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ABSTRACT

The interaction between a dense Fermion medium and a scalar meson field
is studied. It is shown that in the quasi-classical approximation, independently of
the details of the theory, at low Fermion density the lowest energy state is normal
(i.e., effective Fermion mass m_ce 2 free mass), but at high density the state is ab-
normal (i.e., M ¢f = 0). The nature of the transition is analysed at zero and low
temperatures. Our main concern is to examine the problem of quantum fluctuation.
Both the one~ and two~-loop diagrams are calculated. By developing a variational
formalism involving only two-line irreducible diagrams, we derive a suitable high-

density expansion for the energy. The quasi-classical solution emerges as the lowest

description of the transition given by the quasi-classical solution remains correct with

order term in this expansion. Therefore, when the expansion is valid, the overall
the inclusion of quantum corrections.
|
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1. Introduction

Recently, it has been suggesfed]’ 2 that if there exists a strongly interacting 0+
meson, or resonance, then when the nucleon density becomes sufficiently high over an
extended volume, there is the possibility of abnormal nuclear states, hitherto unbbserved.
A basic feature of the cbnom;al nuclear state is that in such a state the nucleon mass be-
comes zero (or nearly zero). Under suifdble conditions, the abnormal nuclear states may
be stable, or metastable. Furthermore, depending on the particular meson theory, as the
nucleon density increases, the transition from the normal nuclear state to the abnormal
nuclear state can be a sudden one, exhibiting the standard characteristics of a phase tran-
sition. So far, because of compufofi9nc| difficulties, the theoretical discussion of the
abnormal nuclear state is restricted to a quasi-classical treatment only, similar to that
used in a Thomas~Fermi model for the atomic system. Questions naturally arise as to
other effects not included in such a quasi-classical solution, especially those related to
quantum fluctuations because of multi-loop diagrams. The main purpose of this paper is
to give a systematic analysis of these loop diagramss.

In order to understand the essential features of the problem involved, we shall
consider only a simple renormalizable field theory in which there are two fields: a Boson
field ¢ of spin O and a Fermion field ¥ of spin 3. [For applications to the nuclear sys~
tem, ¥ represents the nucleon field and ¢ some strongly interacting 0+ meson, or reso-

nance. ] The Lagrangian density is

2

£ = =3 8%2?_) - Ufp) - q,T Y [Yp .5?(_ +(m+g<p)] ¥ + counter terms
M M

(1. 1)



where ¢ is Hermitian,

3

U@ = e’ + @Tbe + el a2

the parameters a, b, ¢, m and g are the appropriately defined renormalized con- ' .
stants, and the counter terms are for renormalization purposes. Through the transforma-

tion ¢ — ¢ + constant, one may always assume for the vacuum state

< vac I ¢(x)~'| vac> = 0 (1.3)

where the vacuum state is defined to be the lowest eigenstate of the system with Fermion
number O . The total Fermion number N = [ tl!T ] d3r is, of course, conserved. Note
that U(¢) does not contain a linear term in ¢ ; consequently, there is a linear term in

the counter terms. We assume the constant ¢ to be positive so that U(¢p) has a lower

bound, and the constants a and b to satisfy
b < 3ac

: |
so that the absolute minimum of U(¢) isat ¢=0. For convenience, we shall quantize |
|

the system in a box of a finite volume Q with the periodic boundary condition, and then

take the limit Q —~ o in the end.

Let | n> be the lowest ene'rgy eigenstate of the total Hamiltonian H that satis- =

fies the constraint

dlydr<n|vte n> = n | (1.4)

where n denotes the average Fermion density. A useful concept is the energy density

function £ (n), related to the total Hamiltonian H by



£ = Lim o' <n | H |[n> . (1.5)

Q-

For practical applicafions to a finite but large nucleon system, £ (n) d;nofes its vplume
energy. The simplest way to see why, for n' sufficiently high, the system may exist in
the abnormal stqfe is to examine the quasi-classical solution.

Let us assume the Fermions to form a degenerate gas and ¢ to be described by a
classical field. In such a quasi-classical treatment, Qe first examine the case that the
Fermion density n is kept uniform in Q. In the lowest energy state, the classical field
¢ must, then, be a constant. The corresponding energy density £ (n) is given by
& = U(e) + '(4113)-4]«‘1; d3p' [;2 + ﬁlesz~]% - (1.6)

where m_ce is the effective mass of the Fermion, related to the free particle mass m by

m e = Im + g¢ I , (1.7)

the subscript F next to the integral sign indicates that the integral extends only over

the Fermi sea ]-};I < kF , and kF is related to n_ by

ke = (32 n/k)} | (1.8)

with & denoting the Fermion degeneracy due to its internal symmetry. For example,

« = 1 for a neutron medium . (1.9)

2 . for a nuclear medium

where, for simplicity, we assume equal numbers of protons and neutrons for the nuclear

medium,
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Throughout our discussion, we define the normal state to be oe in which m e Sm,

‘and the abnomal state to be one in which m ¢ =0 . As n increases, the Fermi-sea
contribution to the energy becomes increasingly more important. Thus, for any given set
of parameters a, b, ¢, g and m, in the high-density limit one finds by using (1.6),
Lim ¢ = = (m/g) and  Llim m . = 0 ; (1. 10)
n-+m '  n—-®
i.e., the state becomes abnormal. On the other hand, in the low-density limit, because
of (1.3), one must have
Lim ¢ = 0 and le' me = M
n—-0 n—0
““i.e., the state is normal. As illustrated in Figure 1, depending on the parameters in the
theory, the transition from the low-density "normal" solution (meff £ m) to the high-

density "abnormal" solution (meff 0) may or may not be a continuous one. The details

will be given in Section IL It will be shown there that ane of the necessary conditions for

e s . 3 .
a discontinuous transition is to have a sizable ¢~ -coupling

b2 > 2ac . - (1. 11)

Of particular interest is the case_of the o -mode|4, in which b2 =3ac . It has been shown
in Refs. 1and 2 that when the Fermion density n increases, the quasi-classical solution of
the o -model does produce a discontinuous transition from the normal state to the abnormal

state. Further details concerning the nafuré of the phase frangition will be given in Section

Il and in Appendix A.



Our main concern is to investigate the quantum correction to the quasi~classical
salution. As will be shown, in a fully quantum mechanical treatment, the role of the con-

stant classical field in the above quasi-classical solution is replaced by the average value
- -1 3
§ = Q Sdr<n|ex) |n> . (1. 12)

In the vacuum state (n=0), one has § =0; when n#0, in the normal state, one has
$ S0, but in the abnomal state § is shiftedto = - (m/g). Thisshiftin & is
smallest in the strong-coupling limit, but largest in fhe; weak-coupling limit. Thus, it
seems reasonable that the quantum correction may also be smaller in the strong-coupling
limit. Unfortunately, at present there exists no reliable technique that is capable of
handling a relativistic quantum field theory with strong coupling (except in the totally
fictitious two space~time dirﬁensions, and even there only for a very few special exam-
pless). As. g— o, it is not even clear whether the vacuum state does exist or not.

The lack of knowledge concerning the vacuum state makes it difficult to discuss the quan-
tum. correction to the abnormal state in the strong coupling limit.

On the other hand, from the quasi-classical solution, the abnormal state is ex-~
pected to exist even for a wéakly-coupled meson field, provided the Fermion density is
sufficiently high. Thus, it may be worthwhile to develop systematically the high-density
but weak-coupling expansion of a Fermion medium interacting with a 0+ meson field.
Some insight into the physical nature of the abnormal nuclear state and the related phase:
transition phenomenon may then be obtained. The actual task of establishing a systematic
high-density, though weak-coupling, expansion turns out to be a non-trivial one. This is

~

not surprising, since in the abnormal state the shift in § is = - (m/g) which approaches

+



infinity as g becomes infinitesimal. The usual peffdrbation series is applicable only if
the coupling is weak and the Fermion density remains relafivélA).' low. A suitable rearrange-
(‘menf of the usual perturbation series is therefore ﬁeceésary fn order to derive a -hi’gh-densify
expansion,

We recall that in this problém both the energ>; density £(n) and the average field

¢ depend on six parameters: a, b, ¢, m, g and the Fermi momentum kF . Among

these, only ¢ and 92 are dimensionless. Out of these six parameters, one may construct.

five dimensionless parameters: .

