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Numerical simulations are performed to investigate the interaction of acoustic waves
with an array of equally-spaced two-dimensional micro-cavities on an otherwise flat plate
without external boundary-layer flow. This acoustic scattering problem is important in the
design of ultrasonic absorptive coatings (UAC) for hypersonic laminar flow control. The
reflection coefficient, characterizing the ratio of the reflected wave amplitude to the inci-
dent wave amplitude, is computed as a function of the acoustic wave frequency and angle of
incidence, for coatings of different porosity, at various acoustic Reynolds numbers relevant
to hypersonic flight. Overall, the numerical results validate predictions from existing the-
oretical modeling. In general, the amplitude of the reflection coefficient has local minima
at some specific frequencies. A simple model to predict these frequencies is presented.
The simulations also highlight the presence of resonant acoustic modes caused by coupling
of small-scale scattered waves near the UAC surface. Finally, the cavity depth and the
porosity are identified as the most important parameters for UAC design. Guidelines for
the choice of these parameters are suggested.

Nomenclature

Ar Cavity aspect ratio

a Speed of sound

b Cavity half-width

C̃ Dynamic compressibility

c Phase speed

cp Specific heat at constant pressure

f Frequency

H Cavity depth

k Wave number

m Propagation constant

P Pressure

p Acoustic pressure

pi Initial pulse amplitude

Pr Prandtl number

R Reflection coefficient

Re Acoustic Reynolds number

s Cavity spacing

T Temperature

t Time

x Tangential direction

y Normal direction

Zc Characteristic impedance

α Absorption coefficient

γ Specific heat ratio

δent Entropy layer thickness

δS Stokes layer thickness

θ Angle of incidence of acoustic wave

λ Wavelength of acoustic wave

µ Viscosity

ρ Density

ρ̃ Dynamic density

φ Porosity

ω Angular frequency

Superscript

∗ Dimensional quantity

Subscript

0 Ambient property

∗Postdoctorate Fellow, Dept. of Mechanical Engineering, Member AIAA
†Professor, Dept. of Mechanical Engineering, Member AIAA
‡Professor, Dept. of Aeromechanics and Flight Engineering, Member AIAA

1 of 14

American Institute of Aeronautics and Astronautics

5th AIAA Theoretical Fluid Mechanics Conference
23 - 26 June 2008, Seattle, Washington

AIAA 2008-3903

Copyright © 2008 by G.A. Bres, T. Colonius & A.V. Fedorov. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



I. Introduction and previous work

A. Motivations

Hypersonic laminar flow control for delayed laminar-turbulent transition is an important component of
economically viable hypersonic vehicles.1,2 Wind tunnel experiments and theoretical studies3–8 have already
demonstrated that an ultrasonically absorptive coating (UAC), which consists of a thin micro-porous layer,
can suppress the second-mode instability and thereby delay transition of predominately two-dimensional
boundary layer. However, design and robust implementation of UAC on hypersonic vehicles hinges on the
development of accurate and efficient low-order models of the UAC as a boundary condition to traditional
computational fluid dynamic and instability codes.

The research thus seeks to validate and improve existing porous-wall boundary-condition models. This
motivates us to conduct direct numerical simulations (DNS) for the boundary layer disturbances including
unsteady processes within the micro-cavities that constitute the UAC. In particular, we will examine end-
effects at the mouths and bottoms of cavities, and clarify dependencies of the UAC performance on the
cavity spacing and depth.

In this paper we use DNS to investigate the interaction of incident acoustic waves with an array of equally-
spaced micro-cavities on a flat plate surface without flow. Although the external boundary-layer flow is an
important component of the UAC modeling, this unit problem is of particular interest, since mechanisms
of reflection and absorption of incoming boundary-layer disturbances occur near the cavity edges and inside
cavities where the external flow is relatively slow and seems to play a minor role. Furthermore, the acoustic
properties of UAC samples should be estimated in an economical way before testing in hypersonic wind
tunnels. This can be done using benchmark (no-flow) measurements of the reflection of acoustic waves from
the porous coating. Theory and modeling are needed to design, implement and interpret such benchmark
experiments.

