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Interaction in Agent-based Economics: a survey on the

network approach

Leonardo Bargiglia, Gabriele Tedeschib,∗

aQuantitative Finance Group Scuola Normale Superiore, Pisa Italy
bDepartment of Economics Universitá Politecnica delle Marche, Italy

Abstract

In this paper we aim to introduce the reader to some basic concepts and
instruments used in a wide range of economic networks models. In particular,
we adopt the theory of random networks as the main tool to describe the
relationship between the organization of interaction among individuals within
different components of the economy and overall aggregate behavior. The
focus is on the ways in which economic agents interact and the possible
consequences of their interaction on the system. We show that network
models are able to introduce complex phenomena in economic systems by
allowing for the endogenous evolution of networks.

Keywords: network theory, agent-based models, heterogeneity.

1. Introduction

Various approaches may be followed in modeling the connections among
agents: from local to global, from deterministic to stochastic, from exogenous
to endogenous interactions. Clearly, it does not exist a “best”approach in
modeling agents’ interaction; instead, the choice of model should depend on
the “circumstances”to be modeled and on the purpose of the model [1].
Local interaction characterizes models in which agents behavior (and then
preferences, information, and choices) is directly affected by others’ behavior,
rather than being mediated by a centralized agent or (market) mechanism.
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The basic assumption in these models is that individuals interact locally,
with a neighbors set determined by a social or economic “distance metric”.
Instead, when interaction is global, individual behavior depends on the be-
havior of all other agents (for instance, because there are very low costs of
information/transaction and geographical or socioeconomic distance is neg-
ligible). The rule defining the set of interacting agents can be of exogenous
(e.g., a Von Neumann or Moore neighborhood in a “lattice” economy) or
endogenous nature (e.g., an agent decides to interact with a neighbor – and
not with another one – because this partner choice maximizes its utility).
Moreover, the set of neighbors may be the result of a deterministic (again, a
Von Neumann or Moore neighborhood) or stochastic rule (e.g., the switching
from a partner to another depends on a probability distribution). All in all,
the interactive structure may be static, that is the neighbor sets are deter-
mined once and for all, or dynamic, because it evolves along time depending
on model assumptions.

In this paper we list, among the main features of Agent Based Mod-
els (ABM), the explicit modeling of interaction space, and in particular the
preference towards local interaction as a more realistic modeling device than
global interaction, which is generally at odds with bounded rationality. In-
teraction, in fact, is quoted as one of the main ingredients of ABMs. We are
going to push further these claims, by advocating the intimate connection
between ABM and network or graph theory1. The latter, in fact, provides
the basic mathematical concepts needed to describe exactly any collection
of interactions between agents, as well as the tools to analyze the collective,
emerging, properties of this collection. These properties, on their part, al-
low us to investigate how interaction patterns affect the behavior of agents.
Shortly, we may state that each ABM maps onto one or more networks (since
the pattern of interaction between agents could be either fixed or changing
over time), and the mathematical properties of these networks can be used
to analyze and eventually forecast, at least for some variables, the behavior
of the model.2

1In this paper we are going to use “graph”and “network”as equivalent terms, although
it could be possible, in principle, to separate the more mathematically oriented tradition
of graph theory (see e. g. [2] or [3]) from the more physics-oriented tradition of network
theory (see [4]; [5]).

2However, many contributions in the field of AB modeling, as well as in other field of
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The quest for a deeper connection with network theory has become an
important topic in the research agenda of ABM, with a growing amount of
research efforts especially devoted to the twin problems of interaction over
fixed networks (see [6]) and of endogenous network formation (see [1]). On
the other hand, we must admit that currently the two fields are only partially
overlapping. For example, the economics-oriented handbook of Jackson [7]
makes only a marginal reference to ABM, while the more physics-oriented
monograph of Vega-Redondo [8] is silent on the subject. Among the few sys-
tematic efforts to better integrate the two approaches, it is worth to mention
the ambitious theoretical framework proposed by Potts [9], which is explic-
itly geared towards multi-agent simulation modeling, and relies heavily on
network theory.

In general, it is clear that Walrasian economics requires a complete net-
work, where any agent (firm or consumer) exchanges information with all
other agents simultaneously and instantaneously at no cost. It is also clear
that this network cancels out from the beginning the possibility of heteroge-
neous information sets among agents. Moreover, agents have access to the
same set of decision rules (i. e., again, the network between agents and deci-
sion rules is a complete one), which are on their part evaluated with respect
to the same objective function. Finally, all sources of heterogeneity are lost
and the representative agent is obtained. AB economics requires instead, as
key notion at the level of agents, that of neighborhood, which may be framed
either in a deterministic (fixed set) or in a stochastic (fixed probabilities) fla-
vor, as well as with reference to search costs or any other suitable matching
heuristic. The difference with Walrasian economics becomes substantial, as
soon as asymmetry between agents is introduced with the help of heteroge-
neous neighborhoods, since in that case the coexistence of different classes of
agents is, at least in principle, allowed.

At the system level, instead, the key notion of AB economics, in this con-
text, is that of structure. Each non trivial pattern of connections between
agents can be viewed as a structure, which may act as a constraint over the
path followed by the system as a whole (in fact, the same set of decision rules

economics, do not explicitly make use of network concepts and measures. [1] contains a
very useful discussion on the various approaches followed in AB economic models, with a
particular focus on endogenous interaction.
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acting on structurally different neighborhood will generally produce differ-
ent values of the state variables), and/or emerge as a by-product of decision
rules themselves, whenever these include algorithms for partner selection and
matching.

From the point of view of network theory, each relevant structure is asso-
ciated with a set of observables. In general, it would be difficult, and possibly
useless, to predict the value of observables at the single agent level (when
a definition at this level is possible). That is why network theory strongly
relies on a statistical approach, whereby we are more interested in character-
izing the statistical properties (e. g. moments or probability distributions)
of observables, viewed as random variables, across the population of agents.
Network theory is interested in (some of) the mesoscopic properties of sys-
tems, and this meso-level of analysis is a natural one to define structure. In
fact, the latter is obviously a meso concept, since it entails the description of
a system by means of its main components and their relationships. As we will
see, network theory describes the main components of interaction (defined by
observables) along with their relationships, since the statistical properties of
one observable are in general not independent from the statistical properties
of other observables.

To summarize, network theory deals with the structure of interaction
within a given multi-agent system. Consequently, it is naturally interested
in the statistical equilibrium of these systems, to be defined as the stability
of probability distributions of observables, which implies “a state of macro-
scopic equilibrium maintained by a large number of transition in opposite
directions”([10]). Following this path, we come close to the idea, champi-
oned by Aoki [11], of reconstructing macroeconomics under the theoretical
framework of statistical physics and combinatorial stochastic processes. Not
surprisingly, the same methods (which were originally developed to study
systems made of large numbers of interacting micro-units by means of a set
of macro state variables) are now of fundamental importance in the field of
network theory and, for the same reasons, they are expected to take an in-
creasing role in ABM.

