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Interaction induced effects in the nonlinear Raman response of liquid CS 2 :
A finite field nonequilibrium molecular dynamics approach
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The third- and fifth-order time-domain Raman responses of liquid carbon disulfide have been
calculated, taking local field effects into account through the dipole-induced dipole approximation
to the polarizability. The third-order response is shown to be in excellent agreement with
experimental data. The calculated two-dimensional shape of the fifth-order response is compared
with recently reported experimental observations of what is claimed to be pure fifth-order response.
Considerable discrepancies are observed which might be explained by contamination of the
experimental results with sequential and especially parallel third-order cascaded Raman response. A
new choice of polarization conditions is proposed, which increases the discrimination against these
unwanted cascading effects, as compared to the previously discussed fully polarized and magic
angle conditions. ©2001 American Institute of Physics.@DOI: 10.1063/1.1374959#

I. INTRODUCTION

The ultrafast dynamics in liquids can be studied by fem-
tosecond laser spectroscopy techniques. Examples of such
experiments are the~heterodyned! optical Kerr effect1,2 and
transient grating scattering.3,4 The advantage of these meth-
ods, that are examples of time-resolved stimulated Raman
scattering experiments, is that they make it possible to ob-
serve the induced motions in real time, rather than as reso-
nance. Despite this advantage, the information content in
such time domain experiments is in principle the same as in
frequency domain light scattering experiments. The two
types of experiments are related by Fourier transforms.

Tanimura and Mukamel suggested the use of two-
dimensional Raman spectroscopy5 to give a more detailed
understanding of liquid dynamics. In these experiments two
Raman perturbations, separated by a time of free evolution,
are applied to the sample. After another period of free evo-
lution the state of the sample is probed. This kind of experi-
ment can be expected to give much more information on the
structural dynamics of the liquid than the one-dimensional
experiments. For instance, the two-dimensional data contain
information on whether the broadening of the Raman spec-
trum is dominated by ultrafast fluctuations on a local mo-
lecular scale or by density fluctuations on a much larger
length scale.5,6 The line broadening mechanisms are in the
limiting cases described as homogeneous line broadening,
due to interaction of the system with a fast heat bath, and
inhomogeneous line broadening, from a slowly fluctuating
distribution of local environments. The two-dimensional data
also contain information about mode coupling effects, com-
parable to the well-known coupling effects between spins in
two-dimensional nuclear magnetic resonance~NMR!.7,8

Concepts like homogeneous and inhomogeneous line
broadening are based on abstract models with an unclear

physical interpretation. Brownian oscillator models6,9 are
more detailed but still abstract and difficult to interpret. Pre-
dictions of intensities and intensity ratios between the fifth-
order response and the third-order cascaded processes cannot
be made from these models, since the third- and fifth-order
responses are dominated by different parts of a Taylor ex-
pansion of the susceptibility in the coordinates. To provide
even a basic understanding of the high-order Raman experi-
ments and interpret the results in terms of physical relevant
information on liquids, more microscopic models are re-
quired.

Molecular dynamics~MD! simulations can provide the
microscopic information needed to give spectral predictions
and provide the understanding of the underlying physics. The
instantaneous normal modes~INM ! method10–13 uses snap-
shots of the potential surface from molecular dynamics simu-
lations, to describe the molecular motion that gives rise to
the Raman spectrum. The use of instantaneous snapshots
limits this method to the description of phenomena on a very
short time scale and the method therefore is not able to de-
scribe properties such as diffusive motion. From full molecu-
lar dynamics simulation data, the nonlinear Raman spectra
can be predicted using classical time correlation functions
~TCF!.14–18 This provides good possibilities to calculate the
third-order response function, but the approach is not well
suited for higher-order response, since the time correlation
functions related to the higher-order response become too
complicated to calculate from the numerical MD data.19 Al-
ternatively, a nonequilibrium MD method, where the actual
experiment is simulated by applying laser fields during the
simulations, can be used. This finite field~FF! method20

makes it possible to calculate the fifth-order response in a
way that is numerically much less expensive. The third-order
response has also been modeled using a quasicrystal
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model21,22 in which the molecular movements are approxi-
mated by the motion in short lived quasicrystalline struc-
tures.

The third- and fifth-order responses were calculated ear-
lier by us neglecting the many-body part of the optical
response.20 In this model the polarizability of the sample is
calculated as the sum of single molecule contributions. The
calculated third-order response showed good agreement with
experiment in the diffusive tail, but serious discrepancies oc-
curred in the short time response. These discrepancies were
attributed to the fact that interaction induced effects were not
taken into account in the calculation of the polarizability.
The intensity ratios found between the fifth-order and the
third-order cascaded response supported the conclusion that
the experimentally observed fifth-order spectra23–25 were
highly dominated by cascading third-order processes.26 Very
recently new sets of experiments with improved measuring
conditions have been reported.27,28 The results of Blank
et al.27 could not be explained by cascaded response alone
and therefore it was concluded that the true fifth-order re-
sponse was measured. The experiments by Astinovet al.28

showed a weak nuclear fifth-order response.
In this paper, the fifth-order optical response of liquid

CS2 is calculated, taking many-body effects in the optical
interactions into account. The outline is as follows: In Sec. II
it will be described how the nonlinear Raman response can
be calculated, with emphasis on the finite field method. A
way to estimate the intensity ratio between the true fifth-
order response and the competing third-order cascading pro-
cesses will be given. In Sec. III it is described how local field
effects can be taken into account through the dipole-induced
dipole ~DID! model. Then, in Sec. IV the third-order re-
sponse, calculated with different methods will be presented
and compared with experimental data. Next, the two-
dimensional fifth-order response is also calculated and com-
pared with the most recent experimental data.27 In Sec. V the
main conclusions of this paper are presented.

II. NONLINEAR RAMAN RESPONSE

In a time-domain one-dimensional Raman experiment an
initial laser pulse pair perturbs the sample and after a delay
t1 the dynamics, following the impact of the initial pulse pair
is probed by a third laser pulse. This is shown in Fig. 1. The
signal is governed by the third-order response function
xabcd

(3) , whereb, c, andd are the polarization directions of the
driving fields anda is the polarization direction of the emit-
ted Rayleigh/Raman radiation. The possible polarization di-
rections for the nuclear third-order response are limited by
symmetry.29 Because the liquid phase is isotropic, the only
tensor elements of the polarization with nonzero response are
xzzzz

(3) , xzzxx
(3) , xzxzx

(3) , andxzxxz
(3) . All permutations ofx, y, and

z and linear combinations of these response functions are
possible. The four response functions are not linearly inde-
pendent but are related by two expressions,29

xzxxz
~3! ~ t !5xzxzx

~3! ~ t !,
~1!

xzzxx
~3! ~ t !5xzzzz

~3! ~ t !22xzxzx
~3! ~ t !.

