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ABSTRACT 

The effects of electron trapping and plasma 
turbulence on the current-voltage relation for a 
positively charged high voltage spherical probe in 
a magnetized plasma are studied. Electrons can be 
bound in a force field consisting of an attractive 
radial electric field and a uniform magnetic field 
if they have insufficient energy to escape and 
cannot be captured by the sphere (by virtue of 
angular momentum conservation). Electrons which 
fall into such a potential well from infinity may 
become trapped if they lose energy as a result of 
wave-particle interactions associated with plasma 
collective effects. Analysis indicates that the 
structure of the sheath and the I-V relation for a 
high voltage probe configured as in the originally 
planned SPEAR I experiment (with a working plasma 
contactor) would be substantially influenced by 
the combined action of trapped electrons and wave- 
particle scattering processes. 

1. INTRODUCTION 

This work summarizes the results of  a study 
conducted prior to the launch of SPEAR I (Space 
Power Experiment Aboard Rocket), for the purpose 
of aiding in the analysis of that experiment. A 
primary goal of the SPEAR I experiment was to 
obtain quantitative measures of the effects of an 
ambient magnetic field on electron collection by a 
high voltage spherical probe. The experiment, as 
originally planned, involved a series of charge- 
discharge cycles of a pair of spherical probes 
exposed to the space environment, and observation 
of the current-voltage relation during the 
discharge. The series included discharges in 
which one sphere was initially charged to a 
potential which ranged between 5 and 44 kV while 
the second was allowed to float, and discharges in 
which both were charged to different potentials. 
A plasma contactor was to have maintained the 
rocket body at nearly zero potential relative to 
the ambient plasma, but this did not function 
during the flight. Katz, et al. [l] have 
described the SPEAR I experiment in some detail 
and have analyzed the consequences of the 
contactor failure. 

The aim of the present study is to clarify 
the role of plasma waves and instabilities in an 
axisymmetric high voltage electron collecting 

sheath in a magnetoplasma. This situation would 
have been realized in SPEAR I when only one sphere 
was charged. The failure of the plasma contactor 
destroyed the axisymmetry and complicated the 
comparison of observations with existing theory. 
The central question of SPEAR I, i.e., the nature 
and magnitude of magnetic field effects on 
electron collection must therefore be regarded as 
not yet fully resolved, although the work of Katz 
et al. [I] has provided valuable insights. Future 
experiments, including a proposed experiment in 
the SPEAR series will, hopefully, provide 
observations of the axisymmetric case, which is 
certainly more amenable to analysis. 

In the course of formulating the model to be 
presented here it  became clear that trapped 
electrons could play an important role in the 
structure and behavior of a high voltage 
axisymmetric sheath in a magnetoplasma when 
scattering due to collective processes is 
significant. Attempts to deal with this issue 
quickly became a major thrust of the effort. The 
electric field provides a potential well in which 
electrons can be bound if they have insufficient 
energy to escape and cannot be captured (by virtue 
of angular momentum conservation). Electrons 
entering such a well from infinity are not 
energetically trapped, but may nevertheless bounce 
within the well for a while before exiting, and 
may become trapped if they lose energy during this 
time as a result of some scattering process. The 
equilibrium trapped electron density within the 
sheath is determined as a balance between trapping 
rates, which depend on scattering rates, and 
trapped electron loss rates, which depend on both 
the scattering rate and the trapped electron 
density. Not surprisingly, when the number of 
trapped electrons becomes significant the effects 
of trapped electrons on the sheath structure and 
the current-voltage relation also become large. 

2. ANALYSIS 

Some previous studies of the current-voltage 
characteristics of symmetric sheaths are worthy of 
special mention before we proceed. Langmuir and 
Blodgett [2] derived expressions which may be used 
to compute the radius, RL-B, and therefore also 
the collection current, of sheaths surrounding 
spherical and cylindrical charged objects, as a 
function of body potential @O and environmental 
parameters, in the absence of a magnetic field. 
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For a spherical Probe of radius Ro the Langmuir- Specifically, Linson solved a cylindrical Poisson 
Blodgett radius is approximately equation for an azimuthally symmetric potential, 

under the assumption that potential gradients 
transverse to the magnetic field were much larger 
than gradients parallel to B ,  i.e.: 

RL-B = 1.13~102 (1/j0)2/7(~0 0 0 ) 3 / 7  (1) 

where jo is the charge flux density at the sphere 
for zero potential, and all quantities are in 
Gaussian units. 