2
2 9

a  ac m g

2 .
k F ‘ b2 a Cc

(1.13)

In the usual perturbation series, one expands in ppweré of‘ .92 . ‘(,QI;F‘?),Z , b and c.
I:If kF is << m, then (g kF)2 should be replaced by (g kF )2(k<F/m) . :l For the ab~
normgl state, such a perturbation expansion is obviously inadequate. This is clear espe~
cially if v;/e reco.ll the condition on fhege»parameters in the interesting case of a discon-

tinuous transition. From (1.11), one sees that

9 ' |
2~ o
. ac

Furthermore, the Fermion density must be quite high, since on the one hand § = ~ (m/g)

in the abnormal state, and on the other hand § ~ = (g kF2 m/a) from the field equation;

" it follows therefore




The appropriate high-density weak-coupling expansion that we are seeking is one in which,

out of the five dimensionless parameters in (1. 13), only g2 acts as the small expansion

parameter. The other four parameters in (1. 13) are all regarded as O (1) ; i.e.,

c ~ 0(%) « 1, b2 ~ Ofac)
and
a ~ O(ml) ~ O(gszz). (1. 14)

We may formally write in-ascending powers of g

ﬁ(n) = &0 + ﬁ'l + £2 e (].]5)
where
4 2,4
4
£y ™ O(g4k:) or O(g4 kF Ingz), etc. (1. 16)

To each order in 92 , or 92 In 92 , the dependence of £(n) on the last four parameters

in (1. 13) is supposed to be evaluated exactly. Because kF ~ O (m/g) > O(m), this

weak coupling expansion is also a high-density expansion.

To derive such an expansion, we are helped by methods developed in many-body
problems and statistical mechcnicsé. We will start, in Section III, from the usual pertur-
bation series, and then sum over all one-line reducible graphs to obtain the well~known
expansion in terms of the prototype diagrams7. The series of prototype diagrams is then
further rearranged through a second summation over all two-line reducible graphs. The

result is a variational formalism of &(n) in terms of the average field ¢ and the two full



‘propagators: D'(k) of the meson field and S'(p) of the Fermion field. The details are
.given in Section IV. This variational formalism can then be used to.give the desired
high-density weak-coupling expansion. .
4k4 ’

As will be shown in Section IV C, if we neglect O(g4 k:) and O (g F In 92)

in the loop diagrams, the energy-density function becomes

- , 3 R |
& = UG) + (4 « de3p [32+(m+g3)2 ] + (6417 cg?k?  (1.17)

where U is given by (1.2), and ¢ is determined by the minimum of £ . We note that

in the abnormal state ¢ ~ - (m/g) ; therefore, U(¢) ~ O (a‘mz/gz) , which is

~ 0 (92 k:) according to (1. 14). In the above éxpression, the first two terms are exactly
the same as the quasi-classical result provided that ¢ replaces the classical field. The
third term (641r4 )- Kg2 ké is a new term, representing the qudntum: correction; more
specifically, it is due to the change in the Fermion self-energy on account of the Fermi

sea. [See 4.37) for/ the modification if there are, in addition to the 0+ meson, also
pions, ] Because it is independent of ¢, (1.17) leads to the same dependence of $ on
the Fermion density as that in the quasi-classical solution. ‘Thus, the overall description

of the transition given by the quasi-classical solution remains correct in a quantum=mechan-

" ical treatment, at least when the expansion (1. 15) is a valid one.



[I. Quasi=classical Solution

In this section, we shall briefly review some of the properties of the quasi-classical

solution.

A. General Discussion

In fhe‘ quasi-classical solution, the Fermions are assumed to form a completely de-
generate gas. We examine first the case that fh.e Fermion density n is uniform inside the
volume Q . [The case of a non-uniform density will be discussed later in Section IIB..]
The meson field ¢(x) is assumed to be classical. Since the Fermion density is kept
everywhere the same, it is easy to see that in the lowest energy state the meson field

must also be a constant. The energy density £ (n) is given by (1.6), which may be

written as
Em) = Ucp + Up ’ (2.1)
where
- 2 1,3 Y
Up = U@ = 3a¢” + (31) be + (42) "co - @2
3,1 3 2 2 4*
U = (41") Kdep[p +meff:] , ‘ .3)
m e and k are given reséecfively by (1.7) and (1.9).

As already stated in the introduction, from the above expression of £(n), it
follows: that, independent of the details of Uq) , at low density the system is normal
(i.e., ¢ 20 and m_ce = m), while at sufficiently high density the system must be-
come abnormal (i.e., ¢ = -~ m/g and m_ce = 0). The nature of the transition from

the low-density "normal" solution to the high-density "abnormal" solution can be best

analysed by examining the derivative of &(n) . At any given n, the physical value of
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¢ is determined by minimizing £(n) . Thus, it must be given by one of the solutions of

SR e

Depending on the parameters a, b, ¢, m, g and n, Eq. (2 4)_rﬁa.)l have one, on*hree,
or five solutions. We note that the |eff-han<:i si::le, .d Uq) /d¢, is a cubic function of ¢,
indeper.\denf of" n, while the right-hand side, - (3 UF/acp)n , is both an odd funcf.fon of
m+ 9¢ and a monof.onically decreasing function of ¢, varying between the |imif'ing
vglue gn at ¢ =-0 and -gn at ¢ ;+m . As ‘n.—’ 0, the minimum of £(n) is
given by the solution ¢ -0, and as n— o it is given by the solufion ¢—-(m/g)
When n' varies, the transition between these two sélutions may or may not be discontin-
vous. The necessary and sufficient condifiop for a discontinuous transition is to have a
density n at which there should be two or more solutions of (2.4) in the open interval

- between ¢ =0 and ¢==(m/g). The -pro'of is quite straightforward, as will be illus-
trated by the FpHowing excmples:A

1. I b%< 2ac , the function Uq) has no point of inflexion. Thus qu)/dq) isa
monotonically increasing function of ¢, varying from - at ¢ =~ to + at ¢=+00.
Equation (2.4) has oqu one solution, which gives the minimum of £ (n); therefore, the phys-
ical value of ¢ varies continuously from ¢ =0 at n=0 to ¢==-(m/g) at n=.

2. If b isof the opposite sign from g, the function d Uq>/d¢ is a monotonically in-
creasing function at least in the region g¢ < 0 ; it varies from - at g¢ =~ to 0 at
45 =0 . Thus, in the interval between ¢ =0 and ¢ = -(m/g), there is again only one so-
lution of (2.4). Juﬁf like in the previous case, as n increases, the physical value of ¢

varies continuously from 0 to -(m/g). EBofh cases 1 and 2 .are represented by (ii) in
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Figure 1. :]
3. Next, we examine the more interesting case when b2 > 2ac and b is of the
same sign as g . Without any loss of generality, we may choose g positive, and there-

fore b also positive. There are two points of inflexion of U¢ , called A and B, where

-k + (b2-2ac)%]

n

®A

and @.5)

-1 2 3 -
¢g = ©- l:-b - (b” = 2ac) ] .

If b2 is also > g ac, then the curve d Uq)/dq> has three zeroes, at ¢ =0, ¢, and

¢_ where

0, = 3207 [-bx (b - g-ac)§ 1. 2.6)

Because of (1.3), Ucp has its absolute minimum ot ¢ =0, a local maximum at o, and
a local minimum ot ¢_. As shall be shown, provided that (m/g) -is sufficiently large,
there is always a discontinuous jump in ¢ as n increases. For clarity, we discuss sep-
arately the following possibilities:

(i) lIF b2 > goc and ¢ =~ (m/g) lies to the left of ¢ = ¢, s then the transition from
the low-density solution, ¢—0, to the high-density solution, ¢—-(m/g), must be a
discontinuous one.

In this case, at sufficiently low density, | Eq. (2.4) has three solutions, labeled o,

B and y , which may be arranged in a descending order according to their ¢-values; i.e.,

0 > ¢ > > 0 . @.7).

*s Y
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In the interval between the origin and ¢ =~ (m/g), depending on the position of ¢ = q>'_ ’
c‘;ne may have all these three solutions, or only two, o and B, asshown in case (i) of
Figure 2. In either case, as n—0, the solution a approaches the origin; therefore, the
'Enfnimum~ of £(n) isgivenby a. Butas n increases, a approaches B . At a certain
éensify, a and B coalesce, and above that density a disappears. Consequently, there
r;wsf be a discontinuous transition. | |
q (i) ¥ b2 > % ac, but ¢ =- (m/g) lies to the right of the point of inflexion ¢ = N
:i:hen as n increases, the physical value of ¢ varies conﬁnuc;usly from 0 to -(m/g). |
In this case, between the origin and ¢ = -(m/g), Eq. (2.,4) has only one solution,
called a, as shown in case (ii) of Figure 2. It is not difficult to establish graphically that
the shaded area a B A is always larger than the shaded area ByB . Consequently, the
minimum of £(n) is always given by a (never y) , and therefore, there is no discontinuity
as n changes. .

3

in between N and ¢_ . As n varies, the transition from the solution ¢ =0 to ¢ =-(m/g)

(iii) Similar considerations extend to the case when b2 > 8 ac, but ¢=-(m/g) lies

is a discontinuous one provided that at some density Eq. (2.4) has three solutions a, B and
y between the origin and ¢ ==(m/g), as shown in case (iii) of Figure 2. The discontinuity
occurs when the two shaded areas ap A and B yC become equal. At low density, the ab-

solute minimum of £(n) is given by a, but o high density by y.

