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Abstract—This paper presents a fast computation method 

to simulate the interaction between a bounded acoustic beam 

and a 2-layered anisotropic structure with a finite defect on 

the internal interface. The method uses the classical Fourier 

decomposition of the fields into plane waves, and the Kirch-

hoff approximation is introduced to calculate the diffusion by 

the defect. The validity of the approximation is estimated by 

comparison with the Keller Geometrical Theory of Diffraction 

and with results obtained by boundary element methods. The 

quickness of the method allows testing several geometrical con-

figurations (varying incident angle, thickness of the layers or 

the physical nature of the defect). These studies may be used 

to foresee what experimental configurations would be adequate 

to have a chance to detect the defect.

I. I: T P

V physical and geometrical parameters can 
influence the ability to detect a defect in immersed 

anisotropic structures, using ultrasonic nondestructive 
testing (NDT). Numerical simulations now play an impor-
tant role [1], [2] and are widely used to conceive methods 
and demonstrate their performance. This paper aims to 
develop a rapid simulation method capable of perform-
ing parametric studies to determine the “good” testing 
configuration (frequency, incident angle), when complex 
structures (such as composite structures including a de-
lamination defect or a weak bonding) are involved. The 
final aim is to integrate this simulation method in an in-
dustrial platform [1]. In this paper, the testing setup is 
assumed to be constituted both of a fixed oblique emit-
ting transducer that can generate guided waves (such as 
Lamb waves) in the structure and of a receiver that can 
be moved parallel to the structure to measure the pressure 

amplitudes of the re-emitted field in the external fluid; the 
cases of a notable discrepancy between the field re-emitted 
by a healthy structure and that by a structure including a 
defect, are particularly of interest. Therefore, a parametri-
cal study is carried out to examine the influence of the 
incident angle, the azimuthal orientation of the incident 
acoustic beam, the frequency, the location, and nature of 
the defect. Thus, the aim of the paper is, first, to present a 
fast simulation method using the Kirchhoff approximation 
to study the interaction of an acoustic bounded beam with 
an anisotropic composite structure including a finite-sized 
delamination defect, under high-frequency approximation, 
no far-field approximation being made. The second aim of 
the paper is then to show how this simulation technique is 
suitable to work out the circumstances that are favorable 
to a good detection of a defect.

The modeling of the propagation in anisotropic multi-
layered plane structures is now available and well known 
[3]–[6], even if many problems still exist when studying the 
propagation in healthy structures, for example, complex 
shapes and resin transfer molding (RTM). Taking into ac-
count an infinite-sized defect between 2 layers (bonding 
condition between 2 parallel interfaces) is also not a major 
problem [7]; the quality of the bonding can be then ap-
preciated through the study of the reflection and trans-
mission coefficients as a function of stiffness coefficients. 
The structures involved in the literature for this kind of 
modeling are either isotropic or anisotropic multilayered 
structures.

On the other hand, the modeling of a finite-sized defect 
is more complex (a useful review of the different methods 
used for detecting defects, notably in composite media, 
can be found in [2]) and often needs the use of the bound-
ary element method (BEM). It needs at least approxima-
tions, such as the Kirchhoff approximation used by Spies 
[8] to model, in the far field, the interaction of elastic 
plane waves with an infinite anisotropic medium in which 
the defect consists of traction-free spheres embedded in 
the medium; the 3-D scattering is studied using, like many 
authors, Green’s triadic function. The method has been 
validated for high frequencies and weak incident angles. 
In the same situation, for various defects, Huang et al. 
[9] and Schmerr [10] use the Kirchhoff approximation for 
plane waves and in the far field, thus validating Kirch-

Interaction of a Monochromatic Ultrasonic 
Beam with a Finite Length Defect at the 

Interface Between Two Anisotropic Layers: 
Kirchhoff Approximation and Fourier 

Representation
Bruno Vacossin, Catherine Potel, Philippe Gatignol, and Jean-François de Belleval, Member, IEEE

Manuscript received August 3, 2008; accepted June 26, 2009. 
B. Vacossin, P. Gatignol, and J.-F. de Belleval are with Université 

de Technologie de Compiègne—Laboratoire Roberval, UMR CNRS 
6253,Compiègne, France.

B. Vacossin is also with Université de Picardie Jules Verne, IUT de 
l’Aisne-Qualité, Logistique Industrielle et Organisation, Soissons-Cuffies, 
France.

C. Potel is with Université du Maine—Laboratoire d’Acoustique de 
l’Université du Maine (LAUM, UMR CNRS 6613), Le Mans, France (e-
mail: catherine.potel@univ-lemans.fr).

C. Potel is also with Fédération Acoustique du Nord-Ouest (FANO, 
FR CNRS 3110), France.

Digital Object Identifier 10.1109/TUFFC.2009.1307



hoff approximation for this application. The comparison 
of the Kirchhoff approximation with the BEM has been 
performed by Foote and Francis [11] in the far field, in 
the case of acoustic back-scattering from fish. The defect 
(the fish swimbladder) is modeled by a void, the surface 
of which is represented by a mesh derived from measure-
ments of microtomed sections, and the 2 models are inde-
pendently validated. Notably, the accuracy of the results 
from the Kirchhoff approximation for high frequencies is 
preserved, in comparison with the BEM.

Another method, the ray method, can also be used (the 
pencil method [12] uses the calculation of energy in ray 
tubes): it is a high-frequency approximation of Fourier in-
tegrals. Croce et al. [13] use a method that seems close to 
the method described in the present paper, in the meaning 
that the ray technique disregards (as in the Kirchhoff ap-
proximation) a part of the scattering effects on the edges 
of a defect; however, this Croce’s method is limited by the 
multiple reflections when there are too many interfaces. 
Another numerical method, the distributed point source 
method (DPSM), has been taken up (with 267 sources 
and matrices to invert) and compared with experimental 
results for multilayered structures by Banerjee and Kundu 
[14]. More precisely, inclusion or cavity-type defects in a 
single anisotropic layer have been detected using Lamb 
waves generated by an ultrasonic beam. The detection of 
microcrack initiation and evolution in a fatigue sample 
is also successfully experimentally performed using Lamb 
waves by Rokhlin et al. [15]. The authors also describe the 
propagation of acoustic waves in anisotropic multilayered 
structures. The case of the propagation of Lamb waves in 
viscoelastic materials is described by Hosten et al. [16]: 
results obtained via a finite element method (FEM) and 
a semi-analytic method are compared: the results are in 
good agreement, notably for the detection of a notch in a 
single layer.

All these papers bring significant contributions to the 
problem, but, to the authors’ knowledge, none of them 
implements the Kirchhoff approximation in the area of 
multilayered anisotropic structures including finite-sized 
interface defects, for bounded beams, with no far-field hy-
pothesis. 

Thus, the aim of this paper is to study, using the Kirch-
hoff approximation, the interaction of a monochromatic 

ultrasonic bounded beam with a 2-layer anisotropic struc-
ture including a finite length defect and immersed in a 
fluid, and to obtain the reflected and transmitted fields 
(Fig. 1). The nomenclature used in this paper is defined 
in Table I. Fluid media 0 and 3 above and below the 
structure are semi-infinite (these fluid media are identical 
but have different numbers for convenience). The interface 
plane is denoted (Ox1x2), the x3-axis being perpendicular 
to the interfaces (denoted I, II, and III) and the acoustic 
axis of the emitting transducer (diameter 2a, frequency f 
= ω/(2π)) makes an angle θ with the x3-axis. The struc-
ture is made up of 2 anisotropic layers 1 and 2 (thicknesses 
denoted h1 and h2) perfectly bonded all along their com-
mon interface II, except on a 2L-length delamination-type 
defect. The geometry of the problem is a 2-D one, but the 
3-D effects caused by the anisotropy are taken into ac-
count (in particular, the particle displacement and stress 
vectors may have 3 components).

II. T M  S, U   
K A

We propose here to solve the problem of the interaction 
between an incident acoustic beam and a bilayered solid 
structure with a finite defect by the Kirchhoff approxima-
tion. In the scope of this study, the Kirchhoff approxima-
tion needs to assume that the internal interface between 
the 2 layers is homogeneous outside the defect and that 
the defect is a finite part of this interface with another 
homogeneous behavior. By a homogeneous behavior, we 
mean that the physical conditions to be satisfied on both 
sides of a surface between 2 media (the healthy interface 
or the finite defect) do not depend on the coordinate(s) 
along it. In practice, it will be assumed that the internal 
interface fulfills a perfect adhesion between the 2 solids, 
whereas the finite defect yields a delamination or a partial 
bonding with constant characteristics of the glue.
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Fig. 1. Geometry of the problem.