Parker and Murphy 131 studied the orbits of 
individual electrons in the vicinity of a charged 
object in a magnetic field, assuming a steady 
potential having an axis of symmetry oriented 
parallel to B.  These authors concluded, on the 
basis of conservation of energy and angular 
momentum, that charged particles approaching the 
object from infinity along magnetic field lines 
could not be captured by the object if the 
displacement between the magnetic field line 

The charge density ene was assumed to be 
constant along a radius in what we have called the 
trapping plane, with a value determined by the 
condition q = (%e/Qe)2 = 1, where is the 
plasma frequency in the sheath and is the 
gyrofrequency. Thus ne = nq = B2/4nmec . Linson 
argued that collective effects would drive the 
charge density to this value. With the boundary 
conditions 

@(RI) = *‘(RI) = 0 ,  WRo) = 00 (4) passing through the initial particle position 
(outside the sheath) and the symmetry axis 
exceeded a critical value, now called the-’Parker the radial part of eq. (3) is an O.D.E. which may 

transverse sheath radius R I .  Once RI is known. radius of the object, etc. 
Murphy RP-M, which depended On the be treated as an eigenvalue equation for the 

where mj, Qj are the mass and cyclotron frequency 
of the charged particle. 

Trapping is potentially important to sheath 
structure and I-V characteristics when a 
substantial portion of the sheath volume lies 
outside the Parker-Murphy radius. Then trapped 
electrons can accumulate in a substantial fraction 
of the total volume of the sheath, can contribute 
significantly to the total space charge in the 
sheath, and can constitute a significant reservoir 
of electrons which can be collected if they 
diffuse across the magnetic field as a result of 
collective electric field fluctuations. At low 
voltages, the Parker-Murphy radius for electrons 
can be larger than the Langmuir-Blodgett radius, 
in which case electron trapping should be an 
insignificant effect. For example, for a charged 
10 cm radius sphere in a plasma with ne = lo5 

Te = .1 ev, and an ambient magnetic field of 
.3 Gauss, RP-M = RL-B at about 300 volts, and RP-M 
> RL-B for lower voltages (note that the Langmuir- 
Blodgett current is twice the Parker-Murphy 
limiting current when the two radii are equal). 
Thus we expect trapping effects to manifest 
themselves clearly when RP-M is significantly 
smaller than RL-B; this condition is well 
satisfied with sphere voltages of several 
kilovolts, as in the SPEAR experiments. Most 
previous attempts at controlled experimental 
studies of magnetic field effects in sheaths have 
been conducted at relatively low voltages (e.g., 
Szuszczewicz and Takacs [ 4 ] ) .  

Linson [ 5 ]  argued that plasma instabilities 
should be taken into account in models of the 
current-voltage characteristics of sheaths in 
magnetoplasmas. Without attempting a detailed 
analysis of collective effects in magnetosheaths, 
he constructed a phenomenological model for the I- 
V characteristic of a positively charged satellite 
which incorporated magnetic field, space charge, 
and turbulence effects in a simple way. 
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the current I collected b$ the objectl(e1ectrons 
flowing along a cylindrical flux tube from p) was 
found from the relation 

( 5 )  

where RO is the radius of the probe, IO = 2RRo2eF0 
is the current collected by the probe when 00 = 0 ,  
FO = nava/(2n)% is the ambient electron flux 
density, and na, va are the ambient electron 
density and electron thermal velocity. Linson 
does not explicitly mention trapped particles, but 
the notion seems to be implicit in his model. 