Hence, finding two of these response functions will provide

all the information we can obtain. Usuallyxzzzz
(3) andxzxzx

(3) are
the functions determined experimentally. They are denoted
as the polarized and the depolarized components of the re-
sponse. Alternatively a separation into a part due to fluctua-
tions of the anisotropic part of the susceptibility and another
due to fluctuations of the isotropic part of the susceptibility
can be used. The depolarized component and the anisotropic
response are identical. The linear combination with equal
weight of xzzxx

(3) , xzzyy
(3) , andxzzzz

(3) is equivalent with the re-
sponse functionxzzmm

(3) , wherem denotes an axis forming an
angle of 54.74° with thez axis ~the magic angle!. This tensor
element contains only information about the fluctuations of
the isotropic part of the susceptibility. In the independent
molecule model of the susceptibility, it vanishes because the
isotropic susceptibility in the model is constant.

Any response componentxzzkk
(3) , wherek denotes an axis

forming an angle ofu degrees, with thez-axis, can be ex-
pressed as29

xzzkk
~3! 5cos2 u3xzzzz

~3! 1sin2 u3xzzyy
~3! . ~2!

Later a choice ofu at 60° will be considered. The axis con-
nected with this angle, close to the magic angle, will be
denoted with anl. It should be realized that an angle of 120°
gives the exact same response as with 60°. It will be shown
later that this can effectively be used to suppress the cas-
caded response. In Fig. 2 the polarization directions of the
xzzzz

(3) andxzzll
(3) components are illustrated.

In the time-domain two-dimensional Raman experiment
two initial laser pulse pairs with an intermediate time delay
t1 are followed by a Raman probe pulse after an additional
time delayt2 as illustrated in Fig. 1. The two-dimensional
signal is governed by the fifth-order response function
xabcde f

(5) , whereb, c, d, e, andf are the polarization directions
of the driving fields anda is the polarization direction of the
measured signal. For the nuclear fifth-order response similar
symmetry considerations hold as those made for the third-
order response and there are five linearly independent tensor

FIG. 1. Energy level diagrams for the third- and fifth-order Raman re-
sponses. The full arrows symbolizes the driving fields and the dashed arrows
the emitted field. The polarization directions~a, b, c, d, e, andf ! of the fields
are shown above the arrows.
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elements.30 Here, the tensor elementsxzzzzzz
(5) , xzzzzmm

(5) ,
xzzmmzz

(5) , andxmmzzzz
(5) will be discussed. The first two were

recently claimed to have been measured experimentally.27 In
addition, the tensor elementx l lzzl8 l 8

(5) will be discussed be-
cause it is expected to suppress the cascaded response, as
will be explained later. Herel denotes an angle of 60° clock-
wise of thez-axis seen from the direction of the incoming
laser beams andl 8 denotes an angle of 60° counterclockwise.
Thus, the angle between these two axes is 120°. Thex l lzzl8 l 8

(5)

component is, using the expression for angle polarization
direction dependence in near colinear experiments,30 given
by

x l lzzl8 l 8
~5!

5 3
8 ~xyyzzzz

~5! 1xzzyyzz
~5! 1xzzzzyy

~5! !2 1
8 xzzzzzz

~5! . ~3!

The polarization directions of thexzzzzzz
(5) , xmmzzzz

(5) , and
x l lzzl8 l 8

(5) components are illustrated in Fig. 2.
All third- and fifth-order tensor elements can be ex-

pressed in terms of time correlation functions~TCFs!. The
third-order response function that governs the one-
dimensional experiment, is given by the TCF of the first-
order electronic susceptibility x (1), and its time
derivative,14,18,31

xabcd
~3! ~ t !52

1

2kbT
^ẋab

~1!~ t !xcd
~1!~0!&. ~4!

The time correlation function can be calculated using
Brownian oscillator models,6,9 instantaneous normal mode
data ~INM ! from snapshots in molecular dynamics
simulations10–13 or full molecular dynamics ~MD!
trajectories14–18 of the molecular motion in the sample.

Alternatively, the third-order response function can be
calculated using the finite field method~FF!,20 where the
actual experiment is simulated using molecular dynamics.
Here the forces, due to the optical fields at time zero, are
actually applied in the simulation and the response is mea-
sured by calculating the susceptibility at later time steps.
This procedure is repeated for numerous trajectories to pro-

duce sufficient statistical material. Additionally the noisy
background response from calculations without the applied
forces, is subtracted to improve the accuracy. This approach
has also been used in our earlier calculations that did not take
the local field effects into account.20 It can be easily gener-
alized to calculations that include these effects.

Thus, the third-order response function is calculated
from the difference between the susceptibility in the calcula-
tion, where electric fieldsEc andEd , are applied in a time
step of durationDt and the background calculation, where no
fields are applied. Theab tensor element of the susceptibil-
ity, calculated with applied pump fields with polarization di-
rectionsc and d, is denotedxab;cd

(1) , while the same tensor
element from the background calculation is denotedxab;00

(1) .
The third-order response function in a sample with number
densityN, is then given by

xabcd
~3! ~ t !5

xab;cd
~1! ~ t !2xab;00

~1! ~ t !

4p«0NEcEdDt
. ~5!

The fifth-order response function governing the two-
dimensional experiment is given by a time correlation func-
tion of the first-order susceptibilities that includes a Poisson
bracket. This complicates the evaluation
dramatically,11,19,20,32

xabcde f
~5! ~ t1 ,t2!5S 1

kBTD 2

^xab
~1!~ t11t2!ẋcd

~1!~ t1!ẋe f
~1!~0!&

2
1

kBT
^xab

~1!~ t11t2!$xcd
~1!~ t1!,ẋe f

~1!~0!%&.

~6!

This time correlation function can be evaluated by approxi-
mating the molecular motion by Brownian oscillators6 or in-
stantaneous normal modes.11,13 Using the full molecular dy-
namics trajectories19,32 is very complicated, since it involves
the calculation of the full stability matrixM, that tells how
the phase space coordinates evolve after an infinitesimal
change of any phase space coordinatex at an earlier time,

Mk j~ t1,0!5H ]xk~ t1!

]xj~0! J . ~7!