B. Theoretical model

We consider the reflection of plane monochromatic ultrasonic acoustic waves by a plane surface covered
by a porous coating (figure 1). The coating has a regular structure consisting of equally-spaced slots (2-D
cavities). It is assumed that the UAC is absolutely rigid and its temperature is uniform and constant. It is
also assumed that: (a) the cavity half-width b and spacing s satisfy the condition b ∼ s ≪ λ, where λ is the
wavelength of incident acoustic wave; (b) the cavity depth H ∼ λ. With these assumptions, the reflection
coefficient (complex quantity characterizing the ratio of the reflected wave amplitude to the incident wave
amplitude) is given by the relationship9,10

R =
Zc cos θ − 1

Zc cos θ + 1
, Zc =

Z∗

c

ρ0a0

=
1

ρ0a0φ

√

ρ̃

C̃
coth(mH), m = iω∗

√

ρ̃C̃. (1)

Here Zc is the normalized characteristic impedance and m is the propagation constant of the porous
layer, φ = 2b/s is the porosity, ρ0 and a0 are the density and speed of sound in ambient undisturbed gas, and
ω∗ = 2πf∗ is the angular frequency of the acoustic wave. The dynamic density ρ̃, the dynamic compressibility
C̃, and the propagation constant m , are calculated for an isolated deep cavity (H ≫ b) using the analytical
solution derived by Kozlov et al.11 For the case of zero bulk viscosity and infinitesimal Knudsen number
(ratio of the molecular mean free pass to the cavity half-width), this solution gives

ρ̃ =
ρ0Λ

Λ − tan Λ
, C̃ =

1

γP0

[1 + (γ − 1)
tan Λ̃

Λ̃
], (2)

where Λ =
√

−iω∗ρ0b2/µ0 is proportional to the ratio of cavity half-width to the Stokes-layer thickness

δ∗S =
√

2µ0/ω∗ρ0. Here Λ̃ =
√

PrΛ, µ0 is the gas viscosity, γ is the specific heat ratio, and Pr is the Prandtl
number.

Note that this model accounts for viscous dissipation and heat conductivity inside individual cavities.
However, end effects associated with scattering of incoming acoustic waves by the cavity mouth and local
effects on the cavity bottom are ignored. Small-scale disturbances, which are generated near the UAC
surface, are not considered. There is no coupling between disturbances in neighboring cavities, which may
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Figure 1. Schematic of the reflection of acoustic wave from equally spaced 2-D cavities

not be true for closely spaced cavities. This motivates us to perform DNS to clarify the aforementioned
effects and validate the robustness of the theoretical model by comparisons with DNS solutions.

II. Direct Numerical Simulations

A. Numerical methods

Brès and Colonius12 developed an algorithm to solve the full compressible Navier-Stokes (NS) equations and
study the flow over three-dimensional open cavities. The equations are solved for all the scales of the flow
without the use of any turbulence modeling. The code was modified to model the flow in individual and
array of equally-spaced cavities in a rigid surface under a transitional boundary layer. We assume shock-free
flow and use sixth-order accurate compact finite difference schemes for streamwise and normal directions,
and Fourier-spectral differentiation for homogeneous directions (when present). The usual compressible
formulation is used to nondimensionalize the NS equations, where the superscript ∗ refers to the dimensional
quantity, and the subscript 0 denotes the ambient undisturbed property:

ρ =
ρ∗

ρ0

, P =
P ∗

ρ0a2
0

, T =
T ∗cp

a2
0

, ui =
u∗

i

a0

, xi =
x∗

i

H
, t =

t∗a0

H
.

The fluid is a perfect gas with specific heat at constant pressure cp, Prandtl number Pr = 0.72 and
γ = 1.4. The temperature at the walls is assumed uniform and constant (Tw = T0). The code can handle
any type of block geometry (including the porous surface configuration shown in figure 1) and is fully
parallelized using Message-Passing Interface (MPI).

The current study focuses on the acoustic scattering by an array of equally-spaced 2-D micro-cavities
without external flow. The acoustic pressure fields p = P − P0 generated by an initial acoustic disturbance
(subscript ic) and its reflection (subscript ref) on a solid wall (without cavities) and on a porous wall (with
cavities) are computed, and can be decomposed as:

psolid(x, y, t) = pic(x, y, t) + pref,solid(x, y, t),

pporous(x, y, t) = pic(x, y, t) + pref,porous(x, y, t).
(3)

We set the amplitude sufficiently small such that the resulting interaction is linear. Assuming that there
is no overlapping of the initial and reflected waves, we can then identify the reflected signals at any fixed
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point (x0, y0), and expand them into Fourier integrals:

pref,solid(t) =
1√
2π

∫ +∞

−∞

p̂ref,solid(ω)e−iωtdω,

pref,porous(t) =
1√
2π

∫ +∞

−∞

p̂ref,porous(ω)e−iωtdω,

(4)

where ω = ω∗H/a0. Since reflection from a solid wall has a reflection coefficient of one, we can cal-
culate the complex reflection coefficient at (x0, y0) (i.e., at angle θ0) for the porous wall RDNS(ω) =
p̂ref,porous(ω)/p̂ref,solid(ω) and compare it to the theoretical value R(ω) in Eq. 1.

