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Abstract 
Bulk tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting 
disease-associated variants, while context-specific QTLs show particular relevance for disease. 
Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other 
phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse 
ancestries. By modeling the interaction between genotype and estimated cell type proportions, 
we demonstrate that cell type iQTLs could be considered as proxies for cell type-specific QTL 
effects. The interpretation of age iQTLs, however, warrants caution as the moderation effect of 
age on the genotype and molecular phenotype association may be mediated by changes in cell 
type composition. Finally, we show that cell type iQTLs contribute to cell type-specific 
enrichment of diseases that, in combination with additional functional data, may guide future 
functional studies. Overall, this study highlights iQTLs to gain insights into the context-specificity 
of regulatory effects. 

Introduction 
Bulk tissue molecular quantitative trait loci (molQTLs) have been valuable in highlighting 
potential target genes and gene regulatory mechanisms of disease-associated genetic 
variants1–3. However, context-specific regulatory variants, such as cell type-specific or response 
QTLs, exhibit particular relevance for disease as compared to standard molQTLs from steady-
state tissues4. Mapping cell type interaction expression QTLs by modeling the interaction effect 
between the genotype of a SNP and computationally inferred cell type estimates has shown to 
aid discovery of cell type-specific effects of expression QTLs5–7. Pinpointing the true mediating 
cell type with this approach may still be challenging due to the properties of the interaction 
model and correlations between cell type proportions. Thus, rigorous interpretation of cell type 
iQTLs is important for inferring insights about the true cell type specificity of these effects. 
 
The etiology of most complex diseases is recognized to be influenced both by genetic and 
environmental factors and their interactions8. Detecting gene-environment (GxE) interactions in 
genome-wide association studies (GWAS) has proven difficult due to small effect sizes and 
computational challenges9,10. Mapping interaction molQTLs for physiological environments, such 
as age, sex, smoking, or inflammation, offers an opportunity to identify GxE interactions at the 
molecular level with improved statistical power attributed to stronger effects of regulatory 
variants. Recently, transcription-based framework has shown the potential to link genes with 
genetic variant-age interaction to age-associated diseases11, suggesting to focus on regulatory 
variants to study their complex interplay with other factors contributing jointly to variability in 
traits and diseases. 
 
To comprehensively assess the utility of interaction molQTLs, we performed cell type interaction 
molQTL (iQTL) mapping from gene expression (RNA-seq) and DNA methylation (EPIC array) in 
1,319 participants of diverse ancestries as part of the Trans-Omics for Precision Medicine 
(TOPMed) program Multi-Ethnic Study of Atherosclerosis (MESA) Multi-Omics pilot with data 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546528doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.26.546528
http://creativecommons.org/licenses/by/4.0/


 3 

from two time points (exam 1 and exam 5, ten years apart) (Figure 1A, Figure S1A). This 
longitudinal design enabled us to assess the robustness of cell type iQTLs. Additionally, we 
characterize the sharing, replication and functional enrichment of cell type iQTLs with respect to 
their direction of effect. MESA phenotyping data allows us to map age, sex, and smoking iQTLs 
and study the mediation by cell type iQTLs. Finally, we highlight the informativeness of cell type 
iQTLs for proposing cell type-specific mechanisms underlying diseases. 

Material and Methods 

MESA Multi-Omics pilot 
The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study with the goals to 
identify progression of subclinical atherosclerosis12. MESA recruited 6,814 participants at six 
field centers, ages 45-84 years and free of clinical cardiovascular disease, during 2000-2002. 
MESA included multiple race/ethnic groups (38% non-Hispanic white, 28% African-American, 
22% Hispanic and 12% Asian-Americans), is 53% female, and includes 49% ever-smokers 
(18% current). All MESA participants provided written informed consent, and the study was 
approved by the institutional review boards of collaborating institutions. 
 
The MESA Multi-Omics pilot data includes 30x whole genome sequencing (WGS) of ~4,600 
individuals through the Trans-Omics for Precision Medicine (TOPMed) Project13, with ~1,000 
participants samples collected from two time points (exam 1 and exam 5, ten years apart). 
Whole blood and/or cell types (peripheral blood mononuclear cells (PBMCs), monocytes, T 
cells) were assayed for transcriptome (RNA-seq), Illumina EPIC methylomics data, plasma 
targeted and untargeted metabolomics data, and plasma proteomics data. The MESA Multi-
Omics pilot biospecimen collection, molecular phenotype data production and quality control 
(QC) are described in detail in the Supplemental Material and Methods. 
 
Here, we analyzed PBMC gene expression data for 19,699 genes from exam 1 (n = 931) and 
exam 5 (n = 864), and whole blood DNA methylation (DNAm) data for 747,868 CpG sites from 
exam 1 (n = 900, CpG sites passing QC - 740,291) and/or exam 5 (n = 899, CpG sites passing 
QC - 747,771) together with genotype data from TOPMed Freeze 814. 

Cell type deconvolution 
We estimated the cell type composition of PBMC expression and whole blood DNAm by 
applying two widely used methods - CIBERSORT15 and the Houseman method16, respectively. 
 
We ran CIBERSORT with default settings, using the LM22 signature matrix provided with the 
software, on the TPM gene expression matrix containing 2,648 samples from the RNA-seq 
analysis freeze. We limited our analyses to broad cell types and added the proportions of cell 
subgroups for B cells, T cells, and NK cells. 
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We used the Houseman method implemented in the meffil R package17 together with the whole 
blood reference from Reinius et al.18 by using the meffil.qc function with "blood gse35069 
complete" reference applied on the DNAm IDAT files. Importantly, in meffil each sample is 
individually normalized to the cell type reference dataset to avoid dependence between other 
samples and cell type composition estimates. 
 
For downstream analysis of cell type estimates, we excluded data points per cell type that were 
more than ±3 standard deviations (SD) from the mean. 

Variability in cell type composition, gene expression, and DNAm 
To estimate the unique contribution of different traits to variation in estimated cell type 
proportions, gene expression, and DNAm, we used fixed effects linear models with no 
interactions. We applied inverse normal transformation on the response variable (cell type 
proportions, gene expression levels of autosomal genes, DNA methylation levels of 100,000 
randomly selected autosomal CpG sites). More specifically, we used the Type II test for 
computation of sums of squares (SS) to assess the significance of the main effects19 using the 
car package in R. To calculate the proportion of variation uniquely explained by a given trait, we 
used the eta squared metric by dividing the SS of each term by the total SS.  

