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Abstract 61 

In the past two decades, increased production and usage of metallic nanoparticles (NPs) has inevitably increased 62 

their discharge into the different compartments of the environment, which ultimately paved the way for their 63 

uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have 64 

been raised on the usage of NPs in everyday life and has become a matter of public health concern. Among the 65 

metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising 66 

uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, 67 

comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as 68 

agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms are poorly studied. This review 69 

article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological 70 

profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial 71 

plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based 72 

NPs and the process of their penetration into plants has also been discussed herein. Overall, this review could 73 

provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a 74 

sustainable environment.   75 
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Introduction 125 

 126 

In recent years, potential effects of engineered nanoparticles (ENPs), and more so of metallic and metal-oxide 127 

NPs, on aquatic and terrestrial systems have received increased attention due to their wide applications and 128 

consequential release into the environment. Metallic NPs possess unique properties for potential use in the 129 

rapidly growing nanotechnology industry (Ali et al. 2015; Arruda et al. 2015; Saleem et al. 2017). Various 130 

products containing NPs are currently in the marketplace, and many are still being added to the list (Ahmed et al. 131 

2018b; Rajput et al. 2018c; Vance et al. 2015). The Global Market for Metal Oxide Nanoparticles indicates that 132 

the metal oxide NPs production could increase from 0.27 million tons (2012) to 1.663 million tons by 2020 (The 133 

Global Market for Metal Oxide Nanoparticles to 2020). Among them, Cu-based NPs have wide applications in 134 

the field of metallurgy, electronics, automotive, fuel, transportation, machinery etc. The annual production of Cu 135 

was approximately 18.7 million metric tons in 2015 (Keller et al. 2017), out of which a small fraction of 136 

approximately 200 tons was comprised of Cu-based NPs (Keller and Lazareva 2013). Since then, the use of Cu-137 

based NPs has been rapidly escalating into applications such as solar cells, sensor development, catalysts, 138 

hydrogen production, drug delivery, catalysts for typical C-N cross-coupling reactions and light emitting diodes 139 

(Keller et al. 2017; Rajput et al. 2017b). Due to their antimicrobial and antifungal properties, Cu-based NPs are 140 

suitable for biomedical applications and are also used in water treatment (Ben-Sasson et al. 2016), textile 141 

industries (Sedighi and Montazer 2016), food preservation, and agricultural practices (Montes et al. 2016; 142 

Ponmurugan et al. 2016; Ray et al. 2015). The rapid production and multifarious applications of Cu-based NPs 143 

in various industries have necessitated the assessment of their impacts on the environment (Ahmed et al. 2018b, 144 

c). 145 

Copper (Cu) is a naturally occurring ubiquitous element present in the environment with a concentration 146 

around 60 g per ton in the Earth’s crust (Ojha et al. 2017) and essential micronutrient for plant growth at certain 147 

concentrations and is known to play important roles in mitochondrial respiration, hormone signalling, cell wall 148 

metabolism, iron mobilization, and electron transport (Yruela 2009). However, at higher concentrations, Cu is 149 

generally toxic to plants and other organisms including algae, mussels, crustaceans, and fish (Aruoja et al. 2009; 150 

Braz-Mota et al. 2018; Katsumiti et al. 2018; Ruiz et al. 2015). While there is no data available on the 151 

concentration of CuO-NPs in the soil total Cu could range from 2-100 mg kg-1 in unpolluted soils (Nagajyoti et 152 

al. 2010). Soil receives Cu-based NPs from direct application of agricultural nano-products and industrial wastes 153 

(Adeleye et al. 2016; Rajput et al. 2017b, 2018b). The toxic action of pesticides specifically Cu-based NPs and 154 