B. Computational setup

The configuration considered in this study corresponds to 2-D micro-cavities of constant length to depth ratio
Ar = 2b/H = 0.12. This value matches the aspect ratio of the cylindrical cavities used in the experiment by
Rasheed et al.4
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Figure 2. Acoustic pressure field at time t = 10 for simulations at Re = 100 without wall (a), with solid wall
(b), and with coating of porosity φ = 0.48 (c). Twenty contours are shown between p/pi = −0.01 and 0.01, with
negative contours dashed. While the maximum pressure of the incoming pulse is p/pi = 0.025, the contours
were chosen to highlight the smaller amplitude reflected waves. The initial acoustic disturbance is located
at (0, 2). For each angle θ, the acoustic pressure field is recorded at 2H ( • ), 5H ( ), and 10H above the
wall. Only a small portion of the computational domain is shown here, with symmetric boundary conditions
represented by the black dashed line ( ).

In practice, the pressure field is measured at multiple locations (for a given height above the wall) to
account for the dependence on θ, the angle of incidence of the acoustic wave, and at different heights (i.e., at
2H, 5H, and 10H) to quantify near-field effects (see figure 2). For all the simulations, the initial disturbance
at t = 0 is a circular acoustic pulse:

p(x, y, 0) = ρ(x, y, 0) − ρ0 = pi exp[−((x − xc)
2 + (y − yc)

2)/σ2], u(x, y, 0) = v(x, y, 0) = 0,

with pi = 0.001 and σ = 0.1. To capture all the successive reflected waves from the porous surface, the
simulation are performed up to time t = 40, until all the disturbances in the flow have died away. To minimize
the computational domain, the pulse is located at (xc, yc)=(0, 2) with symmetric boundary conditions at
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x = xc. The grid extends up to 30H and 18H in the x- and y-direction, respectively, with a large buffer zone
at the top and right boundary, to avoid spurious reflections. For the configuration with the porous wall, the
mesh contains about one and a half million grid points, with 12 and 100 points across each cavity length
and depth, respectively.

Also, to ensure that the reflected waves are measured independently of the initial wave, an additional
simulation without the wall (using symmetric boundary conditions at y = yc) is performed to determine
pic(x, y, t). This particular procedure and choice of initial condition (rather than plane monochromatic
acoustic waves) enables the computation of a complete mapping of the reflection coefficient RDNS(θ, ω) in
only three simulations (i.e., without wall, with solid wall, and with porous coating), as shown in figure 2.

C. Validation

All the numerical simulations are performed on the same stretched Cartesian grid, with clustering of points
near the walls to accurately capture the flow inside and around the pores. In particular, the interaction of
acoustic waves with the solid wall leads to the formation of a Stokes layer and entropy layer on the wall
surface. Their respective thicknesses can be estimated13 as δS = δ∗S/H =

√

Ar/(ωRe), and δent = δS/
√

Pr,
where Re = ρ0a0b/µ0 is the acoustic Reynolds numbers based on the cavity half-width. These features
are fully resolved on the chosen computational mesh, except for high Reynolds number (e.g., Re = 1000).
However, for disturbances of ultrasonic frequency relevant to this study, these lengths are much smaller
than the corresponding acoustic wavelength λ = a0/f

∗, and the Stokes and entropy layers can therefore be
neglected. To validate this assumption and the numerical setup, we also considered a planar pulse at normal
incidence:

p(x, y, 0) = ρ(x, y, 0) − ρ0 = pi exp[−(y − yc)
2/σ2] = −v(x, y, 0), u(x, y, 0) = 0.

This configuration corresponds to θ = 0◦, and allows us to limit the computation domain to a single pore
with periodic boundary conditions in the x-direction. For this case, the grid resolution in each direction is
increased by a factor of five. The reflected signal is measured at 1H, 2H, 5H, and 10H above the wall, and
there is no overlapping of the initial and reflected waves in this setup.

First, the reflected signal from the DNS is compared to theory,9 using the classical absorption coefficient αc

and phase speed cc. For the reflected planar pulse traveling in the +y direction, the Fourier coefficients of the
pressure signal at y = y1+∆y should theoretically satisfy p̂ref (y, ω) = p̂ref (y1, ω) exp(−αc∆y) exp(−iω∆y/cc).
Given a pressure time-history at y = y1 from the DNS, the theoretical pressure time-history at some distance
∆y can therefore be reconstructed using Eq. 4. As shown in figure 3, there is excellent agreement between
DNS and theory, which validate the numerical resolution of the viscous and thermal spatial absorption, and
of the dispersion of the acoustic waves during propagation.
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Figure 3. Absorption and dispersion of the planar pulse reflected from the solid surface at Re = 100: Pressure
time-history at y = y1 = 1H from DNS ( ); Pressure time-history at y = 2H from DNS ( ) and from
theory ( � ); Pressure time-history at y = 5H from DNS ( ) and from theory ( © ).
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Figure 4. Reflection coefficient for different numerical setup at Re = 100 . (a) Effect of grid resolution and
initial condition for θ = 0◦: circular pulse ( ), and planar pulse on fine mesh ( ◦ ). (b) Effect of height of
measurement for θ = 30◦ and circular pulse: at 2H ( ), 5H ( ), and 10H ( × ) above the wall.