It can be shown that in this case a sufficient condition for a discontinuous tran- -
sition is (m/g') >-'§ (b2- 2(:1(:)-.| (bs/c) .
- (iv) If 2ac< b2 < % ac, the transition from ¢ =0 to ¢ =-(m/g) may still be discon-

tinuous, provided that - (m/g) is sufficiently negative, as shown in case (iv) of Figure 2..

The discontinuity occurs when the shaded areas aB A and ByB become equal.
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B. o - Model

Of particular interest is the o-model4. For simplicity, we shall discuss the model
only in the zero pion-mass limit. The o-model consists of a spin % nucleon field ¥, a
spin 0 even parity field ¢ and the usual pseudoscalar field T . The Lagrangian density

is given by

a¢ .—-’—’
£ = _¢TY4Ypaxp—quTY4[0'+|TI"T}'5:]¢

2 -2 2
1 do on 22 -2 2
_2[(.5;(_> +(87.>]-%>\ [o +w —00]
v r
+ counter terms . (2.8)

In the tree approximation, the free nucleon mass m and the free o ~meson mass m_

are related to the parameters oy and A by
my = 99 and m.o = V2 )\ao . 2.9)

In the quasi-classical treatment, we may regard o and w both as classical fields.
As before, we first examine the case of a uniform nucleon density n . In the lowest energy

state, both o and T are then also uniform. The energy-density function is given by

E) = U+ Uy (2. 10)

where
2 2.2
u = 3R R0, @2.11)

3, 3 2 2 -f
U, = @r) K‘l/:‘dp[p +meff] . 2.12)




2 2,2 =2 B -
m_ ¢t =‘ g (¢ + ) (2. 13)

and k isgiven by (1.9). Equations (2. 10)~(2. 12) reduce respectively to the previous

expression (2.1)-(2.3), if we set

¢ = (02+ T;r.2)2- % b = 3ac ,
c =6 ad o =2 = ma2 . 2.14)

[See (3.30) for the definition of a when radiative cor;'ecf-.ions are included. :] By fol-
lowing the same argument given in the previous section, one finds that as the nucleon.
density n increases from zero, there is a disconﬁnupus transition 2 from the normal state
(meff = mN) to the abnormal state (meff =0), as ilfl‘usfrofed by 'gg;e. (i) i.n Figure 1.
Let n. beA the critical density. From (2. 10)-(2. 12), and by using a simple scale trqnsfor-
mation, one- sees that n, in units of m3 depends only on a si-qg_le combination of

N

parameters: 1

3 - e 2 2 2
myne = f(kg mN/mo) . (2. 15)

It is not difficult to calculate the explicit form of f. In Figure 3, we map out the region
in 92/41r and m_ for n_ < 2n, where Ny is the nuclear density in existing nuclei,
given by

-1

47 : 3
Ny = —é—(].2fm) . | (2.16)

For simplicity, we set the degeneracy factor k=2 for the nuclear matter. Although at

present there is no reliable data on either m_ or 92 , the range given in Figure 3 is not

. . . . . 4,8
/incompatible with most of the available discussions of 0+ resonances in the literature ’ .
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pressure. Because of (2. 18), MAb is given by

s 2
gy = 2K/ = (@) (gm0 . @)

vie,
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Assuming that (2. 19) is satisfied, for an average nucleon density Q-]N < NAb 7 and Q
sufficiently large, one finds (now allowing the density to be rion-uniform) the lowest energy

state to consist of a two-phase region: a part of the volume, Q- (N/nAB) , is empty and

" the rest in the abnormal state. The corresponding thermodynamic p - v diagram is plotted

" in Figure 4 [diagram (i) ] , where p is the pressure and v is the specific volume,
v = N 'Q . ‘ (2.21)

.In this case,r at zero temperature there is a first order phase transition at zero pressure.
For (41r)-] 92 < (31/16) (mo/mN)2 , the abnormal state does not bind; even then,
there is still a phase transition which, at zero temperature, occurs only under a finite
pressure. Both possibilifies'are illusfrcted by diagrams (i) and (ii) in Figure 4.
| Similar considerations can be readily extended to other zero-spin meson fields,
different from the ¢ -model. It-is important to note that high i'empe‘ral'ure9 tends to
destroy coherence. Throughoul' our discussions, we will concentrate only on zero, or
low, temperature phenomena. A brief description of-the thermodynamics functions at
low but non-zero temperature is given in Appendix A. [Se_e (A.15)-(A. 18) for the
expression of the two-phase region in the ¢ -model. ]

So far we have not considéred aﬁy of the usual short-range nuclear forces. To
make.a thorougH investigation of this important problem is quite beyond the scope -of
our present paper. In Appendix B, a simplified "hard sphere" model is given, which .

we hope may illustrate in a qualitative way some of the problems involved.



III. Loop Diagrams

The Lagrangian density (1. 1) may be written as

L = .1‘,0 + £] + counter terms Q. 1)
where '
T 2 i )
1
£0 = '§<-a—x—>']§0¢ -9 74()’“ X + m)"p ’ (3.2)
" "
=1, 3 -1 4
£o= -3 b - (4 eo - go¥y (3.3)
and
counter terms = - (6)) ¢ -3 (6a) 2~ (31)7 (8b)o° - (41) (80) ¢

2
i T 1 ¢

- (em) ¥y ¥ - Bo)o ¥y, ¥ - 3(52) (5;:)

a¥

- (3.4)
H

- (82,) ! %,

The fields ¢ and ¥ are the renormalized fields and the parameters a, b, ¢, g and m
are the appropriafely defined renormalized constants. In (3.4), 6J is determined by (1.3);
the determinations of other counter terms depend on the precise definitions of the renormal-

ized constants, which will be discussed later.

A. Perturbation Series
To analyse the systematics of the loop diagrams, we shall begin with the usual per-
turbation series by regarding (Jl] + counter terms) as the perturbation. The zeroth order

meson propagator D(q) is, as usual,

D(q) = -i(q>+ a - i€ @3.5)
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-2 2
where q" =q° - 9 and € = 0+. However, for a state with a nonzero Fermion

density, the zeroth-order nucleon propagator S (p) is given by
S(p) = i[-iyp -m+ic (p)]" 3.6)
ThgY n

where en(p) is a non-covariant function of the 4-momentum p}‘l = (;, ipo) and the

Fermi momentum kF;

en(p) = 0= if |;|§ kF and p. > 0

0

and -

en(p) = 0+ otherwise . 3.7)

In the zeroth-order solution of the groundstate l n.> for a Fermion density n # 0, all
Fermion levels with energy 9 = (;2+ m2 )% >0 and | p | € kF are occupied. Thus,
in the complex pogﬁlane, for | P | > kF the poles of S(p) are located as usual at

Po = t(up- ie), but for | P I < kF they are displaced to Pp = (:twp) +ie .

-Af zero Fermion density n =0, the groundstate is | vac > and therefore, because

of (1.3), ¢ =0 where § isdefined by (1.12). If n#0, then & irs A0 . In Figure 5,
we give the usual perturbation series expansion for ¢ and £ (n). In these diagrams, a
solid line gives a factor S (p), a dashed line a factor D (k) , and the various vertices
give factors according to the explicit expressions of £] and the counter terms. From
(3.3), one sees that there is a ¢3 vertex carrying a factor -ib, a q>4 vertex carrying
“a factor -ic , and another three-point ¢ ‘PT Y ¥ vertex carrying a factor -ig . Ir; ad-
dition, there are vertices due to the counter terms given by (3.4). It is convenient to

display explicitly the Fermion-number conservation by assigning each solid (Fermion) line

an arrow, indicating the flow of the Fermion number, but none to the dashed (meson)
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line. In addition, each diagram carries a factor <! where s s its symmetry number,
and each Fermion loop gives a factor (=1) .

To derive the symmetry number, let us consider a diagram with QF internal Fer-

mion lines and 2,, internal meson lines. The total number of internal lines is

M

g =8+ 8., . (3.8)

We first assign to each end of every internal line a different integer 1, or 2, - -, or
2%. The resulting diagram is called a "numbered diagram". We then consider the (2%).
permutations of these 2% integers. The total number of permutations that leave the
"numbered diagram" unchanged is the symmetry number. [Because the Fermion lines
carry arrows but the meson lines do not, there is an alternative way to derive the sym-
metry number. We may assign only one number to every Fermion line, but as before, two

numbers to every meson line, one for each end. There are altogether ZF + 29.M numbers

F permutations between the numbers

assigned. Next we consider the product of the ¢
associ.ared with the Fermion lines times the (ZQM)i permutations between the numbers
associated with the ends of the meson lines. Among the Q,F'. X (22M)'. permutations,
the total number of permutations that leave the "numbered diagram" invariant is the same
symmetry number s defined before. ] See Figure 6 for the symmetry number of some sam-
ple diagrams.