Cu-based nano pesticides (e.g., Kocide 3000) makes them appropriate to be used for the control of plant 155 

pathogens and pests (Anjum et al. 2015; Shahid and Khan 2017). Cu-based fungicides have been used for more 156 
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than a century contributing to soil contamination based on their Cu2+ content, allowing them to function as a 157 

reducing or oxidizing agent in biochemical reactions. Terrestrial species can have more interactions with NPs 158 

because up to 28% of the total NPs production ends into soils (Keller and Lazareva 2013). Substantially 159 

increased production of Cu-based NPs in the last decade emphasizes the need of thorough and systematic 160 

investigation of nano-Cu release, environmental fate, bioavailability, dissolution of Cu+/Cu2+ ions from Cu-based 161 

NPs, exposure routes, and their toxic impacts on non-target organisms (Keller et al. 2017). 162 

Plants are one of the most important entities and provide a very large surface area for NPs exposure via 163 

roots and above ground parts (Dietz and Herth 2011). For instance, the air-dispersed NPs may penetrate and 164 

transport via the stomatal openings (Pullagurala et al. 2018; Raliya et al. 2016). Different plants exhibit specific 165 

behaviours towards excess metal present in the growth medium. In particular, metal-tolerant plants could limit 166 

the uptake of NPs into photosynthetic tissues by restricting the transport of metals across the root endodermis 167 

and storing them in the root cortex; hyperaccumulating plants could compile excess NPs in the harvestable 168 

tissues (Manceau et al. 2008). The exact mechanism of plant defence towards NPs toxicity is not fully 169 

understood.   170 

At present, inadequate information is available on how Cu-based NPs affect the soil organisms, for 171 

instance, agriculturally important microbes, fungi, nematodes and earthworms. The NPs may affect soil flora 172 

directly by inducing changes in the bioavailability of other toxins and nutrients or indirectly via interactions with 173 

natural organic compounds possible interactions with toxic organic compounds which may increase or decrease 174 

the toxicity of NPs (Haris and Ahmad 2017).  175 

In order to get more in-depth knowledge of Cu-based NPs, this review critically assessed the literature 176 

data present over effects of Cu-based NPs on terrestrial and aquatic ecosystems, the interaction of soil microbial 177 

communities with Cu-based NPs, the bioaccumulation of Cu-based NPs in plants and their toxicity mechanism, 178 

and their biotransformation in soil (Figure1). 179 

 180 

2 Sources, variants and fate of Cu-based NPs in the environment   181 

 182 

Owing to diverse applications of Cu-based NPs in the nanotechnology industry, the release of nanoscale-Cu in a 183 

different sphere of the environment is expected (Qiu and Smolders 2017). Sources of NPs include both the point 184 

and non-point sources. Point sources are comprised of production and storage units, research laboratories, 185 

disposal of nanomaterial-containing consumer products and wastewater treatment plants etc., whereas Cu 186 

discharge through non-point sources occurs through wear and tear of Cu-based NPs containing paints, cosmetic 187 

products, and cleaning agents (Rajput et al. 2018b). The Cu-NPs have potential to enter water, soil, and 188 
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sediments during and at the end of their life cycle (Keller et al. 2013; Slotte and Zevenhoven 2017). Soil can 189 

receive NPs through various channels, for example, agricultural amendments of sewage sludge, atmospheric 190 

deposition, landfills, or accidental spills during industrial production (Simonin and Richaume 2015). The Cu-191 

based NPs are available with various morphologies like Cu, CuO, Cu2O, Cu3N exhibiting various oxidation 192 

states, for instance, Cu0, CuI, CuII, and CuIII, Cu+ (Cu2O) or Cu2+ (CuO) (Ojha et al. 2017). In soil, nanoscale-Cu 193 

might be present in various forms like complexes with soil organic matters such as natural organic matter, humic 194 

acid, fulvic acid etc., Cu-NPs containing pesticides including Kocide 3000 [nCu(OH)2], as complex with other 195 

metal components/plant exudates etc. (Conway et al. 2015; Gao et al. 2018; Peng et al. 2017; Servin et al. 196 

2017a).  197 

 198 

Fig 1. Schematic of CuO NPs sources to environment and their effects on different ecosystems  199 

