation for both L-S and G-L theo-

ries are computed numerically and shown graphically in Figs.

1-10, respectively.

In Figs. 1-5, solid line (−), solid line with centre symbol

(− ∗−) and solid line with centre symbol (−o−) correspond

to the L-S theory for m = 0, 0.5, 1.5 and keeping Ω= 0.5 ,

respectively. Similarly, small dash line (- - - -), small dash line

with the centre symbol (- - -∗- - -) and small dash line with

the centre symbol (- - -o- - -) correspond to the G-L theory

for m = 0, 0.25, 0.75 and keeping Ω= 0.5 , respectively.

Fig. 1. Variation of normal stress with Hall parameter m Fig. 2. Variation of tangential stress with Hall parameter m
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Fig. 3. Variation of couple stress with Hall parameter m Fig. 4. Variation of temperature change with Hall parameter m

Fig. 5. Variation of mass concentration with Hall parameter m Fig. 6. Variation of normal stress with rotation Ω

Fig. 7. Variation of tangential stress with rotation Ω Fig. 8. Variation of couple stress with rotation Ω
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Effect of Hall current

From Figs. 6-10, solid line (−), solid line with the centre

symbol (− ∗ −) and solid line the with centre symbol (−o−)
correspond to the L-S theory for Ω = 0, 0.25, 0.75 and

keeping m = 0.5 , respectively. Similarly, small dash line (-

- - -), small dash line with the centre symbol (- - -∗- - -) and

small dash line with the centre symbol (- - -o- - -) correspond

to the G-L theory for Ω = 0, 0.25, 0.75and keeping m= 0.5 ,

respectively.

Fig. 1 shows the variations of normal stress t33 with

distance x for both L-S and G-L theories for different val-

ues of Hall parameter. Its values initially oscillate in the

range 0 ≤ x < 0.7, increase monotonically in the range

0.7 ≤ x < 1.4 and then decrease rapidly as x increase

further. The values of normal stress for the G-L theory is

higher in comparison to the L-S theory for all values of

m = 0, 0.25, 0.75. The value of normal stress increases in

the absence of Hall current and decreases in the presence of

Hall current for both theories of thermoelasticity.

Fig. 2 represents the variations of tangential stress with

different values of Hall parameter m = 0, 0.25, 0.75. It

is noticed that the values of t31 first oscillate in the range

0 ≤ x < 1.1, increase rapidly in the range1.1 ≤ x < 1.4, de-

crease in the range 1.4 ≤ x ≤ 1.8 and then again oscillate for

the remaining values of x for m = 0, 0.25 and for both the

theories of thermoelasticity. Also for m = 0.75, the values

of tangential stress for L-S theory are higher in comparison

to the G-L theory. As Hall current parameter increases, tan-

gential stress also increases in the assumed region for both

L-S and G-L theories.

Fig. 3 depicts that the variations of couple stress m32 with

distance x for Hall parameter m = 0, 0.25, 0.75.Its values

initially oscillate in the range 0 ≤ x ≤ 1.0, increase sharply

in the range 1.0 ≤ x ≤ 1.3, decrease rapidly in the range

1.3 ≤ x ≤ 1.8 and then increase further for remaining values

of x. The values of m32 remain oscillatory for all values of

x for both L-S and G-L theories. The values of couple stress

remain oscillatory in the entire region under the absence and

presence of Hall current.

Fig. 4 shows the variations of Temperature change T with

distance x for both L-S and G-L theories for different values

of Hall parameter. The values of T increase monotonically

in the range 0 ≤ x ≤ 1.3 then decrease as x increase further.

Also the values of temperature change for the G-L theory are

higher in comparison to the L-S theory as the Hall parameter

increases. The values of temperature change is higher for

m = 0 and smaller for m = 0.25, 0.75.

Fig. 5 represents the variations of mass concentration C
with Hall parameter. The values of concentration for the G-L

theory are higher in the range 0 ≤ x < 0.6, lower in the range

0.6 ≤ x < 1.2 and again higher for remaining values of x in

comparison to the L-S theory for m = 0, 0.25, 0.75. The

behavior and variation of mass concentration is oscillatory in

the absence and presence of Hall current.

Effect of rotation

Fig. 6 depicts the variations of normal stress with distance

x for rotation (Ω = 0, 0.25, 0.75). For Ω = 0, 0.25, the val-

ues of t33 for G-L theory are higher than in comparison to

the L-S theory in the whole range, whereas reverse behavior

is observed for Ω = 0.75. Oscillatory behavior is observed

with and without rotation.

Fig. 7 shows that the variations of tangential stress with

distance x for rotation Ω = 0, 0.25, 0.75. The values

of tangential stress for Ω = 0.75 are higher than that of

Ω = 0, 0.25. Also, the values of t31 for G-L theory are higher

in comparison to the L-S theory in the range 0 ≤ x < 2.1 for

all values of rotation. The value of tangential stress increases

with increase in the values of rotation.