It is useful to introduce the concept of "L-line reducibility". [:Acfually, we are
only interested in the special casesof L=1 and 2. ] We call a diagram "L-line reduc-
ible" if it can be separated into two or more disconnected parts by cutting L different

internal lines open; otherwise, it is called "L-line irreducible". From this definition, it

follows that if a diagram is two-line irreducible, then it is also one-line irreducible; the
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converse is, of course, not true. For example, in Figure 5, the first two rows of diagrams
for £(n) are all one-line reducible, therefore also two-line reducible; on the third row,
only the first one is two-line irreducible (and therefore also one-line irredlycible); on the
fourth row, the first one is two-line reducible, though one-line irreducible.

The partial sum over all one-line reducible diagrams can be readily carried outé,

which leads to the familiar expression in terms of the prototype diagrams7. Each prototype

diagram is one-line irreducible, and vice versa.

B. Prototype Diagrams
A simple way to derive the series expansion of £(n) in terms of the prototype dia-
grams is to introduce

X = ¢-8% , (3.9)
so that in the groundstate ] n>
- - =1.3 " . |
X = 0 Sfdr<n]x®|n> =0 . (3. 10)

The Lagrangian density (3. 1) can then be written as

2
ax - - 2 |"1"’ 3 |-]- 4
¢ = _%<3_x_> - U@F) -axt- 39 BxX - (4 ex
M
- q,T 9 + m + gX)¥ + counter terms | 3.11)
Y4 Ypaxp ‘ ) )

where




The counter terms are now given by

counter terms” = =~8U(¢) - (8J)X - ,ly(zsa.)x2 - (3'.)" (sB)x3

1
@) sext - (5m) ey, ¢ - (Bg) X ¥y, @
2
1 e [ OX i ay
" i
where
) i} 2 3 1 .
SU = (6))5 +1(65a)52 + (31) (8b)3° + (41)" (80)5"
_ . ) 2 _2
§7 = d(U+5U)/ds , 63 = d>(sU)/d§° ,
§6 = d(6U)/ds> , 8% = Bc ,
and
&m = &m + (6g)¢ . (3. 14)

Since the above Lagrangian density depends explicitly on ¢ , so would the energy levels.
The physical value of ¢ is determined by the condition (3. 10).

By using (3. 11), one can readily expand £(n) in a new perturbation series by
regarding b, € and g as the perturbations. The zeroth order meson propagator and

Fermion propagator are now respectively given by, instead of (3.5) and (3.6),

D@ = -i[q?+a -ie]" (3. 15)



22,

and . !
3 = [~ - M+ B 3.16)
® = il-typ,-@+ic @] | @.16)

where € =0+ and en(p) is given by (3.7).
To derive the zeroth order energy, we adopt the usual convention that the vacuum

energy is zero. Since the vacuum state is defined to be the groundstate in the case of

zero Fermion density (i.e., n=0), we have

EO = O . 3.17)

By using (3. 11), one finds that to zeroth order in b, € and g the groundeaté energy

density £(n) for n #0 isgiven by

& + Ag (3. 18)

=q.cl. vac

where &q cl. is the previously obtained quasi-classical expression
- 3,7 3 2 2.} |
Faal, = U@ + (8) L 29dR(pT+RT) (3. 19)

and Aav‘aé is the change in the vacuum energy due to ¢ # 0 .

I ' 3 : )
3 3 2 =2 72 2
Af g = ~BT) S (2 dk [(KT+&%) - (kK"+ m")" ]
a USSR
+(81) S pdk [(K2+a) - (K2+q) ]
+ subtraction o o o (3.20)
“in which the fi}sf term is the energy change of the "Fermion negative sea" and the second

term is the change in the "zero-point meson energy"; both are divergent, but finite results
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can emerge if we subtract out an appropriate fourth order polynomial in ¢ due to renor-
malization. [Se'e (3. 22) below. ]

The higher order corrections can be derived in terms of diagrams by using (3. 11),
(3.15) and (3. 16). We may write for the energy density

(3.21)

q.cl. v loop

(o o]
EM, ) = £ + AE qc+2§2 €0

in which £ depends explicitly on ¢ . Because X = 0, it can be readily seen that all

loop diagrams are one-line irreducible. In Figure 6 examples of two-loop and three-loop

diagrams, together with their symmetry numbers, are listed. The counter terms &m , SZq, ,
8&a, - - - can always be re-expressed as sums of loop diagrams in terms of the renormal-
ized constants a, b, ¢, m, g and ¢. In (3.21), for diagrams involving counter terms, .
we find it convenient to define "#-loop" to include also these loops in the counter terms. |
Because of this definition, there is no one=loop diagram in the sum over 69,-|oop . [An
otherwise "one-loop" diagram with counter terms &% , &a, - - - as vertices is here con-
sidered as a two-, or more, loop diagram. ]

It may be instructive to compare the above series (3. 21),. which is in terms of one-
line irreducible diagrams (i.e., prototype diagrams), with the original perturbation series
expansion discussed in the previous section. By using Figure 5, one can express £(n) in
terms of ¢ ; one finds then, as usual, U(¢) comes from the sum of the tree diagrams,
while Agvcc comes from the sum of all one-loop diagrams. In (3.21), however, both
terms come from the zeroth order energy calculation of the Lagrangian (3. 11). The ex-

plicit form of the vacuum-energy change is]'

-] -
AE = - (6D kit Inmmd) + (641D a2 In (3/a)

vac

+ a finite fourth order polynomial in ¢ (3.22)
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where M=m+g® and d=a+bo +%ACq->2 . There is a certain arbitrariness in the
choice of the fourth order polynomial, depending on the precise definitions of the renor-
malized constants a, b and c . Different polynomials correspond simply to different
choices of a, b and c’. Among all bossible conventions, the following is a particularly
simple one: |

Let us first consider the o -model. Its Lagrangian (2.8) is invariant under a dis-

crete 0, rotation:

4

G~ =~0 , W= -
and ‘
Py - Y5 | 2 : (3. 23)
A similar invariance exists even if there is no pion, provided that the constants a, b and

c forthe 0+ field ¢ = ¢ - o, satisfy (2. 14) where oy = (m/g) . The corresponding

0

symmetry becomes, instead of (3.23), simply a reflection:
c— =g and -y ¥ . (. 24)

In either case, Aavac should be, like

2 2
u(s) = -2_(32- o), (3. 25)

an even function of ¢ , which is the expectation value of the o -field. Since m =go ,

2 2

a = M(352- ap) . (3.26)

and $=¢ - 9y r One sees that in order to have Agvac as an even function of &, the |
fourth order polynomial-in (3. 22) must be evenin & . On account of (3. 26), this is

mathematically equivalent to writing (3.22) in the form
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-1

e km i @Ym?) + 64n) 521 (5/a)

¢VOC

+ a quadratic function in a , (3.27)

in which the quadratic function can be determined by requiring

< (AE )= 0 and & AE ) =0 (3.28)
d3 vac’ an ) ( vac’ : '
¢ d¢

Thus, when the Fermion density n=0, 5 =0 isaminimumof & . [In the o -model,
E;:O corresponds to ¢ = 9% - ] Just as in Ref. 1, we shall require (3.27) and (3.28)

to hold in general ”, not just in the o -model. The result for an arbitrary U(¢) is |

-1 = |

AE,, = - (b)) xi®In (®%/m?) + (@) &%In(3/a) +}a(@-a)’+ B3~ o i
(3. 29)
where
-1
a = (81r2b) [Kg(.-':.-/'b)2 (7gb =mc) -%b]
and 1
B = (87b) (kgm - 5 ab)

Throughout our discussion, the renormalization is carried out at kp=0 . Thus, the renor-

malized constants m and a are defined by

m = =i lim Lim [s‘(k)]"

k =0 n=0
H
and ' ' -1
a = -i Lim Lim [D'(k)] (3. 30)
kp=0 n=0

where S'(k) and D'(k) denote respectively the full renomalized Fermion~ and. meson-
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propagators. Because of radiative corrections m and a° are not the same as the
physical free Fermion= and free meson-masses.