The paper is organized as follows. In Section 2, we introduce some basic
notions of network theory. In Section 3 we focus on the issue of interaction
over fixed networks, by introducing two well known topologies: Poisson net-
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works and Small World networks. Subsequently (Section 4), we present two
well established models of network formation, namely the preferential at-
tachment model along with its generalization to arbitrary fitness measures,
and the strategical linking model of Jackson and Wolinsky. In Section 5,
we focus on the interdependent behavior of interconnected agents, firstly by
introducing the issue of coordination over fixed networks and secondly by
introducing interdependency between behavior and link formation. Finally,
Section 6 concludes.

2. Networks: basic concepts and properties

Networks or graphs3 are mathematical entities composed by vertices (nodes)
connected by links (edges) or, more shortly G = (V,E), where V is typically
assumed to be a subset of N, while E ⊂ N×N can eventually map onto any
subset of RN . For this general setting a functional representation looks natu-
ral, where we let li,j be a function taking vertices as arguments and having a
suitable co-domain. For instance with li,j → (0, 1], we can represent the rela-
tive frequency of interaction or any ex-ante probability measure on a suitably
defined interaction space. To simplify further, let’s take li,j → {0, 1}, where
li,j = 1 if the edge between i and j is in E, and li,j = 0 in the opposite case,
further assuming li,j ≡ lj,i.

Within this setting, a convenient representation of a graph is given by the
“connectivity matrix”, C. Each element ci,j of this matrix stores the image
of li,j associated to each point (i, j) of its (finite) domain. We can exclude
the possibility of selfloops by adding the condition li,i ≡ 0, but this is not
necessarily the best option in all cases. For example, a standard model of ran-
dom networks, the so called configuration model, requires not only self loops,
but also multiple edges to be included, which would mean that the matrix
elements can take integer values larger than 1. In this case, we talk of a multi-
graph. In the second place, by eventually allowing C to be non symmetric, we
introduce the notion of a directed graph or digraph. Incidentally, we observe
that asymmetric relationships are pervasive in the economic context, since

3Here we will not get systematically into the details of graph-theoretic concepts and
terminology, since a number of good introductory presentations are now available (see [4];
[7]; [5]), along with the classical presentation of [2]. Therefore we will introduce only those
concepts and terms that are strictly necessary for our purposes.
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exchange itself is asymmetric (think about the asymmetry between seller and
buyer on goods’ markets, or between creditor and debtor on capital markets).

Moreover, links can be weighted. Their weight mirrors the strength of
relations among the connected nodes. We can define, thus, the weighted
connectivity matrix W in analogy with C.

A network is said to be sparse when |E| � |V |2. Real networks are, al-
most without exception, sparse, since the capacity to interact of agents does
not grow proportionally with the dimension of the system. Consequently,
models of complex networks generally display this feature, e. g. by assum-
ing that the expected number of vertices connected to a given one remains
finite as |V | → ∞. This property implies that heterogeneous local structures
become very important in order to grasp the behavior of complex networks.
This feature is captured within network theory by the key notion of the
neighborhood of an agent in a network, defined as the set ψ(i) of other agents
with whom i has a direct link.

Neighborhoods find ubiquitous application in network theory, especially
within the social and economic domain. In socio-economic systems individu-
als tend to link with people they are socially close to. A clear manifestation
of this phenomenon is shown in the identification of groups or communities
inside the network (see below). The neighborhood set is related to the con-
nectivity of nodes within networks, as measured by their degree k, which is
defined as the number of nodes connected to it or equivalently as the car-
dinality of ψ. In digraphs, we must distinguish between in-degree, i.e. the
number of edges pointed to some vertex, and out-degree, i.e. the number
of edges pointing away from it. It is worth to stress again that the role of
neighborhoods and groups puts network theory in stark contrast with Wal-
rasian economics, which requires full interaction of agents, regardless of the
dimension of the system these agents are embedded in [9].

All networks may be conceived as the outcome of a generative process,
which mathematically takes the form of an algorithm. Then, it is convenient
to introduce a fundamental distinction between deterministic and random
graphs, where the former are the outcome of a deterministic sequence of steps,
while the latter’s construction involves one or more stochastic processes.

We observe that, if a network is random, then, all the observables defined
over this networks, including the degree, become random variables, which
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take their values in agreement with a specific probability measure. Then it
is possible to define the probability degree distribution p(k) as the probability
that a vertex chosen uniformly at random has degree k. As we will show,
different models of random networks have different degree distributions, but
a well-established stylized fact is that real-world networks display a degree
distribution which is highly right-skewed, meaning that their distribution has
a long right tail of values that are far above the mean.

There are many properties closely related to the degree distribution.
Resilience, clustering, community structure and assortative mixing can be
counted among the most frequently used in social sciences.

Resilience analyses how the network’s structure changes if some node is
removed. Whenever a vertex i is removed from a network, the average dis-
tance among nodes increases and, as this process goes further, ultimately
some nodes will be disconnected. Nodes can be removed in many ways.
They may be attacked randomly or according to some of their intrinsic prop-
erties (such as their degree). Depending on the rules used to remove nodes,
the network shows a different level of resilience. For instance, [12] show that
social networks, usually highly right-skewed, are remarkably resistant to ran-
dom attacks but extremely vulnerable to attacks targeted at nodes with the
highest degree (hubs). To prove this claim, the authors remove nodes in
decreasing order of their connectivity, showing that, as a small number of
hubs are removed, the average distance of the scale-free network increases
rapidly4.

Clustering is often associated with heterogeneous local structures and
neighborhoods. In many social networks we find that if node i is linked to
node j and node j to node h, then there is a fairly high probability that i
and h are also linked.

Community provides a powerful extension of the notion of clustering, by
looking at groups of vertices such that there is a higher density of links within
groups than between them5. The presence of subsets of highly interconnected

4The study of network resilience is closely related to the analysis of contagion. Studying
the propagation of contagion and, therefore, the network resilience to the attack of nodes,
has become increasingly important in the aftermath of the global financial crisis[13]. This
topic has been extensively analyzed by financial agent-based models (see, for instance,
[14],[15],[16],[17]).

5The field of community oriented research is quite heterogeneous and rapidly growing.
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nodes is a key feature of empirically observed social networks. Usually these
communities, which are sparsely interconnected, reflect agents’ preferences
and choices. 6

Within social networks’ theory, this kind of selective linking, based upon
similarity, is called assortative mixing. One of the characteristics shared
by connected agents can be degree itself. Positive assortativeness, defined
as positive degree-degree correlation, has been detected in many social net-
works (see [22]). In this case assortative mixing can be detected by means
of the correlation between some node i’s degree and the average degree of
its neighbors. If the latter increases (decreases) with k, there is assortative
mixing (disassortative mixing), that is high-degree nodes are more likely to
be connected to high-degree (low-degree) nodes. 7

3. Network-constrained Interaction

The simplest way to introduce networks within ABMs is to think that the
environment acts as a ‘constraint’over interaction, and that agents must learn
how to behave within this constraint. The issue at stake, then, is how eco-
nomic outcomes are affected by network structures over which agents make
their decisions. By keeping the interaction environment (here represented
by the network) fixed, we can analyze, either analytically or with the help
of simulations, how state variables8 evolve within that environment. This
view of the environment is common in the sociological literature, where a
great emphasis is put on the networks in which agents are “embedded”(see
[23]; [24]). The relevance of this approach for economics was outlined by the
early study of Baker [25], who showed that the volatility of options prices
is dependent on the structure of the communication network in the market.