Next, the simulations for the planar pulse on the fine mesh and for the circular pulse on the original
mesh are compared for the different Reynolds number considered in this study. Both the Stokes and entropy
layers are fully resolved on the fine mesh. The results in figure 4(a) show that the reflection coefficients are
nearly identical, independent of the grid resolution and initial disturbance. The small discrepancies observed
at low frequencies are likely due to the curvature of the wave front in the case of the circular pulse.

Additionally, the reflection coefficients measured at 2H, 5H, and 10H above the surface are compared
in figure 4(b), for the circular pulse disturbance, at θ = 30◦ and Re = 100, with φ = 0.48. The results show
that near-field effects are negligible and that the reflection coefficient is independent of the height of the
measurements. The same conclusion is obtained for all angle of incidence, Reynolds number, and porosity.
In the remainder of the paper, the results will be presented for measurements at 2H.

Different widths, σ, of the acoustic pulse are also considered, and lead to similar results for the reflection
coefficient, up to a frequency f = f∗H/a0 ≈ 2. For typical UAC parameters, this range of frequencies
corresponds to the ultrasonic frequency band, and is sufficient to capture the frequency of the most amplified
second-mode instability waves observed in experiments4,14 and numerical simulations.3,15,16

III. Results and discussion

A. Parametric study

The numerical simulations are performed at Reynolds numbers Re = 10, 100, and 1000, for coatings of
porosity φ = 0.2, 0.48, and 0.8. These setup and flow conditions are chosen to enable future comparisons
with ongoing experiments17 on UAC samples. These values of Re also correspond to the range of acoustics
Reynolds numbers relevant for practical UAC (e.g., b ≈ 5 to 100 µm) in high-altitude (e.g., 30 km) hypersonic
flight.

1. Effect of angle of incidence

Figure 5 shows the complete mapping of the reflection coefficient obtained for a coating of porosity φ = 0.48,
at Re = 100. This plot is representative of the results for the UAC of different porosities considered, and
Re ≥ 100. The reflection coefficient shows strong frequency modulations, largely independent of the angle
of incidence, here up to θ ≈ 60◦. As θ increases, an angle is reached where the reflection coefficient is at its
minimum value. This behavior is typical of the reflection of acoustic waves obliquely incident on a normally-

reacting surface (see figure 6.6.1 in Ref. 9), where the transmitted wave is refracted so that it propagates
effectively only perpendicular to the surface (i.e., inside the pores in our case). As θ → 90◦, the theoretical

6 of 14

American Institute of Aeronautics and Astronautics



f

θ|R
D

N
S
|

0

0.2

0.4

0.6

0.8
1

0
0.5

1
1.5

0

10

20

30

40

50

60

70

80

Figure 5. Reflection coefficient amplitude |RDNS | as a function of frequency f and angle of incidence θ for a
coating of porosity φ = 0.48 at Re = 100.

reflection coefficient approaches R = −1, and in this limit, the coatings acts as a pressure-release surface.
This result is confirmed by the DNS measurements, as shown in figure 6. At high angle of incidence, the
ratio of peak pressure amplitude from UAC to solid wall is approximately 90% (i.e., peaks at t ≈ 23 in figure
6(b)), and the waves are in opposition of phase, such that the acoustic pressure goes zero at the top surface
in the limit of θ = 90◦.

solid surface reflection
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Figure 6. Pressure time-history at 2H above the top surface and Re = 100 for the solid wall ( ) and UAC
of porosity φ = 0.8 ( ◦ ). (a) Angle of incidence θ = 0◦. (b) θ = 80◦.