Numerous other works (e.g., Borovsky, [ 6 ]  and 
[7]; Chodura, [E]; Rubenstein and Laframboise, 
[ 9 ] ;  Sanmartin, [lo]) treat various aspects of the 
sheath problem, i.e., space charge effects, 
magnetic field effects, and dynamic effects such 
as collective oscillations, but none of these 
works attempt to deal with all three at once. The 
interaction between magnetic field effects and 
collective electric field oscillations is of 
particular importance in affecting high voltage 
sheath structure, as we shall attempt to show, but 
a comprehensive quantitative analysis of this 
problem seems out of reach at present. The 
phenomenological approach still appears most 
viable, and the model which we construct below is 
essentially an extension of Linson’s model. 

I-V Model Development 

We begin by reducing the Poisson equation to 
one dimension in order to obtain an easily 
solvable eigenvalue equation for RI, but instead 
of simply dropping the a20/az2 term in the 
Laplacian, which leads to unrealistic potential 
contours near the sphere (makes the sphere look 
like a very long cylinder), we assume that the 
equipotential surfaces are ellipsoids with 
eccentricity which varies with distance from the 
sphere. Specifically, we assume @(r,z) = *(tl), 
where tl is defined by the equation 



and C and D are constants. Substituting Q(n) into effects of turbulent scattering and of the 
Poisson’s equation leads to an equation for condition q 5 1 by computing I-V characteristics 
Q(r, z=O) of the form for several levels of scattering with and without 

this condition. 
C - r2D a Q  2 [ + [ 7 ) = ( 6 )  Electron Density in the Sheath 

The constants C and D may be chosen so that the 
equipotential surfaces are ellipsoidal at the 
sheath edge and spherical at r = Ro. Since the 
current collection rate essentially depends on the 
cross sectional area of the sheath in the plane 
perpendicular to the magnetic field, the length of 
the sheath axis parallel to the magnetic field, 
az, is not a critical parameter, and we may take 
some liberty in approximating this value. For 
example, if assume that a, = RL-B then 

We take a larger step away from Linson‘s 
model in our treatment of the charge density in 
Poisson‘s equation. In the absence of particle 
trapping the electron density in the sheath is 
mostly controlled by the local sheath potential, 
because the local flow velocity is then determined 
primarily by W,r) and flux must be conserved. 
Plasma instabilities have a greater effect on the 
charge density when trapping is important, because 
the dependence of the density of trapped 
electrons, neT, on Q(r) is less direct. Turbulent 
scattering is needed to get electrons into the 
trapping region, as discussed in section 1, and 
also controls the rate at which trapped electrons 
diffuse toward the sphere and are lost. The 
equilibrium density of trapped electrons is 
determined as a balance between inflow and 
outflow. It is not obvious, however, that q = 1 
defines the balance point; we have insufficient 
knowledge of  instabilities in magnetized sheaths 
to make such a claim with confidence. The value 
of ne which makes q = 1 may be sensible as an 
upper limit on density, but turbulent scattering 
is unlikely to increase ne if the nonturbulent 
dynamics tends to make ne < nq. 

There is another area of concern: if we 
assert that ne = n we lose contact with particle 
orbit dynamics, azd we have no way of knowing 
whether the velocities required to maintain q = 1 
(via flux conservation) are physically reasonable. 
With or without turbulence, the possible range of 
cross field flow velocities is still governed by 
the available energy, which is a function of the 
potential distribution. 

In an effort to resolve these concerns we 
shall try to get closer to the orbit dynamics by 
making the cross field flow velocity the 
fundamental quantity in our model and determining 
the electron density from this, via a flux 
conservation condition. We introduce turbulence 
phenomenologically by making the trapped particle 
diffusion rate, which is a function of the 
turbulence level, a free parameter in the model. 
We will not attempt to infer the correct 
turbulence level a priori, but stay within 
physically reasonable limits (cross field flow 5 
Bohm rate, for example). We shall show the 

The sheath electrons exhibit three distinct 
types of behavior: direct capture, in which 
electrons are able to travel from the sheath edge 
to the sphere, either ballisticly or via drift 
orbits, without changing their energy or angular 
momentum; trapping, in which electrons enter the 
sheath, become trapped, and diffuse across field 
lines until they are captured; and transient flow, 
in which electrons essentially flow through the 
sheath and escape, possibly after a few bounces in 
the potential well. Direct capture is the primary 
behavior mode for particles approaching the sheath 
along field lines within the Parker-Murphy radius. 
Outside RP-M, either of the other modes is 
possible, while direct capture is not. 