TABLE I. N  S  S. 

Notation Meaning

Superscripts
 (e) Exact solution
 (i) Infinite defect on interface II
 (h) Healthy interface II
 (k) Kirchhoff approximation
 (s) Scattered field under the Kirchhoff approximation
 α Medium, α = 0,1,2,3
Subscripts
 a Waves propagating toward x3 > 0
 b Waves propagating toward x3 < 0
 i Component on x1-axis
 inc Incident field (in fluid medium 0)
 ref Reflected field (in fluid medium 0)
 tr Transmitted field (in fluid medium 3)

For example: u b
s1( ) = scattered field propagating toward x3 < 0 in 

medium 1; u a
h

3
1( ) = component on x3 axis of the field u a

h1( ), i.e., the field 
propagating toward x3 > 0 in medium 1 for a structure with a healthy 
surface II.



The principle and the validity of the Kirchhoff approxi-
mation are first presented in Section II-A, independently 
of the method employed to calculate the different acous-
tic fields. Then some reminders are given in Section II-B 
on practical tools (decomposition of a beam into plane 
waves which leads to Fourier integrals, propagation of 
plane waves in anisotropic media, boundary conditions for 
plane waves). Finally, these tools are used in Section II-C 
to implement the Kirchhoff approximation using Fourier 
integrals.

A. Principle and Validity of the Kirchhoff Approximation

1) The Principle of the Method: The Kirchhoff approxi-
mation, superscript (k), may be explained on the basis of 
a “re-emission principle” for the (unknown) exact solution 
of the problem, superscript (e).

a) The passive re-emission principle: Let us denote by 
uα the displacement field in the medium α (α = 0,1,2,3), 
see Fig. 1. If the exact solution uα(e) of the problem of the 
interaction with the bilayered structure (including its fi-
nite defect) were known, this exact solution could be split 
into different terms in each medium. As an example, in 

the external fluid 0, we distinguish the incident field u inc
0  

produced by the emitter and the global reflected field u ref
0( ).e  

In the fluid 3, only one transmitted field u tr
3( )e

 exists. In 
each solid layer of the structure, the total field may be 
separated into 2 parts: one propagating toward the in-
creasing coordinate x3 (the “a” subscript) and the other 

propagating toward the decreasing x3 (the “b” index): u a
ea( ) 

and u b
ea( ), α = 1,2.

Now, let us assume that the values of the field u b
e1( ) all 

along the interface II are known, i.e., for x3 = h1 and for 
any value of the coordinate x1. We may consider the half-
space x3 ≤ h1 as made up by the medium of the solid 1, 
and then calculate in this infinite region the solution of 
the propagation equations that takes these known values 

of u b
e1( ) on the plane x3 = h1 and that satisfies the radiation 

condition toward the negative values of x3. Because this 

solution is unique, it coincides with the field u b
e x x1

1 3
( )( , ) in 

the whole layer 1.

Once this field u b
e1( ) has been determined in the layer 1, 

it may be considered as an “incident” field on the upper 

interface I, together with the true incident field u inc
0 . One 

then obtains a “reflected” field in the solid 1, which coin-

cides with the field u a
e x x1

1 3
( )( , ), and a “transmitted” field 

in the fluid 0, that is nothing but the true reflected field 

u ref
0( ).e

The same argument may be followed, assuming that 

the exact values of the field u a
e2( ) on the interface II are 

known, then calculating the field u a
e x x2

1 3
( )( , ) in the whole 

layer 2 and again the interaction of this field with the 

third interface III, thus getting the fields u b
e2( ) and u tr

3( )
.

e

Actually, the exact values of the fields u b
e1( ) and u a

e2( ) are 
not known on the (only piecewise homogeneous) inter-

face II. But if some approximate values u (app)( , )x x h1 3 1=  
may be obtained for these fields on this interface, then, 
following the procedure just described above, one may ex-

pect to determine approximate values u (app)( , )x x1 3  of the 
various fields and especially of the approximate value 

u ref
(app) of the exact reflected field.

b) The Kirchhoff approximation: The Kirchhoff approxi-
mation follows the process just described at the end of 
Section II-A-1-a and summed up in Fig. 2. The calculus 
of the approximate values of the fields on the interface II 
needs to solve 2 preliminary problems (the solution of 
which are given in Section II-C-1). As it has been said at 
the beginning of Section II, these problems will be intro-
duced under the hypotheses of homogeneous behaviors of 
the interface II, on its healthy part on the one hand, and 
on its defective finite part on the other hand.

The first preliminary problem concerns the interaction 

between the incident field u inc
0  and the bi-layered struc-

ture with its internal interface II supposed to be healthy 
(without any defect, see part 1 of Fig. 2). The solution of 
this problem is available for any incident plane wave, 
hence for any incident field that may be expressed by a 
summation of plane waves. The solution of this first pre-
liminary problem will be denoted u(h).

The second preliminary problem is identical to the pre-
vious one, but with the homogeneous boundary conditions 
of the healthy interface replaced here by the homogeneous 
conditions of the defect, all along the interface; see part 2 
of Fig. 2. Thus, we may speak of an “infinite defect” and 
the solution of this problem will be denoted u(i).

The Kirchhoff approximation u ( )k  of the exact solution 

u
( )e  consists in choosing the approximate values for the 

fields on the interface II in the following way (Fig. 2): the 

field u b
k1( ) will be taken equal to the solution u b

i1( ) on the 

defect and to the solution u b
h1( ) outside for the reflection 
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Fig. 2. Principle of the Kirchhoff approximation: passive re-emission 
principle.



problem (see part 3-a of Fig. 2). Similarly, the field u a
k2( ) 

will be taken equal to the solution u a
i2( ) on the defect and 

to u a
h2( ) outside for the transmission problem (see part 3-b 

of Fig. 2). Then, the calculus of the fields re-emitted in the 
relevant half-spaces (following the procedure described in 
Section II-A-1-a) is performed. This re-emission is then 
followed by the interaction with the external interfaces I 
and III, and, therefore, the approximate solution u(k) of 
the exact field u(e) is obtained.

2) Discussion of the Validity Domain of the Kirchhoff 
Approximation: The validity of the Kirchhoff approxima-
tion may be appreciated by some physical considerations. 
Strictly speaking, the incident waves on each edge of the 
defect produce some diffraction effects that modify the 
field u(h) on the healthy side of the interface and the field 
u(i) on the defect side. Thus, the Kirchhoff approxima-
tion consists of ignoring these diffraction effects. It should 
be noted that neglecting these diffraction effects of the 
incident waves is clearly reasonable if the wavelength is 
small compared with the length 2L of the defect and if the 
incident direction is not too far from the normal direction 
to the plane of the defect.

a) Comparison with the Theory of Diffraction: A com-
parison between the Kirchhoff approximation and the Geo-
metrical Theory of Diffraction (GTD) of Keller [17], [18], 
which is also a high-frequency method, may be carried 
out: because the GTD method takes into account the dif-
fraction of the incident waves on each edge of the defect, 
it is interesting to be able to estimate the errors produced 
by the Kirchhoff approximation when neglecting these dif-
fraction effects. With this in mind, we consider an infinite 
fluid medium (Fig. 3) with a finite straight line of length 
2L (the defect) on which the acoustic pressure is assumed 
to be equal to zero. Fig. 4 shows the profiles of acoustic 
pressure modulus calculated both by the GTD method 
(the solid line) and by the Kirchhoff approximation (the 
dotted line), for an incident monochromatic plane wave 

(angular frequency denoted ω) propagating in a fluid me-
dium (speed of sound denoted V0).

We recall that, in the GTD approach, the field is ob-
tained by considering 3 rays: the specular reflected ray on 
the defect surface and the 2 rays resulting from the dif-
fraction by the 2 edges of the defect (Fig. 3). The expres-
sions for these diffraction fields may be found in [18]. For 
example, the diffraction pressure field (divided by the in-
cident pressure) p Ms j ( ) coming from the edge j (j = 1,2) 

at point M (Fig. 3), can be written in the following form 
[omitting the term exp(iωt)] [18].