For a recent review the reader can refer to [18].
6Communities can mirror friendships, loyal relationship, cooperation or segregation

among agents or many different kind of relationships among individuals. Among the early
works on this subject it’s noteworthy Jacob Moreno’s work [19] in the 1920s and 30s on
the friendship patterns within small groups; the mathematical models of [20], who was one
of the first theorist to stress the importance of the friendship graphs of school children;
the important set of experiments of [21] on the famous “small-world effect”, which is the
origin of the popular concept of the “six degrees of separation”.

7For a more rigorous treatment in terms of conditional probability see [4] (par. 1.3)
8State variables may represent many economic indicators, such as agents’ wealth,

knowledge, firms’ output and many more.
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Many recent contributions have confirmed this findings, analyzing the many
different ways in which network structure affects economic behavior 9.

3.1. Random interactions: the Poisson model

The binomial or Poisson model is one of the most popular models for
random graphs, thanks to its simplicity and mathematical tractability. The
model starts with a set of N isolated vertices, and then each pair of vertices is
independently connected with probability q. In this model the degree values
follow a common binomial distribution,and agents on average have the same
degree value:

z = q(N − 1) ∼ qN (1)

The mathematical simplicity of the model comes with a cost. It is well
known that the Poisson model lacks many properties which are common in
real networks. For example, the clustering coefficient C is low and equal
to q = z

N
. Then, C tends to zero as N−1 in the limit of large system size.

Similarly, both community structure and assortative mixing are absent in
this ensemble. On the other hand, one of most well known properties of the
Poisson model is the occurrence of a phase transition in connectivity for in-
creasing q. In fact, at a critical value for q the system passes from a state in
which there are few links and components are small, to a state in which an ex-
tensive fraction of all vertices are joined in a single giant component. Then,
crossing the phase transition threshold has dramatic effects on whichever
interaction process is taking place over the network, favoring for example co-
ordinated/homogeneous outcomes over uncoordinated/heterogeneous ones.

The Poisson model has been used in the economic literature on conta-
gion to study the importance of the agents’ connectivity in the analysis of
sharing and systemic risk. In particular, Allen & Gale (see [29]) have shown
that, modeling the credit system as a random graph, when increasing the de-
gree of connectivity of the network, the probability of bankruptcy avalanches
decreases. However, when the credit network is completely connected (i.e.
q = 1), these authors have proven that the probability of bankruptcy cas-
cades goes to zero (i.e the Poisson network becomes more resilient as the

9There are models of network structure in exchange markets (see [26]), in labour mar-
kets (see [27]), communication and information (see [28]), to name a few.
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connectivity increases). The explanation for this result is that, in credit net-
works, two opposite effects interact. On the one hand, increasing the network
connectivity decreases the agents’ risk, thanks to risk sharing. On the other
hand, increasing the connectivity rises the systemic risk, due to the higher
numbers of connected agents which, in case of default, may be compromised.
According to this model, the impact of the risk sharing plays a leading role.
So, in the model there is a benefit in creating links between agents, because
they allow to diversify risk. An exception to this view is the recent con-
tribution by [30]. The authors model credit and inter-bank systems as a
Poisson random graph and they study the network resilience by changing
the degree of connectivity among agents (i.e. q). They show that a too high
node (agent) connectivity generates larger bankruptcy cascades due to the
larger systemic risk. However, the authors find a non-monotonic relation
between connectivity and resiliency. Indeed, the network resiliency increases
with the level of the connectivity up to a threshold which can be dubbed as
pseudo-optimal. In the model, the level of the optimal connectivity depends
critically on the emergence of a giant component. When the Poisson graph
reaches the phase transition (i.e. from a low- density, low- state in which
there are few edges and all components are small, to a high- density, high-
state in which an extensive fraction of all banks is joined together in a single
giant component) the authors show that the credit market is more suscepti-
ble to the domino effect. In this case, when failures occur, many agents are
potentially compromised.

Within an ABM setting, the Poison model may be also summarized as
follows: in every decision period, each agent communicates with a set of
other agents chosen at random from the population. This mechanism could
be interpreted as a stochastic collection of information. Once the different
informative signs are found, one has to understand where the dynamic process
converges, that is, which outcome agents obtain.10 Poisson graphs have an
important role to determine some economic structures where agents decide at
random with whom they will trade. It is logical to think that, when an agent
for the first time enters into a market he decides to trade or to communicate

10When agents interact in complex systems their outcomes are difficult to predict and,
often, the existence of a steady state and its efficiency are not foregone. Ellison and
Fudemberg’s (1995) model ([31]) is an example dealing with random local interaction with
an inefficient outcome.
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with others just at random, since he does not yet have any knowledge of the
environment where he is going to operate. When his knowledge increases, he
will probably choose a different, more elaborated, mechanisms to create his
relationships.

3.2. The ”Small-World” Model

We have seen that Poisson networks are essentially devoid of local struc-
ture11.

As explained above, Poisson networks exhibit a low average clustering
coefficient, which is in contrast with the high clustering coefficient of real-
world social networks. If we want to reproduce the random network low
distance among agents jointly with the high clustering coefficient of real
network, we need to introduce the so-called “small-world”model of Watts
and Strogatz [33].

In order to describer the model we must introduce the notion of average
path length Λ as the average geodesic (i.e shortest) distance between node
pairs in a network:

Λ =
1

1
2
n(n− 1)

n∑
i>j

di,j, (2)

where di,j is the geodesic distance from node i to j. In the terminology
of network theory, “small-world”exists when a network exhibits both high
average clustering coefficient and low average path length.

The starting point of the “small-world”model is an r-dimensional lattice
with periodic boundary conditions 12. If r = 1, this network can be repre-
sented as a ring whose vertices are connected to their z closest neighbors,
as shown in figure (1-a). The small-world model is then created by taking a
small fraction of the edges in this graph and ”rewiring” them. The rewiring
procedure involves going through each edge in turn and, with probability q,
reconnecting that edge to a new one chosen uniformly at random from the
lattice, except that no double edges or self-edges are included. With proba-
bility 1− q, thus, the edge is not reconnected. When q = 0, the small-world

11This conclusion is easily extended to the broader class of “generalized”random graphs
introduced by Newman [32], which fall outside the scope of our limited discussion.