For second-mode instability waves, the angle of incidence can be estimated using a WKB approximation.18

In the inviscid limit, the pressure amplitude of the second mode is a solution of an eigenvalue problem (Eqs.
(5-7) in Ref. 18), and is expressed as a superposition of incident and reflected acoustic waves. The angle of
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incidence θinc (measured from the x-axis) is estimated as

tan θinc = λr(0)/αr ≈
√

M2
e (U(0) − c)2

T (0)
− 1 =

√

M2
e c2

Tw

− 1, (5)

where c = c∗/Ue is the phase velocity, Tw = T ∗

w/T ∗

e is the wall temperature, and Me = Ue/ae is the local
Mach number. Here, the subscript e denotes quantities at the upper boundary-layer edge. For the second
mode at Me ≥ 6, the phase velocity is c ≈ 0.9. For cold-wall conditions relevant to experiment in shock
tunnels,4,19 the wall temperature is Tw ≈ 1, which gives at high Mach number θinc ≈ 81◦ − 87◦, close to
90◦ (i.e., normal incidence). For moderate cooling8 and adiabatic wall,5 the estimated angle of incidence
decreases to θinc ≈ 74◦ and 64◦, respectively. In all cases, the angle of incidence relevant for UAC design is
smaller than θ = 90◦ − θinc = 36◦. Therefore, our analysis will mainly focus on the reflection coefficient at
normal incidence.

2. Effect of Viscosity

Figure 7(a) shows the time-history of the reflected signal pref/pi at normal incidence for a solid wall and
a porous surface (φ = 0.48), at the different Reynolds numbers considered (Re = 10, 100, and 1000). The
main reflections from the top solid wall, and from the bottom of the cavity can be identified at time t ≈ 4
and t ≈ 6, respectively. The corresponding reflection coefficient is shown in figure 7(b).
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Figure 7. Effect of viscosity on the reflection of acoustic wave from a coating of porosity φ = 0.48 at normal
incidence (θ = 0◦): Re = 10 ( ), Re = 100 ( ), and Re = 1000 ( ). (a) Pressure time-history at
2H above the top surface. For comparison, the reflected signal from the solid wall at Re = 100 is also presented
( ). (b) Reflection coefficient amplitude.

At higher Reynolds numbers (Re = 100 and 1000), reflections from the bottom of the cavities lead to
destructive/constructive reinforcement at some specific frequencies. These frequencies, corresponding to
local minima and maxima of the reflection coefficient, are only weakly dependent on the Reynolds number.
As viscosity is increased (e.g., Re = 10), there is no additional reflection from the cavity bottom because
of the increase in dissipation inside the pores, and the reflection coefficient monotonically decreases with
frequency.

As mentioned in section IIC, we suspect that the curvature of the wave front introduced some discrep-
ancies at low frequencies, and our method overestimates the reflection coefficient for f < 0.1. However, this
limitation does not affect the range of ultrasonic frequency relevant for UAC design. Also, the additional
pressure oscillations observed at late times in particular at Re = 1000 and 100 correspond to the resonant
modes discussed in section D.

The influence of the viscosity can therefore be summarized qualitatively as follow: there is a critical
Reynolds number above which acoustic disturbances are not completely absorbed inside the pores. In
that case, interference between incoming and outgoing (reflected from the cavity bottom) waves leads to
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significant decrease of the reflection coefficient at specific frequencies. A simple model for the prediction of
these frequencies is presented in section C.

3. Effect of porosity

To investigate the influence of porosity, simulations are performed for φ = 0.2, 0.48, and 0.8, keeping the same
cavity aspect ratio. The pressure time-history and reflection coefficient at normal incidence for Re = 100 are
shown in figure 8(a) and (b), respectively. As expected, the amplitude of the reflection from the top surface
(i.e., the peak at t ≈ 4 in figure 8(a)) decreases with porosity, while the reflection from the bottom of the
cavity (i.e., the peak at t ≈ 6) increases. The frequencies corresponding to local minima and maxima of
the reflection coefficient are largely unaffected by the change in porosity. In contrast, the amplitude of the
reflection coefficient increases as porosity decreases. This result is consistent with the limit value |R| = 1 for
φ = 0, and with the observations that UAC performance increases with porosity. The porosity is therefore
a critical parameter for the scattering and absorption of acoustic waves by porous surface, and this feature
is further discussed in section E.
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Figure 8. Effect of porosity on the reflection of acoustic wave from a porous surfaces at Re = 100 and normal
incidence (θ = 0◦): porosity φ = 0.2( × ), φ = 0.48 ( ), and φ = 0.8 ( ◦ ). (a) Pressure time-history at 2H
above the top surface. For comparison, the reflected signal from the solid wall is also presented ( ). (b)
Reflection coefficient amplitude

As mentioned previously, the additional oscillations observed in the pressure time-history correspond to a
resonant mode. From figure 8(a), it is clear that the oscillation frequency and amplitude depend on porosity.
In particular, for φ = 0.2, the presence of the resonant mode of frequency approximately 0.83 strongly affects
the calculation of the reflection coefficient, and the data are not reliable for f ≥ 0.8 . Therefore, the results
are not shown in figure 8(b). The resonant mode is examined in more detail in section D.