The bulk flow velocities associated with each 
of these behavior types are different. We 
determine the electron density in the sheath by 
solving an equation of the form 

(7 )  

for the trapped and direct capture electrons, and 
a simple flux conservation condition for transient 
electrons. In eq. (7) FO is the ambient flux 
density defined following eq. (5). Eq. !7) is 
obtained from the usual continuity equation by 
integrating along the magnetic field within the 
sheath, at a fixed radius r, and suppressing a 
geometric factor of order unity. The quantities 
nej and Vrj are averaged one-dimensional 
representations of the electron density and radial 
bulk flow speed for species j .  Pj is the 
‘collection fraction’ for species j .  For example, 
PC(r) is the fraction of electrons incident at 
radius r which are captured directly. PC vanishes 
for r > RP-M and is taken to be 1 for r < RP-M (we 
smooth the transition near r = Rp-”). 

In order to estimate PT, the collection 
fraction for electron trapping, we note that in 
the absence of scattering all the electrons at any 
point r within the sheath have kinetic energy 
e@(r) + kgTai, where kgTai is the i’nitial thermal 
energy of the ith electron, regardless of the path 
they followed to reach r. In the case of a multi- 
kilovolt body in the relatively cold ionospheric 
plasma kBTai is negligible, so that the electrons 
occupy a thin spherical shell of radius VQ = 
[2eQ(r)/melH and thickness - va << VQ in velocity 
space (see fig. 1). Electric field fluctuations 
may be generated in a number of different ways: 
this shell distribution may be unstable; pre- 
sheath instabilities may modulate electron flow 
into the sheath; or instabilities of the type 
discussed by Linson may operate. In any case, the 
result of such fluctuations is likely to be 
velocity space diffusion which would move 
electrons down the very steep gradients on the 
inner and outer surfaces of the shell. Electrons 
moving inward are energetically trapped if they 
lose more energy than their initial thermal energy 
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(kgTa - .1 eV in the ionosphere), and the amount 
of scattering required to achieve this seems 
trivial considering the large amount of energy 
available to drive turbulence in a multi-kilovolt 
sheath. Electrons moving outward escape the 
sheath, carrying with them the energy lost by the 
trapped particles. Energy conservation suggests 
that the flux into the sheath outside the Parker- 
Murphy radius should be roughly evenly divided 
between trapped and transient particles, as long 
as the energy fluctuations experienced by the 
electrons as a result of the turbulence are much 
larger than kgTa. Since this last condition is so 
mild, we take PT - 112 for electrons entering the 
sheath outside the Parker-Murphy radius, and let 
PT go smoothly to zero for r <,Rp-M, as Pc rises 
toward 1. 

UNTRAPPED 
PARTICLES - "x 

Fig. 1: Schematic representation of the electron 
distribution function in velocity space. 

We note in passing that the amount of charge 
required to fill the sphere in velocity space 
which we have designated as the trapping region, 
and thus prevent further trapping by eliminating 
the slope on the inner edge of the shell, is 
orders of magnitude greater than the charge on the 
probe, for reasonable values of the parameters. 
Thus space charge effects must be the limiting 
factor on the total number of trapped electrons if 
sufficient turbulence is present, which implies 
that trapped electrons must affect the structure 
of the sheath. 

Given PC and PT, the collection fraction for 
the transient particles, P T ~ ~ ~ ~ ,  is calculated 
from the relationship 

which simply says that all electrons hitting the 
sheath exhibit one of the three behavior modes 
discussed above. 

The transient electrons are largely cospatial 
with the trapped electrons, and their density is 
much less than neT, because they spend much less 
time in the sheath. We approximate their density 
as follows: 

ne Trans - PTrans FO 1 kgTa/[2e@<r)/me + kgTal 
I 

( 9 )  

ne = "eC + "eT + "e Trans (10) 

Eq. (16) underestimates ne T ~ ~ ~ ~ ,  but the error is 
not significant because ne T~~~~ makes a 
negligible contribution to the total charge 
density in the sheath when trapping is important. 
In the no-turbulence /no-trapping limit our 
results reduce to a value close to the Parker- 
Murphy limiting current, as one would expect. 