12A lattice is a deterministic network where each node has a fixed and, with periodic
boundary condition, equal number of neighbors, whose value is determined by a distance
threshold d̄. If d̄ = 1, the lattice can be depicted as a grid spanning a r-dimensional space.
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Figure 1: Regular graph with n = 25 nodes and z = 3 (left a). Small World graph with
n = 25 nodes and z = 3 created by choosing at random a fraction q of edges in the graph
and moving one end of each to a new location, also chosen uniformly at random. (right
b).

network is obviously coincident with the original lattice. In this case the
clustering coefficient is C = (3z − 3)/(4z − 2), which tends to 3/4 for large
z, which means that average clustering is non vanishing in the limit of large
network size. The regular lattice, however, does not show the small-world
effect, since the average geodesic distance grows linearly with n. In fact,
in this case the mean geodesic distances between vertices tend to n/4z for
large n. When q = 1, every edge is rewired to a new random location and
the graph is almost a random graph, with typical geodesic distances on the
order of log n − z ∼ log n, but very low clustering C ∼ z/n. Via numerical
simulation, the authors have proved that, between the extremes q = 0 and
q = 1, there is a region in which clustering is high and average path length
is simultaneously low. In this region, a “small-world”network configuration
finally emerges.

The small-world effect has important implications for the dynamics of
processes taking place on networks. In particular, any coordination process
will be facilitated, thus increasing the likelihood of a coordinated outcome,
since communication across the entire set of agents is made simpler by low
average distances, even if interaction is mostly local. Following this idea, Wil-
hite [34] has built a simple bilateral search and trade model, comparing by
simulation alternative network configurations with respect to their ability to
deliver a single equilibrium market price under the same trading mechanism.
In this framework, the small-world network is seen as a intermediate config-
uration between purely global (i.e. equivalent to a complete network) and

12



purely local interaction. Simulation results show that, although the complete
network converges more rapidly to equilibrium than any other configuration,
the small-world network is able to reach equilibrium with a significant saving
of search efforts. Thus small-world networks emerge13 as a more realistic
configuration for market exchange, since they take into account the fact that
economic agents are willing to economize on search efforts, while on the same
time retaining the efficiency of global interaction.

4. Network formation

In economics the assumption of fixed network topologies is satisfactory
only as an initial approximation, since what is most important is the mech-
anism underlying link formation. Why do different individuals interact with
each other? Which motivation pushes agents to communicate with particular
individuals and, perhaps, to follow their indications?

Some agents may prefer to trade with some others according, for in-
stance, to their geographical position, their loyalty or their popularity. In
general, this means there is some variable which affects linking probabilities,
introducing a deviation from symmetric models like the Poisson network:
some agents are preferred as partners because of some quality, which may be
network-related or not. In both cases, this quality may be interpreted as a
fitness measure of the agent over the network in question. To illustrate this
idea, in the first subsection we are going to present the well known model
of preferential attachment, which employs degree itself as a fitness measure,
along with its generalization to arbitrary fitness measures.

Alternatively, we may argue that individuals form, maintain or delete rela-
tionships using a cost/benefit approach. In order to introduce this approach,
in the second subsection we are going to present the popular benchmark
model for strategical network formation of Jackson & Wolinsky [36]. This
model, known as “Symmetric Connection model”, refers to an undirected
network, since the formation of a link requires the agreement of both agents
who are directly involved. Consistently, linking is triggered by a cost/benefit

13[35] examines economic-based reasoning for small worlds. The authors consider a
model where links generate explicit costs and benefits for agents, and then determine
what networks form when agents form links in their self-interest. The authors analyze
how the small-world features is traced to particulars of how costs and benefits to agents
vary.

13



analysis: agents form relationships that they find beneficial and remove those
that are not, although they are not necessarily fully rational or aware of all
the potential options.

4.1. Fitness networks

A classical example of network formation is given by the work of Price [37]
on citations among scientific publications. In this study nodes are represented
by articles, and a directed edge indicates that article i cites article j. Let p(k)
be the fraction of vertices with in-degree k, i.e. with k citations. According to
the model, new nodes are continually added to the network. Each new vertex
has a certain out-degree (number of cited papers), which is fixed permanently
at the creation of the vertex. The out-degree may vary across nodes but its
average value z is constant over time. The model finally dictates that the
probability of a new article linking to an existing one is proportional to the
in-degree k of latter:

p(k) =
k

Din

(3)

where Din stands for the sum of in-degrees across agents, which acts as a
normalization constant. It is possible to show that, under this assumption,
the in-degree follows a power-law distribution p(k) ∝ k−a (e. g. [8], pp. 67-
70), which is a good descriptor of the empirical degree distribution found in
citation networks, as well as in many other domains. For instance, H. Simon
[38] found that the power-law distribution of wealth could be explained as
a consequence of a ”rich get richer” process which is similar to the Price
model. Barabasi & Albert [39],[40] have applied an equivalent ”preferential
attachment” scheme to an undirected network in order to obtain a growth
model for the Web, which has become a widely employed benchmark in
the field of complex networks. Other models have removed some of the
constraints of the original Price’s model, e. g. by allowing the addition
of new out-going edges from incumbent nodes or the deletion/rewiring of
existing links [41].

An important generalization of the preferential attachment scheme is pro-
vided by Bianconi & Barabasi [42]. In their model each newly appearing ver-
tex i is given a fitness value fi that represents its attractiveness and hence
its propensity to accrue new links. It is worth to underline the difference
between preferential attachment and fitness: when one considers a fitness
algorithm it is true that the larger the fitness the larger the degree, but the
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converse implication doesn’t hold anymore, since the larger degree becomes
only a consequence of an intrinsic quality. It’s easy to see that fitness based
linking lends itself more naturally to economic interpretation than prefer-
ential attachment. For instance, it seems reasonable to expect that agents
entering some market will observe incumbents’ performance or reputation,
and they will accordingly decide to communicate with and/or conform with
the most successful ones.

A simple example of fitness algorithm is implemented by Tedeschi et al.
[43]. In this model, directed links are created and deleted by agents seeking
advice from a single other agent, who is selected as advisor on the basis of
a fitness parameter given by its wealth. Agents start with the same initial
wealth Wt, but some agents may become richer than others as time goes
by. Agents’ fitness at time t is defined as their wealth relative to the wealth
Wmax
t of the wealthiest agent:

f it =
W i
t

Wmax
t

. (4)

Each agent i starts with one outgoing link with a random agent j, and
possibly with some incoming links from other agents. Links are rewired at
the beginning of each period in the following way: each agent i cuts its
outgoing link with agent k and forms a new link, with a randomly chosen
agent j, with the following probability:

pi =
1

1 + e−βi(fjt−fkt )
(5)

Otherwise, it maintains its existing link with probability 1 − pi. The
rewiring algorithm is designed so that successful agents gain a higher number
of incoming links. Nonetheless the algorithm introduces a certain amount of
randomness, and links with more successful agent have a positive probability
to be deleted in favor of links with less successful agents. This randomness
helps unlocking the system from the situation where all agents link to the
same individual.
The parameter βi ∈[0, ∞] in Eq. 5 is the key element generating differ-
ent network structures. It represents the signal credibility and answers the
question how much agents trust on the information about other agents’ per-
formance. For βi ∈ [0, 1) differences in fitness are smoothed, unchanged for
βi = 1 and amplified for βi > 1. By varying the parameter βi, therefore,

15



the fitness network self-organizes itself through different topologies, ranging
from the random (for βi = 0) to the scale-free one. It is straightforward
how the network architecture depends on the fitness signal strength βi. This
parameter shapes the network topology by amplifying the signal on agent’s
attractiveness (see [44],[17],[45]).
In table (1), left side, we plot one snapshot of the configuration of the re-
sulting network. The graph shows that few rich agents co-exist and compete
for popularity. Moreover the network is very centralized, with a small num-
ber of rich agents. The topology of the network is different from that of a
Poisson random graph, which would require degrees to follow the Binomial
(or Poisson) distribution, but closer to the topology of real world networks,
where some agents are found to have a disproportionately large number of
incoming links while others have very few. In fact, Table. (1), right side,
shows that the decumulative distribution function (DDF) of the in-degree
follows a power-law distribution.
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Table 1: Network configuration (left side). The decumulative distribution function (DDF)
of the in-degree (right side).