On the other hand, the Kirchhoff approximation leads 
to the prediction of diffraction phenomena that appear 
in the solutions of the re-emission problems in solids 1 
and 2, due to the discontinuity of the given (approximate) 
boundary values on the plane II.
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where θ, ψj, and O X Né
ëê

ù
ûú are, respectively, the incident 

angle, the angle between the (Ox1)-axis and A Mj

 
, and a 

term of the Nth-order in X, and where k0, K0, r j, and ε 
are given, respectively, by k0 = ω/V0, K0 = k0L, r rj j L= / , 
ε = 1 for j = 1 and ε = −1 for j = 2.

It can be seen from (1) that the GTD solution p Ms j ( ) 
is not defined when θ = ψj + π/2  (the solution is singular 
on the 2 lines corresponding to the reflected rays at the 
edges of the defect), which leads to nonvalidity zones for 
the GTD (Figs. 3 and 4).
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Fig. 3. Interaction of a plane wave (incident angle θ) with a plane defect 
(length 2L). GTD = Geometrical Theory of Diffraction. Fig. 4. Field diffracted by a zero pressure defect (length 2L) in an infi-

nite medium as a function of x1/L (see Fig. 3 for the geometry and the 
notations). θ = 20°, k0L = 60, ζ/L = 6. Solid line: Geometrical Theory 
of Diffraction (GTD); dotted line: the Kirchhoff approximation; hatched 
regions: nonvalidity zones for GTD.



When the plane defect consists of a slit with zero pres-
sure, the geometrical reflected field can be easily calcu-
lated on the reflected rays on the slit. This field (divided 
by the incident pressure) at point M(x1,x3) is given by

 p M ik x ik xref ( ) = - - +( )exp sin cos .0 1 0 3q q  (2)

The total pressure is the summation of the geometrical 
reflected field p Mref ( ) and of the field which is scattered 

by each edge 1 and 2, i.e., p Ms 1 ( ) and p Ms 2 ( ) (Fig. 3):

    p M p M p M p Ms sGTD ref( ) = ( )+ ( )+ ( )1 2
.  (3)

For example, for an incident angle θ equal to 20° and an 
adimensional frequency K0 = k0L = 60 (Fig. 4), the com-
parison between the 2 methods is fairly good in the main 
part of the reflected field, but also for the diffraction pat-
terns on the left and right parts of the pressure profiles.

This simple case, without any mode conversion, permits 
to evaluate the error made on the solution, which results 
from the fact that a part of the diffraction effects are omit-
ted; these diffraction effects are taken into account by the 
GTD but are not when using Kirchhoff’s approximation. 
Similar cases can be found in the literature for defects 
in isotropic or anisotropic solids (see [19] and references 
contained therein).

b) Comparison with results from a boundary finite ele-
ment method: The validity of the Kirchhoff approximation 
may be evaluated by comparison with results obtained 
through a boundary finite element method. In [20] and 
[21], a Fourier transform/boundary element hybrid meth-
od has been introduced for the simplified case where the 2 
layers are made of the same isotropic material. The com-
parison shows that for all the geometrical configurations, 
the results fit each other in the main part of the reflected 
field, whereas some discrepancy may appear in the side 
parts where diffraction effects dominate. As expected, this 
discrepancy diminishes when the length of the defect is 
increased or at higher frequencies.

B. The Method of Plane Wave Decomposition

Before using the Kirchhoff approximation, some prac-
tical tools have to be described to obtain the different 
acoustic fields corresponding to the 2 preliminary prob-
lems mentioned in Section II-A-1-b.

 1.  The incident-bounded beam has to be decomposed 
into monochromatic plane waves (via Fourier trans-
forms) and the displacement and stress fields have 
to be expressed in a coordinate system linked to the 
layered structure (see Section II-B-1-a). Because the 
method chosen here to calculate Fourier transforms 
is the fast Fourier transform algorithm, Section II-B-
1 ends with some considerations about the use of 
this algorithm (see Section II-B-1-b).

 2.  The displacement fields in an anisotropic bilayered 
structure immersed in a fluid have to be obtained, 
and this involves writing a) the displacement and 
stress fields in an anisotropic medium with appropri-
ate radiation conditions (see Section II-B-2) and b) 
the boundary conditions (including bonding condi-
tions) at the interface separating 2 anisotropic media 
(see Section II-B-3).

To be more concise, we made the choice in this paper 
to treat only the reflection problem in fluid 0, but similar 
expressions can be easily obtained for the transmission 
problem in fluid 3. In addition, it should be noted that 
this case is the classic case of interest in NDT when the 
reflected field is the only accessible field that can be mea-
sured.

1) The Incident Bounded Beam in Fluid 0:  a) Principle 
of the decomposition into plane waves and change of basis: 
The principle of the decomposition of a beam into mono-
chromatic waves (or angular spectrum decomposition) is a 
well-known principle that can be applied to a scalar or a 
vector field [22]–[36], based on the linearity of the wave 
equations considered. Here, the incident displacement field 

u inc
0  can be built, at any point M X XE E

1 3, ,( )  omitting the 
exp(iωt) factor, as a superposition of all the plane acoustic 

fields with parameter K E
1 . Its expression can be written 

as
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(4)

where Â KE E
1( ) is the amplitude of each plane wave and 

where K KE E
1 3

00, ,( ) are the components of the wave vector 
k0 of the fluid 0 (angular frequency ω) in the coordinate 

system R O X X XE E E E E= ( ), , ,1 2 3  linked to the emitting 
transducer (Fig. 1). These components satisfy the disper-
sion relation

 K K k VE E
1

2

3
0

2
0

2
0

2 2
0( ) + ( ) = = ( ) = ( )k w/ , (5)

where V0 is the speed of the waves propagating in the 
fluid 0.

The particle displacement u XE E

3
0

1 0
inc

,( ) in the fluid, 

normal to the front face of the emitting transducer, is as-
sumed to be known and can be derived from experimental 
results or analytical expression.

Using (4), the displacement u XE E

3
0

1 0
inc

,( ) can be written 

as

 u X A K
K

k
iK X K

E E E E
E

E E E
3
0

1 1
3
0

0 1 1 10
inc

, ˆ exp d( ) = ( ) -( )
ì
í
ïï
îïï

ü
ý
ïï
þïïï-¥

+¥

ò , 

(6)
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which permits, by means of an inverse Fourier transform, 

obtaining the angular spectrum U E

3
0

inc
, and thus the ampli-

tudes Â KE E
1( ):

 

U K A K
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E E E E
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0
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inc

inc
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, exp d
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XX E
1

-¥

+¥
ó
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(7)

To study the interaction of each monochromatic plane 
wave with the 2-layered structure, a change of coordinate 
system is necessary, the new one R O x x x= ( ), , ,1 2 3  being 

linked to the structure (Fig. 1). The translation from the 
origin OE to the new one O results in a change of phase 

exp exp ,- ×( ) = -( )i O O iK ZE E
k

0
3
0

0

 
 and the rotation an-

gle θ around the x2-axis (corresponding to the incident 
angle of the acoustic beam) results in a Jacobian J k 1( ) 
such that

 d cos sin d d ,K
k

k
k J k kE

1
1

3
0 1 1 1= +

æ

è
ççç

ö

ø
÷÷÷÷ = ( )q q  (8)

where k1 and k 3
0 are the components of the wave number 

k0 on the x1- and x3-axes (K E
1  and K E

3
0  are functions of 

k1).
The amplitude Â k 1( ) of each incident plane wave, when 

referenced at the plane x3 = 0 (interface I) can thus be 

expressed as a function of its amplitude ˆ ,A KE E
1( )  and 

when referenced at the plane X E
3 0= , by

 ˆ ˆ exp ,A k A K iK Z J kE E E
1 1 3

0
0 1( ) = ( ) -( ) ( )  (9)

which leads to the following expression of the incident 
particle displacement in the fluid 0, in the coordinate sys-
tem R:
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where P kinc /0 0
1

0= ( )k k  is the polarization vector of the 

incident wave in fluid 0.

b) Use of the fast Fourier transform algorithm: The 
method used to calculate the Fourier transforms and in-
verse Fourier transforms is the fast Fourier transform 
(FFT). This algorithm imposes a constant step sampling. 
However, due to the rotation angle θ around the x2-axis 
(corresponding to the incident angle of the acoustic beam) 
between the plane linked to the emitting transducer and 
the plane linked to the interfaces of the layered structure, 

a constant step sampling along X E
1 -axis (and thus for K E

1 ) 
leads to a nonconstant step sampling along the x1-axis 

(and thus for k1), as it can be seen in the expression of the 
Jacobian J k 1( ) in (8).