B. Comparison of DNS with theory

The comparisons between the reflection coefficient obtained from DNS and from theory at Re = 100 are
presented in figure 9 (a), (b), and (c), for porosity φ = 0.8, φ = 0.48, and φ = 0.2, respectively. Overall,
there is good agreement between the DNS results and the theoretical predictions. The formulation described
in section IB accurately captures the dependence of the reflected acoustic waves on the angle of incidence,
frequency and porosity. As expected, the Stokes and entropy layers on the cavity mouth and bottom, which
are resolved in the DNS but not accounted for in the theoretical model, have little influence on the reflection
of ultrasonic acoustic waves.

In particular, the theory confirms that the reflection coefficient is approximately independent of the angle
of incidence for θ ≤ 30◦-35◦. There is also good agreement on the specific frequencies of minimum reflection
coefficient, for both low and high angle of incidence. The pressure time-history at θ = 0◦ and θ = 80◦ in
figure 6 gives some insight on the dependence of these frequencies on the angle of incidence. At normal

9 of 14

American Institute of Aeronautics and Astronautics



f

θ

0 0.5 1 1.5
0

20

40

60

80

f0 0.5 1 1.5
0

20

40

60

80

f0 0.5 1 1.5
0

20

40

60

80

(a) (b) (c)

Figure 9. Comparison of the reflection coefficient amplitude from DNS (flooded contours) and theory ( )
at Re = 100: (a) porosity φ = 0.8; (b) φ = 0.48; (c) φ = 0.2. Ten contours are shown between |R| = 0 and 1.

incidence in figure 6(a), the reflected wave from the top surface of the porous wall is in phase with the
reflected wave from the solid surface, but approximately in opposition of phase at θ = 80◦ in figure 6(b).
This observation suggests that the specific values of the frequencies of minimum reflection coefficient are
related to the phase between the reflected waves, which is the starting point of the analysis presented in
section C.

Detailed comparison between theory and DNS results at normal incidence (using the planar pulse on the
fine mesh) is shown in figure 10. For all the porosities and Reynolds number considered in this study, the
theoretical predictions match the DNS measurements well, in particular at low frequency. The agreement is
good even for high porosity, where neighboring pores are closely spaced and the theory neglects the coupling
of disturbances. The discrepancy increases with frequency, most likely because the theory assumes that the
acoustic wavelength λ is much larger than the cavity half-width b and the spacing s. For instance, for f = 1.5
and porosity φ = 0.48, the ratio s/λ ≈ 0.4. Also, for lower Reynolds number (i.e., Re = 10), the viscous
effects lead to significant absorption and dispersion of the incoming wave. In this case, a smaller initial pulse
width σ may be required to fully capture the reflection coefficient at high frequency and better match the
theoretical predictions.
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Figure 10. Comparison of the reflection coefficient at normal incidence from DNS (solid line) and theory
(dashed line) at Reynolds number Re = 10 ( ), Re = 100 ( ), and Re = 1000 ( ). (a) Porosity
φ = 0.8; (b) φ = 0.48; (c) φ = 0.2.

Note that for the low porosity case in figure 9 (c) and 10 (c), the DNS results are affected by the resonant
mode for f > 0.85 and are not shown. This resonant mode is not captured in the theoretical model because it
originates from small-scale disturbances generated near the UAC surface and coupling between neighboring
cavities, as discussed in section D.
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C. Estimate of the specific frequencies of minimum reflection

We present here a simple model to predict the frequencies of minimum reflection coefficient. For a plane
monochromatic wave traveling in the +y direction (i.e., reflected wave from the solid wall), the solution to
the wave equation is of the form p1 exp[i(ωt − ky)]. Similarly, the reflected wave from the porous surface is
of the form p2 exp[i(ωt−k(y+∆y))], where ∆y = 2H correspond to the distance traveled by the wave inside
the pores. Minima of the reflection coefficient are obtained when the reflection from the solid wall and the
porous surface are in opposition of phase, that is kr∆y = (2n − 1)π, where kr is the real part of the wave
number k = ω∗/a0, and n = 1, 2, 3, etc. In the inviscid approximation, the wave number in dimensional form
is kr = k = 2πf∗/a0, and the frequencies of minimum reflection coefficient relevant for UAC are estimated
as:

f∗H

a0

= fn = (2n − 1)/4, (6)

where n = 1, 2, and 3 lead to the specific frequencies f1 = 0.25, f2 = 0.75, and f3 = 1.25, respectively.
The effect of viscosity can also be estimated using the absorption coefficient α∗

w for wall losses in wide
pipes.9 This approximation is valid for pores wide compare to the Stokes layer thickness (i.e., b/δ∗S ≫ 1, which
is approximately the case in our study for Re ≥ 100. The presence of the viscous boundary layer modifies
the wave speed c∗w of the acoustic wave such that cw = c∗w/a0 ≈ 1−α∗

w/k. In that case, kr = ω∗/c∗w = k/cw,
and the frequencies of minimum reflection coefficient are now the solution of the equation

fn

cw(fn)
= (2n − 1)/4 n = 1, 2, 3. (7)