The stability matrix contains the number of phase space co-
ordinates squared. All elements ofM have to be known for
all times in the molecular dynamics trajectory, in order to
obtain the time correlation function in Eq.~6!. This makes
the approach unfeasible unless the number of phase space
coordinates is very limited. A study on thexzzzzzz

(5) response
of liquid xenon using a variant of this approach with only 32
atoms has recently been published.32

Using the finite field method20 the evaluation of the Pois-
son bracket is avoided. The fifth-order response can be cal-
culated using the first-order susceptibilities obtained from
molecular dynamics simulations where fields have been ap-
plied to simulate the experiment. The stability matrix can be
transformed in such a way, that the distortion of the phase
space coordinates due to the applied laser fields appears in

FIG. 2. In the upper line the polarization directions of thexzzzz
(3) and xzzll

(3)

tensor components are illustrated. The circle is the unit circle in the plane
perpendicular to the propagation direction of the laser beams. The lines
symbolizes the polarization alignment of the pulse pairs and the probe and
signal fields. Since the pulses in the considered experiments come in aligned
pairs and the Raman events depend on the product of the aligned fields, the
orientation of the polarization vector of each field is not important. In the
third-order case line 1 is the driving field pulse pair and line 2 is the probe
and signal fields. In the lower line the polarization directions of the fifth-
order tensor componentsxzzzzzz

(5) , xmmzzzz
(5) , andx l lzzl8 l 8

(5) are illustrated. Line 1
and 2 are driving field pulse pairs and line 3 is the probe and signal fields.
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just one column. The finite field simulation is thus in prin-
ciple equivalent to calculating only this column of the trans-
formed stability matrix. The first-order susceptibility at any
time depends on the positionsq of the atoms at the particular
time. The perturbing laser fields are only able to change the
momentump of the atoms during the short time interval that
the optical interactions occur. The distortion of the atomic
positions at timet1 due to a change of the atomic momenta at
time zero can in the limit of infinitesimal distortion be ex-
pressed using the stability matrix,

Dqk~ t1!5(
j

]qk~ t1!

]pj~0!
Dpj~0!. ~8!

The changes of the momenta caused by the specific distor-
tion can be calculated from the forces originating from the
interaction with the fields,

Dpk~0!5FkDt. ~9!

A coordinate transformation of the momentum distortion
vector of the system at time zero can be performed so that
only one element of the vectorDp1

T(0) is different from
zero. This allows us to rewrite Eq.~8! in the transformed
coordinates,

Dqk
T5

]qk
T

]p1
T Dp1

T . ~10!

This shows that only one column of the transformed stability
matrix is needed to describe the change of the positions at a
later time. Furthermore, only half of this vector is required
since knowledge of the change of momenta is not needed to
find the susceptibility. In the finite field calculations this col-
umn is of course never explicitly calculated, since the
changes of the phase space coordinates are found using mo-
lecular dynamics.

The fifth-order response can be determined from four
trajectories: one background trajectory without any applied
fields xab;00;00

(1) , a trajectory with the field applied at time
zero xab;00;e f

(1) , a trajectory with the field applied at time
t1 xab;cd;00

(1) , and one with fields applied at both time zero
and t1 xab;cd;e f

(1) . The fifth-order response function then is

xabcde f
~5! ~ t1 ,t2!5

xab;cd;e f
~1! 1xab;00;00

~1! 2xab;cd;00
~1! 2xab;00;e f

~1!

4p«0NEcEdEeEf~Dt !2 .

~11!

This treatment can easily be generalized to higher order re-
sponse functions.

In the experiment the laser light is oscillating with an
optical frequencyv. In the calculations this is difficult if not
impossible to simulate since the time steps are usually longer
than the oscillation period of the optical fields. The laser
pulses are instead modeled using a dc field, but using the
polarizability at the correct optical frequency. The electric
field is taken to be constant inside the simulation box. The
spatial variations of the fields are taken into account when
solving the Maxwell equations for the complete sample us-
ing the local response function.

Solving the Maxwell equations for the optical fields, us-
ing the third- and fifth-order susceptibility found in the simu-

lations, makes it possible to calculate the intensity of the
third and the fifth-order signals. The calculation of the mi-
croscopic response of the liquid and solving the Maxwell
equations for the optical fields in the sample can be done
separately as long as the simulation box is much smaller than
the wavelength of the optical field. By the Maxwell equa-
tions experimental parameters as the effective sample length
l and the phase mismatchDk are introduced in these coher-
ent nonlinear interactions. The intensities also depend im-
plicitly on the number densityN, since the first-order suscep-
tibilities depend on the number density.

Cascading third-order processes consist of two third-
order processes that are connected by an intermediate field
Ei . They are induced by the same fields that give rise to the
fifth-order response. The two types of cascading processes,
sequential and parallel cascading, are illustrated in Fig. 3.26

Taking the polarization direction combinations into account,
two possibilities exist for each type of cascading process.
The time and polarization dependence of the sequential pro-
cesses of Fig. 3 are

xseq,1
~5! ~ t1 ,t2!5xabci

~3! ~ t2!x ide f
~3! ~ t1!,

~12!
xseq,2

~5! ~ t1 ,t2!5xabid
~3! ~ t2!xcie f

~3! ~ t1!.

Similarly the time and polarization dependence of the two
parallel cascading processes of Fig. 3 are

xpar,1
~5! ~ t1 ,t2!5xaicd

~3! ~ t2!x ibe f
~3! ~ t11t2!,

~13!
xpar,2

~5! ~ t1 ,t2!5x ibcd
~3! ~ t2!xaie f

~3! ~ t11t2!.

Each cascading process is connected with a unique phase
mismatch given by the experimental conditions. The polar-
ization direction of the intermediate field is determined by
the polarization directions of the applied fields and the po-
larization of the measured signal. In Table I the polarization
and time dependence are given for the four components of
the direct fifth-order response, considered here. There is no
difference between the polarization and time dependence in
the two kinds of sequential processes and the same is true for

FIG. 3. Energy level diagrams for the two cascading process types. The full
arrows symbolizes the driving fields that are identical to driving fields in the
fifth-order response. The long-dashed arrows symbolizes the intermediate
field that acts as an emitted field from one third-order process and a driving
field in another third-order process. The dashed lines symbolizes the emitted
field from the last third-order process. The polarization directions~a, b, c, d,
e, f, and i! of the fields are shown above the arrows.
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the two parallel responses. Hence, the ratio between the in-
tensities of the true fifth-order signal and cascading processes
can be of two types: sequential and parallel.