Two methods can be used to obtain the amplitudes 
Â k 1( ) [given by (9)] of each incident plane wave (refer-

enced at the plane x3 = 0) for a constant step sampling for 
k1. The first one consists in calculating the angular spec-

trum U KE E

3
0

1
inc
( ) [given by (7)], then the Jacobian J k 1( ), 

and finally the amplitudes ˆ ,A k 1( )  with a constant step 

sampling for K E
1  (which gives a nonconstant step sam-

pling for k1). An interpolation of the amplitudes Â k 1( ) is 
then provided to obtain new amplitudes ˆ ,A k¢( )1  corre-

sponding to a constant step sampling for k′1.
The second method consists in interpolating the angu-

lar spectrum U KE E

3
0

1
inc
( ) to obtain new values U KE E

3
0

1
inc

'( ) 
corresponding to a nonconstant step sampling in K E' ,1  but 
corresponding to a constant step sampling in k1. The Ja-
cobian J k 1( ) and the amplitudes Â k 1( ) are then calcu-

lated with this constant step sampling in k1. It has been 
shown [50] that this second method gives more accurate 
results than the first one.

In other words,

 1.  U KE E

3
0

1
inc
( ) is calculated from (9) and using a con-

stant step sampling in K E
1 ,

 2.  U KE E

3
0

1
inc
( ) is interpolated to obtain U KE E

3
0

1
inc

' ,( )  us-

ing the nonconstant step sampling in K E' 1  which 
gives a constant step sampling in k1.

c) Subsequent use of the decomposition method: The 
method of decomposition of a beam into plane waves that 
has just been described in Section II-B-1-a is also used to 
calculate the field re-emitted by the finite-sized defect, 
following the passive re-emission principle described in 
Section II-A-1-a. This calculation requires that the re-
emission data on the interface II admit a Fourier integral, 
which is ensured by introducing a scattering problem in 
Section II-C for which the data are zero outside of the 
defect.

2) Plane Waves in Anisotropic Media: Generally speak-
ing, the interaction between an oblique incident mono-
chromatic plane wave propagating in the plane (Ox1x3) 
and an anisotropic layered structure generates 6 plane 
waves [numbered by (η)] in each layer, with different ve-
locities. The propagation equations in each layer use the 
same form as the one developed by Rokhlin et al. [37], [38] 
and completed by Ribeiro et al. [39] with the help of the 
inhomogeneous waveform [40], [41].

It is useful to introduce the slowness vector (η)m of the 
wave (η), defined by [42], [43]

 ( ) ( ) ( ) ( ) ,h h h h wm n k= =/ /V  (11)

where (η)n, (η)k and (η)V are respectively the propagation 
direction vector, the wave vector and the velocity of the 
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wave (η) in the considered layer. It should be noted that, 
due to the boundary conditions at each interface (I, II, or 
III) which lead to Snell-Descartes’ laws, the projections 
m1 and m2 of the slowness vector of all the waves on x1 
and x2-axis are the same (with here m2 = 0).

In each anisotropic layer, the displacement vector (η)U 
of each plane wave (η) has the following form

 
( ) ( ) ( ) ( )

( ) ( )

( , ; ) exph h h h

h h

wU Px x t a i k x k x t

a

1 3 1 1 3 3= - + -( )é
ëê

ù
ûú

= PP exp ,( )- + -( )é
ëê

ù
ûúi m x m x tw h

1 1 3 3

 

(12)

where (η)a and (η)P are, respectively, the amplitude and 
the polarization vector of the wave (η), m1, and (η)m3 are 
the components on axes x1 and x3, respectively, of the 
slowness vector (η)m.

Using Hooke law in anisotropic solid media (and sum-
mation convention on repeated indexes), the stresses can 
be expressed as functions of displacements by

 ( )
( )

,h
h

T c
U

x
ij ijk

k

=
¶
¶

  (13)

where the cijkl are the elastic constants of the layer. The 
stress vector (η)T (associated with the normal e x 3

 to the 
interfaces) of each plane wave (η) has the following form

 ( ) ( ) .h h
T e= T i x i3  (14)

Following the principle of the Kirchhoff approximation 
explained in Section II-A-1, it is necessary to identify in 
each layer the waves that propagate (or decrease) in the 
direction x3 > 0 (denoted “a”) and those that propagate 
(or decrease) in the direction x3 < 0 (denoted “b”). For 
propagative waves, this identification must be done by us-
ing an energetic criterion [44]–[46], based on the sign of 
the normal power flux given by Synge [47]:

 ( ) * * ,h wF i T U T Uj j j j3 3 3
1

4
= - - +( )  (15)

where X* is the complex conjugate of X. For inhomoge-
neous waves, a decreasing condition must be applied, us-

ing the sign of the imaginary part ( ) "hm 3 of the 3rd com-
ponent (η)m3 of the slowness vector of the wave (η). 
Subsequently, for convenience, the indexes η = 1,2,3 will 
refer to “b” waves that propagate (or decrease) in the di-
rection x3 < 0, and η = 4,5,6 will refer to “a” waves that 
propagate (or decrease) in the direction x3 > 0. The ener-
getic and radiation criteria can thus be summarized as 
follows:

 field , 
, propagative waves,

inhomogen
b , ,

F

m
h

h

h=
<
>

1 2 3
0

0
3

3

( )

( ) " , eeous waves,

ì
í
ïï

îïï
 

(16a)

 field
propagative waves,

inhomogen
a, , ,

F

m
h

h

h=
>
<

4 5 6
0

0
3

3

( )

( )

,

" , eeous waves.

ì
í
ïï

îïï
 

(16b)

3) Plane Waves Transmitted Through Interfaces (Bound-
ary Conditions, Including Bonding Conditions, at Interface 
II): In case of a perfect (rigid) bonding between solid me-
dia 1 and 2 at the interface II, the boundary conditions 
consist in the continuity of the displacement and stress 
vectors (associated with the normal e x 3

 to the interfaces), 
i.e.,

 U U
1

1 3 1
2

1 3 1( , ; ) ( , ; ),x x h t x x h t= = =  (17a)

 
and T T

1
1 3 1

2
1 3 1

1 3 1

( , ; ) ( , ; ),

, , .

x x h t x x h t

x x h t

= = =
" = "

 (17b)

Conditions (17) are those involved in the preliminary 
problem solved for a healthy interface II (see Section II-
A-1-b and Section III-C-1)

In case of a total delamination at interface II, the 
boundary conditions consist of setting the stress vectors 
to zero, i.e.,

 T 0
1

1 3 1 3 1( , ; ) , , ,x x h t x h t= = = "  (18a)

 and T 0
2

1 3 1 3 1( , ; ) , , ,x x h t x h t= = = "  (18b)

for all the values of x1 corresponding to points on the 
defect.

In case of intermediate (elastic) bonding between solid 
media 1 and 2 at the interface II (which is the case of the 
defects considered here), the boundary conditions chosen 
here depend on those introduced by Pilarski et al. [7] and 
widely used from that time. In a bidimensional case, these 
bonding conditions consist in schematizing the bonding by 
a uniform distribution of springs without mass working 
under traction-compression and shear deformation [48], 
[49]. Using the stress vector associated with the normal 
e x 3

 to the interfaces and defined by (14), a linear relation 
between the stress vector and a shift of displacements ∆U 
can thus be written such that

 T T
1

1 3 1
2

1 3 1 3 1( , ; ) ( , ; ), , ,x x h t x x h t x h t= = = = "  

(19a)

 U U
1

1 3 1
2

1 3 1 3 1( , ; ) ( , ; ), , ,x x h t x x h t x h t= ¹ = = "  

(19b)

 T K U
1

1 3 1 1 3 1 3 1( , ; ) ( , ; ), , ,x x h t x x h t x h t= = = = "D  

(19c)

for all the values of x1 corresponding to points on the 
defect, where

 DU U U= -2 1 (20)

and K is a (3 × 3) matrix of stiffness coefficients. In prac-
tice, the coupling between traction/compression and shear 
effects can be ignored, so that the matrix K can be con-
sidered as a diagonal matrix. It should be noted that the 
positive signs of the coefficients of the matrix K are 
straightforwardly associated with the direction of the nor-
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mal e x 3
, which points out from medium 1 toward medi-

um 2.
Conditions (19) are assumed to be those on the finite-

sized defect on interface II. To solve the preliminary prob-
lem for an infinite defect on interface II (see Section II-A-
1 and Section II-C-1), these conditions (19) are extended 
all along interface II.