Association between estimated cell type proportions and different traits 
The effect of various traits on estimated cell type proportions was measured using a linear 
model. First, we applied inverse normal transformation on the estimated cell type proportions to 
justify the assumptions of linear regression. To avoid ties, we added random noise from normal 
distribution N(0, 10-16). Second, we leveraged the rich phenotype data available in MESA. We 
selected traits from 11 different categories, defined as baseline covariates (including age, sex, 
genotype PCs), anthropometric, smoking habits, alcohol consumption, physical activity, 
atherosclerosis, blood pressure, inflammation, kidney function, lipids, and lung function. Log-
transformation with a pseudo-count of 1 was applied on the molecular traits, data points with 
>|3| SD from the mean were excluded, and numeric variables were scaled by dividing by two 
times its SD. This transformation results in comparable coefficients for untransformed binary 
traits and numeric traits20. Third, linear regression was fit with a cell type proportion as response 
variable and a trait as explanatory variable adjusted for age, sex, self-reported race/ethnicity, 
educational attainment, site, and month of the exam. If genotype PCs were the traits of interest, 
then self-reported race/ethnicity was excluded from the covariates list. To adjust for multiple 
correction, we applied Bonferroni correction and considered associations to be significant, if P-
value < 0.05 / (# of traits groups × # cell type groups), where the count of cell type groups is 
equal to 5, corresponding to B cells, T cells/CD4 T cells/CD8 T cells, NK cells, monocytes, and 
neutrophils. 

Mapping of interaction QTLs (iQTLs) 
We mapped interaction QTLs (iQTLs) using tensorQTL21. Namely, we fit a linear regression 
model Y ~ G + E + GxE + C, where Y is the molecular phenotype (gene expression or DNAm; 
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inverse normal transformed), G is the genotype of the genetic variant with MAF > 0.01 in the 
MESA Multi-Omics pilot data,  E is the environmental variable (estimated cell type proportions, 
age, sex, smoking phenotype; mean-centered), GxE is the interaction effect between the 
genotype and environmental variable, and C represents additional covariates that correspond to 
11 genotype PCs from TOPMed Freeze 8, sex, and PEER factors22. Estimation of PEER factors 
are described in the Supplemental Material and Methods. Smoking phenotypes considered as 
environmental variables were current smoking (binary variable), smoking status (numeric 
variable with current smokers coded as 2, former smokers as 1, and never smokers as 0), and 
cotinine levels (inverse normal transformed with random noise added from normal distribution 
N(0, 10-16) to avoid ties). 
 
As for regular QTL mapping in the MESA Multi-Omics data (Supplemental Material and 
Methods), iQTLs were tested for variants ±1Mb of the gene’s TSS or ±500kb of the CpG site. 
To avoid potential outlier effects in cell type iQTLs, only variants with MAF > 0.05 in the samples 
belonging to the top and bottom halves of the distribution of estimated cell type proportions were 
included to the analyses. For age, sex, and smoking iQTLs, we used more stringent MAF filter 
in the top and bottom halves of interaction values (MAF interaction > 0.1). 
 
To identify genes with significant ieQTLs (ieGenes) or CpG sites with significant imeQTLs 
(imeSites), the top nominal P-values for each molecular phenotype were corrected for multiple 
testing at the phenotype level using eigenMT23, followed by Benjamini-Hochberg procedure 
across molecular phenotypes. As the significance threshold accounting for multiple testing, we 
used false discovery rate (FDR) < 0.05 for cell type iQTLs and FDR < 0.25 for trait iQTLs. We 
further combined significant iQTLs across exams by selecting the molecular phenotype-variant 
pair with lower interaction P-value. 
 
We note that cell type iQTLs could be confounded by factors that affect both the cell type 
abundance and/or also modify the molQTL effect size, but correcting cell type abundances for 
these factors and using residualized cell type proportions in the iQTL model rather reduces the 
study power in most typical scenarios (Supplemental Note). 
 
We noticed considerably lower number of monocyte imeQTLs as compared to other cell type 
imeQTLs, probably attributable to the lower variance in monocyte estimates (SD = 0.02, SD > 
0.03 for other cell type estimates). Thus, we only show data related to monocyte imeQTLs on 
the supplemental figures and tables. 

Direction of iQTL effect 
For continuous interaction variables, we grouped the direction of iQTL effect into three 
categories: 1) positive (increasing) - QTL effect size is positively correlated (increasing) with the 
interaction variable, 2) negative (decreasing) - QTL effect size is negatively correlated 
(decreasing) with the interaction variable, 3) uncertain. Assignment of iQTLs into these three 
categories was done based on the estimates from the linear model. iQTL with nominally non-
significant genotype main effect (PG > 0.05) was assigned to the “uncertain” group. For 
clarification, with mean-centered interaction variables, the genotype main effect corresponds to 
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the QTL effect when the interaction variable is 0. Thus, the genotype effect crosses in the 
middle when plotting interaction variable against molecular phenotype and coloring data points 
according to the genotype of the iQTL variant. iQTL with nominally significant genotype main 
effect (PG < 0.05) was assigned to the “positive” or “negative” group, if the product of genotype 
main effect and interaction effect (𝛽G x 𝛽GxI) was greater or smaller than 0, respectively. 
 
For binary interaction variables, we fit QTL models separately for both groups. We assigned 
iQTL into one of the four categories: 1) no effect in one - nominally non-significant genotype 
effect if one of the groups, 2) magnitude difference - nominally significant genotype effect in 
both of the groups with the same sign of the estimate, 3) opposite effect - nominally significant 
genotype effect in both of the groups with the opposite sign of the estimate, 4) uncertain - 
nominally non-significant genotype effect in both of the groups. 

Sentinel CpG sites for imeQTLs 
Using bisulfite DNA sequencing, significant correlation in DNAm between CpG sites (co-
methylation) has been observed for short distances up to 1kb, which decreases to baseline after 
2kb24. To investigate the extent of co-methylation in the EPIC array, we calculated pairwise 
Pearson correlation coefficients between CpG sites within 500kb on chromosome 22. We used 
inverse normal transformed DNAm data from exam 5 as an example. We observed that the 
degree of co-methylation dropped rapidly within 500bp and stayed on average around 0.19 after 
1kb. Of note, a similar observation of shorter distances for stronger co-methylation has been 
previously made based on the Illumina 450K array25. Based on this, for the imeQTLs we defined 
sentinel CpG sites to be used in all the downstream analyses by keeping the CpG site-variant 
pair with the most significant interaction P-value in a 2kb window (±1kb from the most 
associated CpG site). 