For thex l lzzl8 l 8
(5) tensor component, the polarization direc-

tions of the fields in each pulse pair are parallel, but the angle
between the polarization directions of the pulses in the dif-
ferent pairs are either 60° or 120° as illustrated in Fig. 2.
Both third-order processes contributing to any cascaded sig-
nal will be given by pulse pairs with polarization directions
separated by 60° or 120°. These third-order response func-
tions are equivalent@Eq. ~2!# and were denotedxzzll

(3) . This
means that both types of cascaded signals depend on thexzzll

(3)

response squared and therefore all third-order cascaded pro-
cesses are suppressed equivalently. Thexzzll

(3) third-order
component is similar to the third-order magic angle response,
which is expected to be small. The crucial difference be-
tween thex l lzzl8 l 8

(5) component and the magic angle compo-
nents of Table I is that in thex l lzzl8 l 8

(5) component the polar-
ization direction of all three pulse pairs are separated, while
in the magic angle components, discussed so far, the polar-
ization direction of two of the pulse pairs are parallel, allow-
ing contributions to the cascaded processes from the inten-
sive xzzzz

(3) process. This is depicted in Fig. 2. In the Results,
the advantage of thex l lzzl8 l 8

(5) tensor element will be worked
out quantitatively.

The intensity ratio between each of the third-order cas-
cading processes and the direct fifth-order response can be
estimated from the peak intensities as20,26

I cas

I 5th
5S pv l

nc D 2

f 2~Dkl !~4p«0!2
ux~3!x~3!u2

ux~5!u2 . ~14!

Here, the polarization dependence is omitted for simplicity
and f (Dkl) is a number smaller than one that is determined
by the phase matching conditions.

Typical experimental wavelengths 2pc/v are 620~Refs.
23, 25! and 800 nm.24 Sample thicknessesl 51 – 2 mm are
typically used. The refractive indexn of pure CS2 is 1.628.33

The intensity ratio is divided into a ratio independent of the
experimental conditionsRabcde f that can be used for com-
parison between different calculations and an experimental
factor that depends on the experimental conditions. The ex-
periment independent ratio is defined as

R5~4p«0!2
ux~3!x~3!u2

ux~5!u2 , ~15!

where the polarization directions and time dependencies are
given in Table I. The experimental factorFex is the part of
Eq. ~14! not accounted for in Eq.~15! and given by

Fex5S pv l

nc D 2

f 2~Dkl !. ~16!

III. LOCAL FIELD EFFECTS

In our earlier studies20 the first-order susceptibilityx (1)

was approximated by the ensemble average of the molecular
polarizabilitiesan , wheren is a number labeling the differ-
ent molecules. The third-order response function, calculated
using this approximation, showed good agreement with ex-
periment at long times. At sub-ps times a discrepancy was
found between the calculated and the experimental functions.
It was speculated that interaction induced many-body effects,
missing in the simple description, are crucial at sub-ps times.

Local field effects can be included in the calculation of
the susceptibility by using the dipole-induced dipole correc-
tion to the electric field. An individual molecule does not
only feel the macroscopic field inside the sample, but also
the electric fields generated by the induced dipole moments
on molecules in the local surroundings. The surroundings
can be divided into two areas: the nearby surroundings with
distinct local structure and the surroundings far away that
can be described by a continuous dielectric medium. Here
the structured surroundings will be considered to be inside a
spherical cavity around the individual molecule. The electric
field generated by the induced dipoles in the dielectric me-
dium is taken into account by using the macroscopic electric
field instead of the external electric field. The macroscopic
field is the electric field inside a continuous dielectric
sample, due to an external field, applied outside the sample
in vacuum. The local electric field on each molecule arises
from the macroscopic field and the induced dipole moments
on the nearby molecules within the spherical cavity, which
are taken into account through a dipole interaction term. The
contribution from the continuous dielectric medium inside
the cavity is eliminated by subtracting a term due to the
polarization of a spherical dielectric medium.31,34 This ap-
proach is depicted schematically in Fig. 4. So the local elec-
tric field on moleculen is

FIG. 4. The local fields acting on a molecule in a me-
dium with local structure inside a cavity surrounded by
a continuous dielectric medium can be divided into the
contribution from the dielectric medium, the contribu-
tion from the molecules inside the cavity, and subtract-
ing the dielectric medium inside the cavity.

TABLE I. In fifth-order experiments, with the polarization directions given
in the first column, competing sequential and parallel cascaded processes
with time and polarization dependence given in the second and third column
respectively, can show up.

xabcde f
(5) xseq

(5) xpar
(5)

xzzzzzz
(5) xzzzz

(3) (t2)xzzzz
(3) (t1) xzzzz

(3) (t2)xzzzz
(3) (t11t2)

xmmzzzz
(5) xmmzz

(3) (t2)xzzzz
(3) (t1) xmmzz

(3) (t2)xmmzz
(3) (t11t2)

xzzmmzz
(5) xmmzz

(3) (t2)xmmzz
(3) (t1) xmmzz

(3) (t2)xzzzz
(3) (t11t2)

xzzzzmm
(5) xzzzz

(3) (t2)xmmzz
(3) (t1) xzzzz

(3) (t2)xmmzz
(3) (t11t2)

x l lzzl8 l 8
(5) xzzll

(3) (t2)xzzll
(3) (t1) xzzll

(3) (t2)xzzll
(3) (t11t2)
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En
local5Emac1 (

mÞn
Tnmmm1

4px~1!

3
Emac. ~17!

HereTnm is the dipole tensor andmm is the induced dipole
moment on moleculem,

Tnm5
3r̂ nm : r̂ nm21

r nm
3 . ~18!

Solving a linear set of equations for the independent
molecules,14 the susceptibility can be found as well as the
index of refraction and the dielectric constant. Both are re-
lated to the first-order susceptibility. An effective polariz-
ability Pn

(1) , reproducing the same induced-dipole moment
from the macroscopic field as generated by polarizabilityan

in the local field, is defined for simplicity,

mn5anEn
local[Pn

~1!Emac. ~19!

Combining Eqs.~17! and ~19! give

Pn
~1!Emac5anS 11

4px~1!

3 DEmac1an (
mÞn

TnmPm
~1!Emac.

~20!

The first-order susceptibility is related to the effective polar-
izabilities through the polarizationP, and the ensemble vol-
umeV, as

x~1!Emac5P5
1

V (
n

mn5
1

V (
n

Pn
~1!Emac. ~21!

From Eq.~20! the actual macroscopic field is easily elimi-
nated,

Pn
~1!5anS 11

4px~1!