4.2. A Cost/Benefit Approach: the Symmetric Connections Model

In the symmetric connections model, agents are supposed to be able
to compute the net payoff of adding and/or removing a link to any other
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agent, and to be motivated to maximize their own total payoff from link-
ing/delinking. In particular, for some decay factor δ ∈ (0, 1) and linking cost
c > 0, the payoff of any agent is given by:

πi(G) =
∑
j 6=i

δd(i,j) − cki (6)

where πi(.) is a function of the underlying network since it depends on the
geodesic distance d(i, j) and the degree ki. The meaning of this expression is
clear: connected agents receive a direct benefit from the interaction with their
first neighbors, and an undirected benefit from the interaction with neighbors
of neighbors, which is decreasing with distance d(i, j). On the other hand,
direct links bear a cost c, while indirect ones bear no cost. The problem, for
each agent, is to maximize πi, for given δ and c, by adding removing links with
other players. Since agents are not fully rational, it becomes interesting to
check if their interactions move toward efficient outcomes. In order to tackle
this problem, we need an equilibrium notion suitable for network contexts14.
Jackson and Wolinsky provide the following definition, which is based on the
simple idea that any two nodes should link whenever this action is in their
own interest, and each single node should sever a link whenever this is in
her/his own interest:

Definition 1. : Pairwise Stability (PwS hereinafter) A network G = (V,E)
is said to be pairwise stable if

1. for all ij ∈ E, πi(G) > πi(G	 ij) and πj(G) > πi(G	 ij)
2. for all ij /∈ E, if πi(G⊕ ij) > πi(G), then πj(G⊕ ij) < πj(G)

where G⊕ ij = (V,E + ij) and G	 ij = (V,E − ij).15

The authors show that, given the payoff function described above, the
following results hold ([36]: prop. 2):

14Simple Nash equilibrium is not suitable because, according to it, an empty network is
always an equilibrium outcome.

15This definition captures the discretion of individuals regarding the links they are
involved in, and their response to the costs and benefits of network relationships ([7]).
It’s noteworthy that each link is separately assessed, i.e. no group-based adjustment is
allowed, but this is justified by the lack of negative externality: adding one edge always
brings benefits to indirectly connected nodes, since the latter bear no costs and their
distance cannot but decrease, improving their payoff.
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1. if δ2 < δ − c, the unique PwS network is the complete network

2. if δ − δ2 < c < δ, a star encompassing all vertices is PwS, but the
converse is not true

3. if δ < c, any PwS network which is non-empty is such that each player
has at least two links.

While the first result is pretty obvious, the second and third ones are
more interesting but fairly weak. The former depends either from the star
being the initial condition of the linking process, and then showing that no
deviation is possible, or from the empty network being the initial condition,
and then linking decisions following a particular sequence 16. The latter relies
on the fact that no link will be retained unless it bears additional indirect
benefits, so nodes with k = 1 cannot be part of a PwS network in that case.
But in this case we gain no clue as to how the stable network structure will
look like, since the latter will depend from the exact values of the parameters,
the initial network and the sequence of linking and de-linking decisions made
by the agents.

The plurality of outcomes lends itself perfectly for a simple computational
implementation, which shows how the assumptions regarding the sequence
of linking decisions determine the outcome of the model. In the first place,
from Def.(1), we see that agents add edges whenever they bring benefits, i.e.
when π = δ− δd(i,j)− c > 0. Since d(i, j) is symmetric, no double checking is
needed, with a time saving of O (V ÷ 2) obtained by excluding neighbors of
the examined nodes. Verifying this condition on a star graph, we can obtain
the results (1) and (2) above, since in this case agents form no additional link.
Unfortunately, things are not that simple if we want our agents to delete edges
consistently. In fact, although there are no negative externalities generated
by edge addition, there are indeed negative externalities generated by link
deletion. This is quite clear if we think about result (3), which implicitly
assumes that no agent will delete one edge that serves as a gateway to access
a valuable portion of the network, even in case this edge costs more than
its direct value. On the other hand, whenever some agent deletes one link,
some of its neighbors may be worse off, in case their distance from other
nodes increases. Then, we must equip our agents, and their neighbors, with

16In fact, by introducing a random linking sequence it is possible to prove that, if
δ−δ2 < c < δ, the probability that a star configuration is reached by agents is a decreasing
function of the number of nodes, becoming zero in the limit of large network size [46].
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the ability to compare the values of the network over the two alternatives of
deleting or not deleting the edge in question17. But, in order to do this, we
must equip them with the ability to compute the value of a network in the
first place. As a first step, each agent computes the frequencies of neighbors
at a given distance d from i:

nid = |{j ∈ V : d(i, j) = d}| (7)

Then the payoff of the network for i is computed as follows:

πi =
∑
d

nidδ
d (8)

By letting agents delete links whenever ∆πi > 0 upon deletion, we may
check the results (1) and (2), provided that we start from an initial com-
plete graph and let each node delete all its edges in sequence. Under this
specification we verify, consistently with (3), that the empty graph is a PwS
network if δ < c. This happens because all nodes delete all edges except one,
and none of them wishes to be the center of a star graph, since this position
gets a negative payoff. In this way everybody gets worse off, and the PwS
network is inefficient 18.

One way to avoid this undesirable result is to enable a random pick or-
der of edges. With this adjustment, and starting from a sufficiently large
complete graph, with δ < c we get either the empty network or a connected
subgraph with each of its vertices displaying at least 2 edges. It is also easy
to see that if c is large enough for fixed δ and |V |, the only PwS network is
the empty network. We can see this fact most easily in a cycle graph G̊, i.e.
a graph that consists of a single cycle, where π̊i = 2

∑i=D−1
i=1 δi + δD if |V |

is even and π̊i = 2
∑i=D

i=1 δ
i otherwise, with D = diameter(G̊): G̊ is PwS

if π̊i > c. Stability can be checked by verifying that πi > 0 for all i ∈ V
and, if δ > c, that the diameter of G doesn’t exceed the limit log(δ−c)

log(δ)
which

is the maximal distance d(i, j) such that adding a new edge between i and j
is providing a negative payoff.