 200 

 Due to their high density, Cu-NPs tend to settle rapidly from nano to micro scale. The Cu-NPs, both in 201 

the presence and absence of organisms may undergo micro scale aggregation with high polydispersity in water 202 

and simple salt solutions (Adeleye et al. 2014; Conway et al. 2015; Griffitt et al. 2007). In a study by Adeleye et 203 

al. (2014), only 20% Cu-NPs was detected after 6 h at pH 7.0 in NaCl (10mM) which suggested rapid 204 

aggregation of Cu-NPs leading to sedimentation. On the other hand, natural organic matter released in the 205 

environment may reduce the Cu-NPs sedimentation; for instance, approximately 40% of Cu-NPs remained 206 
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stabilized by organic matter released by fish even after 48 h (Griffitt et al. 2007). Indeed, the dissolution of CuO-207 

NPs in aqueous medium is too slow; so much so that a within concentration range of 0.01-10 mg L-1, CuO-NPs 208 

showed as little as ≤1% dissolution after weeks in freshwater and after a month in seawater (Adeleye et al. 2014; 209 

Atha et al. 2012; Buffet et al. 2013; Conway et al. 2015; Hanna et al. 2013). A month after soil contaminated by 210 

CuO-NPs, an increase in labile fraction of the Cu was noted, which had negative effects on the T. aestivum 211 

growth (Gao et al. 2018).  212 

 Thus, once entered into the environment, nanoscale-Cu is expected to undergo a series of 213 

transformations and partitioning that ultimately decides its fate and bioavailability to organisms. 214 

 215 

3 Biotransformation of Cu-based NPs in soil  216 

 217 

Being a less dynamic component of the biosphere, the soil system has a relatively high potential for pollutants 218 

accumulation in comparison to the atmosphere and hydrosphere. Soil not only acts as a depot for pollutants but 219 

also serves as a source of contaminant input into food chains. Additionally, the soil matrix is considered 220 

abundant in natural occurring NPs which exist in both forms; as primary particles and as 221 

agglomerates/aggregates. The natural organic matter of soil influences the bioavailability of NPs through a 222 

variety of mechanisms like electrostatic interactions, ligand-exchange, hydrophobic effect, hydrogen-bonding 223 

and complexation (Philippe and Schaumann 2014). The various soil processes such as homo/hetero-aggregation, 224 

oxidation, dissolution, sulfidation, sedimentation may impact NPs toxicity (Adeleye et al. 2016; Conway et al. 225 

2015; Garner and Keller 2014; Lowry et al. 2012; Miao et al. 2015; Torres-Duarte et al. 2016). Aggregation and 226 

dissolution of NPs are generally influenced by a range of environmental factors such as pH, organic matter, ionic 227 

species and colloids. A passivation process frequently occurring under various environmental conditions is the 228 

sulfidation of CuO-NPs (Gogos et al. 2017; Ma et al. 2014). This process is expected to alter the speciation and 229 

properties of CuO-NPs significantly and might increase its apparent solubility resulting in increased 230 

bioavailability and thus eco-toxicity attributed to toxic Cu2+ (Ma et al. 2014).  231 

 Additionally, colloidal stability of particle is one of the critical factors controlling their fate and effects 232 

(Lowry et al. 2012). The toxicity and bioavailability of Cu changes according to the Cu speciation including 233 

ionic-Cu, Cu-NPs, complexed-Cu, bulk-Cu, oxidation states and environmental factors such as pH, soil, water, 234 

sedimentation, organic matter, redox potential, plant species, and growth phase (Cornelis et al. 2014; Garner and 235 

Keller 2014; Zhang et al. 2018) 236 

In soil, NPs either interact with each other forming homoaggregates or interact with different NPs and 237 

natural colloids forming heteroaggregates (Cornelis et al. 2014; del Real et al. 2018). The process of NPs 238 
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aggregation mainly impacts their colloidal stability which is among the key factors controlling NPs fate and 239 

impact (Bundschuh et al. 2018). The extent of aggregation correlates well with the ionic strength of the medium 240 

but not with the sedimentation rate (Conway et al. 2015). The major controlling factor for Cu-based NPs 241 

sedimentation includes phosphate and carbonate content in the matrix and the oxidation state of Cu. The 242 

dissolution of Cu-based NPs is majorly hindered by sulfidation which is often regarded as passivation process 243 

for Cu/CuO-NPs. It increases the solubility of Cu/CuO-NPs resulting in enhanced bioavailability and toxicity 244 