3 D 1an (
mÞn

TnmPm
~1! . ~22!

The equation is multiplied with the inverse molecular polar-
izability and the terms containing the effective polarizability
are isolated on the left-hand side of the equation. The inverse
molecular polarizability of a linear molecule is given in Ap-
pendix A,

an
21Pn

~1!2 (
mÞn

TnmPm
~1!511

4p

3
x~1!. ~23!

Introducing Kronecker deltas the summation overm can be
taken over all terms on the left side. When at the same time
the index of the effective polarizability is changed fromn to
m, the effective polarizability can be isolated,

(
m

~an
21dnm2Tnm~12dnm!!Pm

~1!511
4p

3
x~1!. ~24!

By defining the matrixB,

Bnm[an
21dnm2Tnm~12dnm!, ~25!

and introducing the Lorentz factorL,

L511
4px~1!

3
, ~26!

to replace the term containing the susceptibility of the me-
dium around the cavity, a linear set of equations for the
effective polarizabilities appears,

(
m

BnmPm
~1!5L. ~27!

When this set of equations is solved, the first-order suscep-
tibility can be found from Eq.~21!. The dielectric constante r

and the index of refractionn are derived from the first-order
susceptibility,

« r5114px~1!5n2. ~28!

In an actual calculation of the susceptibility, a system of
finite size, i.e., the box used in a molecular dynamics simu-
lation, has to be considered. The susceptibility in Eq.~24!
can in principle be taken to be the calculated susceptibility.
The equation can then be solved without any prior knowl-
edge of the average susceptibility of this system. However
this will introduce artifacts dependent on the number of mol-
ecules in the calculation, since the system is typically taken
too small to represent the whole macroscopic body. In the
case of a liquid the susceptibility is isotropic, but the suscep-
tibility of the considered system is typically far from isotro-
pic. Instead we use the time averaged value, which has the
advantage that fluctuations due to specific instantaneous con-
figurations are averaged out.

As an alternative to this method the effective polarizabil-
ities can be found using an iterative scheme18 based on Eq.
~22!, wherei is the iteration number,

Pn
~1!@ i 11#5anS 11

4p

3
x~1!

1
1

2 (
mÞn

Tnm~Pm
~1!@ i #1Pm

~1!@ i 21#! D . ~29!

In this scheme the average susceptibility should also be used
when subtracting the contribution from the dielectric me-
dium inside the cavity.

The interaction energyH int , between the macroscopic
electric fields and a system of polarizable molecules is given
as the sum of the energy of the individually induced dipoles
in the macroscopic field, the energy of the individually in-
duced dipoles in the field from all other dipoles, and the
polarization energy needed to create the induced dipoles,35

H int52(
n

Emacmn2
1

2 (
n

mnS (
mÞn

Tnmmm

1
4px~1!

3
EmacD 1

1

2 (
n

En
localmn . ~30!

Using Eq.~17! this can be written,

H int52(
n

S Emac2
1

2
~En

local2Emac!1
1

2
En

localDmn

52
1

2 (
n

Emacmn . ~31!
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Using the definition of the effective polarizabilities in Eq.
~19!, the total interaction energy of the system can be written
as a sum over the energy of the effective polarizability of
each molecule interacting with the macroscopic fields,Ea

mac

andEb
mac,

H int
a,b52

1

2 (
n

Ea
macPn

~1!Eb
mac. ~32!

The forceFx
a,b , in a given coordinatex due to the macro-

scopic fieldsEa and Eb , is given by the derivative of the
interaction energy of the system with respect to this coordi-
nate,

Fx
a,b52

]H int
a,b

]x
. ~33!

The force can then be expressed in terms of derivatives of
the polarizability and the effective polarizabilities,

Fx
a,b5

1

2
Ea

mac(
n

]Pn
~1!

]x
Eb

mac. ~34!

Considering only linear rigid molecules like CS2 the coordi-
nates can be divided into two types, namely center of mass
and orientational ones. This simplifies the problem consider-
ably, since the molecular polarizabilities only depend on the
orientational coordinates while the dipole tensor only de-
pends on the center of mass coordinates.

Differentiating Eq.~27! with respect to an orientational
coordinatexi on moleculei gives

(
m

Bnm

]Pm
~1!

]xi 52
]an

21

]xi Pn
~1!dni . ~35!

Solving this set linear set of equations provides the deriva-
tive of the effective polarizabilities with respect to the orien-
tational coordinates. The derivative of the inverse of the mo-
lecular polarizability is given in Appendix B.

Differentiating Eq.~24! with respect to a center of mass
coordinater i on moleculei gives

(
m

Bnm

]Pm
~1!

]r i 5(
m

]Tnm

]r i ~12dmn!Pm
~1! . ~36!

This linear set of equations provides the derivative of the
effective polarizabilities and the first-order susceptibility
with respect to a center-of-mass coordinate. The derivatives
of the dipole tensors are given in Appendix B. In principle,
the derivatives of the effective polarizabilities can also be
found using an iterative procedure similar to the one de-
scribed in Eq.~29! for the effective polarizabilities.

The importance of interaction induced effects in the re-
sponse is most easily seen in the magic angle component of
the third-order response. The isotropic part of the single mol-
ecule polarizability does not depend on the coordinates at all,
so the contribution to the magic angle response from single
non interacting molecules is zero. Hence, the intensity of the
magic angle components shows the relative importance of
the interaction induced effects. The comparison of the inten-
sity of the magic angle responses with the intensity of the

polarized responses thus gives an indication of the impor-
tance of the interaction induced effects and the single mol-
ecule orientational effects.

At the end of this section it should be remarked that the
dipole-induced dipole model is an approximation of the full
many-body problem. The higher multipole moments of the
molecules can give a contribution to the local field as well.
In addition, overlap of the electron clouds in close collisions
influences the susceptibility in a way that cannot be taken
into account by a multipole expansion. Such corrections will
be treated in a subsequent paper.36

IV. RESULTS

For the MD simulations a modified version ofGROMACS

1.6 ~Ref. 37! was employed with a cubic simulation box con-
taining 256 rigid CS2 molecules at 1 bar pressure and 298 K,
using a Berendsen thermostat.38 An atomic Lennard-Jones
force field39 was used, which is known to give a fair descrip-
tion of properties as density, diffusion constant, and neutron
and x-ray scattering data. The simulations were performed
with 10 fs time steps. The experimental molecular polariz-
ability for CS2 at the optical wavelength of 514.5 nm is used.
The polarizability at this wavelength is 8.95 Å3 and the an-
isotropy is 10.05 Å3.40 Laser field pairs with field strength of
1.149 V/Å ~dc! are applied during one time step for each
Raman event in the finite field calculations. The DID model
described in Sec. III is applied to incorporate the local field
effects. The local field in this model was given in Eq.~17!
and the set of equations that must be solved to find the ef-
fective polarizabilities was presented in Eq.~27!.