Fig. 9. Variation of temperature Changewith rotation Ω Fig. 10. Variation of mass concentration with rotation Ω
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Fig. 8 represents the variations of couple stress m32 with

different values of rotation Ω = 0, 0.25, 0.75. For Ω = 0,

the values of couple stress initially oscillate in the range

0 ≤ x < 1 and then increase for remaining values of x.

Similarly, the values of m32 for Ω = 0.25 , increase mono-

tonically in the range 0 ≤ x < 1, decrease in the range

1 ≤ x < 1.4 and then oscillate as x increase further and then

opposite behavior is noticed for Ω = 0.75. The values of cou-

ple stress for G-L theories are greater than in comparison to

L-S theories for Ω = 0, 0.25 and 0.75. The value of Couple

stress decreases in the absence of rotation and increases in

the presence of rotation.

Fig. 9 represents the variations of T with different values

of rotation for both theories of thermoelasticity. Its values

first oscillate in the range 0 ≤ x < 1.1, increase monotoni-

cally in the range 1.1 ≤ x < 1.4 and decrease rapidly in the

remaining values of x. The values of temperature change for

the G-L theory are higher in comparison to the L-S theory for

Ω = 0, 0.25, 0.75. The value of temperature change increase

and decrease alternatively with and without rotation.

Fig. 10 depicts the variations of mass concentration C
with distance x for both L-S and G-L theories for Ω =
0, 0.25, 0.75. The behavior of variations of concentration

for L-S theory is higher in comparison to the G-L theory

for Ω = 0, whereas for Ω = 0.25, the values of C for L-S

are higher in the range 0 ≤ x < 1.1, lower in the range

1.1 ≤ x ≤ 1.8 and then again higher in the remaining values

of x. Similarly, the values of concentration for Ω = 0.75,

increase and decrease alternately in the whole range for both

L-S and G-L theories. The behavior of mass concentration is

oscillatory in the absence and presence of rotation for both

theories of thermoelasticity.

VIII. CONCLUSIONS

Analysis of stresses, temperature change and mass con-

centration due to ramp-type loading is a significant problem

of continuum mechanics. The result obtained from the above

study are summarized as.

The resulting quantities depicted graphically are observed

to be very sensitive towards the Hall and rotation parame-

ters. Figures show that the Hall and rotation parameters have

oscillatory effects on the numerical values of the physical

quantities obtained after the computational process. It is also

observed that the physical quantities are also effected by the

different non-classical theories of thermoelasticity.

It is observed that initially the values of t33and T for G-L

theory are higher in comparison to L-S theory as the Hall

parameter increases and reverse behavior is noticed due to

the effect of rotation, whereas the values of t31 for L-S theory

are higher in comparison to G-L theory as the Hall parameter

increases and decreases under the effect of rotation.

It is also noticed that the values of m32 for the G-L theory

are higher in comparison to the L-S theory due to the effect

of Hall parameter and rotation. Appreciable effects of Hall

parameter and rotation are observed on the mass concentra-

tion.

The results obtained in the study should be beneficial for

people working on modified couple stress thermoelastic solid

with mass diffusion. By introducing the Hall parameter and

rotation to the assumed model present a more realistic mode

for future study.

APPENDIX I

A = a1 (δ12 − δ3) ,

B =− a1δ12(ξ
2 + δ1)− ((δ12 − δ3)(2a9ξ

2 + 1)

+a1(δ11 + δ12(2ξ
2 + δ9)− δ2δ10 − 2ξ2δ3)

−(δ10 − δ8δ12) + δ3(δ2δ8 + ξ2 + δ9)),

C =(ξ2 + δ1)(δ12(2a9ξ
2 + 1) + a1(δ11 + δ12(2ξ

2 + δ9)

−δ10δ2)) + (2a9ξ
2 + 1)(δ11 − δ2δ10 + δ12(2ξ

2 + δ9))

+a1(ξ
2(δ11 + δ9δ12 + ξ2δ12) + δ9δ11) + δ12(δ5 + ξ2

+δ6ξ
4) + a1(δ8δ11 − δ2δ10ξ

2) + (δ8δ12 − δ10)((2a9ξ
2
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2) + δ3((δ2δ8 − ξ2 − δ9)(2a9ξ
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−(δ5 + ξ2 + δ6ξ
4)− a1ξ

4)− 2ξ2δ3((2a9ξ
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−a1(δ8δ2 + ξ2 + δ9)),
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2 + δ9)− δ10δ2)(2a9ξ