For the ¢ -model, (3.29) becomes

1 ’ -1 |
pE. = -6 (99 In(3%el) + @) &% In (3/a)

o=l 4 ¢ 9,2, 44,2 22
+ (167°)  3g [1-55(0/m )] (5 ~ag)

+ @) g2m? [1- %(02/m4):| (52-0d) (3.31)

where a is given by (3.26) and, for simplicity, we set the degeneracy factor k=2,
2

It is of interest to observe that for a= 1.4 m2 , even for a relatively large (4‘11)-] g,

Aévac remains relatively small over a fairly wide range of o . [See Figure 7. ] .
For '62< % 02, G becomes <0 and therefore Acvac is complex. As will

be shown in the next section, one should have used the full meson propagator D' (k)

instead of S(k) , and this would lead to replacing a ==~ '[5(0) ]-] by the positive

deéfinite
o = -i[0@]" . (3.32)
That
@ > 0 (3.33)
can be established by using
D'k) = S d'xexp(i k, %) <n|TXEX(O) [n>, (3.34)

'in the Heisenberg representation, where X =g¢ = & inthe ¢ -model (or ¢ - ¢. in the
general case) and T denotes the time-ordered producf; (3.33) then follows from the

usual positivity. requirement of the spectral representation of D'(k)'. At zero nucleon



27.

density, a' =a according to (3.30). To have a rough idea of the variation of vacuum

energy~-change versus ¢ for 52< 3 002, we may simply replace @ by o' in (3.31),

but (rather arbitrarily) without including any other changes; Aﬁvac becomes then

Aalvqc = - (8"2)- (95)4 In (32/"02) + (641r2)-] o? In.(a'/o)
-1 9
+(6n)) 36" [1- 2 (a2/mh] (37- o)
-1 .
+(81r2) 92 m2 [l -]—35(02 m4)] (52-002) (3.35)

where, as can be readily verified, if one neglects higher order radiative corrections,

] 3 -] 2 2 - -g —

o = d+ @) g f (pP+g’El) pidp . (3.36)
. . , - _ 2

In Figure 7, besides Acvac , we also plot Agvac versus ¢ for a =1.4m",

(4“)-] 92 =5 and n=6 Ny # where n(;] =14n(1.2 fm)3 . These plots illustrate

the cancellation between the vacuum energy-change of the mesons and that of the
Fermions when a isnear 1.4 m”, |

Returning now to the general problem of a 0+ meson ¢ with an arbitrary fourth
order polynomial U(¢), we note that since the Lagrangian densify (3. 11) depends on ¢ ,
so does the energy density £(n, ). As mentioned before, the physical value of ¢ is
determined by the requirement X = 0. The following theorem sths that this is equiva=

lent to minimizing €(n, ) with respect to ¢ .
Theorem 1. At the physical value of ¢, one has

L Emd =0 3.37)
2%
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and
2

_a%f £(n, 3) > 0 | . (3.38)

where £(n, ¢) is given by (3.21), and in the differentiation the original renormalized
constants a, b, c, m and. g together with the original counter terms &a, b, &c, *°*

are all kept fixed.

..Proof.  Under the variation. ¢ — .+ d_c'E , because of (3.12), (3.15) and (3. 16),

D(k) ~ D(k -ib[ BT ds .
S(p) = S(p) -ig [§(p)]2d$',

b - b + c(d$) (3.39)

and similar variations for the counter terms 6a, SE., etc. By definition, the loop dia-

grams for £(n, $) are all without external lines. From (3.39), one sees that under the

5'.-vc;riati‘on, to first order in d¢ , the loop diagrams all turn into diagrams wifh a siqgle

| external meson line, which carries an am'pl.ifude d¢ and a zero 4-momentum. Upon com-
parison with the original power series expansion of ¢, given in Figure 5, one can readily
verify that (3.37) and X =0 are the same condition. Si.mi|a|j|'y, one finds that to (d$)2 ,

the same variation in ¢ turns every loop diagram into a meson-propagator diagram at zero

4-momentum. Through a straightforward diagram~-counting, one can show. that

A2
2 e = -i[0@]" . 3.40)

The: inequality (3.38) follows on account of (3.32) and: (3.33). Theorem 1 is then proved.
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The evaluation of the two=loop diagrams is straightforward, though tedious. From
Figure 6, we see that, apart from diagrams involving counter terms, there are only three
two-loop prototype diagrams. Among these, the second and the third do not explicitly
depend on kF . These two diagrams have already been calculated; they are given by
Eq. (3.17) of Ref. 1. The evaluation of the first two-loop diagram in Figure 6 turns out
to be rather complicated. We may separate the result into a sum of three terms, in descen-
ding order of their explicit dependence on kF : O (k:) + 0 (kF2) + 0 (k:__)) . The com-
plete expression is quite long. Here, we give only the term proportional to ks . Fora’
single 0+ field ¢, with arbitrary constants a, b and c, we find the two-loop con-
tribution to be |

=1 .
2 2
[52400;,]4) = (&) kg'ki + O(kg) (3.41)

For the ¢ -model, after including the effect of pion fields and setting x =2, we find

471 2.4 2
Le 2_|oop]c = -(167) g ko + O(kZ) . (3.42)
The details are given in Appendix C. As will be seen there, (3.41) and (3.42) are due
to the change in the Fermion self-energy because of the exclusion principle and the pres-

ence of the Fermi sea.
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IV. Two-line Irreducible Diagrams

For theories with a sizable b¢3 coupling, e.g., the g=-model, in the abnormal
state ¢ = -(m/g) the sign of @@= d2 U (5)/d$2 may become neg;:fivé. I:See case (i)
of Figure 1. ] The series in. terms of prototype diag'rams fs then obviously inadéquote, since
its zeroth ord.er mesoﬁ propagator D(k) would have a tacby;n pol.e'. On the other hand, as
discussed in the previous section, fhe full meson propagator D'(k) always satisfies'ﬂ.\e posi-
tivity requirement: o' =-i/D'(0) is always posifivé, even though 'a =-i/D(0) may
not be. Thus, it seems sensible to expand the eneréy density function £(n) in terms of the

full meson propagator D' (k) .

A. Variational Principle

The technique of expansion in terms of the full propagator has been developed6
for quite some time for problems in statistical mechanics and many-body systems. The same
technique can be readily extended to the present problems. We may start from the Lagran-
gian density (3.11), and expand £(n) formally first in terms of the prototype diagrams, as
‘before. These diagrams are all without external lines. We then perform a partial sum over
"all two-line reducible diagrams. This leads to a formulation of £(n) .as a sum over only

two-line irreducible diagrams. In each diagram, the Feynman rule is modified: every

meson (dashed) line now carries a factor D'(k), the full renormalized meson propagator,
and every Fermion (solid) line carries a facfor. S'(p), the full renormalized Fermion' propa-
gator. By definition, there is no two-point vertex in a two-line irreducible diagram; there
are only three- and four-point vertices in these diagrams. These vertices carry the same

3

factors as the corresponding ones in the prototype diagrams; i.e., there are the bx”,
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EX4 and g (PT Y Y X vertices, as well as other three- and four-point vertices due to
the counter terms, given by (3. 13). For simplicity, in the following we shall consider

the sum b +6b as one vertex, and similarly for ¢ +8c and g +86g .

Definition 1. We first define a functional f, of D' and S' by

2

- i fQ(D', S') = sum of all 2-loop two~-line irreducible diagrams . @.1)

There are only three 2 =2 two-line irreducible diagrams, all given in Figure 6, and four
2 =3 two-line irreducible diagrams, which are given by the first four three-loop diagrams

in Figure 6.

Definition 2. Next, we define another functional

- -1 - 5

F(D,S) = U(3) + (8n°) {<2K)d3|a<|az+m§>E
-i@n™f d'p trace {In [s'@V/s,®) ] - [S' @Y/ 5@ ]+ 1}
+3i@m™ s di{in [D'09/0y0) ] - [D'0)/ Dyt ] +1}

o)
+ 3 fQ(D', S') + subtraction term @.2)
2=2 ' .

where U(¢) is given by (1.2), my is the unrenormalized mass

m = (1+62Z,)7) (m+6m) , @.3)
0 p
and SO ’ D0 , * * + are various unrenormalized propagators defined by
| . o Loael |
S =i [0 +8Z,)(-iy, p,) = m - m + e 17, @.4)

Dyk) = -i [(l+82¢)k2+ a + 8a -ie]-] , @.5)
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4 ' . - - -]
S =i [0 +SZ¢)(-iyp p,) = ™ - &m + ien] , @.6)
and _ ' 2 -1 ‘
Dyk) = =i [:(l+82¢)k + @+ 88~ e . “.7)

In (4.2), the subtraction term is a fourth order pélynom.ial in ¢ ; it differs from & U

[given by (3. ]4)] by an additive.constant:
subtraction term = & U + constant , 4.8)

where the constant is to be chosen such that when,. later on, F is used for evaluating

E(n), one has, at n=0, £(0)=0.

Theorem 2. The correct full renormalized propagators D'(k). and- S'(p) are determined by

° F(D',.§') =0 @.9)
8 D' (k)
and..
& T
F(D', S = 0O @.10)
§5'(p)

in which ¢ and n are kept fixed. Furthermore, when D' and S' assume their correct
forms, the functional F (D', S') is-equal to the. energy-density function £ (n) . [The
matrix S'(p) may be written as A + (-iyp pp) B where A and B are c. no. functions.