Since some electrons must escape from the 
sheath, we can no longer use the simple 
relationship in eq. (5 )  to compute the collected 
current. Instead, we have 

and find the total charge density from 

Velocity Formulas 

The average radial velocity of direct capture 
electrons is the dielectric drift velocity 

as long as this expression gives a result less 
than vz. If this is not the case we assume 
equipartition of the kinetic energy and take 
vrC = - v0/3+. We can approximate 

aWaz - f (ar/az) awar and vz = f v0/3~~, 

where a, and a, are the axes of our elliptical 
potential contours; hence, in the drift regime, 

(12) vrC = - (ar/a,) (v0/3+) (e/m$) a2war2 

For trapped electrons we postulate that 

VrT = - ss vo when r > RP-M (13) 

where ss is a constant which parameterizes the 
rate of cross field diffusion due to turbulence, 
and that 

V,T + - v( as r + Ro when r < RP-M. (14) 

We have experimented with a number of 
variations of these velocity formulas, and find 
that the results are extremely insensitive to 
changes in coefficients, smoothing prescriptions, 
etc. In fact it will be seen in the next section 
that varying the value of ss through two orders of 
magnitude results in only a factor of 4 variation 
in the current collected by the probe. 

Eq's (6) through (14) may be combined with 
the boundary conditions 

@(RI) = @'(RI) = 0 ,  @(Ro) = 

ne Trans = na and neC= neT = 0 at r = RI 
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and solved for RI and for the radial profiles of 
potential, charge density, etc., for a specified 
value of probe potential. The electron current 
can be computed from these profiles and (11). 

Model results 

Fig. 2 shows current-voltage characteristics 
for a variety of values of for a probe with a 
radius of 10 cm. Ambient plasma density and 
temperature are lo5 cm-3 and .1 eV, respectively, 
and the ambient magnetic field is .3 Gauss. As 
noted above, the I-V curves are surprisingly 
insensitive to Bs. 

Consistent with our philosophy of making the 
radial trapped particle diffusion rate a free 
parameter, we have placed no constraints on the 
value of q defined earlier. We find that q is 
always less than 1 for the larger values of 8, in 
figure 2, but q values do exceed unity at some 
radii for smaller values of 6,. 

8,, 
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Fig. 2: Current voltage relations based on the 
model outlined in the text. The value of 'q' is 
not limited in these calculations. 

Recalling Linson's claim that instabilities 
would enhance cross field diffusion when q 2 1, we 
recalculated the I-V curves after modifying our 
expression for the radial flow speed of trapped 
electrons in such a way that V,T increases as 
needed to maintain q 5 1, while allowing eq's (13) 
and ( 1 4 )  to operate wherever q < 1. The modified 
I-V curves are shown in fig 3 .  Note that the 
effect of the q limit is to cause the curves for 
8, 5 .03 to overlap. If we postulate that small- 
to-moderate rates of radial diffusion are most 
probable, we would conclude that the most likely 
I-V characteristic would lie within or just above 
this group of curves, i.e., between the curves for 
8, = 0.03 and 6, = 0.1 in fig. 2. 

CURRENT-VOLTAGE RELATION 

SPHERE VOLTAGE (KV) 

Fig. 3:  Current voltage relations similar to those 
in Fig. 2, except that the value of 'q' is limited 
in these calculations by the assumption that 
radial diffusion is enhanced when q < 1. 

3. SUMMARY AND DISCUSSION 

We have presented the results of model 
calculations intended to provide insight into the 
consequences of electron trapping and collective 
electric field fluctuations in an axisymmetric 
high voltage magnetized sheath such as would have 
been encountered in the SPEAR I experiment had the 
plasma contactor operated as planned. Considering 
the phenomenological nature of the model, the 
results should be regarded as qualitative rather 
than quantitative, but i t  would nevertheless be 
useful to test them experimentally. 
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