The predicted frequencies for Re = 100, 1000, and the inviscid limit are compared to DNS and theory
in figure 11. The results are presented for the different porosities considered, which lead to some scattering
of the data. Overall, there is a reasonable agreement between the estimations and the measured frequencies
of minimum reflection, with approximately less than 10% error. The formulation with viscosity effects
accurately captures the Reynolds number dependence of these frequencies, namely that they decrease with
viscosity. While the prediction at Re = 1000 provides good result, the decrease in frequency at Re = 100 is
overestimated, most likely because the assumption that b/δ∗S ≫ 1 starts to break down.
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Figure 11. Comparison of the frequency predicted from Eq. 7 with frequencies of minimum reflection measured
from DNS ( ◦ Re = 100; � Re = 1000) and theory ( × Re = 100; + Re = 1000). The inviscid estimate from Eq.
6 is shown by the dashed line ( ).

This model is based on the assumption that the phase difference between the reflected waves is introduced
only by the traveled distance in the pores. As mentioned in section A1, an additional phase shift is observed
at high angle of incidence. In the inviscid approximation, if the waves are initially in opposition of phase
(as in figure 6(b)), then the frequencies of minimum reflection coefficient are now f = n/2, n = 1, 2, and
3. These estimates are in good agreement with the DNS and theoretical results for θ > 70◦ in figure 9 (a)
and (b). Also note that a similar condition can be derived to predict the frequencies of maximum reflection
coefficient.
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D. Resonant modes

In most of our simulations, we observe the presence of additional oscillations in the flow field, with a frequency
strongly dependent on porosity. We argue here that these oscillations correspond to resonant modes caused
by small-scale disturbances generated near the UAC surface and coupling between neighboring cavities. In
this context, the term “resonant” is used to qualify the mode frequencies in a broad sense, even though the
oscillations are actually slowly damped and decay in time.

In this mechanism, the interaction of the acoustic wave with the porous surface generates scattered
waves at the pore corners. These waves created near each cavity mouth are coupled with the ones from the
neighboring pores, and leads to oscillations in the flow field above the porous surface. As these acoustic
disturbances travel back and forth between pores, the wavelength of the oscillations λres is related to the
spacing between cavities by λres = s. The nondimensionalized frequency of the resonant mode is then
estimated as

fres =
H

λres

=
φ

Ar
. (8)

Figure 12(a) shows a portion of the time-history of the tangential velocity u at θ = 10◦ and 2H above a
coating of porosity φ = 0.2, at Re = 100 and 1000. At that location, the reflections of the acoustic pulse are
measured earlier in time. Consequently, for t ≥ 20, the resonant mode is the only unsteady feature of the
flow. Similar oscillations, largely independent of location on the computational grid, are observed for the
other flow field variables. As expected, the oscillation amplitude of the acoustic resonant modes decreases
with Re because of viscous absorption, and for lower Reynolds number (i.e., Re = 10), the oscillations are
completely damped. The corresponding power spectrum is shown in figure 12(b), and the predicted resonant
frequency from Eq. 8 (represented by the vertical line) is in excellent agreement with the DNS measurement.
We also observe a significant contribution from the first subharmonic of frequency fres/2 (i.e., of wavelength
2s) which corresponds to interaction between cavities one pore away from each other.

To quantify the relevance of the resonant mode compared to the other acoustic reflections, the power
spectrum of the full time-signal without wall and from the reflection off the solid surface are also presented
in figure 12(b). At the resonant frequency and subharmonic, the energy content of the solid wall reflection
and the resonant mode are similar for Re = 1000, and the resonant frequency are less energetic at Re = 100
because of viscous absorption.
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Figure 12. Details of the resonant mode for a UAC of porosity φ = 0.2 at Re = 100 ( ) and Re =
1000 ( ). (a) Velocity time-history for t ≥ 20; (b) corresponding power spectrum. For comparison, the
power spectrum of the full signal without wall ( ) and from the reflection off the solid surface ( )
are also shown, for Re = 1000. The vertical line correspond to the resonant frequency predicted with Eq. 8.
The results are shown for θ = 10◦ at 2H above the wall.

Similar agreement between the measured and predicted resonant frequencies are obtained for porosity
φ = 0.48 and 0.8, with less than 2% error. In this mechanism, the resonant frequency depends on the cavity
aspect ratio (constant in our study) and is proportional to porosity. Therefore, for coatings of high porosity,
which are of interest for laminar-flow-control applications, these frequencies are higher than the ultrasonic
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frequency band relevant for UAC, and do not affect the computation of the reflection coefficients. However,
the resonant disturbances may interact with the boundary-layer flow and cause detrimental tripping effect.
This issue should be addressed in future work with the presence of the outer boundary-layer flow.