(Ma et al. 2014). The transformation of Cu-based NPs is further influenced by geochemical properties of soil. In 245 

line with this, low translocation of Cu-NPs was observed in organic-rich soil, whereas high translocation was 246 

noticed in sandy clay soil. The highest rate for transformation to Cu ions and adsorption complexes was detected 247 

in acidic soils (Shah et al. 2016). Under slightly acidic conditions, CuO-NPs may combine with the hydrogen 248 

ions of soil and release Cu2+ or Cu(OH)+.  Under long-term exposure, CuO-NPs and Cu in combination with 249 

humic acid get transformed to Cu2S, and Cu goethite complex (Peng et al. 2017).  250 

 Moreover, Wang et al. (2013) investigated the transformations of CuO-NPs in biological and 251 

environmental media and their effect over Cu-bioavailability, redox activity, and toxicity. The authors revealed 252 

that CuO-NPs underwent sulfidation process via sequential dissolution and re-precipitation mechanism to 253 

generate complex secondary aggregates of copper sulfide (CuS) NPs which are considered as active catalysts for 254 

bisulfide oxidation. Although the sulfidation is considered as a natural detoxification mechanism for heavy 255 

metals, the authors suggested that it may not permanently detoxify copper as CuS-NPs but also show redox 256 

activity through the release of Cu(I) or Cu(II) by H2O2 oxidation. In another study, wheat crop was exposed to 257 

CuO-NPs in a sand growth matrix and similar transformation of CuO to Cu (I)-sulphur complexes was noticed 258 

(Dimkpa et al. 2012). Significant reduction of CuO-NPs to Cu2S and Cu2O was also shown in maize during root-259 

shoot-root translocation of CuO-NPs (Wang et al. 2012). The reason behind the transformation of Cu(II) to Cu(I) 260 

in plants may be ascribed to the presence of reducing sugars which get transported from leaf cells to roots 261 

(Huang et al. 2017; Servin et al. 2017a).  262 

The leaching and mobilization of nano-Cu ions from the source material followed by their complexation 263 

with humic acids or organic acids when secreted by fungi and contained in the plant root exudates influence the 264 

biotransformation. Although CuO-NPs are often considered as insoluble materials, the presence of organic acids 265 

such as citric and oxalic acid in the environment enhances the dissolution of Cu and CuO-NPs which in turn 266 

increases their mobility and bioavailability to plants and animals. In addition, the nature of the organic acids also 267 

affects NPs dissolution significantly (Mudunkotuwa et al. 2012). Other factors affecting NPs dissolution includes 268 

pH, dissolved organic matter, biomolecular ligands, ionic strength etc. (Yu et al. 2018). All these factors 269 

determine the toxicity of Cu-based NPs by influencing the total dissolved concentration of Cu in the concerned 270 
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media. Among these factors, the pH has an inverse relationship with dissolution. The CuO-NPs have good 271 

solubility at lower pH which is turn down as the pH increases. However, the presence of ligands including those 272 

with amine functional groups, induce solubility of CuO-NPs at neutral pH (Wang et al. 2013).  Recently, 273 

Kovacec et al. (2017) investigated potential efficacy of two phytopathogenic fungi namely Botrytis cinerea and 274 