Reproducibility of iQTLs 
We leveraged data from two time points in MESA to estimate reproducibility of iQTLs by treating 
one of the time points as discovery and the other as validation. We calculated the proportion of 
true positives (𝜋1)26 based on the interaction P-value observed in the validation data using the 
qvalue package in R. This metric was used, if more than 20 or more than 100 phenotype-variant 
pairs were found in the validation data (setting lambda = 0.5 or lambda = 0.85 in the pi0est() 
function, respectively). Additionally, we calculated the fraction of phenotype-variant pairs 
showing at least nominal significance of the interaction effect in the validation data. 

Sharing of cell type iQTLs 
We estimated sharing among the same type of cell type iQTLs using the 𝜋1 statistic as in the 
reproducibility of iQTLs analysis. 
 
To estimate sharing between cell type ieQTLs and sentinel cell type imeQTLs (FDR < 0.05 in 
exam 1 or exam 5), we focused on ieVariants that are in LD (r2 ≥ 0.5 within 1Mb) with 
imeVariants, and vice versa. First, we calculated LD using MESA multi-omics pilot data between 
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the cell type iVariants. Second, for a given query and validation set, we calculated the 
proportion of variants from the query set to be in LD with the variants from the validation set with 
the denominator set to the minimum of variants from the query and validation set, termed as the 
normalized overlap. Third, to estimate the significance of sharing between a cell type ieQTL 
(query set) and a cell type imeQTL (validation set), or vice versa, we asked whether the query 
set with positive direction is more likely to overlap with the validation set with positive direction 
as compared to the validation set with negative direction. For this, we calculated the odds ratio 
(OR) as the ratio of the odds of the two aforementioned events. To estimate the OR if any cell is 
equal to zero in the 2x2 table, we applied the Haldane-Anscombe correction27 by adding a fixed 
value of 0.5 to all cells.  

Sharing of cell type iQTLs across populations 
To assess the sharing of cell type iQTLs across self-reported race/ethnicity groups in MESA, we 
leveraged eQTL data from purified cell types from MESA. Namely, expression data from 
monocytes and T cells were available for a subset of individuals from exam 5 (n = 355 and n = 
362, respectively). We chose monocytes as the cell type of interest for this analysis, because of 
the high quality of the data. There was more variability among estimated cell type proportions 
from T cell data. eQTL mapping in monocytes was done following the standard pipeline 
(Supplemental Material and Methods). Monocyte eQTLs were fine-mapped to 95% credible 
sets of putative causal variants using SuSiE28 across all the individuals and by self-reported 
race/ethnicity groups. Then, we calculated the maximum LD between the monocyte ieQTLs and 
fine-mapped variants from the credible set across all individuals with expression data from 
monocytes or by self-reported race/ethnicity. For comparison between self-reported 
race/ethnicity groups, we focused on whether 1) the ieGene has been fine-mapped to putative 
causal variants in monocytes, 2) if yes, whether the maximum LD is above or below a specified 
threshold. 

Replication of cell type ieQTLs in the eQTL Catalogue 
We performed replication analysis of cell type ieQTLs in 45 eQTL datasets from purified blood 
cell types (with and without stimulation) from the eQTL Catalogue29. For studies based on 
microarray technology, if multiple probes per gene existed, we chose the one with the lowest 
eQTL P-value.  
 
We estimated replication using three different metrics: 1) the proportion of true positive (𝜋1)26 
using the qvalue R package, if more than 20 or more than 100 gene-variant pairs were found in 
the replication data (setting lambda = 0.5 or lambda = 0.85 in the pi0est() function, 
respectively); 2) effect size quantified as the absolute value of the median of the genotype effect 
in replication data; and 3) concordance in allelic direction defined as the proportion of gene-
variant pairs having the same directionality of the genotype effect in the replication data and 
genotype main effect in the cell type iQTL data. 
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Functional enrichment analysis 
For functional enrichment analysis, we used the registry of candidate cis-regulatory elements 
(cCREs) produced by the ENCODE consortium30. The registry V2 consisted of 926,535 human 
cCREs covering 839 cell and tissue types. We downloaded 61 files representing unique 
samples with cCREs from various blood cell types, corresponding to 19 unique blood cell types. 
To maximize data about cCREs available per cell type, we combined data across different 
samples per cell type. For example, for a H3K27ac-high feature, we required that all samples 
with H3K27ac data available have an indication of high H3K27ac signal. 
 
To test for the significance of overlap between cell type iQTLs and cCREs, we used the 
Genomic Annotation Shifter31 (GoShifter) method. GoShifter tests for enrichment by locally 
shifting annotations within the boundaries of associated loci. To generate a null distribution, the 
shifting process was repeated 10,000 times. As input, we only used independent (sentinel) cell 
type iQTLs with FDR < 0.05 in exam 1 or exam 5 that had positive or negative direction and 
provided a list of their LD proxies. To ensure independence of cell type iQTLs, we performed LD 
pruning with PLINK32 in a window of 1,000 variants, sliding by one variant at the time, and with a 
r2 threshold of 0.1. LD proxies were defined as variants with r2 ≥ 0.8 within 100kb of the cell type 
iQTLs. LD was calculated based on the unrelated 1,319 individuals from the MESA Multi-Omics 
pilot. 
 
To quantify the observed enrichment, we used the delta-overlap parameter. Delta-overlap is 
defined as the difference between the observed proportion of loci overlapping a cCRE and the 
mean of the proportion of loci overlapping the cCRE under the null. Thus, larger delta-overlap 
values show stronger enrichment. To estimate the significance of the enrichment we calculated 
one-sided permutation P-value as the proportion of permuted loci overlapping a cCRE is equal 
to or greater than the observed overlap (adding a pseudo-count of 1 to numerator and 
denominator). To account for multiple testing, we applied Bonferroni correction method and 
accounted for the number of target cell types with the given cCRE data available, number of cell 
types tested for interaction effect, and the number of groups of direction of effect. This was 
applied separately for each of the tested cCRE and cell type iQTL combination. 