In (4.10), it is understood that 85' =8A + (-i Y pp) &8 . |

6
Proof.  The proof of this.theorem follows closely. that of a similar theorem - in statistical

" mechanics and many-body problems, From the definition of F, it follows that (4.9) and

@. 10) imply

e
2 f,(D, s @.11)
§D'(k) =2

[oe - [b‘o(k)]“ = 2 (2’
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and
™

=1 - =1 . 4 '
S - S = =i (2n) f(D', S') . @4.12)
[s'®) ] - [Sp®) ] w el S

Through iterations, the ;olurions D' and S' can be expressed in terms of —DO and §O ’
or Dand S [:infroduced in 3.15) and (3. 16)] . By comparing with the series expan~
sion of D' and S' in terms of prototype diagrams, one can readily establish that the

solutions of (4. 11) and (4. 12) are indeed the full renormalized propagators D' and S'.

It is useful to define
6(0,s) = -i@n™ J dprrace {In [$'6)/5®) ] - [0)/5@] + 1]

cvien r dfin [o0/50] - [00/B0] + 1)

[o0]

Z fR(D' s . (4.13)

The difference between F (D',S') and G(D',S") is

1

F-G = U@ +Br) S @)dp(p +m)
F
->i(21r)-4 j' d4p frace{ln [-§0(p)/50(p) ]}
+3 i(21r)-4 S d4|< In [5O(k)/Do(k)] + subtraction term . (4..14)

By using the identity ‘

N|—

@ 2 . - 3 -
SienT dk, In '.‘QLL_'E = K2+ p) - (K24 a), @19

- km + a = ie

one finds
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_ -1 ) -9 %
F- G = U@+ Lo )

1 .

: . - -3 - %
j - @) SR [FEH D) - o+ mg) ]

-] . _ 3 - >
+%(81r3) S d3k |:(k2 + 00)5 - (|<2 + ao) ]+ subtraction term

@.16)
where M is given by @.3), a5 = (1 +SZ¢)-] (a +6a) ,
. - S
1: my = (]+SZ¢) (m + 8&m) ,
| and | o 1 '
50 = (1+ 8.Z<P) (a+8&a) . ' . @4.17)

Because (F-G) is independent of D' and S', if one wishes, one may express the sta-
tionary conditions (4.9) and @. 10) in terms of G : (6G/8D') = (6G/8S') =0 . This
leads to the same equations (4. 11) and @. 12). We moy‘subsfitute the iterative solutions
of D" and S' back into G, and then express G ds a sum of Q;Ioop diagrams (2 2 2)
in-terms.of D and 5. By comparing with the sum I &‘2-Ioop in (3.21), we find that
the: difference between I Gﬁ-loop and G (D', S') is equal to.the sum of all "one=loop"

Yy

tices. These diagrams are included in I CQ-Icsop but not in G . [See the discussion

prototype diagrams which have only the counterterms &m, &&, 5Z and 82q> as ver-

given after (3. 21) in the previous section. ] By using the identity. (4. 15), one. finds that

this difference is also equal to that between the righthand side of (4. 16) and

&

q. cl- * A'&vqc. .[given by (3.19) and (3. 20)] . Thus,

£(n,§) = F(D',S") | @.18)

where- £(n, ¢) is given by (3.21). Theorem 2 is then proved.
From Theorem 1, one sees that F is also stationary with respect to ¢ . The phys-

ical value of ¢ corresponds to a minimum of F .



B. Approximate Solutions

The variational formulation allows a convenient basis for making approximations.
1. As a first example, we may consider fhé simplest approximation in which all fQ =0,
but keeping ¢ #0 in fhev definition of the functional F. From (4.11) and (4. 12), one
finds D'(k) = BO(k) and S'(p) = §-O(p) . Itis cleal; that ;ince in this approximation there
is no (2-line irreducible) loop diagram in F, all counter terms should be zero; i.e.,

SZq) = qu; =8a=8b=86c=6m=086g=0. Therefore

D0 = D) = i [P+ a-i]" ,

~ _ - -1
D' (k) Dyk) = D) = -i [k2+ a-ie] ,
So(p) = Sp) = i l:-iypp“- m + ien]-] ,

and S) = S,6) = 56 = i[-iyppp- m o+ ien]" . @.19)

After substituting these expressions into (4. 2) and by using (4. 15) and (4. 18), one obtains

+ A 4.20)

q.cl. vac

E(n, o) = €

where (';q. ol and Agvoc are given by (3. 19) and (3. 20) respectively. [Nofe that
the identity (3.40) is not satisfied in this approximation. :]
2. As a second example, we consider the approximation in which only the first two- -

loop diagram in Figure 6 is included; i.e., we set fQ =0 for 223 and

-if, = $(g +89)7 (2070 s dp d*q D'(p-q) trace [S'()S'@] . @.21)

Equations (4. 11) and (4. 12) become

(00 ] - [B0] " = - +50)2 2m™ s d'p trace [$'() S'p-K) ]
+i1[(62,) isa]  @4.22)
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[s@] - [5@]"' = e+s0’ en™s k00 s'6 -k -1 [(6Z,)¢ix,p ) - 57 ]

@.23)

‘where D and S are given by (3. 15) and (3. 16) respectively. In these equations, ¢ enters

into the propagators D and S through

= mtgp ond 3 = .a+ b$ +%c:$2.
We regard ¢ as an independent pbrcmétef, aﬁ-d assume .'go-q; ~ O(m).. Depending on the
value of ¢, G may be negative. |

Let us discuss the solutions of these two coupled equations in the weak-coupling

but high-density limit; i.e., we assume

‘ 2,2 ‘ 2
%T— GO and g k—F ~ Ofa) ~ O(m). 4.24)

In this limit, just by power counting, one sees that the righthand side of (4. 22) is typically

VO(‘gz sz) , while that of (4.23) is O(g2 kF) << m. Thus, the zeroth-order solution of

S'(p) is S(p), and consequently {4.22).becomes .

[ D'k) ]" = ["D(k)]"]- 92(21r)-4fd4p trace [S(p) Sp-k) ] +.i .[(sz¢) K2+ sa] ,

. 25) |

since to this order 6g =6b =86c =0, and therefore 63 =8a. The solution is

-1

D) = -i [k + &+ Moot T @.26)

where nvac is the usual vacuum-polarization correction to the renormalized mass operator

of the meson field (in the absence of the Fermion density), and .1TF is due to the Fermion

-density.
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It is not difficult to evaluate TTF . We find

Q
m (K% k) = {) (k2 - B2+ i)™ [-p, (K7, ) + o (K2, 5] de® , @.27)

—02 2 3"'] 3 _,'I _2 [T S -
B k) = @) S da o) (R Hgug K ) B kg og-e)
and @.28)

@2
p_(K%, k)

2 .3 -
g k(@8n) wq+k-q)8(ko+wq-wp)

1 3 -1 ,,=2
_{:'d'q(wqu) (2m +k0

X o(lp|-%) 4.29)

where O(x) is a step-function, whichis 1 if x>0, and 0 if x<O, -

- 2 - - ‘
w =(q + 52) and p=k -q. Both Py and p_ satisfy the positivity condition,
JE) 20 . 4.30)

Because in (4.28) and (4.29) the infegrafiqn extends only over Ia ] S kF , one finds
pi(Fz, E) # 0 only within a limited interval in E - The E-integration in (4.27) is, there--
fore, convergent. Physically, - p, isdueto the "absence" of the pair-creation process
into N— and N-}; when a lies inside the Fermi sea (N denotes the Fermion and N

the anti-Fermion), whereas p_ is due to the absorptionvproces; of converting a Fermion
from - a in the Fermi séa to —r; out of the Fermi sea (as insured by the step~function 9).
At k=0 , one has

p(0,E) = 0, @.31)

and

N

-1 3
Pk @rCE) (EP-4R%) if 20. > E>0
4.32)

0,(0, E) =
4] otherwise
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1

where w_ = (kg + 5\2)2 . By using.(4.27), one finds at kp:: 0

F

3
2 ,,3°1 2 _272.2 3
TTF(0,0)=9-'<(4v){(q +m) q dq . | @4.33)

In the high~density limit, (ﬂ;oé /TTF) is typically ~ O (mz/,kF2) «< 1.

Thus,

DR T -i[K+3 -l;"ﬂF]']. : | @.34)

If, in addition, we are interested in the region in which both ] k I and ko are << kF ,

then we have

DK T -1 [+ a+ (0, 071! | @.35)

which, . through (3.32) and for.-k = 2, leads to the same expression as (3. 36).

- C. High-Density Weak=-Coupling Exponsion'

2,2
kZ)

b2 ~QO(ac) and ¢~ 0O (92) << 1. Formally, one may expand in the form (1.15):.