17Alternatively we may allow agents to delete edges myopically whenever π < 0 [47]. In
this case the empty graph is of course the only PwS network if δ < c.

18For a detailed analysis of the tension between stability and efficiency in SCM and
similar models, see [7]: Ch. 6)
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Of course, the deletion process does not help us with the problem of
finding a PwS configuration when the initial network is empty. But, if we
let nodes add all potentially valuable edges in whatever sequence, we get
invariably the complete graph, the star graph and the empty graph for δ2 <
δ − c, δ − δ2 < c < δ and δ < c respectively. This result highlights the
asymmetry generated by the different initial configuration: it is impossible
for agents to deviate from the empty graph, whenever δ < c, while, for
different random sequences of choices, it is possible to find a non-empty PwS
network, in the same parameters’ range, if the initial graph is non-empty too.
Note also that, if we allow the agents to delete myopically edges as proposed
in [47] (see footnote 17), the latter result does not attain, and we are left with
the empty network as the unique PwS network. To overcome this state of
affairs, we can resort to two different options. The first alternative, following
[48], is to introduce randomness, letting agents make errors according to
some small probability ε. Then, thanks to the properties of Markov chain
processes, agents will settle, among alternative PwS configurations, to those
that are stochastically stable19, which may be possibly different from the
empty graph. The second alternative is to make agents forward looking, by
letting them anticipate the subsequent changes of the network, so that they
become, so to speak, patient to wait until a PwS configuration is formed that
is improving over the empty graph for a subset of the agents. Otherwise we
may allow them to compensate each other. In this case, efficient networks
may become stable too. The basic idea is that, since the efficient network
ends up with a higher level of total resources, if these are appropriately
redistributed everyone is better off than at some inefficient network (see again
[7], Ch. 11.5).

5. Interdependency and The Evolution of Networks

Influence is a ubiquitous phenomenon over networks. Agents may change
their expectations or behavior due to the expectations or behavior of those
with whom they communicate, creating in this way phenomena of herd be-
havior and/or imitation. Generally speaking, this means that the probability
of the agent i being in some state s is conditioned by the states of his neigh-
bors. Then it becomes important to specify how individual behavior reacts

19A network is said to be stochastically stable if its steady-state probability is bounded
below as ε→ 0. For a detailed discussion see [7], Ch. 11.4
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to the behavior of neighbors, in order to study what aggregate properties
emerge in the population as a consequence of mutual influence. In addition,
if we allow agents to update their connections depending on their state, we
expect network observables and agents’ state variables to become interdepen-
dent, since the interaction among linked agents affects state variables which
on their turn affect network structures. For instance, in the symmetric con-
nections model the utility of agents depends on their links with other agents,
while the same agents modify their links over time depending on the utility
they expect from links themselves.

In this section, we wish to introduce a model which elaborates further
this sort of interdependency. In order to do so, we need to borrow some
concepts and tools from the field of statistical mechanics. In fact, we are in-
terested in computing some aggregate macro variables, like for instance the
average degree, starting from the micro-configurations of the system, and
this is a task for which statistical mechanics is especially suited. As a first
step, following [49], we will define a simple coordination game model, played
by neighbors over a fixed network, which provides a simple implementation
of interdependent behavior over networks. Subsequently, we will introduce
a model, proposed in [50, 51], which allows agents to update their connec-
tions when playing the same kind of game. As we will see, it is possible to
show that this model provides multiple equilibria, thereby making the actual
configuration of the network dependent on the history of the network itself.

5.1. Coordination games over networks

We start with a simple coordination game model, played by neighbors
over a fixed network[49]. Agents select the action maximizing their payoff,
which is defined as follows:

πi(s(t)) = |{j ∈ ψ(i) : sj(t) = si(t)}| − |{j ∈ ψ(i) : sj(t) = −si(t)}|+ hsi(t) =

si(t)(
∑
j∈ψ(i)

sj + h)

The definition assumes the action space is s = {−1, 1} and that each
player i displays the same action with all of its neighbors, while h ∈ (−1, 1)
is a key parameter that, if different from zero, introduces a payoff bias in
favor of one of the two actions. The vector s(t) ∈ {−1, 1}|N | represents the
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action profile of the N agents prevailing at time t. Finally, we suppose that
each action profile occurs with the following probability:

P (s) ∝ P ∗(s) = eβ
∑

i πi(s(t)) (9)

with β > 0. Eq. (9) means that, if β > 0, then larger values of P ∗ are
assigned to action profiles with higher payoffs. Nevertheless, agents are not
assumed to behave optimally in this case since, as long as β is finite, action
profiles with lower payoffs display positive probability too.

From a theoretical point of view, this model is equivalent to the well
known Ising model of magnetization, with s, β, π and h playing the part
respectively of the configuration of spins, (the reciprocal of) absolute tem-
perature, (the opposite of) energy, and an external magnetic field. The mag-
nitude of interest is the equivalent of magnetization, as given by a conformity
index :

C(s) =
n∑
i=1

1

n
si

Not surprisingly, a large set of economic models can be mapped to var-
ious versions of the Isling model to account for different stylized facts, such
as bubbles and crashes (see [52], [53]), volatility clustering and power law
distribution of returns ([54]), agents’ expectation and herding (see [55],[56]).

Among the many well-known solutions for the Ising or Potts model20

available for regular topologies, some have proven to be relevant also for
complex networks. In particular, [57] provides the exact solution for the
Ising model defined over a Bethe lattice. This is an infinite rooted tree
network where each node has the same number u of neighbors, and each
agent (excepted the root node) has one ancestor and u − 1 descendants.
This solution has become of particular interest for complex networks, since
it’s been extended to provide mean-field ([58])and exact solutions ([50]) for
Potts models on random trees. These solutions are suitable also for random
graphs of arbitrary degree distribution (configuration model), because the
latter are locally tree-like for large network size. Since the Ising model on

20The Potts model is a generalization of the Ising model which allows for a number
q > 2 of states or actions.
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Bethe lattice provides a simple entry-point to understand these more complex
models, next we are going to provide the basic algorithms needed to simulate
it, while referring the reader to the quoted articles for the more advanced
analysis required for the extension to random trees.

In general, the need for numerical simulations of this class of models
arise systematically, since most exact solutions hold for the limit N →∞ or
under other analogue analytical approximations. The best option is to rely
on Markov Chain Monte Carlo (MCMC) methods [59], and in particular on
the Metropolis-Hastings (MH)) algorithm, since we know how to evaluate the
acceptance probability of a new configuration from eq. (9). The pseudocode
for this algorithm is reproduced in appendix. Since the MH algorithm is
independent from the underlying topology of the network, all we need to
simulate our model on a Bethe Lattice is precisely an algorithm to implement
such a topology. The main difficulty here derives from the fact that exact
solutions of the Ising model refer to deep nodes of a Bethe lattice. The
latter, in fact, may be considered as a lattice of coordination number q only
by ignoring the boundary sites, which have degree q = 1. The problem
with Bethe Lattice is that the ratio of the number of boundary sites to the
number of interior sites is not vanishing for n → ∞, since both numbers
grow exponentially like (q − 1)n (see [57]: Ch. 4). In this limit deep nodes
may be consistently defined as those at infinite distance from the boundary,
but this is not possible anymore for finite structures. In the latter, which are
sometimes called Cayley trees to draw a clear distinction from the infinite
case, boundary effects are predominant, since most nodes are within a short
distance from boundary nodes, while deep nodes form a negligible fraction
of the total.