Once the Kirchhoff approximation principle is explained 
and the practical tools for calculating the acoustic fields 
using plane waves are given, the following Section II-C 
aims at presenting the implementation of the Kirchhoff 
approximation method (such as it has been described in 
Section II-A) using Fourier integrals: the 2 preliminary 
problems have to be solved (Section II-C-1) and the scat-
tering problem is then introduced (Section II-C-2).

C. Implementation of the Kirchhoff Approximation  
Using Plane Wave Decomposition

To be more concise, we made the choice in this paper 
to treat only the reflection problem in fluid 0, but similar 
expressions can be easily obtained for the transmission 
problem in fluid 3. The parametric study in Section III 
deals only with this reflected field.

As explained in Section II-A-1-b, the Kirchhoff approx-
imation needs to solve 2 preliminary problems: the first 
one concerns the interaction between the incident field 

u inc
0  and the bilayered structure with its internal inter-

face II supposed to be healthy (without any defect); the 
second preliminary problem is identical to the previous 
one, but with an “infinite defect” at interface II; this is the 
aim of Section II-C-1 to explicitly treat these preliminary 
problems, first for plane waves and second for bounded 
beams. Finally, as mentioned in Section II-B-1-c, a scat-
tering problem has to be introduced (see Section II-C-2), 
to ensure that the re-emission data on the interface II 
would admit a Fourier integral.

1) Solution of Preliminary Problems:  

a) Solution of preliminary problems for plane waves: 
These 2 preliminary problems must be first solved for each 
monochromatic plane wave constituting the incident-
bounded beam, the amplitude of each plane wave being 
equal to Â k 1( ) [see (9), Section II-B-1-a]. For each prob-

lem, 14 scalar equations derived from the boundary condi-
tions must be written, using notations defined in Sec-
tion II-B-2, as follows.

 1.  Four equations coming from the continuity of the 
component on x3-axis of the displacement vector U 
and from the continuity of the stress vector T at 
interface I (fluid 0/solid 1):

 U x x t U x x t x x t3
0

1 3 3
1

1 3 1 30 0 0( , ; ) ( , ; ), , , ,= = = " = "  

(21a)

 T T
0

1 3
1

1 3 1 30 0 0( , ; ) ( , ; ), , , .x x t x x t x x t= = = " = "  

(21b)

 2.  Four similar equations at interface III (solid 2/flu-
id 3)

 3.  Six equations derived from the boundary conditions 
(19) at interface II (solid 1/solid 2), whether this 
interface is healthy or consists of an infinite defect

Fourteen unknown amplitudes correspond to these 14 

boundary conditions: the amplitude a ref
0  of the wave re-

flected in fluid 0, the 12 amplitudes ( )h aa  of the waves 
propagating or decreasing in each layer α, α = 1,2 (6 per 

layer), and the amplitude a tr

3
 of the wave transmitted in 

fluid 3.
The 2 preliminary problems for plane waves can thus 

be solved: the problem (*) with a healthy interface II 
[(*) = (h)] or an infinite defect [(*) = (i)] on that inter-
face. In particular, the solutions for plane waves Uα(*) of 
the problem (*) can be split, in each layer α (α = 1,2), 

into the solutions U a
a(*)

 and U b

a(*)
 corresponding to the 

waves propagating or decreasing toward x3 > 0 (or x3 < 0), 
respectively:

 U U U
a a a

a(*) (*) (*)
, , ,= + =a b 1 2  (22a)

where [omitting the exp(iωt) factor and using (13)]

 

U U

P

a a

a i k x k

a h a

h

h a h a

h

h a

(*) ( ) (*)

( ) (*) ( ) ( )exp

=

= - +

=

=

å

å

4

6

4

6

1 1 3  xx 3

1 2

( )é
ëê

ù
ûú

=

,

, ,a

 

(22b)

and

 

U U

P

b b

a i k x k

a h a

h

h a h a

h

h

(*) ( ) (*)

( ) (*) ( ) ( )exp

=

= - +

=

=

å

å

1

3

1

3

1 1 3   aa

a

x 3

1 2

( )é
ëê

ù
ûú

=

,

, ,

 

(22c)

using criteria (26) (see Section II-B-2).
It should be noted that the amplitudes (η)aα(*) are func-

tion of amplitude Â k 1( ) of each incident plane wave con-

stituting the incident-bounded beam. Therefore, it could 
be convenient to write them in the form

 ( ) (*) ( ) (*)ˆ ,h a h aa k A k T1 1( ) = ( )  (23)

where (η)Tα(*) are amplitude ratios.

b) Solution of preliminary problems for bounded beams: 
Finally, the fields corresponding to the incident-bounded 
beam can be obtained by superposing the fields obtained 
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in Section II-C-1-a for plane waves, using the superposi-
tion principle as explained in Section II-B-1.

In particular, the field uα(*) in layer α (α = 1,2) of the 
problem (*) can be written such that

 u u u
a a a(*) (*) (*), (*) ( ) (*) ( ),= + = =a b h i or  (24a)

where

 
u Pa x x A k T k

i

a h a h a

h
h

(*) ( ) (*) ( )

( )

, ˆ

exp

1 3 1 1

4

6

( ) = ( ) ( ){

-´
-¥

+¥

=
òå

 kk x ik x k3 3 1 1 1
a( ) -( )}exp d ,

 

(24b)

and

 
u Pb x x A k T k

i

a h a h a

h

h

(*) ( ) (*) ( )

( )

, ˆ

exp

1 3 1 1

1

3

( ) = ( ) ( ){

-´
-¥

+¥

=
òå

 kk x ik x k3 3 1 1 1
a( ) -( )}exp d .

 

(24c)

Eqs. (24b) and (24c) will be used in Section II-C, when 
solving the scattering problem (27).

It is convenient to write here the expression of the re-
flected displacement field, for the problem with a healthy 
interface II [(*) = (h)] or an infinite defect on interface II 
[(*) = (i)]:

 
u Pref ref ref

 

0
1 3

0
1

0
3
0

3
(*) (*), exp

exp

x x a k ik x

i

( ) = ( ) +( ){

-´
-¥

+¥

ò
kk x k1 1 1( ) }d ,

 (25)

where Pref
0  is the polarization vector of the reflected wave 

in fluid 0. Eq. (25) will be used subsequently in Section II-

C-3 to calculate the pressure Pref
0(*) in fluid 0 [see (40)].