The iterative procedure given in Eq.~29! has been used
to calculate the effective polarizabilities, because it is faster
than solving the linear equations. However, the linear equa-
tion approach in Eqs.~27!, ~35!, and~36! has been used for
calculation of the forces, since solving many sets of linear
equations with an identicalB matrix can be done effectively
using LU decomposition of theB matrix followed by
backsubstitution.41 The cavity radius around each molecule
is set to 50 Å, which is much larger than the side lengths of
the simulation box. In principle this can introduce artifacts
due to the periodic boundary conditions used in the molecu-
lar dynamics simulations. Calculations with cavity radius
14.5 Å, which is less than the side length of the simulations
box, showed no significant difference from the 50 Å calcu-
lations, except for more noise. The noise in the calculations
with cavity radius 14.5 Å is caused by the fact that molecules
crossing the 14.5 Å border still give a significant contribu-
tion to the calculated local field that depends on their orien-
tation. Upon crossing the border the influence of the local
structure changes abruptly into a contribution from a con-
tinuous dielectric medium. Since a molecule might cross the
boundary in the background calculation, but not in the cal-
culation with the laser field applied or the other way around,
noise arises when the cavity radius is small.

The isotropic first-order susceptibility in the Lorentz fac-
tor is calculated using the iterative method@Eq. ~29!# assum-
ing that the first-order susceptibility of the medium outside
the cavity is the same as the first-order susceptibility of the
simulation box. Taking the average over a long trajectory,
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possible artifacts due to the assumption that the susceptibility
of the simulation box is equal to the susceptibility of the
whole liquid, as discussed below Eq.~28!, are suppressed.
From a 100 ps run a susceptibility of 0.127 85 is found,
equivalent to a dielectric constant of 2.6066, a refractive in-
dex 1.6145, and a Lorentz factor 1.5355. These values are in
good agreement with the experimental value of the refractive
index 1.628.33 Including the DID interaction gives a substan-
tial improvement compared to the values found using the
single molecule model of the polarizability, where we calcu-
lated a refractive index of 1.4555. Including the DID effects
the error in the refractive index is thus reduced to 0.8% com-
pared to 12% for the single molecule model. This is equiva-
lent to a reduction of the error in the first-order susceptibility
from 32% to 3%. This clearly shows how important many-
body effects are in the optical response of CS2.

The third-order TCF response was calculated from a
single 10 000 ps MD simulation. The FF response was cal-
culated from 1000 simulations of 1 ps duration and the same
number of background calculations. All polarization compo-
nents were obtained from the same set of trajectories. The
calculated third-order response components are shown in
Fig. 5 and the peak values, taken at the time when the re-
sponse is most intensive, are listed in Table II. The intensi-
ties and shapes of the calculated response functions are in
excellent agreement with functions reported by Kiyohara
et al.18 for a similar thermodynamic state, but using a
slightly smaller simulation box. Very good agreement is
found between the TCF and FF calculations, proving the
reliability of the finite field method. The small differences
are due to small statistical errors and the different nature of
the calculation methods. For instance, in the TCF calcula-
tions the correlation function has to be divided by the tem-
perature, whereas in the FF method this temperature depen-
dence is implicitly incorporated in the molecular dynamics
of the FF calculations.

The experimentalxzyzy
(3) component provided by Steffen

et al.9 is compared with the finite field response with and

without the DID effects in Fig. 6. Since the experiment does
not provide an absolute intensity, all traces are scaled here to
give the same value at 1 ps time delay. The experimental
signal and the calculated response including the local field
effect show excellent agreement. The response calculated
without including the local field effects accounts for the long
diffusive tail, but not for the intensive peak at 140 fs, which
is therefore apparently dominated by local field effects. This
shows that the dipole-induced dipole effect is important in
the description of the response.

The tail in the third-order response is usually explained
as being due to single molecule realignment effects, that are
well described without inclusion of the local field effects.
The initial laser pulse pair exerts a torque on each molecule
in a direction which is determined by the polarization direc-
tion of the fields. With inclusion of local field effects a force
is exerted on the center-of-mass coordinates, as well. After a
short time the excess momentum of the molecules has dissi-

FIG. 5. Thexzzzz
(3) , xzyzy

(3) , xzzmm
(3) , andxzzll

(3) components of the third-order
response given in units of 10220 C4 m/J3 s. The full lines are the finite field
response. The dashed lines are the time correlation function response.

FIG. 6. Thexzyzy
(3) component of the third-order response given in arbitrary

units. The full line is the experimental response measured by Steffenet al.
~Ref. 1! the dashed line is the finite field response, and the dotted line is the
response given when the DID interaction is not included. The response
functions are here scaled to give the same value at 1 ps.

TABLE II. Peak values for the calculated response functions using the finite
field method~FF! and the time correlation function method~TCF! when
possible. Third-order values are given in units of 10220 C4 m/J3 s and the
fifth-order values in units of 10225 C6 m3/J5 s2. @For comparison with data in
c.g.s. units: 1 e.s.u. (or cm3)51.112 64310216 C2 m2 J21, 1 erg51027 J
and 1 C4 m/J3 s58.077 613106 cm3 erg21 ps21.#

xa¯b
(n) FF TCF Deviation

xzzzz
(3) 28.59 28.28 1.1%

xmmzz
(3) 2.37 2.40 21.2%

xzyzy
(3) 19.73 19.21 2.7%

xzzll
(3) 21.12 21.10 21.8%

xzzzzzz
(5) 0.107 ¯ ¯

xmmzzzz
(5) 0.0327 ¯ ¯

xzzmmzz
(5) 0.0481 ¯ ¯

xzzzzmm
(5) 0.0346 ¯ ¯

x l lzzl8 l 8
(5) 20.0252 ¯ ¯
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pated in the sense that the velocity correlation function be-
comes zero. The orientation of the molecules, though, is then
not random yet, but still slightly aligned. Subsequently, the
molecules slowly diffuse to random orientations, giving rise
to a slow decay of the signal. In Fig. 7 the fast decay of the
velocity correlation function and the much slower decay of
the orientational correlation function, as calculated from the
10 000 ps MD run are shown. The diffusive tail is deter-
mined by the reorientation of the individual molecules and
can be expected to be well described without including the
interaction induced effects.