2

+1) + δ12(δ5 + ξ2 + δ6ξ
4) + a1(ξ

2(δ11 − δ10δ2

+δ12(δ9 + ξ2)) + δ9δ11)}+ (2a9ξ
2 + 1)(δ12ξ

4

+(δ2(1− δ10) + δ9δ12)ξ
2 + δ9δ11)− (δ5 + ξ2 + δ6ξ

4)

×(δ11 + δ12(2ξ
2 + δ9)− δ10δ2) + δ4δ7δ12

+(2a9ξ
2 + 1)(2ξ2(δ10 − δ8δ12)− δ8δ11)

+(δ5 + ξ2 + δ6ξ
4)((δ10 − δ8δ12)

−(δ2δ8 − ξ2 − δ9) + 2ξ2) + a1ξ
2(ξ2(δ10

−δ8δ12)− δ8δ11) + ξ4((2a9ξ
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−a1(δ2δ8 + ξ2 + δ9))− 2ξ2(2a9ξ
2 + 1)

×(δ2δ8 − ξ2 − δ9),

F =− (ξ2 + δ1){(−δ12ξ
4 + (δ2δ10

−δ9δ12 − δ11)ξ
2 − δ9δ11)(2a9ξ

2 + 1)

−(δ5 + ξ2 + δ6ξ
4)(δ11 + δ12(2ξ
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+(δ5 + ξ2 + δ6ξ
4)(δ12ξ

4 + (δ11 + δ9δ12 − δ2δ10)ξ
2

+δ9δ11)− δ4δ7(δ11 + δ12(2ξ
2 + δ9)− δ2δ10)+
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+(2a9ξ
2 + 1)(δ8δ11ξ

2 + (δ8δ12 − δ10)ξ
4)

+(δ5 + ξ2 + δ6ξ
4)(δ8δ11 + 2ξ2(δ8δ12 − δ10))

+ξ4((δ2δ8 − ξ2 − δ9)(2a9ξ
2 + 1)− (δ5 + ξ2 + δ6ξ

4))

+2ξ2(δ2δ8 − ξ2 − δ9)(δ5 + ξ2 + δ6ξ
4),

G =(δ12ξ
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4))

+(δ5 + ξ2 + δ6ξ
4)(−δ8δ11ξ

2 + ξ4((δ10 − δ8δ12)

−(δ2δ8 − ξ2 − δ9))),
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APPENDIX II

△ =g1 (L1h2 − L2h1 + L3h3)

+g2 (L1h4 − L2h5 − L4h3)

+g3 (L1h6 − L2h12 + L5h3)

+g4 (L1h8 + L3h9 − L4h10)

+g5 (L1h11 + L3h12 + L5h10)

+g6 (L1h14 − L5h9 − L4h12)

+g7 (L2h14 − L4h6 − L5h4)

+g8 (L2h8 + L3h4 + L4h2)

+g9 (L2h11 + L3h6 − L5h2)

+g10 (L3h14 + L4h11 + L5h8) ,

△i (i = 1, . . . , 5) are obtain by replacing 1st, 2nd, 3rd,

4th and 5th column by [0, 0, 0, F1 (ξ, s) , 0]
T

in △i.

and Ki = (−iξ +miRi), Ti = (mi+iξRi), Li =((
m2

i − ξ2
)
+ 2µ

λ
mi (mi+iξRi)−

ρc2
1

λ
(δ2Si + δ3Pi)

)
,
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(
2iξmi −

(
m2

i + ξ2
)
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)

−V2

((
m2

i − ξ2
) ((

miiξ −Rim
2

i

)
+ iξ (mi+iξRi)

))
,

Ni = mi

(
m2

i − ξ2
)
Ri,

b1 = λ
β1T0

,

V1 = µ
β1T0

,

V2 = αω∗2

4c2
1
β1T0

V3 = αω∗2

2c2
1
β1T0

,

g1 = (S4P5 − P4S5) ,
g2 = (S3P5 − P3S5),
g3 = (S3P4 − P3S4) ,
g4 = (S3P4 − P3S4),
g5 = (S2P4 − P2S4) ,
g6 = (S2P3 − P2S3),
g7 = (S3P1 − P3S1) ,
g8 = (S5P1 − P5S1),
g9 = (S4P1 − P4S1) ,
g10 = (S1P2 − P1S2)

h1 = (M1N3 −M3N1) , h2 = (M2N3 −M3N2) ,

h3 = (M1N2 −M2N1) , h4 = (M4N2 −M2N4) ,

h5 = (M4N1 −M1N4) , h6 = (M2N5 −M5N2) ,

h7 = (M1N5 −M5N1) , h8 = (M3N4 −M4N3) ,

h9 = (M4N1 −M1N4) , h10 = (M3N1 −M1N3) ,

h11 = (M5N3 −M3N5) , h12 = (M4N5 −M5N4) .

i = 1, 2, 3, 4.
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