2) The Associated Scattering Problem: Once the ap-
proximate values u(k) have been obtained on the inter-
face II, by considering the solutions u(h), and u(i) of the 2 
preliminary problems mentioned in Section II-A-1-b (the 
solution of which is given in Section II-C-1), we need to 
solve the radiation problems in the 2 (virtual) half-spaces 
x3 ≤ h1 and x3 ≥ h1. To calculate the solutions of these 
radiation problems, a plane wave decomposition of the 
field may be introduced by the way of a spatial Fourier 
transform along the line x3 = h1. This Fourier transform 
will be easily defined if an associated scattering problem 
is introduced, considering the field generated by the de-
fect as a perturbation of the field of the healthy structure. 
Thus, the approximate global solution may be sought in 
the form of a sum:

 
u u u

( ) ( ) ( ),k h s= +  (26)

where u(s) is a scattering term that must be calculated by 
the above-described procedure. For this scattering prob-
lem, the (approximate) values of the fields on the inter-
face II are:

u 0

u u

b
s

b
s

b

x x h

x x h

1
1 3 1

1
1 3 1

1

( )

( ) (

( , )

( , )

= =

= =

outside the defect,
ii

b
h) ( ) ,-

ì
í
ïïï

î
ïïï u

1 on the defect

(27a)

(27b)

which permits us to obtain u b
s x x1

1 3
( )( , ) in layer 1 (see Sec-

tion II-A-1-a, the passive re-emission principle). Similar 
expressions can also be written for the approximate field 

u a
s2( ).
Once the corresponding scattered field is calculated in 

the half space x3 ≤ h1, by plane wave decomposition, one 
may consider its interaction with the interface I, getting 

the 2 “reflected” and “transmitted” scattered fields u a
s1( ) 

and u ref
0( ).s  Note that in the scattering problem, the incident 

field u inc
0  no longer enters into the interaction with the 

interface I.
Finally, the expected total approximate reflected field 

is obtained by the following expression:

 u u uref ref ref
0 0 0( ) ( ) ( ).k h s= +  (28)

a) The scattering data on the interface II: The solu-
tions of the preliminary problems (h) and (i) have been 
obtained in Section II-C-1. It is now possible to apply the 
Kirchhoff approximation method (see Section II-A-1) to 
obtain the approximate solution u(k).

It should be noted that, for the scattering problem (27), 

the fields u b
s x x h1

1 3 1
( )( , )=  and u a

s x x h2
1 3 1

( )( , )=  are per-
fectly known on the interface II, and that they constitute 
re-emission data for the reflection problem and the trans-
mission problem, respectively.

Substituting (24c) for x3 = h1 in the scattering problem 

leads to expressions for the field u b

s
x x h

1
1 3 1

( )
( , )=  on inter-

face II (with the aim of determining the reflected field in 
fluid 0):

 u 0b
s x x h1

1 3 1
( )( , ) ,= = outside the defect, (29a)

 

u b
s

i h

x x h

A k T k T k

1
1 3 1

1
1

1
1

1

( )

( ) ( ) ( ) ( )

( , )

ˆ

=

= ( ) ( )- ( )é
ëê

ù
ûú{

-¥

 h h

++¥

=
òå

´ -( ) -( ) }
h

h h

1

3

1
3
1

1 1 1 1 

  on the de

( ) ( )exp exp d ,P i k h ik x k

ffect,

 (29b)

which involve the difference of the amplitude ratios 
( ) ( )hT ki1

1( ) for the infinite defect problem and the ampli-

tude ratios ( ) ( )hT kh1
1( ) for the healthy interface II. Simi-
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larly, the field u a
s x x h2

1 3 1
( )( , )=  can be obtained, with the 

view of solving the transmission problem.

b) Resolution of the scattering problem: Let us consider 
the problem of the re-emission toward x3 < 0, to obtain 

the reflected scattered field u ref
0( )s  in fluid 0 and thus, using 

(27), the Kirchhoff approximation u ref
0( )k  of the exact solu-

tion.
With the radiation condition toward x3 < 0, the field 

u b
s x x1

1 3
( ) ,( ) is expressed in solid 1 in the form

 
u Pb

s sx x A k

i k x

1
1 3

1
1

1

1

3

3
1

3

( ) ( ) ( ) ( )

( )

, ˆ

exp

( ) = ( ){

-´
-¥

+¥

=
òå h h

h

h (( ) -( ) }exp d ,ik x k1 1 1

 

(30)

where the amplitudes ( ) ( )ˆhA ks1
1( ) are going to be deter-

mined from re-emission data (29), using exactly the same 
method as that explained in Section II-B-1 for the inci-
dent beam.

As u b
s x x h1

1 3 1
( )( , )=  is known on interface II, an inverse 

Fourier transform of (30) leads to the vector equation

 

( ) ( ) ( ) ( )

( )

ˆ exp

, exp

h h h

h

p

A k i k h

x h

s

b
s

1
1

1
3
1

1

1

3

1
1 1

1

2

( ) -( )

= ( )

=
å P

u ++( )
-¥

+¥

ò ik x x1 1 1d ,

 (31)

which constitutes a linear system of 3 equations for the 3 

unknown amplitudes ( ) ( )ˆhA ks1
1( ), η = 1,2,3. It should be 

noted that the integrand of the right hand term of (31) is 
null outside the defect, because of (29a). Then, using (30), 

the whole field u b
s x x1

1 3
( ) ,( ) is known in layer 1.

Similar expression can be obtained for the transmitted 

scattered field u tr
3( )s  in fluid 3.

c) Interaction of the scattered field with interface I: Now, 
following the re-emission principle (see Section II-A-1-a), 

the field u b
s x x1

1 3
( ) ,( ) behaves like an “incident” field on 

the interface I at x3 = 0, and the problem of the interac-
tion of each plane wave constituting this “incident” beam 
with the interface I has to be solved.

Using (30), this “incident” beam u b
s x x1

1 3 0( ) , =( ) at 

x3 = 0 can be written as (omitting exp(iωt) factor)

 u Ub
s

b
sx x k ik x k1

1 3
1

1 1 1 10( ) ( ), exp d ,=( ) = ( ) -( )
-¥

+¥

ò  (32)

 where U Pb
s sk A k1

1
1

1
1

1

3
( ) ( ) ( ) ( )ˆ( ) = ( )

=
å h h

h

 (33)

is the angular spectrum (plane waves).

The interaction of these incident waves U b
s1( ) with inter-

face I generates reflected waves U a
s1( ) (with 3 unknown 

amplitudes (η)a1(s) (η = 4,5,6)) in medium 1 and a trans-

mitted wave U0(s) (with an unknown amplitude a s
ref
0( )) in 

fluid 0.
Thus, the whole field U1(s) in solid 1 at x3 = 0 is made 

up of the “incident” b-type waves U b
s1( ) propagating (or 

decreasing) toward x3 < 0 and of the “reflected” a-type 

waves U a
s1( ) propagating (or decreasing) toward x3 > 0:

 U U U
1

1
1

1
1

1
( ) ( ) ( ) ,s

a
s

b
sk k k( ) = ( )+ ( )  (34)

 where U Pa
s sk a k1

1
1

1
1

4

6

( ) ( ) ( ) ( ) .( ) = ( )
=
å h h

h

 (35)

Finally, the writing of the boundary conditions for 
plane waves at interface I (x3 = 0) leads to 4 equations 
based on the continuity of the component on the x3-axis of 
the displacement vector U and from the continuity of the 
stress vector T, which is associated with the normal e x 3

 to 
the interfaces, see (14), at interface I (solid 1/fluid 0):

 U x x t U x x ts s
3
1

1 3 3
0

1 30 0( ) ( )( , ; ) ( , ; ),= = =  (36a)

 
and T T

1
1 3

0
1 3

1 3

0 0

0

( ) ( )( , ; ) ( , ; ),

, , .

s sx x t x x t

x x t

= = =

" = "
 (36b)

It should be noted that, for this scattering problem, the 
incident field is no longer involved in these equations.

Four unknown amplitudes correspond to these 4 bound-

ary conditions: the amplitude a s
ref
0( ) of the wave “transmit-

ted” in fluid 0 and the 3 amplitudes (η)a1(s) (η = 4,5,6) of 
the waves “reflected” in solid 1.

These unknown amplitudes can now be determined by 
solving the linear system of (36).

3) Solution of the Reflection Problem: Total Reflected 
Field in Fluid 0: The scattered displacement field in the 
fluid (0) is such that

 
u Pref ref ref

 

0
1 3

0
1

0

3
0

3

( ) ( ),

exp exp

s sx x a k

ik x i

( ) = ( ){
+( ) -´

-¥

+¥

ò
kk x k1 1 1( )}d .

 (37)

Finally, the whole reflected field in fluid 0 based on the 
Kirchhoff approximation is given by (28) in Section II-C-
2:

 u u uref ref ref
0 0 0( ) ( ) ( ),k h s= +  (38)

where u ref
0( )h  is given by (26) with (*) = (h), and the whole 

field in fluid 0 can be written as

 
u u u

0 0 0( ) ( ).k k= +inc ref
 (39)
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The reflected pressure Pref
0(*) in fluid 0, corresponding to 

the problem with a healthy interface II [(*) = (h)], an in-
finite defect on interface II [(*) = (i)] or a finite defect 
[(*) = (k)] on interface II under the Kirchhoff approxima-
tion is then given by
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III. R  C/E S

Some results obtained on carbon/epoxy structures (see 
Table II for the elastic constants and the density) are pre-
sented in this section, first for a normal incidence (θ = 0°) 
and various thicknesses (see Section III-A), then when a 
Lamb mode is excited in the perfectly bonded structure 
(healthy interface II, see Section III-B-1). In the latter 
case, the influences of the anisotropy (Section III-B-2), of 
the length and location of the defect (Sections III-C and 
III-D), and of the nature of the bonding (Section III-E) 
are considered.