Alternaria alternate for biotransformation of Cu2+ ions, micro and nanoparticulate forms of Cu and CuO. The 275 

study revealed that B. cinerea could transform micro and nanoparticulate forms of Cu and CuO into Cu-oxalate 276 

complex. 277 

Furthermore, the waterlogged conditions as in the case of paddy fields, may influence NPs dissolution, 278 

mobility, bioavailability, accumulation, translocation and transformation. Peng et al. (2017) studied 279 

bioavailability and speciation of CuO-NPs in the paddy soil and transformation of CuO-NPs in the soil-rice 280 

system. Experimental findings showed that CuO-NPs significantly reduce the redox potential of the soil and 281 

alleviate the electrical conductivity at the maturation stage of paddy. The bioavailability of CuO-NPs showed a 282 

declining trend with rice growth, but an increase was noticed after drying-wetting cycles. Most of the Cu present 283 

in the root, shoot and leaves of the plant was found in the form of Cu-citrate. Nearly 1/3rd of the Cu(II) was 284 

transformed to Cu(I)-cysteine while 15.7% was present as Cu2O in roots and 19% as Cu(I)-acetate in shoot 285 

section. In chaff, about 30% of Cu was found as Cu-citrate and Cu(I)-acetate but no CuO was reported to 286 

reached polished rice. In another study, a higher content of Cu in the form of Cu(I) in rice grain was found in the 287 

presence of sulphur (Sun et al. 2017). It was suggested that sulphur fertilization decreases the Cu content in the 288 

root, leaf, and husk of the plant yielding higher biomass but showed higher amounts of Cu in rice grains in the 289 

form of Cu(I)-cysteine and Cu(I)-acetate. 290 

Therefore, the mechanism of biotransformation of Cu-based NPs includes series of chemical and 291 

biochemical reactions with soil components and living organisms. 292 

 293 

4 Interaction of Cu-based NPs with soil organisms  294 

 295 

Deliberate administration of NPs into soils might have a significant impact on the living entities, as they are 296 

extremely resistant to degradation and have the potential to accumulate in the soil. The effect of NPs may also vary 297 

with varying concentration, soil properties, and enzymatic activity. Soil properties, such as pH, texture, structure, 298 

and organic matter content influence the structure of soil microbial community and the ability of pollutants to exert 299 

toxic effects on microorganisms (Simonin and Richaume 2015). As NPs have the ability to mobilize soil pollutants, 300 

comparison of the toxicity of the NPs in various soil types is much required. In order to understand the influence of 301 
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soil physicochemical properties on Cu-based NPs toxicity, a number of predictive models have been developed; 302 

however, these models are not always effective for other region soils (Duan et al. 2016).  303 

The toxic effect of Cu-based NPs has been shown for beneficial soil microbes such as nitrifying bacteria, 304 

nitrogen-fixing bacteria, Arbuscular mycorrhiza and other Rhizobacteria; however, it also influences other 305 

microorganisms. You et al. (2017) suggested that the soil types could play an important role in determining NPs 306 

toxicity over soil bacterial community composition and size. Recent studies showed that NPs might affect enzymatic 307 

and metabolic activities, nitrification potential, colony count and abundance of soil bacterial diversity (Colman et al. 308 

2013; Ge et al. 2011; He et al. 2016).  309 

Copper ions released from the Cu-NPs can be toxic to both the pathogenic and beneficial bacteria (Lofts et al. 310 

2013). The study conducted on CuO-NPs toxicity to Saccharomyces cerevisiae showed increased toxicity over time 311 

due to increased dissolution of Cu ions from CuO (Kasemets et al. 2009). Furthermore, Concha-Guerrero et al. 312 

(2014) have shown that CuO-NPs were very toxic for native soil bacteria, as the formation of cavities, holes, 313 

membrane degradation, blebs, cellular collapse, and lysis in the cells of soil bacterial isolates were observed. 314 

Pradhan et al. (2011) investigated the effect of CuO-NPs on leaf microbial decomposition and found a decrease in 315 

leaf decomposition rate. The bacteria from Sphingomonas genus and Rhizobiales known for their importance in 316 

remediation and symbiotic nitrogen fixation appeared susceptible to Cu-NPs (Shah et al. 2016). The NPs also have 317 

significant effects on enzymatic activities (invertase, urease, catalase, and phosphatase, dehydrogenase), microbial 318 

community structure, bacterial diversity nutrient cycling, changes in humic substances, and biological nitrogen 319 

fixation. The CuO-NPs at 30-60 mg L-1 affected the microbial enzymatic activity of activated sludge (Wang et al. 320 