Colocalization analysis of cell type iQTLs 
To investigate whether cell type iQTLs provide insights into cell type-specific mechanisms of 
diseases, we performed colocalization analysis with cell type iQTLs with positive or negative 
direction and selected diseases/traits. We focused on 7 immunological diseases (asthma33, hay 
fever33, Crohn’s disease34, inflammatory bowel disease34, rheumatoid arthritis35, systemic lupus 
erythematosus36, ulcerative colitis34) and 3 metabolic traits (HDL cholesterol37, LDL 
cholesterol37, triglycerides37). We used the harmonized and imputed GWAS summary statistics 
by the GTEx Consortium38. For this analysis we used autosomal cell type ieQTLs with FDR < 
0.25 in exam 1 or exam 5 and autosomal sentinel cell type imeQTLs with FDR < 0.05 in exam 1 
or exam 5 that had either positive or negative direction of effect. 
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We performed colocalization analysis with coloc39 assuming one causal variant. Coloc was run 
on a 400kb region centered on each cell type iQTL (±200kb from the iQTL) that had at least one 
GWAS variant with P-value < 10-5 within 100kb of the iQTL. Priors were set to p1 = 10−4, 
p2 = 10−4, p3 = 5 × 10−6 as suggested40. As input for cell type iQTL data, we used regression beta 
and the variance of beta, and for GWAS data, we used the P-values. We excluded loci, where 
the molecular phenotype (TSS of a gene or CpG site) fell into the MHC region, due to 
complicated LD patterns in this region. Posterior probability for colocalization (PP4) > 0.5 was 
used as evidence for colocalization. For visualization of colocalized loci, we used locuszoom-
like figures with LD calculated based on MESA individuals used for iQTL mapping. 
 
Next, we tested whether we observe more colocalized loci for cell type iQTLs with positive 
direction and a given disease/trait as compared to height33. Height was used as a comparison to 
account for the enrichment of regulatory variants among trait-associated variants. We calculated 
the odds ratio (OR) as the ratio of the odds of cell type iQTL colocalizing with a trait of interest to 
the odds of cell type iQTL colocalizing with height. To estimate the OR if any cell is equal to 
zero in the 2x2 table, we applied the Haldane-Anscombe correction27 by adding a fixed value of 
0.5 to all cells. For testing the significance of the OR, we required that at least 10 loci were 
tested for colocalization with the trait of interest. Bonferroni correction was applied separately for 
cell type ieQTLs and cell type imeQTLs to account for the number of cell type iQTL and 
disease/trait pairs used in enrichment testing. 

Mediated moderation 
We hypothesized that trait iQTLs may be mediated by GxCell type effects. First, we assessed 
whether we observe enrichment of cell type iQTL effects among our trait iQTLs (age, sex, 
smoking iQTLs). For this we evaluated the interaction effect between the genotype of iQTL 
variant and cell type proportions. Enrichment was estimated using the inflation marker lambda 
(λ), which is calculated as the ratio of median observed 𝜒2 test statistic to the median expected 
𝜒2 test statistic under the null. 
 
Second, to formally assess mediation, we formulated the mediated moderation model41, where 
the effect of a moderator (W, e.g., age) on the association between the independent variable (G, 
e.g., genotype) and dependent variable (Y, e.g., molecular phenotype) is transmitted through a 
mediator (M, e.g., cell type proportion). Structural equation modeling (SEM) has been proposed 
for the analysis of mediated moderation41. As the mediated moderation effect is described by 
the path XW → XM → Y, we observed in a simulation analysis that similar results can be 
obtained by using mediation analysis techniques instead of SEM. Thus, we applied mediation 
analysis using the mediate package in R42 for added flexibility to account for additional 
covariates. More precisely, we defined the mediator and outcome models as follows: 
 

mediation model: G×M = β0 + β1G + β2W + β3G×W + β4M + β5−kC + ε,  

outcome model: Y = β0 + β1G + β2W + β3G×W + β4M + β5G×M + β6−kC+ε, 
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where C is the covariates matrix including 11 genotype PCs from TOPMed, sex, and PEER 
factors. G, M, and W were mean-centered for the mediation analysis. 
 
We estimated the significance of the average causal mediation effect (ACME), average direct 
effect (ADE), total effect, and proportion of mediated effect by bootstrapping using k = 1000 
Monte Carlo draws, and 95% confidence intervals were calculated using the bias-corrected and 
accelerated (BCa) method. P-value for ACME < 0.05 was used as an indicator for support for 
mediation. 

Cell type composition probes 
To evaluate whether imeSites are likely associated with cell type composition, we used the “Cell 
Composition Association Table” from the FlowSorted.Blood.450k Bioconductor package43. This 
table summarizes the association between each autosomal probe on the Illumina 450k array 
that does not contain annotated SNPs and blood cell composition using ANOVA. 

Results 

Cell type composition of blood tissue 
We used two methods to characterize the cellular composition of peripheral blood mononuclear 
cells (PBMCs) from RNA-seq and whole blood from DNA methylation (DNAm) data in MESA — 
CIBERSORT15 and the Houseman method16, respectively. These deconvolution methods 
leverage external purified leukocyte data to infer the proportions of white blood cells (WBC) in 
heterogeneous tissue samples by modeling bulk tissue data as the sum of weighted cell type-
specific expression or DNAm signatures (Figure 1B). 
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Figure 1. Study design and overview of the estimated cell type proportions. A) Illustration of the 
study design and data types profiled for n = 1,319 individuals. B) Graphical illustration of cell type 
deconvolution. C) Correlation of cell type proportions using exam 5 data from three sources: estimated 
with the CIBERSORT method from PBMC gene expression, estimated with the Houseman method from 
whole blood DNA methylation, and cell counts measured by flow cytometry. D) Sources of variability in 
estimated cell type proportions with CIBERSORT and the Houseman method, gene expression from 
PBMCs and DNA methylation from whole blood using exam 5 data. Median of the total variation 
explained is calculated across all the tested cell types, genes, CpG sites, respectively. Gray dashed line 
denotes 1% of total variance explained. 
 
Neutrophils were the most abundant cell type in whole blood samples, as expected, but were 
depleted in PBMC samples where monocytes and T cells constituted a majority of the cell 
populations (Figure S1B). We observed a moderate correlation between the CIBERSORT and 
Houseman estimates for the same cell type (Pearson correlation 0.42 < r < 0.57 in exam 5 data 
for B cell, NK cell, and T cell comparisons, Figure S2). Furthermore, clustering of the cell type 
abundances showed good concordance between the estimated proportions from different 
molecular datasets and measured cell type estimates available for a subset of individuals in 
exam 5 time point (Figure S1C). However, more rare cell types, such as eosinophils, were not 
estimated as accurately as more abundant cell types (Figure S3). Of note, for more abundant 
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cell types, correlation coefficients were similarly high across the different self-reported 
race/ethnicity groups (Figure S4). 
 