One may wonder why the magic angle component also
shows this diffusive tail, since this component depends only
on the fluctuations in the isotropic part of the polarizability
which vanish in the independent molecule model@see discus-
sion above Eq.~2!#. However, this can be explained by the
fact that aligned molecules tend to have a higher isotropic
effective polarizability than randomly oriented molecules.
Hence the signal decays when the alignment is lost.

The xzzmm
(3) and xzzll

(3) responses~Fig. 5! are seen to be
much less intense than the other third-order response com-
ponents.xzzll

(3) is negative and has a maximum intensity at

200 fs, whereas the magic angle component has a maximum
intensity at 110 fs. When the third-order cascaded processes,
competing with the fifth-order response, contain one or pref-
erably two of these components, the ratio of the intensities of
the fifth-order signal compared to the cascaded signal is most
favorable.

The fifth-order FF response was calculated from 1000
simulations for each of the four combinations of applied la-
ser fields shown in Eq.~11! and for t1 values from 20 fs to
200 fs in 20 fs steps andt2 values from 0 to 200 fs in 10 fs
steps. The calculated components are obtained from two sets
of trajectories giving the different polarization directions of
the laser fields: one that has the polarization direction of the
first laser pulse pair along thez-axis and one that has the
polarization direction of the first laser pulse pair along the
y-axis. The laser pulse pair applied after the delayt1 is al-
ways applied with the polarization direction along thez-axis.
The zz component and the yy component of the first-order
susceptibility are calculated after the delayt2 . This provides
the xzzzzzz

(5) , xyyzzzz
(5) , xzzzzyy

(5) , andxyyzzyy
(5) components, from

which the desiredxzzzzzz
(5) , xzzzzmm

(5) , xzzmmzz
(5) , xmmzzzz

(5) , and
x l lzzl8 l 8

(5) tensor elements can be calculated. These are shown

FIG. 7. The full line is the normalized orientational correlation function.
The dashed line is the normalized velocity correlation function.

FIG. 8. Thezzzzzzcomponent of the fifth-order response. The time unit is fs.

FIG. 9. Themmzzzzcomponent of the fifth-order response. The time unit is
fs.

FIG. 10. Thezzmmzzcomponent of the fifth-order response. The time unit is
fs.
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in Figs. 8–12, respectively. Cuts through the surfaces along
the diagonal and fort2 fixed at 120 fs are shown for the
different components in Figs. 13 and 14. In Table II the peak
intensities are given and in Table III the peak positions of the
cascading processes and the calculated fifth-order response
are listed together with the experimental positions given by
Blank et al.27 Table IV contains the experiment-independent
intensity ratios as defined in Eq.~15!. Assuming an experi-
mental wavelength of 620 nm, a sample length of 1 mm and
perfect phase matching conditions,f (Dkl)50, the experi-
mental factor is 3.93108 @Eq. ~16!#. In the experiments per-
formed by Blanket al.27 a wavelength of 800 nm is used,
which favors the true response with a factor of 1.6 in com-
parison with the conditions considered here.

The case least discriminating against cascaded processes
is thexzzzzzz

(5) response, where the intensity ratio between the
most intense cascaded response component and the true
fifth-order response using the given experimental factor be-
comes 2.83106 in favor of the cascading processes. In an
earlier study, not including the local field effects, this ratio
was found to be 43106. For the magic angle component
xzzmmzz

(5) the intensity ratio for the parallel cascaded response

FIG. 13. Diagonal cut through the two-dimensional fifth-order response
surfaces. The full line is thexzzzzzz

(5) component, the dotted line is the
xmmzzzz

(5) , component, the dashed line is thexzzmmzz
(5) component, the long

dashed line is thexmmzzzz
(5) component, and the dashed–dotted line is the

x l lzzl8 l 8
(5) . The response is given in units of 10225 C6 m3/J5 s2.

FIG. 14. Cut through the two-dimensional fifth-order response surfaces with
t2 fixed at 120 fs. The full line is thexzzzzzz

(5) component, the dotted line is the
xmmzzzz

(5) component, the dashed line is thexzzmmzz
(5) component, the long

dashed line is thexmmzzzz
(5) component, and the dashed–dotted line is the

x l lzzl8 l 8
(5) component. The response is given in units of 10225 C6 m3/J5 s2.

TABLE III. Peak positions for the direct fifth-order response and the cas-
cading response compared with the experimental results of Blanket al.
~Ref. 27!. The peak positions are given as (t1 ,t2) in units of fs.

xabcde f
(5) xabcde f

(5) xseq
(5) xpar

(5) Expt.

xzzzzzz
(5) ~100,80! ~140,140! ~0,140! ~60,110!

xmmzzzz
(5) ~60,80! ~140,110! ~0,110! ¯

xzzmmzz
(5) ~100,90! ~110,110! ~230,110! ¯

xzzzzmm
(5) ~80,50! ~110,140! ~30,140! ~0,120!

x l lzzl8 l 8
(5) ~120,90! ~200,200! ~0,200! ¯

FIG. 11. Thezzzzmmcomponent of the fifth-order response. The time unit
is fs.

FIG. 12. Thel lzzl8l 8 component of the fifth-order response. The time unit
is fs.
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is found to be 9.83104. For thex l lzzl8 l 8
(5) response this ratio is

only 1.23102, which allows to discriminate against the cas-
caded response, when the intermediate phase matching factor
is better than 13103. This is the order of magnitude reported
experimentally.27

The fifth-order magic angle tensor elementsxmmzzzz
(5) ,

xzzmmzz
(5) , and xzzzzmm

(5) are all approximately three times
smaller than thexzzzzzz

(5) component. The ratio between the
polarized and magic angle components in the third-order ex-
periment is approximately 12 in favor of the polarized com-
ponent. This implies that the isotropic part of the response,
which cannot be explained without interaction induced ef-
fects, is much stronger in the fifth-order response than in the
third-order response. The sensitivity of fifth-order response
to many-body effects, found here, was recently also inferred
from INM calculations by Murryet al.42 This probably also
means that the fifth-order signal is more sensitive to the other
interaction induced effects that are described at the end of
Sec. III. This is the subject of a subsequent paper.36

The differences between the nuclear part of the experi-
mental signal27 and the calculated response are pronounced.
Both thexzzzzzz

(5) and thexzzzzmm
(5) component of the experi-

mental response have sharp peaks closer to thet2-axis than
shown in the rather flat calculated two-dimensional surfaces
of Figs. 8 and 11. This probably indicates that the signals are
contaminated with parallel cascaded response that peaks on
or close to the axis.