In order to solve this problem, we follow [60] in taking, as a substitute
for a Cayley tree, a regular random graph which is obtained in the following
two steps: (i) create a cycle or ring graph with the desired number of nodes;
(ii) add to the cycle graph random pairings of nodes until the desired degree
is reached for each node. In the regular random graph there is no boundary
but, unlike in Cayley trees, there are loops. On the other hand, the average
number of loops of length l increases as λl with λ = q − 1, and a negligible
fraction of nodes belong to any loop of length 6 l for l � logN/ log λ.
Thus, within a distance d = logq−1N the random regular graph behaves
like a Bethe lattice and it can be shown that in the thermodynamic limit
the free energy per site of the random regular graph is the same as in the
Bethe-Peierls approximation. Consequently, we can obtain this topology by
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specifying a procedure for creating the random pairings required from step
(ii). These couples can be added as edges to a cycle graph of the desired
length to obtain an approximation of a Bethe lattice. The pseudocode for
this procedure is reproduced in appendix.

Simulations of the coordination model over this kind of topology corre-
spond to the exact solutions for Bethe lattice with high accuracy for large
N ≈ 106. This correspondence can be verified by computing the theoretical
value of C, which is given in the limit n → ∞ by the following expression
([57]; [8]):

C =
e2βh − x̄q

e2βh + x̄q
(10)

where x̄ is obtained as a fixed-point solution of the map xt = Φ(xt−1) and

Φ(x) =
xq−1 exp[β(1− h)] + exp[β(h− 1)]

xq−1 exp[−β(h+ 1)] + exp[β(h+ 1)]
(11)

5.2. Evolving networks

The model of [50, 51] allows agents to update connections when playing
a coordination game of the kind presented in the previous section. This
model can be interpreted as a simplified representation of how agents may
evolve their reciprocal interactions over time, according to their goals and
behavior rules. Because of this process, network topology cannot be taken
as fixed anymore. Instead, since the network is endogenously generated by
micro-interactions, at each t the network itself should be viewed as “fitted”to
agents’ needs.

The model may be conceived as an extension of our previous coordination
model to an arbitrary number q of actions ar ∈ A with r = (1, 2, . . . , q) and
to an arbitrary, possibly empty, initial network G. On the other hand, the
payoff function is simplified to the following form:

πi(s) = |{j ∈ ψ(i) : sj = si}| =
∑
j∈ψ(i)

δsisj (12)

where time indexes are omitted for simplicity and si, sj stand, as before,
for the states of the agents. The dynamics of the model is described by the
following procedures:
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1. link formation: at each t every agent is given the opportunity to form
new links at a rate η > 0 with a randomly chosen j ∈ V according to
the following probability:

p =

{
1 if si = sj = ar

ε if si 6= sj
for some small ε.

2. link removal: existing links are taken to vanish at a constant rate,
which is normalized to unity

3. action revision: at every t each agent is given the opportunity to
revise her strategy at a rate ν > 0; if this event occurs, the agent
chooses any ar with the probability

Pi(ar|s) ∝ eβπi(s
′) (13)

where s′ is identical to s except for the switching of si to ar.

To simplify things further, here we follow [61] in supposing ε = 0 and
β → ∞, since the most essential features of the model are unaffected by
these suppositions. Then new links are formed only between homogeneous
agents, and action revision selects only those actions which maximize πi, i.
e. those adopted by the largest subsets of neighbors of i, according to the
following definition:

Bi ≡ {ar ∈ A : |{ sj = ar : j ∈ ψ(i)}| > |{ sj = ar′ : j ∈ ψ(i)}|∀r′} (14)

Actions in Bi are then selected with equal probability 1/|Bi|. This ac-
tion revision procedure can be implemented with a simplified version of the
standard MH algorithm (see appendix). Since the value of ν doesn’t affect
the behavior of the model ([61]), we also suppose for simplicity that ν = 1.
This means that, at each t, every agent receive exactly one opportunity to
revise her action.

At any t, the state of the system is given by ω(t) = (s(t), G(t)), and
its evolution is described by a Markov process for ω(t), whose properties
are determined by the transition rates between any two states ω and ω′.
It can be proven ([61]: prop. 1) that the process is ergodic, and that a
single recurrent class of events Ω̂ exists such that µ(Ω̂) = 1, where µ is
the invariant distribution of the process. This class is characterized by the
property of having only homogeneous agents reciprocally connected (i. e.
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ij ∈ E ⇒ si = sj), which is a straightforward consequence of the link
removal and link formation processes. In fact, the former makes the network
empty from any initial condition, while the latter only allows connections
between coordinated agents. Then it can be proven ([61]: prop. 2) that
µ(ω) ∝

∏
i,j∈V,i<j(

2η
N−1)Iij , where Iij is the indicator function of the event

ij ∈ E.
Of course, in order to characterize the behavior of the model, we are not

interested in single states ω, rather in classes of states displaying the same
features. Taking into account the purpose of the model, the most important
of these features is indeed the distribution of agents across different actions,
because this variable affects directly the mean connectivity of the network
and indirectly, through the latter, the level of payoffs. Given any state ω ∈ Ω̂,
we can define Pr(w) = {i ∈ V : si = ar} to be the set of agents choosing
ar, and Nr = |Pr| to be its cardinality. Then P(ω) = (P1(ω), . . . , Pq(ω))
and N(ω) = (N1(ω), . . . , Nq(ω)) represent the profiles associated to ω, and

Ω̂(P), Ω̂(N) are the collections of states consistent with those profiles. Since
agents are treated symmetrically in the model excepted for their state, we are
particularly interested in the latter subsets, whose measure can be written
as follows:

µ(Ω̂(N)) = Z−1
N !∏q
r=1Nr!

(
1 +

2η

N − 1

)∑q
r=1

1
2
Nr(Nr−1)

(15)

The system will converge to those profiles N which have the largest prob-
ability according to the previous expression. To find the solution to this max-
imization problem, it is convenient to replace the previous expression with a
continuous approximation e−Nf(n) where n = (n1, . . . , nq) with nr = Nr/N
and f(n) = c +

∑q
r=1(nr log nr − ηn2

r) for some constant c. Then we are
interested in finding the minima of f(n) under the constraints n > 0 and∑q

r=1 nr = 1. In view of the properties of f , there can be at most two values
of nr, which can be denoted as n+ and n− with n+ > n−, that can provide a
solution to the problem. This fact allows us to divide actions in two classes:
predominant, with frequency n+, and dominated, with frequency n−. If we
now let L+ and L− = q−L+ represent the number of actions in the predom-
inant and dominated class respectively, it is possible to write the resolutive
values of n+, in force of FOC, as a function of L+ and η:
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n+ =

[
L+ + (q − L+)e

−2η qn+−1

q−L+

]−1
(16)

In order to find which values of L+ are admissible for a given value of
η, we must take into account the relevant second order conditions. A full
characterization of the problem is then given by the following proposition:

Proposition 1. Given q > 2, and two thresholds η̂ and η̌ such that η̌ 6 η̂ =
q/2, the local minima of f as a function of η can be detected as follows:

1. there is a local minimum with L+ = 0 if and only if η 6 η̂. This
minimum is unique in the class with L+ = 0.