Next, we sought to identify factors that account for variability in cell type composition. Genotype 
principal components (PCs) that reflect genome-wide genetic effects and ancestry/population 
structure explained the highest median proportion of variance (~7%), followed by age, sex and 
donor site (Figure 1D). For a more detailed quantification of the unique contributions to total 
variation in gene expression and DNAm, we studied four categories of factors: 1) cis genetics - 
lead cis-molQTLs mapped in MESA (Supplemental Material and Methods), 2) cell type 
composition - estimated cell type proportions, 3) extrinsic technical and/or biological factors - 
batch variables, donor site, and season, 4) intrinsic biological variables - genotype PCs, age, 
sex, smoking status, and educational attainment as a proxy for socioeconomic status. The total 
amount of variability explained by all considered factors varied greatly from ~5% to 90% per 
gene or CpG site (median of 40% and 20%, respectively, Figure S5). Both in gene expression 
and DNAm data, the largest fraction of inter-sample variation was accounted for by batch 
variables, estimated cell type proportions, and lead cis-molQTLs after controlling for other 
variables (Figure 1D). While the median contribution of intrinsic biological variables was lower 
compared to other categories, the loci where a large proportion of variation was explained by 
age or smoking status identified known molecular biomarkers for aging (e.g., CD24844, ELOVL2, 
and FHL245), or smoking (e.g., AHRR46,47 and GPR1548) (Figure S5). Discovery of age-related 
differences may be confounded, however, by relative changes in cell type composition due to 
the impact of age on cell type proportions43, which is generalizable for any outcome of interest 
that correlates with cell type composition. This highlights the importance of accounting for cell 
type composition as one of the largest sources of variability in studies analyzing gene 
expression or DNAm. 

Cell type interaction eQTLs and meQTLs in blood 
Variability in cell type composition can be exploited to identify cell type interaction QTLs7,49,50, 
where the effect size of the regulatory variants increases (positive direction of effect) or 
decreases (negative direction of effect) depending on cell type abundance, thus serving as a 
proxy for cell type-specific QTLs (Figure 2A). Applying this framework, we identified cell type 
interaction cis-eQTLs (ieQTLs) for 2,130 genes (out of 19,699, ±1Mb of the transcription start 
site (TSS)) and cell type interaction cis-meQTLs (imeQTLs) for 22,141 CpG sites (out of 
747,868, ±500kb of the CpG site) in at least one of the time points with false discovery rate 
(FDR) < 0.05 across ancestries (Figure 2B). Given the correlation in DNAm between proximal 
CpG sites24,25, we defined 20,099 sentinel CpG sites for imeQTLs to represent independent loci 
by keeping the most significant association in a 2kb window; these were used for further 
analyses described below. 
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Figure 2. Discovery of cell type ieQTLs and imeQTLs. A) Illustration of the approach used to map cell 
type interaction molQTLs in MESA. B) Number of significant cell type ieQTLs and imeQTLs combined 
across exams (FDR < 0.05 in exam 1 or exam 5 data) stratified by direction of the iQTL effect. C) 
Reproducibility of cell type iQTLs with positive or negative direction of effect using one of the exams for 
discovery and the other for validation, and vice versa. The proportion of true positives (𝜋1 statistic) is used 
as measure of reproducibility. D) Sharing among cell type ieQTLs and cell type imeQTLs with positive or 
negative direction of effect based on exam 5 data quantified as the proportion of true positives (𝜋1). The 
size of the square represents the correlation between the two estimated cell type proportions measured 
using the absolute value of the Pearson correlation coefficient (r). E) Sharing between CD4 T cell 
imeQTLs (query set) and cell type ieQTLs (validation set) combined across exams, quantified as the 
proportion of CD4 T cell imeQTLs with positive direction in LD (r2 ≥ 0.5) with ieQTLs from the given 
validation set by direction of effect. P-value shows the significance of the odds of CD4 T cell imeQTL with 
positive direction to overlap with a cell type ieQTL with positive direction as compared to the odds of 
overlapping with a cell type ieQTL with negative direction. F) Example of a cell type iQTL (rs774358) 
affecting both the expression levels of a gene (C9orf72) and a nearby CpG site (cg01126010). 
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Discovery of both cell type ieQTLs and imeQTLs was dominated by the most abundant cell 
type, as previously observed49, with the majority of these iQTLs having positive direction of 
effect (Figure 2B). A relatively small percentage of all significant cell type iQTLs (on average, 
16.8% across cell type iQTLs and exams) belonged to the ‘uncertain’ group enriched for 
variants with lower minor allele frequency (MAF) and higher association P-values of the 
interaction effect, indicative of likely false positive results7 (Figure S6). Using one of the time 
points as discovery and the other as validation, we observed high reproducibility rates for all cell 
type iQTLs with either positive or negative direction of effect as an internal quality measure 
(mean 𝜋1 of 0.84 and 0.96 for cell type ieQTLs and imeQTLs, respectively, Figure 2C). Cell type 
iQTLs with uncertain direction had considerably lower nominal reproducibility rates (Figure S7) 
and were excluded from subsequent analyses. 
 
The MESA cohort design allowed us to investigate population-specific effects of cell type iQTLs. 
By comparing allele frequency estimates for lead monocyte ieQTLs with positive direction 
across self-reported race/ethnicity groups, we observed that 0%-14% of ieQTLs did not meet 
the MAF > 0.01 criteria in one of the specific populations (Figure S8A). To study whether the 
likely causal variants are the same across populations, we leveraged the fine-mapped eQTL 
data by self-reported race/ethnicity from purified monocytes from MESA exam 5 (Supplemental 
Material and Methods). First, we observed that 66.5%-74.8% of the monocyte ieGenes with 
positive direction of effect were fine-mapped to likely causal eQTLs in monocytes, with an 
overlap of 883 (93.1%) ieGenes fine-mapped in at least two self-reported race/ethnicity groups 
(Figure S8B). Second, we calculated LD between the lead ieQTL and fine-mapped variants by 
self-reported race/ethnicity. While there were considerable differences between the fraction of 
ieGenes with lead ieQTLs in strong LD (r2 > 0.5) with fine-mapped eQTLs by groups, these 
differences were less pronounced when using a more lenient r2 threshold (Figure S8C). This is 
consistent with the plausible scenario that cell type ieQTLs are largely shared across major 
ancestral groups when differences in LD and allele frequency are taken into account, as shown 
for eQTLs1. 