As far as carbon/epoxy structures are concerned, when 
the carbon fibers make an angle ψ with the x1-axis, the 
layer is called a ψ-layer. As an example, a 0°/90° structure 
is made up of the layer 1 with fibers parallel to the x1-axis 
and of the layer 2 with fibers perpendicular to x1-axis. In 
the cases considered in this section, the 2 layers have the 
same thickness (h1 = h2).

The incident beam is a Gaussian beam and the particle 

displacement u XE E

3
0

1 0
inc

,( ) in the fluid, normal to the front 

face of the emitting transducer (see Section II-B-1-a) has 
the following form
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ë
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The figures present the reflected pressure moduli Pref
0(*) 

(given by (40) and normalized by the incident pressure) in 
a plane parallel to the interfaces (ζ/a = 1) as a function of 
x1/a (see Fig. 1): a thin solid line is used for an healthy 

interface II (*) = (h), a dotted line for an infinite defect 
on interface II (*) = (i), and a thick solid line for a finite-
sized defect on interface II (*) = (k). The defect is taken 
to be a full delamination in Sections III-A, III-B, III-C, 
and III-D, i.e., the stress vector is equal to zero on the 
defect, whereas the case of an intermediate (elastic) bond-
ing between solid media 1 and 2 at the interface II is con-
sidered in Section III-E.

The frequency is f = 2 MHz and the diameter of the 
transducer is 2a = 20 mm; subsequently, all the lengths 
are expressed as multiples of the radius a.

A. Case of Normal Incidence

When θ = 0° (normal incidence) and when d = 0 (de-
fect localized just in front of the transducer), the shape 
and the amplitude of the reflected fields for an infinite 
[(*) = (i)] or for a finite defect [(*) = (k)] on interface 
II are very similar (some diffraction effects can just be 
observed for the finite defect case), as can be seen when 
comparing Figs. 5(a) and (b). For the purpose of non-
destructive testing, the amplitudes of the reflected fields 
for a healthy interface II and for a defect on interface II 
should be quite different, to provide a good detection of 
the defect. This is the case for Fig. 5(b) when the product 
f.h = 0.2 MHz·mm but this is no longer the case when the 
product f·h = 2 MHz·mm (see Fig. 6): the reflection coef-
ficient in water for plane waves incident on the healthy 
structure oscillates periodically between 0 and 0.8 as a 
function of the product frequency by thickness, and thus, 
if this product is such that the reflection coefficient is close 
to 0.8, the difference between the reflected fields for a 
healthy structure and for a structure with a defect (maxi-
mum amplitude equal to 1 for a large defect in the case of 
a delaminating) is too small to provide a good detection of 
the defect. As a consequence, it seems interesting to study 
the case of oblique incidence, and especially when the in-
cident beam may generate a Lamb wave into the structure 
for a given couple (incident angle, frequency).

B. Case of a Lamb Mode Propagating in the Structure

As far as propagation of Lamb modes in the structure 
is concerned, the most interesting case for detecting a de-
fect corresponds to the generation of a Lamb mode in 
the healthy structure (see Sections III-B-1. and III-B-2). 
When the size of the defect is long enough, the generation 
of Lamb modes between the upper interface and the defect 
can also enable the detection and thus be considered. To 
be more concise, these last results are not reported here.

1) Case of a Single Isotropic Layer: The first result for 
Lamb modes (Fig. 7) concerns the case of identical media 
constituting layers 1 and 2, which amounts to a defect 
located in a single 10-mm-thick layer. The fibers are paral-
lel to the x2-axis (one single 90° layer or a 90°/90° struc-
ture), which amounts to an isotropic symmetry in the sag-
ittal plane. The inclination of the axis of the incident 
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TABLE II. M C   U 
C—E M. E C (GP)   

6-O A  P   3-A [51]. 

c11 c12 c13 c33 c44 ρ (kg/m3)

13.7 7.1 6.7 126 5.8 1577



beam is such that a Lamb mode may be generated in the 
healthy structure, namely, the antisymmetric mode A20 in 
the case of Fig. 7. The generation of a Lamb mode may be 

recognized by looking at the reflected pressure P h
ref
0( ) in the 

fluid (the thin solid line on Fig. 7) along the cut line at the 
distance ζ from the interface I (see Fig. 1). Indeed, a null 
value of that pressure can be observed between 2 maxima. 
The first maximum, on the left, corresponds to the specu-
lar reflected field on the first interface. The second maxi-
mum, on the right, is followed by a slow decreasing of the 
pressure. This corresponds to the re-emission of the gener-
alized Lamb wave with the well-known associated leaky 
wave. Because the specular reflected field and the Lamb 
re-emission field are in phase opposition, this explains the 
null value of the total pressure in the location where the 2 
fields counterbalance each other.

It is important to notice that this interference effect 
reduces the amplitude of the first maximum (here equal to 
0.6 for the normalized pressure), whereas for the same 

incident angle, the maximum of the reflected pressure P i
ref
0( ) 

on the structure with the infinite defect indicated by the 
dotted line on Fig. 7(a) has its value near 0.9. As expect-

ed, the reflected pressure P k
ref
0( ) for a finite-size defect fol-

lows the curve P h
ref
0( ) outside and far from the defect, as 

shown in Fig. 7(b), whereas it follows the curve P i
ref
0( ) in the 

defect region. Between these regions, the pressure P k
ref
0( ) 

presents some scattering effects due to the edges of the 
defect. As a consequence, the amplitude maximum of the 
reflected pressure on the structure with the finite defect is 
here about 1.5 times greater than the amplitude maxi-
mum of the reflected pressure on the healthy structure, 
and we may conclude that this configuration is well suited 
for a good detection of the defect.

2) Influence of Anisotropy: When the fibers in layer 2 
are perpendicular to those in layer 1 (a 90°/0° structure), 
the structure is anisotropic. Starting with the preceding 
configuration (Section III-B-1), by a progressive rotation 
around the x3-axis of this second layer, one may follow 
continuously the Lamb mode A20 to obtain a guided 
mode for this nonsymmetric structure, which is found to 
be generated at an incidence of 12.75°.

The corresponding reflected pressures are shown on Fig. 
8. The thin line presents the strong trough characteristic 
of the generation of a guided mode in the healthy struc-
ture; as the dotted line for the structure with the infinite 
defect is very similar to that of Fig. 7(a), it has not been 
reported on Fig. 8, for clarity. The diffraction parts of the 
thick line, for the finite defect, are reinforced, compared 
with that of Fig. 7, due to a greater change of media when 
passing from layer 1 to layer 2.

A similar case is presented in Fig. 9, for a 0°/90° struc-
ture. For the same incident angle, the same guided mode 
is generated in the structure.

For these 2 cases, the ratio between the maxima of 
pressure for the healthy structure and for the structure 
with the finite defect is about 0.4. We may conclude that 
the generation of this guided mode leads to a good detec-
tion of the defect.

The Fig. 10 presents the case of a fully anisotropic 
structure (30°/120°). The guided mode may be generat-
ed for a 12.15° incidence. One observes in this case that 
the leaky wave presents several maxima that correspond 
to successive reflections in the structure. The diffraction 
effects, for the finite defect, are important in this case. 
Again, this configuration is suitable for good detection of 
the defect.

C. Influence of the Length of the Defect

The aim of this section is to show the influence of the 
length L of the defect on its detectability. The configura-
tion considered for the 90°/0° structure is that of Fig. 8 
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Fig. 5. Reflected pressure Pref
0(*) for a 90°/90° carbon/epoxy structure, 

h1 = h2 = 0.05 mm, full delaminating. Thin solid line (*) = (h), dotted 
line (*) = (i), and thick solid line (*) = (k). Incident angle θ = 0°, fre-
quency f = 2 MHz. ζ/a = 1, d = 0, L/a = 1.



for L/a = 1. Figs. 11 and 12 correspond, respectively, to 
a length of the defect equal to 2a and to a/10 (2a is the 
diameter of the emitter, see Section I).