We now turn to the case that (1. 14) holds; i.e., a ~ O»(mz‘) ~0O(g

E(M) = g+ & * gyt

. where 50 ~ O(k:) , {I] ~0 (92 k:) and ;".'2 ~ O,(_g4 k:__i ), etc. In this case,

neglecting higher-order corrections in 92 , one finds

S'6) = S(p) = i(-iyp, - @+ e (4.36)
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but D'(k) is given by (4.34), not D(k) . Substituting these expressions into @.2),
one sees that there is only one two-loop diagram ~ O (g2 k: ), and that is the

first two-loop diagram in Figure 6. By using (4.34), (4.36) and the result derived in
Appendix C, we find that to O (92 kg) , the sum over all loop diagrams is given by
(3.41), or (3.42). Therefore, in the case of a single ¢ field, to O (92 kﬁ) the

energy-density function is given by (1.17). In the case of the ¢ ~-model, because of

pion-exchanges, we have, instead of (1.17),

1 -1 ' .
252 ey & kp . @.37)

22

2, .2 3~ 3 -2
§ = 4X(67-0y) + @) Sdp(p +g

In either case, we derive the same expression for the dependence of mesz =(m + gZpZ)2 ,
or (g &')2 , on the Fermion density as that given by the quasi-classical solution.
The evaluation of the next order O (94 kg) term is straightforward but compli-

cated. The details will be given in a separate publication.
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V. Remarks

From the aboye discussion, it is clear that, at least when the expansion (1. 15) is
valid, the general character of the quasi-classical solution remains correct with the in-
clusion of quar'ﬂurr'\‘correcfions. For physical appl i'cafionls to the abnormal nuclear states,
the parameter (4'rr)-] 92 is, in general, not a small one. Neveereless, as already re-
marked in the Introduction, since the shift of ¢, from its normal value O to the abnor-
mal value - (m/g), issmallest in the srrong-;coupling Iimitlz, so also may be the differ-

.ence between the quantum correction in the abnormal state and that in the vacuum state.
On the other hand, the lack of information concéming the vacuum state itself makes it
difficult to perform calculations in the strong-coupling limit.

There is a certain analogy between the abnom§| state and the Bose-Einstein con-
densation, Mathemafféally,’ the Bose=Einstein transition can be rigorously treated only
for ideal Bosons and for Bosons with either weall< interactions or small scattering lengths.
For physical applications, He4 is known fo'have strong interactions; yet, it does undergo
Bose=Einstein condensation and exhibits superfluidity. Through the B. C.S. pair-correla-
tion, the electrons iﬁ metals exhibit similar phase transitions that give rise to supercon-
ductivity. Recently, it has been observed that even "He3 einbifs superfluidity. Like-
wise, it seems reasonable to expect that the transition to the abnormal state is a fairly

general phenomenon, not restricted to the validity of the particular expansion (1. 15).

One of us (T. D. L.) wishes to thank G. C. Wick and A. Kerman for discussions.
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Appendix A

In this appendix, we examine the temperature effect on the system at low temper-
ature. Let

@ = Boltzmann constant X absolute temperature . (A. 1)

. 1
We assume the temperature to be sufficiently low, 0 << kF and a®, so that the Fermions
remain degenerate and there are no free mesons. In the quasi-classical treatment, in which

¢ is assumed to be constant, the Helmholtz free energy F is given by

Q0
O'F = nkThhz + U@ - 72x0 S kZdkIn [1+ze‘“/°] (A.2)
0

where U(¢) and k are given by (1.2) and (1.9) respectively,
2 243
w = [k + (m+g¢) ] (A.3)

and z is the fugacity, related to the Gibbs thermodynamic potential p per Fermion by

z = exp (p/8) . (A.4)

The average number of Fermions with wave number k (and at a given spin and, say, iso-

spin state) is

- -1 |
n = [z ]exp(u/9)+l:] , - (A.5)

and the Fermion density is

n = n-znszdkn (A.6)

k

The physical value of ¢ is determined by the minimum of Q_]F , keeping n and 6 fixed.
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At low temperature, by using (A.2)=(A.6), we:find

k
- - F
Q ]F = U(p) + 1r.2‘|< J q2w'dq -‘l'KOZ ke w “+‘-O(04)‘~ (A7)
0 6 FF
where 2 1
kF ‘2 (B nfk) (A.8)
dnd
9 9 1 . , L
‘ vp = 4[kF + (m+g¢) :] . - (A.9)

For the o~model interacting with a nucleon field, (A:.7) becomes

2 F. 2
+— S q7wdq - 30
.m0

=1

2
_ A 2 2 2
QF—T(OO"O)

kewe+ OY (A 10)

where

0w = [q2+ (90)215 and wg = [k':2+(go)2]% .

Let us consider the special case that at zero temperature the abnormal state (i.e., o =0)

is stable; according to -(2. 19), one ho;
92 | 3r (Mo
The density of the abnormal state at zero temperature is given by (2. 20):
vy = (2rvE)? n /) (A.12)
N = ™ ) (mN 5/ 9. . .

From (A. 10), one sees that for @ << kF , and at density n > " Ab / the minimum

of F remains givenby o =0; i.e., for the abnormal phase
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22 4 |
glp = =N B ] 0’1+ o) . (A.13)
892 m 3

The corresponding thermodynamic pressure p is [affer neglecting O (04) ]
23
1(3n .3
Z("é" (n -nAb) +_( : (A1)

When n < n as the density decreases, because of evaporation the system no

Ab’
longer stays in a single abnormal phase. In the two-phase region, we may define the

"|iquid phase" to be the abnormal state (0 =0), while the "gas phase” is the normal

‘state (o =0, ); in the gas phase the nucleons form a nondegenerate gas. Because of the

0
low density, the gas phase can be approximately described by the perfect gas law. By

equating the fugacities in these two phases, one finds that in the two-phase region p is

given approximately by

p = 4o< > e~ (v/0) (A. 15)

where u is the binding energy per nucieon in the abnormal state; i.e., according to (2. 18),

2 2.3 .
3o m
v = mN - kF = mN 1= <———-2-——o-é—> o (A. ]6)

m

49" my

Let A and ) be, respectively, the specific volumes in the gas:and liquid phdses in the

two-phase region. From the perfect gas law, vg is related to the pressure p by

v = p 6 , (A.17)
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and from (A. 14), ) is related to the same. p by

2 s 2 -
~ ™ 0 O p
v, T v, [1+7<k>- - & jl (a.18)
o/ ko T

where Yo and ko are the specific volume and the Fen:'n'i; momentum in the abnormal state

at zero temperature; i.e.,

i -3
v = “;:b] = (20VT) (mgm /o) (AI9)
and : B S S . ‘
kg = (3n°n, /2) . (A. 20)

See Figure 4 (case i) for a plot of the two-phdse region.
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Appendix B

We discuss here a simplified "hard sphere” model. Let us consider a nuclear

medium of density n, and define r by
o= 22, . (B.1)

For free nucleons, the top Fermi momentum is related to r by the usual expression (for
K= 2)

ke = $(9m)° /r . | (8.2)

Because of the short-range repulsive force between nucleons, the average de Broglie wave-
length of each nucleon would be shorter than that in fhé free case; consequently, the nu-
clear momentum should be.corres;)ondingly increased. Nevertheless, phenomenologically
we may still regard the nucleons to form a degenerate Fermi sea, but with its top Fermi

momentum raised from' kF to 13

Ke = %(91r)%/(r-0.8d) | (B.3)

where d is a phenomenological parameter. The average kinetic energy per nucleon is

then given by K

F 22 232
jo k(K +m ) dk

U
N
Kr

or,

oy = %KF{(szf A+3x) = 1t tn [x + (2+1) ] } (B.4)

where x = meff/KF and m e 1S given by (1.7). The combination 0.8d .in (B.3) is
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chosen such that for a system of hard spheres, in the dilute (therefore also non-relativistic)

]
limit, (B.4) gives the exact energy expression to O (nﬁd) ’ provided]3

d = diameter of the hard sphere . (Bi 5)

In addition to ENE there is also the potential ene'rgy U(9) of the spin 0 field. In the

quasi-classical approximation, the total eﬁergy. E=QE of the system is given by

-1

AlE =z oo vnlue (B.6)

where A is the total nucleon number.