Sharing between cell type ieQTLs and imeQTLs 
Next, we sought to analyze the extent of sharing of cell type ieQTLs and imeQTLs. We noticed 
that the iQTLs for highly abundant cell types - monocyte ieQTLs and neutrophil imeQTLs - with 
negative direction of effect can often be found as an iQTL for another cell type with positive 
direction of effect, and vice versa (Figure S9). In general, the high degree of sharing among cell 
type ieQTLs and imeQTLs reflected the magnitude of (anti)correlation between estimated cell 
type proportions (Figure 2D), suggesting that cell type iQTLs with specific genetic effects in one 
(or more) cell types often manifest in other (anti)correlated cell types. We also discovered 
indications of the same cell type iQTL affecting both expression levels of a gene and DNA 
methylation levels of a nearby CpG site (Figure S10, Table S1). For example, CD4+ T cell 
imeQTLs with positive direction overlapped significantly more often with T cell ieQTLs with 
positive direction (Figure 2E, P = 0.0013 as compared to T cell ieQTLs with negative direction). 
Across 500 unique gene-CpG site pairs associated with the same iQTL (or lead iQTLs in strong 
LD, r2 > 0.5), where both the ieQTL and imQTL effect was positive, we observed a discordant 
genotype main effect for majority of the pairs (64.4%), indicative of mostly negative correlation 
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between gene expression and DNAm as described before for methylation-expression 
associations (eQTMs)51. 
 
An example of a shared cell type iQTL is rs774358 - a variant associated with the expression of 
C9orf72 gene and DNAm of the nearby CpG site cg01126010 with the molQTL effect increasing 
with monocyte and neutrophil abundance, respectively (Figure 2F). rs774358 is also a NK cell 
imeQTL with negative direction of effect, possibly due to negative correlation between the 
proportion of neutrophils and NK cells in blood. The C9orf72 repeat expansion is one of the 
genetic hallmarks of amyotrophic lateral sclerosis (ALS). The expression of C9orf72 is highest in 
myeloid cells52,53, indicative of myeloid cell-specific molQTL captured by our iQTL approach. 

Cell type specificity of cell type iQTLs 
To analyze specificity of cell type ieQTLs by comparing their effects in purified cell types, we 
leveraged data from the eQTL Catalogue29. This resource includes 45 eQTL datasets from 
various blood cell types with and without stimulation from the lymphocyte and myeloid lineage. 
We observed, in general, high replication rates for the cell type ieQTLs with positive direction in 
eQTL data from the corresponding cell (sub)type (max 𝜋1 > 0.8 except for B cell ieQTLs, Figure 
S11), which further manifested as higher median effect size and concordant allelic direction 
(Figure 3A, Table S2). For instance, monocyte ieQTLs with positive direction replicated well in 
eQTL data from steady-state monocytes as compared to stimulated monocytes, reflecting the 
need to map response QTLs to discover novel genes with molQTL specific to a cell state. We 
observed the highest replication rates for T cell ieQTLs with positive direction in different CD4 
memory T cell subsets, likely reflecting the shift from naïve to memory T cells with age54 in the 
elderly study subjects from MESA. Importantly, the broad replication patterns matched the 
corresponding cell type for ieQTLs with positive but not negative direction, with replication in 
other cell types mirroring the sharing of ieQTLs and (anti)correlation between cell type 
proportions (Figure S11). 
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Figure 3. Replication and functional enrichment analysis of cell type iQTLs. A) Replication of 
ieQTLs with positive direction of effect in eQTL datasets from purified cell types from the eQTL Catalogue 
based on effect size in eQTL data and allelic concordance. Highlighted are up to five datasets with 
absolute median effect size (beta) > 0.15 in the eQTL dataset and proportion of QTLs with the same 
allelic direction > 0.75 for B cell ieQTLs or > 0.8 for other cell type ieQTLs. Numerical results for all 
reference cell types are reported in Table S2. B) Functional enrichment analysis with GoShifter showing 
the delta-overlap, which is the difference between the observed proportion of loci overlapping a cCRE 
and the null, for cell type ieQTLs (upper panel) overlapping cCRE with high H3K27ac and cell type 
imeQTLs overlapping cCRE-dELSs. *** - significant association (adjusted P < 0.05) after correcting for 
the number of target cell types with cCRE data, the number of cell types tested for interaction effect, and 
the number of groups of direction of effect. Numerical results for all reference cell types are reported in 
Table S3. 
 
Cis-eQTLs and cis-meQTLs have been shown to be enriched in functional elements of the 
genome1,51. We analyzed the candidate cis-regulatory elements (cCREs) from various blood cell 
types produced by the ENCODE project30. After accounting for local genomic structure with 
GoShifter31, we observed highly cell type-specific enrichments of cell type iQTLs with positive 
direction in distal enhancer-like signatures (cCRE-dELS) and enhancer-associated H3K27ac 
marks (Figure 3B, Figure S12, Table S3), consistent with the tissue-specific nature of 
enhancers55,56. As an example, monocyte ieQTLs were characterized by high H3K27ac in 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546528doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.26.546528
http://creativecommons.org/licenses/by/4.0/


 17 

monocytes and neutrophils (the cells of the myeloid phagocyte system57) and T cell ieQTLs and 
CD4+ T cell imeQTLs were enriched in T cell subtypes. When focusing on promoter-like 
signatures (cCRE-PLS), we observed evidence for enrichment of the best powered cell type 
iQTLs, monocyte ieQTLs and neutrophil imeQTLs with positive direction, in all the five assayed 
cell types (Figure S12). cCRE-PLS was also a highly shared feature in contrast to cCRE-dELS 
with 64.6% of cCRE-PLSs being present in all and 60.9% of cCRE-dELSs found only in one of 
the assayed blood cell types. 
 
As exemplified by the results, cell type iQTLs can capture cell type specific effects rather than 
overall cell type dependence with a good resolution. The interpretation of cell type iQTLs, 
however, requires consideration of the direction of effect, correlation between cell types, and the 
quality of the deconvolution. Together, these results support mapping cell type iQTLs as proxies 
for cell type-specific QTL effects. 