As expected, the thick solid curve corresponding to the 

reflected pressure P k
ref
0( ) (finite-length defect) is closer to 

the dotted curve corresponding to the reflected pressure 

P i
ref
0( ) in Fig. 11 (L/a = 2) than in Fig. 8 (L/a = 1), but 

some diffraction effect still exists. In both cases, the defect 
is well seen but there is more diffraction (especially on the 
left edge of the defect) when L/a = 1 than for a larger 
defect. This can be explained by the fact that, the greater 
the length of the defect, the less prominent is the diffrac-
tion phenomenon due to the discontinuity of the given 
(approximate) boundary values on the plane II (see Sec-
tion II-A-2).

On the other hand, when the length of the defect is 
much smaller than the radius of the emitter (Fig. 12, 

L/a = 0.1), the reflected pressure P k
ref
0( ) follows the thin 

solid curve corresponding to the reflected pressure P h
ref
0( ) 

for the healthy structure. Although the presence of the 
defect generates much diffraction, as can be seen in the 

thick solid curve for the pressure P k
ref
0( ), if this curve were 

smoothed, it would be much too close to the curve for the 
healthy structure for there to be good detection of the 
defect.

D. Influence of the Location of the Defect

Figs. 13 and 14 correspond to the same configuration 
as that of Fig. 8, except that the location of the defect is 
changed along the interface II: d = 0 for Fig. 8, d = −2a 
for Fig. 13, and d = 3a for Fig. 14 (see Fig. 1 for the ge-
ometry and definition of d). For clarity, the dotted line 
corresponding to an infinite defect is not reported on Figs. 
13 and 14 (it is the same as that of Fig. 12).

When d = −2a, the defect is slightly visible, but the 
diffraction originating from the right edge of the defect 
can be distinguished. When d = 0, the defect is clearly 

visible, and the center of the reflected field P k
ref
0( ) coincides 

partially with the field P i
ref
0( ). The diffraction effects origi-

nating from the right edge of the defect are well visible. 

When d = 3a, the reflected field P k
ref
0( ) coincides partially 

with the field P h
ref
0( ) for the healthy structure, with diffrac-

tion effects coming from the left edge of the defect. How-
ever, the detectability of the defect is not so clear.

For larger values of d, an artifact of the Kirchhoff ap-
proximation would appear. Indeed, the multiple reflections 
between the upper interface and the infinite defect would 
lead to values of the re-emission data much greater than 
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Fig. 6. Reflected pressure Pref
0(*) for a 90°/90° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h) and thick 
solid line (*) = (k). Incident angle θ = 0°, frequency f = 2 MHz. ζ/a = 1, 
d = 0, L/a = 1.

Fig. 7. Reflected pressure Pref
0(*) for a 90°/90° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h), dotted line 
(*) = (i), and thick solid line (*) = (k). Incident angle θ = 11.78°, fre-
quency f = 2 MHz, propagation of an A 20 Lamb mode. ζ/a = 1, d = 0, 
L/a = 1.



they ought to be. To avoid this phenomenon, the Kirch-
hoff approximation must be implemented in an iterative 
procedure [52].

E. Influence of the Nature of the Bonding

The section aims to study the influence of the (3 × 3) 
matrix K of stiffness coefficients, defined in Section II-B-3, 
and involved in boundary conditions (19). The results pre-
sented just above correspond to a total delaminating, i.e., 
to a null matrix K. From a numerical point of view, it ap-
pears that a total delaminating corresponds to numerical 

values up to nearly Kii = 1013N·m−3, see Fig. 15 (Fig. 8 
corresponds to Kii = 5 × 1012N·m−3). When intermediate 
(elastic) bonding between the solid media 1 and 2 at the 
interface II is considered, it can be seen that the defect 
can still be detected. As expected, the greater the coeffi-
cients of the matrix K (the embedding condition corre-
sponds to infinite coefficients), the less the defect can be 
detected (see Fig. 16 for Kii = 3 × 1013N·m−3) and the 

weaker the reflected field P k
ref
0( ). From Kii = 1014N·m−3, the 

bonding amounts to a perfect embedding and the curves 
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Fig. 9. Reflected pressure Pref
0(*) for a 0°/90° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h) and thick 
solid line (*) = (k). Incident angle θ = 12.75°, frequency f = 2 MHz, 
propagation of a Lamb mode. ζ/a = 1, d = 0, L/a = 1.

Fig. 10. Reflected pressure Pref
0(*) for a 30°/120° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h) and thick 
solid line (*) = (k). Incident angle θ = 12.15°, frequency f = 2 MHz, 
propagation of a Lamb mode. ζ/a = 1, d = 0, L/a = 1.

Fig. 11. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h), dotted line 
(*) = (i), and thick solid line (*) = (k). Incident angle θ = 12.75°, fre-
quency f = 2 MHz, propagation of a Lamb mode. ζ/a = 1, d = 0, 
L/a = 2.

Fig. 8. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h) and thick 
solid line (*) = (k). Incident angle θ = 12.75°, frequency f = 2 MHz, 
propagation of a Lamb mode. ζ/a = 1, d = 0, L/a = 1.



for P k
ref
0( ) and P h

ref
0( ) are superimposed. As a consequence, it 

should be noted that there is a very limited range of val-
ues of the defect stiffness coefficients for which ultrasounds 
will be sensitive to the presence of a bonding defect.

IV. C

This paper aimed at providing a semi-analytical model 
for the interaction of a monochromatic ultrasonic bound-

ed beam with a 2-layered anisotropic structure including 
a finite defect on the internal interface. Delamination or 
partial bonding conditions have been assumed on the de-
fect. The scattering of the acoustic field by the defect has 
been calculated using the Kirchhoff approximation. Plane 
wave decompositions of the fields, using spatial Fourier 
transforms, have been used to solve the problem of cross-
ing the various interfaces of the structure (or eventually of 
a multilayered structure in the case of a general stratified 
medium) The interaction with the defect has been calcu-
lated by introducing a scattered field, which corresponds 
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Fig. 12. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h), dotted line 
(*) = (i), and thick solid line (*) = (k). Incident angle θ = 12.75°, fre-
quency f = 2 MHz, propagation of a Lamb mode. ζ/a = 1, d = 0, 
L/a = 0.1.

Fig. 13. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h) and thick 
solid line (*) = (k). Incident angle θ = 12.75°, frequency f = 2 MHz, 
propagation of a Lamb mode. ζ/a = 1, d = −2a, L/a = 1.

Fig. 14. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm, full delaminating. Thin solid line (*) = (h) and thick 
solid line (*) = (k). Incident angle θ = 12.75°, frequency f = 2 MHz, 
propagation of a Lamb mode. ζ/a = 1, d = 3a, L/a = 1.

Fig. 15. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm. Thin solid line (*) = (h) and thick solid line (*) = (k). 
Incident angle θ = 12.75°, frequency f = 2 MHz, propagation of a Lamb 
mode. ζ/a = 1, d = 0, L/a = 1. Coefficients Kii = 1013N·m−3.



to the perturbation due to the defect, compared with the 
solution for the healthy structure.

Several results have been presented for the case of a 
carbon/epoxy composite when the fibers in the 2 layers 
are parallel or perpendicular. First, it is seen that normal 
incidence is not always the best configuration to detect 
clearly the defect. Instead, an incident angle such that 
a Lamb mode or guided mode can be generated in the 
healthy structure may be more suitable. The influence of 
various physical and geometrical parameters on the ability 
to detect a defect has been studied: length and location of 
the defect, nature of the glue characteristics for a partial 
bonding, angle between the beam, and the fibers of the 
composite.
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Fig. 16. Reflected pressure Pref
0(*) for a 90°/0° carbon/epoxy structure, 

h1 = h2 = 5 mm. Thin solid line (*) = (h) and thick solid line (*) = (k). 
Incident angle θ = 12.75°, frequency f = 2 MHz, propagation of a Lamb 
mode. ζ/a = 1, d = 0, L/a = 1. Coefficients Kii = 3 × 1013N.m−3.
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