E. Guidelines for UAC design

For the 2-D micro-cavities considered in this study, the first important parameter is the cavity depth. In the
range of acoustic Reynolds numbers relevant for practical UAC, reflections from the bottom of the cavities
leads to minima of the reflection coefficient as some specific frequencies. Using the estimations from Eq. 6
or 7, the cavity depth H could be chosen so that the predicted frequency of minimum reflection matches the
frequency of the most amplified second-mode instability waves observed in experiments. Since our results
show that this mechanism is only weakly affected by the porosity, the parameter H could be tuned up
independently of the parameter φ. While the length-to-depth ratio of the pores was kept constant in our
study, matching typical values from experiments, more simulations are underway to examine in details the
effects of the cavity aspect ratio parameter.

Porosity is the other critical parameter for UAC design. Previous numerical simulations3 have suggested
that UAC performance increases with porosity, and our parametric study tends to confirm this result. Over-
all, the amplitude of the reflection coefficient decreases with higher porosity, as the scattering and absorption
of acoustic waves by the UAC is enhanced. Furthermore, for high porosity, the resonant acoustic mode has
a frequency much higher than the ultrasonic frequency band relevant for UAC, and is not expected to sig-
nificantly affect the performance. More work is required to investigate these acoustic modes, in particular
for three-dimensional pores.

In theory, the most promising configurations correspond to square-rectangular and honeycomb 3-D pat-
terns, with porosity up to 70-90% (see Ref. 19). For such geometries, high-fidelity simulations are required
to accurately describe the interactions between closely spaced pores. Additional work might also be needed
to formulate and verify experimentally the structural integrity of these high-porosity coatings. Future stud-
ies will therefore focus on extending the current UAC research to realistic three-dimensional high-porosity
coatings, with circular cavities, rectangular pores, or more complex geometry.

Finally, our DNS results show that the theoretical model presented in section IB is a robust and accurate
tool for UAC design. The theoretical prediction of the reflection coefficient also agrees well with benchmark
(no flow) measurement17 conducted for a UAC of regular microstructure at various ambient pressures, with
emphasis on low pressures relevant to high-altitude hypersonic flights. This set of theoretical, numerical and
experimental tools can be valuable to estimate in an economical way the acoustic properties of UAC samples
before their testing in hypersonic wind tunnels.

IV. Summary

The interaction of incident acoustic waves with an array of equally-spaced micro-cavities on a flat plate
surface was investigated using theoretical modeling and direct numerical simulations. Since the second mode
instability of hypersonic boundary layer represents trapped acoustic waves of ultrasonic frequency band, it
is assumed that basic features of its interaction with porous coating can be captured by considering this
acoustic scattering problem with no external flow.

The simulations were performed for a porous coating consisting of 2-D cavities of constant length to depth
ratio, with an incoming circular acoustic pulse as initial condition. The reflection coefficient was computed
as a function of the acoustic wave frequency and angle of incidence, for coatings of different porosity, at
various Reynolds numbers relevant to hypersonic flight. Comparisons with theoretical prediction showed
excellent agreement with the DNS results in the parametric range relevant to UAC applications for laminar
flow control. Overall, the reflection off the UAC decreases with higher porosity, and in most cases, minima
of the reflection coefficient exist at some specific frequencies. A model to predict these frequencies was
proposed, and showed good agreement with the numerical and theoretical data.

The simulations also highlighted the presence near the UAC surface of resonant acoustic modes caused
by the coupling of small-scale scattered waves generated by neighboring pores. A formulation to estimate
the resonant frequency was presented, and the predicted frequencies agreed well with DNS measurements.
While the resonant modes were not captured by the theoretical model, they are mainly relevant for coatings
with cavity spacing of the same order than the wavelength of the incident wave. In practice, typical UAC for
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laminar-flow-control applications has spacing less than 0.1 of the second-mode wavelength instability; i.e.,
the resonant frequency is much larger than the second-mode frequency. Nevertheless, the resonant acoustic
modes may be excited by high-frequency disturbances of the outer flow and trip the boundary layer similar
to small-scale distributed roughness. Feasibility of this detrimental effect should be addressed in future
numerical simulations including the outer flow.

Finally, based on our parametric study of the geometrical factors and flow conditions effects, we identified
the cavity depth H and the porosity φ as the most important parameters for UAC design. Guidelines for the
choice of these parameters were also suggested. It is our hope that a better understanding of these acoustic
properties will lead to improvements in existing UAC models.
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