Environmental modifiers of molQTL effect 
Next, we leveraged the variation in age, sex, and three smoking phenotypes to quantify the 
impact of the selected higher-order phenotypes as modifiers of cis-QTL effects, i.e., to discover 
trait iQTLs, where the regulatory variant has a context-specific effect. Compared with cell type 
iQTLs, trait iQTLs were less abundant. Using a relaxed FDR < 0.25, we identified 277 genes 
with either age, smoking, or sex interaction eQTLs, and 2,397 CpG sites with either age, 
smoking, or sex interaction meQTLs (Figure 4A). Reproducibility rates between exams added 
confidence to the robustness of these trait iQTLs (Figure S13), as independent replication data 
is scarce. As an example, we discovered an eQTL for AHRR that was significant only in current 
smokers (Figure 4B). Hypomethylation of AHRR is one of the most replicated biomarkers for 
active smoking58, and coordinated changes in both DNAm and gene expression across several 
tissues have been reported47. 
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Figure 4. Trait iQTLs and mediated moderation. A) Number of significant trait ieQTLs and imeQTLs in 
exam 1 and exam 5 (FDR < 0.25) by direction of the iQTL effect. B) Example of smoking-current ieQTL 
for AHRR (upper plot) and age imeQTL for cg06953865 (lower plot). C) Inflation of GxMonocyte effect 
among age ieQTLs and GxNeutrophil effect among sentinel age imeQTLs in exam 5 data by direction of 
age iQTL effect. λ is the inflation factor. D) Schema of the mediated moderation approach, where the 
moderation effect of age on the genotype to DNAm association is mediated by changes in neutrophil 
proportions. The mediated moderation effect is described by the GxAge -> GxNeutrophil -> DNAm path. 
P-value histogram of average causal mediation effect (ACME) of GxNeutrophil meditating the GxAge 
effect on DNAm for 32 age imeQTLs with positive or negative direction. 
 
As observed for cell type iQTLs, a significant GxE term from the interaction model is not specific 
to the environment tested and may capture effects related to factors correlated with the 
environment. Across different traits available in MESA, age, sex and smoking are the main non-
genetic factors associated with cell type composition (Figure 1D, Figure S14), similarly to 
previous findings59. Indeed, we observed a strong enrichment of age iQTLs with positive or 
negative direction as cell type iQTLs when compared to age iQTLs with uncertain direction of 
effect as a background (λ = 19.89 vs 1.56 and 17.0 vs 1.83 for GxMonocyte and GxNeutrophil 
effect in exam 5, respectively, Figure 4C, Figure S15A,F), suggesting that some of the age 
iQTLs may be mediated by cell type iQTLs. While some sex and smoking iQTLs were very 
strong cell type iQTLs, the evidence for global inflation was weaker (median λ = 2.64 and 1.52 
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for GxMonocyte and GxNeutrophil interaction in exam 5, respectively, Figure S15). This is in 
line with the finding that the effects of age in DNAm were largely mediated by changes in 
immune cell proportions, while the effects of sex were typically independent of cellular 
composition60. However, as our cell type iQTL mapping is dominated by the most abundant cell 
type, we may be underpowered to detect global inflation of interaction with rarer immune cell 
types in blood. 
 
To formally test for the effect of age iQTLs mediated by cell type iQTLs, we adapted the concept 
of mediated moderation41, where the effect of a moderator (age) on the association between 
genotype and molecular phenotype is transmitted through a mediator (cell type proportion) 
(Figure S16A-B). We evaluated this hypothesis using neutrophil proportion as the mediator for 
age imeQTLs in exam 5 as the observed inflation of GxNeutrophil effect was the strongest. As a 
basis for mediated moderation, neutrophil proportion was positively correlated with age (r = 
0.14, P = 4.81x10-5, Figure S16C), in line with a reported continuous increase of neutrophils 
with age61. As a result, we observed support for GxNeutrophil mediating the GxAge effect on 
DNAm for 43.8% (14/32) of age imeQTLs with positive or negative direction of effect (P-value of 
average causal mediation effect (ACME) < 0.05, Figure 4D, Table S4) with, on average, 15.5% 
of the total effect explained by mediator (Figure S16D). Of note, the mediation signal was 
driven primarily by age imeQTLs with positive direction of effect, where 50% (13/26) showed 
nominal support for mediation. Interestingly, 71.4% (5 out of 7 CpG sites also present on the 
450K array) of the imeSites with support for mediation have been identified as CpG sites 
associated with blood cell composition43 (Figure S17). As an example, rs7258891 is an age 
imeQTL for cg06953865 (Figure 4B), where we observed strong evidence for mediation (ACME 
P < 0.001). This variant has mainly been associated with various cell count phenotypes, 
including neutrophil percentage62, and the CpG site exhibits different average DNAm across cell 
types (P = 1.33x10-7), suggesting that the effect of age on the meQTL is likely mediated by 
changes in cell type composition differences. 
 
Together, these results suggest that cell type composition changes may confound trait iQTLs by 
mediating the moderation effect of a trait on genotype and molecular phenotype association, as 
previously observed for differential expression and differential methylation analysis63,64. Thus, an 
apparent age iQTL effect may arise when a certain cell type proportion varies with age and the 
regulatory variant has a cell type-specific effect on a molecular phenotype. This warrants 
caution in interpreting GxE effects on molecular level. 

Cell type iQTLs contribute to immune-mediated inflammatory diseases 
Genetic regulatory effects can aid elucidating the tissue specificity of heritable traits and 
diseases65. Given the observed cell type-specific nature of cell type iQTLs with positive 
direction, we analyzed whether cell type iQTLs provide insights into cell type-specific 
mechanisms of diseases. We performed colocalization analysis with coloc39 of cell type iQTLs 
(FDR < 0.25 for ieQTLs and FDR < 0.05 for imeQTLs) and a selection of immune diseases and 
cardiometabolic traits (Figure S13, Table S5). When compared with the number of cell type 
iQTLs colocalizing with height to account for widespread enrichment of QTLs among trait-
associated variants38, our data confirmed several previously observed cell type-specific 
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enrichments for traits and diseases (Figure 5A) - monocytes with lipid traits66, B cells with 
systemic lupus erythematosus67, and many different immune cell types, including NK cells, T 
cells and B cells, with inflammatory bowel disease68. Given the varying number of cell type 
iQTLs with positive direction, we had greater statistical power to detect significant associations 
involving cell type imeQTLs, particularly neutrophil imeQTLs. Emerging evidence also suggests 
the contribution of neutrophils in the pathogenesis of autoimmune and inflammatory 
diseases69,70. 
 