2. there are q local minima with L+ = 1, one for each action being dom-
inant, if and only if η > η̌. These minima are unique in the class
L+ = 1.

3. There are no minima with L+ > 2.

Proof. See [61].

The properties of the model in terms of average payoff are captured, as
already explained, by the average connectivity prevailing over the network.
We can compute the expected value of this quantity as a function of the
solution n̄+ of the optimization problem, for given L+, η and q, using the
following expression:

z = 2η

[
L+n̄

2
+ +

(1− L+n̄+)2

q − L+

]
(17)

The local minima identified by proposition 1 coincide with global minima
outside the open interval (η̌, η̂). Within the latter, we have two local minima,
and only one of these is also the global minimum. For t → ∞ the system
converges to the latter, which is the one corresponding to either L+ = 1
or L+ = 0 depending on either η being larger or smaller of the threshold
η∗ = [(q − 1)(q − 2)] log(q − 1). But the other local minimum still attracts
the process for any t <∞, if the system starts from initial conditions which
are closer to that minimum than to the global minimum. Thus, following
[61], it is possible to distinguish between an ultralong run (i.e with t → ∞)
behavior and a long run (i. e. with t large but finite) behavior of the system,
with the latter being the only relevant one for our simulation purposes. In this
context, the key to obtain the convergence of simulations towards the desired
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theoretical results is to keep the profile s fixed while agents are engaged in
the process of link formation. This condition allows us to write the degree
distribution of agents, conditional on a given s, as

P {ki = k|si = ar} =

(
Nr − 1

k

)(
2η

N − 1

)k (
1− 2η

N − 1

)Nr−1−k

(18)

This is the binomial distribution characterizing the well-known ER ran-
dom graph ensemble, with 2η

N−1 representing the probability of two nodes in
the same class being connected. Thus all we need to implement correctly the
link formation process is a procedure to build efficiently ER random graphs
(see [62]).

The final arrangement for the simulation setting is to schedule link for-
mation and action update in a sequence such that the latter occurs after
links have formed and before they disappear. This is because any systematic
action update undertaken when the network is empty leads immediately to
a disordered state, since the probability for an isolated node to adopt any
action is identical and equal to 1/q.

The results of simulations performed for N = 1000 and q = 10, together
with the predicted values derived from equations 16 and 17, are depicted
in Figure 2. We must remark that the transition from a low-connected to
a highly-connected state occurs before the threshold η̂ = q/2 due to finite
size effects. The results highlight the most interesting features of the model
which, notwithstanding its simplicity, displays a dynamical behavior which
is usually assumed to be typical of real-world complex networks. In the first
place, we detect discontinuity as a consequence of sharp phase-transition be-
tween a low-connected locally-coordinated state (the one represented mathe-
matically by solutions obtained for L+ = 0) and a highly-connected globally-
coordinated state (the one represented mathematically by solutions obtained
for L− = 0). In the second place, the system displays hysteresis, since the
initial conditions matter for its long run (t < ∞) behavior. In fact, a sys-
tem which was initially in a coordinated state (represented in the figure by
triangles) displays higher connectivity when compared to an originally un-
coordinated system (represented by stars), both observed at the same value
of η. This property may be particularly relevant for those contexts in which
time matters, like it is usually the case in the economic domain. According
to this model, the likelihood of coordination failures, which lie at the root of
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institutional failures, depends from the specific historical conditions of the
system under consideration.
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Figure 2: Average degree against η

6. Conclusions

If we want to understand the influence that social systems have on agents
and the way by which heterogeneous individuals create complex environ-
ments, it is worth to reproduce the variegated phenomena which emerge
when different types of agents communicate and the influence that the sys-
tem has on the mechanisms driving this interaction. Network theory is a
good candidate for this purpose: it is a good instrument to understand the
bijective mapping between individuals and environment.
In this paper, we have, particularly, dealt with the influence that a network
has on the relationships among agents (Static networks) and with the influ-
ence that the relationships among agents have on the structure of the network
(Growing networks). Here, the focus has been on the way in which individual
incentives shape the formation of structure, in particular with respect to the
mechanisms of link formation.
With this collection, we hope to have encouraged scientists to use this pow-
erful methodology, able to account for an ensemble of stylized facts regarding
both micro behaviors and with macro statistical properties.
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7. Appendix: Pseudocode

Algorithm 1: MH algorithm for a coordination game model
Input: G = (V,E) with E not empty, s(0) , T , h , β
Output: s(T )
(1) t← 0
(2) N ← nodes(G)
(3) for t = 0 to t = T
(4) foreach node ∈ N
(5) snew ← rnd-choice(1,−1)
(6) ψ ← neighbors(G , node)
(7) s(ψ)←

∑
i∈ψ si

(8) if snew 6= snode then dπ ← 2snew[2s(ψ) + h]
(9) else dπ ← 0
(10) rnd← random(0, 1)
(11) if dπ > 0 or exp(βdπ) < rnd then snode ← snew
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Algorithm 2: Random couplings to obtain an approximation of a
Bethe lattice
Input: G = (V,E), G cycle graph of length N , q desired coordination
number
Output: G = (V,E), G approximation of a Bethe lattice
(1) I ← nodes.index(G)
(2) degree ← degree-sequence(G)
(3) others ← copy(I)
(4) N ← length(I)
(5) E ← empty-array()
(6) foreach i ∈ I
(7) if degree[i]< q
(8) z ← degree[i]
(9) s← q − z
(10) remove(i from others)
(11) if i < N − 1 then remove(i+ 1 from others)
(12) sample ← sample(s elements from others)
(13) foreach j ∈ sample
(14) link ← (i, j)
(15) append(link to E)
(16) degree[i]+ = 1
(17) degree[j]+ = 1
(18) if degree[j] > q then remove(j from others)
(19) if i < N − 1 and degree[i+ 1] < q
(20) insert(i+ 1 in others as first element)
(21) G.add-edges-from(E)
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Algorithm 3: simplified MH algorithm for a evolving network
Input: G = (V,E), s(t), A
Output: s(t+ 1)
(1) N ← nodes(G)
(2) foreach node ∈ N
(3) anew ← rnd-choice(A)
(4) aold ← snode
(5) ψ ← neighbors(G , node)
(6) sψ ← {sj for j ∈ ψ}
(7) πold ← count(aold in sψ)
(8) πnew ← count(anew in sψ)
(9) if πnew > πold then snode ← anew
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