Comparing the calculated and experimental response is
complicated by the fact that the experimental signals may
include contributions from combined electronic/nuclear re-
sponse along the time axes and pure electronic response for
both time delays equal to zero.6 These responses depend on
the higher order nonlinear electronic responsesg and z, re-
spectively. Since they are confined to the origin and the time
axes, problems with separating nuclear and electronic re-
sponse are limited to these areas. In addition the experimen-
tal spectra are broadened by the width of the applied laser
pulses. This experimental artifact is best corrected for by
deconvoluting the experimental response before comparing it
with the calculated ideal response using delta function
pulses.

The estimated ratios between the cascaded processes and
the direct fifth-order response are in favor of the cascaded
processes, even when the experimental factor in Eq.~16!,
using a realistic phase matching factor, is taken into account.
However, the ratio is smaller than in studies not taking the
local field effects into account20 and for thex l lzzl8 l 8

(5) compo-

nent the ratio is close to 1. This again indicates the impor-
tance of interaction induced effects in the fifth-order re-
sponse. The calculations still support the conclusion by
Blank et al.26 that all experiments performed earlier are
dominated by the cascaded processes.

In the light of the recent experiments, that contain direct
fifth-order response, it seems that the theory overestimates
the intensity ratios or that the experiment overestimates the
intermediate phase matching factors. The experimental factor
might be connected with uncertainties concerning, for in-
stance, the beam divergence or the sample length, which is
not only determined by the sample thickness, but also by the
overlap of the laser beams.26 The estimated intermediate
phase matching conditions, discriminating the fifth-order sig-
nals against the third-order cascaded response, is also not
fully determined due to uncertainty in the orientation of the
laser beams. On the other hand, the interaction induced ef-
fects might be calculated more accurately by including
higher order terms in the multipole expansion and/or colli-
sion induced contributions.36

V. CONCLUSIONS

We have extended the description of the susceptibility in
the finite field approach20 by including dipole induced-dipole
effects. The third-order response found using this method
was shown to be in excellent agreement with the response
calculated with the time correlation function method, prov-
ing the finite field method as a reliable alternative. This gives
us confidence, that the finite field method can also be used to
calculate the fifth-order response, where the time correlation
function methods are expected to be extremely time consum-
ing when the full MD trajectories are used.

Since the instantaneous normal mode calcula-
tions10,11,13,42lack the ability to describe diffusive motion,
and the time correlation function response can in fifth-order
only be done on very small systems,32 the finite field method
is the most promising method for further applications. This
method makes it possible to provide a reasonable estimate of
the relative intensity of the true fifth-order response and the
competing third-order cascades.

The calculated third-order response is in excellent agree-
ment with the experimental data, showing that the influence
of many-body effects on the susceptibility is properly taken
care of by including dipole induced-dipole interactions, as
also suggested in several other studies.14,15,18,20In particular
the sub-ps part of the third-order response is strongly af-
fected by these interactions.

The shape of the calculated fifth-order response func-
tions does not show convincing agreement with recent ex-
periments that claimed to reveal the true fifth-order
response.27 Two possible causes for this discrepancy exist.
The experiments may still be contaminated with cascaded
third-order response and possibly cross terms between the
cascaded response and the true fifth-order response as also
suggested by the intensity ratios highly favoring the cas-
caded responses. The calculated intensity ratios suggest that
measurement of thex l lzzl8 l 8

(5) component is much more favor-
able for suppression of the cascaded processes than the other

TABLE IV. Experiment independent intensity ratios between the peaks of
the cascaded response and the direct fifth-order response for the different
polarization components.

xabcde f
(5) Rseq Rpar

xzzzzzz
(5) 7.231023 7.231023

xmmzzzz
(5) 5.331024 3.731026

xzzmmzz
(5) 1.731026 2.531024

xzzzzmm
(5) 4.731024 4.731024

x l lzzl8 l 8
(5) 3.131027 3.131027
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components. The ratio of the two signal amplitudes for this
component is four orders of magnitudes better than in the
measurement of the all polarized component and two or three
orders of magnitudes better than in the magic angle measure-
ments.

Another explanation for the discrepancy between the
calculated and the experimental fifth-order response could be
the enhanced importance of interaction induced effects in the
calculated fifth-order response. This suggests that the fifth-
order response can be sensitive to collision induced effects.
The short-range collision induced effects, due to the overlap
of the electronic clouds, have not been included in this study.
Even though this effect is not important in the third-order
response, it might very well have important implications on
the detailed shape important implications on the detailed
shape and intensity of the fifth-order response. Work is in
progress to include short-range collision effects in future
simulations.36

APPENDIX A: THE INVERSE MOLECULAR
POLARIZABILITY

The polarizability tensor elements of a linear moleculen,
is given by

an,i j 5~a2 1
3 g!d i j 1gxi

nxj
n . ~A1!

Herea is the isotropic polarizability,g is the anisotropy, and
xi

n is thei component of the orientational unit-vector of mol-
eculen. The tensor elements of the inverse polarizability are
then given in the same form by

an,i j
21 5~«2 1

3 l!d i j 1lxi
nxj

n . ~A2!

Here« is 3/(3a2g) andg is 3/(3a22g)2«. The relation
is easily verified by matrix multiplication of the polarizabil-
ity tensor and the inverse, using that the orientational vector
is a unit-vector.

APPENDIX B: DERIVATIVES

The derivative of the molecular polarizability given in
Appendix A with respect to a coordinate of the orientational
unit-vector pointing along the molecular axis with the con-
dition that the change is perpendicular to the molecular axis
is given by

S ]an

]xi
n D

jk

5g~xj
nd ik1xk

nd i j 22xi
nxj

nxk
n!. ~B1!

The derivative of the inverse molecular polarizability is
found from the same expression simply by substitutingg
with l from Appendix A.

The dipole tensor between moleculen and m has the
Cartesian components

~Tnm! i j 5
3r̂ i r̂ j2d i j

r 3 , ~B2!

wherer is the vector from moleculem to moleculen and r̂ i

is the i component of a unit-vector along the vector fromm
to n. The derivative of the dipole tensor with respect to a
center-of-mass coordinate is given by

S ]Tnm

]r i
n D

jk

5
3

r 7 ~5r i r j r k2r 2r id jk2r 2r jd ik2r 2r kd i j !. ~B3!
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