 
Figure 5. Cell type interaction QTLs and relevance for diseases. A) Relevance of cell type ieQTLs 
(FDR < 0.25) and cell type imeQTLs (FDR < 0.05) for selected cardiometabolic and immune diseases 
compared to height. For each of the cell type iQTLs, we calculated the odds ratio (OR) as the ratio of the 
odds for an iQTL to colocalize with cardiometabolic or immune disease to the odds of an iQTL to 
colocalize with height. For testing the significance of the OR, at least 10 loci tested for colocalization were 
required, otherwise noted as NA (not available). Bonferroni correction was applied separately for cell type 
ieQTLs and cell type imeQTLs. NS - not significant. B) Colocalization between GWAS for RA and NK cell 
ieQTLs for SYNGR1 and imeQTLs for a nearby CpG site cg19713460 shown as regional association 
plots. The highlighted region is depicted at the top and shows the location of the lead GWAS variant for 
RA, rs909685, and the CpG site relative to the SYNGR1 gene. C) Association plot for the NK cell ieQTL 
for SYNGR1 and the NK cell imeQTL for cg19713460. Dots are colored based on the genotype of 
rs909685. Data in B) and C) are from exam 1, where we observed the lowest interaction P-values. 
 
In addition to studying disease-specific enrichment, cell type iQTLs can be used to understand 
the cell type specific mechanism of a disease-associated variant. For instance, the A allele of 
rs909685 (T/A), located in the intron of the synaptogyrin-1 (SYNGR1) gene, has been shown to 
increase the susceptibility to rheumatoid arthritis (RA) for individuals of European, Asian, and 
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African ancestries35,71,72. In our data, rs909685 was associated with SYNGR1 expression, with 
the effect size increasing with NK cell and T cell proportions, and decreasing with monocyte 
proportion (Figure 5B, Figure S14A). rs909685 was also associated with the methylation levels 
of cg19713460, located in the promoter region of SYNGR1 (400bp from the transcription start 
site (TSS)), with the effect size increasing with NK cell proportion (Figure 5B). Of note, 
rs909685 A allele was associated with higher expression levels of SYNGR1 and lower 
methylation levels of cg19713460 (Figure 5C, Figure S14B). For the cell type iQTLs, we 
observed very strong evidence for colocalization with the RA GWAS signal (PP4 > 0.99). 
Interestingly, rs909685 falls into the cCRE that is characterized by high DNase and H3K27ac in 
NK cells, CD8+ T cells, and B cells (Figure S14C). Furthermore, the SYNGR1 knockdown 
lowered the release of pro-inflammatory cytokines or chemokines (e.g., IFN-γ, TNF, and 
RANTES) by activated NK cells, suggesting a functional role of SYNGR1 in NK cells73. 
Together, these data suggest that rs909685 influences susceptibility to RA via NK cell-specific 
action, captured by our cell type iQTLs integrated with functional annotation data. As a likely 
mechanism, a causal chain from methylation of the promoter of SYNGR1 to affecting mRNA 
expression resulting in affected RA risk has been proposed74. This example highlights the 
usefulness of incorporating cell type iQTLs and functional data into investigations of cell type-
specific mechanisms of disease-associated variants. 

Discussion 
We performed interaction QTL mapping with cell type abundance, age, sex, and smoking as the 
environmental factors to identify regulatory variants with plasticity in effect size rather than 
constant molecular effects. While a sample size of ~900 individuals of multi-ethnic background 
at two time points was sufficient to map cell type iQTLs for a large number of genes and CpG 
sites, discovery of molQTLs interacting with higher order physiological traits were limited. Given 
the unique aspects of our study design, we were able to assess the reproducibility of the iQTLs 
between time points to demonstrate the robustness of the results, and highlight the sharing 
between cell type ieQTLs and imeQTLs characterized mostly by negative correlation between 
gene expression and DNAm and discordant genotype main effect. Importantly, the interpretation 
of cell type iQTLs depends on several factors - direction of effect, correlation between cell types 
within the tissue, and resolution of the cell type deconvolution. Our results suggest that 
biologically most informative results are obtained for molQTLs when the effect size is increasing 
(positive direction) with the most abundant cell type in the tissue. 
 
Even though cell type iQTLs cannot be considered cell type-specific per se, cell type iQTLs with 
positive direction replicate well in eQTL datasets from purified cell types and show enrichment in 
cCREs from the interacting (or similar) cell type. We demonstrated this concept in whole blood, 
which had the necessary cell type-specific eQTL replication data. Our results show promise for 
interaction QTL approaches for identification of cell type-specific QTLs in other tissues where 
single-cell or cell type-specific data are not available or easily acquired. Moreover, cell type 
iQTLs combined with functional annotations of the genome can help prioritize cell types for 
functional follow-up studies. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546528doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.26.546528
http://creativecommons.org/licenses/by/4.0/


 22 

molQTLs with GxE interactions at the molecular level hold the promise to guide discovery of 
GxE interactions in complex diseases75–80. These loci may mark the genetic component of inter-
individual variation in response to different environments or physiological states, including 
disease, thus contributing to phenotypic variation in humans. Our results with age imeQTLs, 
however, suggest that cell type composition changes may partly mediate the moderation effect 
of age. Similar observations have previously been made for sex-biased cis-eQTLs81, yet the 
confounding effect that cell type composition has on molQTL effect size variation has not been 
appreciated to the same extent as in differential expression and methylation studies, particularly 
in epigenome-wide association studies43,64. 
 
Based on our results, we propose that mediation by cell type composition is the primary starting 
hypothesis for molQTLs with GxE effects, and this should be explicitly ruled out before 
postulating other molecular moderation mechanisms. We further hypothesize that when trait 
iQTL and GWAS signal colocalize, only molQTLs with GxE not mediated by cell types would 
have a GxE interaction at the GWAS level - whilst molQTLs with support for mediation most 
likely are subject to confounding. Future studies with larger sample sizes will be needed to 
properly evaluate this hypothesis. 
 
Overall, the integration of genomic data with functional multi-omic data in large and diverse 
longitudinal cohorts offers an opportunity to map genetic effects on molecular traits, and to study 
its complex interplay with other environmental factors. Our study shows the value of mapping 
interaction QTLs as a feasible computational approach to obtain insights into the context-
specificity of regulatory effects. 
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