1. Abnormal state

In (B.6), except through the average ¢ field, all other effgcfs due to the usual
short-range attractive force between nucleons are not included. Such an-approximation
may not be too unreasonable (though definitely crude) for the abnormal state, since the
basic energy scale there is rather large ~ O (mN) . In the abnormal state, we may set

¢ -(m/g); 'therefore m ¢S 0 and

-1

ATE 3K+ 0 Uy ' - ®7)

F
where

Uy = U at ¢ = -(m/g) . (8.8)

By varying the volume Q at a fixed A, we find that the minimum E occurs at

b
r(r-.8d) = } ziu() (%) , (B.9)

and its value is
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"] ‘~ -]
ATVE . = KF[1+-5‘—(r-.8d) d] - (B. 10)

-1 ‘
In the ¢ -model, U, = (892) mf m2 . As an illustration, in Figure 8 the

0 N

binding energy per nucleon
u = m, - A E . (B 11)

is plotted versus d for m_= 700 MeV and (41r)-] 92 =5 and 10. We may take, as

~

. o
a further example, d = 2/mu = .5fm where m s the mass of the w ~meson; for

m_ =700 MeV and (417)-] 92= 5, we find r= .86 fm, n-] U0

32 KF 2490 MeV and therefore the binding energy u = 150 MeV per nucleon.

= 300 MeV ,

2. Normal state

If the o -model is to be regarded as an approximation to reality, then the normal
nuclgar state should appear as a minimum, either local or absolute, of the (volume) energy
E .  Thus, it is of interest to search for the éondiﬁon that E has two minima: one for the
normal state (o = oo) and the other for the abnormal state (¢ = 0) . On the other hand,
in the normal state, \fhe usual short-range attractive force between nucleons should be im=
portant. Thus, (B.6) is not expected to be a reasonable approximation ]4. Nevertheless,
purely as a mathematical model, one may ask under what condition does E, given by (B.6),
have two minima? By using (2. 11) and (2. 14), one sees that in the o -model, (B.6) may be

written as (after requiring T = 0)

-1, ~ 2 -V 2 2 2 2
A E = uN+(8g n) m_my (y - 1) (B. 12)

where y=o/ao, N is given by (B.4) with x = | ymN/KF | . Set m =940 MeV ;
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A-] E depends only on two parameters: (ma/g)'2 and d. By varying A-] E with

respect to o and r, we may search for its minima. In Figure 9, we map out the region
in which A-] E has two minima, and both minima have a positive binding energy. The
region turns out to be extremely narrow, because of the requirement that there also be a

"bound"” normal state in this simple model,
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Appendix C

In Figure 6, we see that there are only three two-loop diagrams, apart from
other related diagrams which involve counter terms. Among these three diagrams, the
second and the third diagrams have been evaluated in Ref. 1. [See Eq. (3..17) of Ref. l.]
In this Appendix, we discuss only the first two-loop diagram, hereafter referred to as ? ,

in Figure 6.

1. Prototype Diagram (a single 0+ Boson field)
Let us first consider the case that 5, is a prototype diagram and there is only a
single 0+ Boson field besides the Fermions. Its contribution to the energy density is

(also denoted by g , for simplicity)
. 2 -8 4 4 = - -
g = 3ig"(2n) " trace f d'pd.qD(p-q) S(p) S(q) (C.1)

where D is given by (3.15) and S by (3.16). The Po™ and qo-integrofions can be
carried out by converting their contours from the real axes to those around the cuts in
their respective upper-half planes. In either the P~ ©F qo-complex plane, immec‘!-
iately above the real axis there are two such cuts: one is from | @ | .to (kg + f7_12 )7

due to the positive-energy Fermi sea, and the other is from - to -. ] m | due to the

negative-energy Dirac sea, where m is given by (3.12). Thus, (C.1) can be written as

? = §++ + 5+_ + ?__ (C.2)
where ;_H_ (or g,__) is due entirely to the positive (or negative) energy-cuts in both

the Po~ and qo-planes, while ;+ is due to the positive energy-cut in one plane and

the negative energy-cut in the other. It is easy to see that at high density,



2 | -
8.~ O k), g, ~0(g’ k m’) and §..~O(e’m'). Thusto
O(g2 k:), only ,g_H_ is of importance; i.e., 5, is dominated by -
2 .. 6 . 3 3 2 2a"Via2 2% L2 L2
gr = 1OR@OT L Spda[p-a)’ 48] (IR @R

X [$p-a) + 2m°] (.3)

in which both p and q lie inside the Fermi. sea.  The dominant contribution in (C;3)
is due to ;2~ O(kg) ’ 32 ~ O(sz) and (p-q)2 ~ O(kg) . Thus, we have
~ : 47V 2 4 2,2 2
4= 4., = (1) kg ko + O (g ke m ln»(.kF/m):] . (C.4)
The physical origin of the above O.(g2 kg) term can be understood by first calculating:

the self-energy change AEp for a Fermion of momentum p in the presence of a Fermi

sea (because of the exclusion principle). One-can readily. verify that for kF >> m and
-3
a 14

N]=s

-1 . -
AE) = (1672) ¢ sz(p2+ 72)

which leads to an energy-density change of an amount

-1 2.4

-1 -
(81r3) 2c f d3p(% AEP') = (64174) Kg ki: (C.5)
F

To derive the lower order-expression. in: kg , the integral (C.3) should be eval-

vated exactly. We find

4y, = (4m)"4 2wt [(sinh;,-u)z F (=N ] (C.6)
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where
' w/2
f = 32] do sinh © {()\coshg) In [x (cosh 20 + A= 1) ]
0
~ 20 (A=1) sinh @ + 2\(A=2) (csc Asinh ©) tan~ (I'anhO tan 2—)}
(C.7)
w=2sinh-](kF/ﬁ) , )\=%a/r'ﬁ'2 and cos A=A=- 1. In the high-density limit,

-424

w>> 1; thus, f~ 2:w2 e and consequently 5’-{—!- ~ (41r)_4|<gzﬁ4 smh w~4 (4 ) F ,

which agrees with (C.4). We have also evaluated the other two terms 5’+- and ?__ in
(C.2). The calculation is tedious though straightforward. The final expression is quite

long; it will be given in a separate publication.

2. Prototype diagram (o -model) |

o -field. Instead of (C.4), we find (after setting x =2 and summing over both ¢ -exchange

|
|
i
| o
Next, we consider the o -model in which there is the T field, besides the 0+
\
and m-exchange)

2 4

-1
;2?++=-(161r4)ng 222

+ 0 [g°k In (k /m)] . (C.8)

Since, in Figure 6, according to Eq. (3. 17) of Ref. 1, except for 5 the other two dia-

grams are both ~ O (02); from (C.4) and (C.8) we derive (3.41) and (3.42).

3. Two=line irreducible diagram
Lastly, we assume the diagram 5 to be a two-line irreducible diagram. According

to the rules given in Section IV, instead of (C. 1) we have

4 - yigZ(2m P tace S dp dta D' (p-q) S'(R) S (@) . (C.9)
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“ By using (4.27), (4.34) and (4.36), we find that (C.4) remains valid if there is only a
single 0+ meson field, and that (C.8) remains valid if there is, in addition, also the

w-field. Thus, (1.17) and (4.37) are both established.
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then (B.6) does glve a surprlsmgly good fit fo-many of the properties of the existing

nuclei. For details, see the Appendix of Ref. 2, and also R. Serber (to be published). '
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CAPTIONS

Examples of (i) a discontinuous transition and (ii) a continuous transition

~

between the normal state ( m e free Fermion mass m ) and the abnormal

state ( m_ ¢ 20). The necessary conditions for a discontinous transition
(i.e., case i) are b2 > 2ac and b of the same sign as g; both conditions

are satisfied in the o -model. In case ii, the function U(¢) can have

either two minima (solid curve), or only one minimum (dashed curve).

Schematic drawings of d Ucp/dq" and - (2 UF/a¢) versus ¢ for the
n

cases (i)-(iv) discussed in Section IT A .

. . ~1
The solid curve denotes n = 2n0 where ny = [% 47 (1.2 fm )_—_] and

n_is the critical density in the o -model. Over a fairly wide range of

m_ and g, n_=11.6 (ma/mN)2 (41:/92) g -

p-v diagrarﬁ in the ¢ -modél. 0 = Boltzmann constant times the absolute
temperature, p = pressure, v = specific volume ar.md Yo s given by (A. 19).
Case (i) is for @ﬂ)-] 92 > (]6)-] 3'tr(mc/mN)2 : at 8 =0, the transition
occursat p=0. The graph is plotted for a choice of parameters such that
the binding energy u = 100 MeV per Fermion in the abnormal state (i.e.,
liquid phase). Case (ii) is for (4~ g2 < (16) " 3n(m_/m 2. at 0=0

the transition occursat p> 0.

Graphical representation of the usual perturbation-series expansion of

and £(n) .
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.Figure 7.

F.igure 8.

ngure 9.

56.

€ 2-loop in terms of prototype diagrams for £ =2 and 3. The symmetry
number of each diagram is listed under the diagram. In the case of £ =2,
there are only three prototype diagrams (except for diagrams involving

counter terms which are represented by « - - ) .

. - ' 7 =1
U(ao), Aavac and Aﬁ:,qc in units of (892) mo'2 mij versus (6'/00) .

. 2 : ‘
In this unit, U(7) = [l - (7 % )2] , shown by the solid curve. The
dotted curve denotes Aeva; [Eq; (3.31)] , and the dashed curve denotes
Aévac [Eq. (3.35)] ; the latter is plotted for n =6no , where

-1 3

ng = §4m(1.2fm)

Binding energy per nucleon u versus diameter d of the'hurd-spherei

repulsion for m = 700 MeV and (41r)-] 92 =5 and 10 . Notice that,

because of (B.9)-(B.11), u depends only on two unknown parameters:

d and the ratio (mo /g_.;)2 .

The region in which A-] E, given' by (B. 12) in the simplified "hard sphere"

model, has two minima, and both minima have a positive binding energy.
One of the minima corresponds to the normal state (o = oo) and the

other to the abnormal state (o =0) .
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