2017). Several other studies also report Cu-NPs effects on soil microbial community, enzymatic activities and 321 

reduced C and N biomass (Ben-Moshe et al. 2013; Kumar et al. 2012; Xu et al. 2015). However, the effect of Cu-322 

based NPs on the soil microbial community has rarely been explored. While Cu-based NPs are known to exhibit 323 

antimicrobial properties (Ingle et al. 2014), it is necessary to observe their impact on symbiotic microorganisms. It 324 

can be assumed that NPs, besides influencing plant and microbes, could affect plants-microbe associations either 325 

directly or indirectly. In this context, one of the classical examples is mycorrhizal symbiosis, which promotes plant 326 

growth enhancing the plant nutrient acquisition through uptake of mineral nutrients. The formation of Cu-NPs at the 327 

soil-root interface with the assistance of endomycorrhizal fungi was shown in Phragmites australis, and Iris 328 

pseudoacoru and this mechanism helped to alleviate metal stress (Manceau et al. 2008). On the other hand, metallic 329 

NPs were shown to inhibit mycorrhizal plant growth (Feng et al. 2013).  330 

Furthermore, the CuO-NPs induced morphological and genetic alterations in leaf litter decomposing fungus 331 

which could impact organic matter decomposition rate (Pradhan et al. 2011). A significant negative impact on 332 

bacterial hydrolytic activity, oxidative potential, community composition and population size was also observed in 333 
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Bet-Dagan soil (Frenk et al. 2013). Cu-based NPs have also been reported to affect the growth and functionality of 334 

green algae, cyanobacteria, and diatoms (Anyaogu et al. 2008). The most recent findings on Cu-based NPs action on 335 

bacteria are summarized in Table 1.  336 

 The findings of recent studies dealing with the NPs action on bacteria are often controversial (Table 1). 337 

Though, most studies show the increased toxicity of Cu-based NPs in comparison to ionic copper at similar dose 338 

rates (VandeVoort and Arai 2018). Interesting results were also obtained when NPs interaction with pesticides was 339 

studied. Parada et al. (2019) reported no major shift in microbial species composition; however, the degradation of 340 

the pesticide was reduced. The possible explanation for this was given by Parra et al. (2019), wherein they showed a 341 

decrease in spreading of pesticide-degradation genes bearing plasmids among the bacterial community. Therefore, 342 

the current scenario demands the exploration of NPs toxicity mechanism on the soil microorganisms. 343 

In addition, some studies report that Cu-based NPs can also have adverse effects on multicellular soil 344 

organisms. For instance, the CuO-NPs affected growth and neuron morphology of a transgenic Caenorhabditis 345 

elegans (Mashock et al. 2016), and disturbed immunity and reduced population density of a common earthworm 346 

Metaphire posthuma, which is mostly distributed across the Indian subcontinent (Gautam et al. 2018).  347 

Considering the presence of Cu-based NPs in the soil, it is imperative to study their influence on soil 348 

biodiversity. The reviewed information indicates that NPs affected soil microbial community by decreasing their 349 

abundance, enzymatic activities and soil microbial biomass. Therefore, the decrease in soil microbial biomass could 350 

be a sensitive indicator for microbial changes in soils.  351 

 352 

5 Uptake and bioaccumulation of Cu-based NPs in plants 353 

 354 

The NPs are taken up by plant roots and transported to the aboveground plant tissues through the vascular 355 

system, depending on the composition, shape, size of NPs, and anatomy of the plants (Rico et al. 2011). On the 356 

other hand, some NPs remain adhered to the plant roots. It is well understood that NPs enter plant tissues either 357 

via root tissues (root tips, rhizodermis, and lateral root junctions) or the aboveground organs and tissues 358 

(cuticles, trichomes, stomata, stigma, and hydathodes) as well as through wounds and root junctions. 359 

Interestingly, in the event of NPs-plant interaction, some metal-tolerant plants could limit the uptake of NPs into 360 

the photosynthetic tissues by restricting the transport of metals across the root endodermis and storing them on 361 

the root cortex, whereas, hyper-accumulating plants can take up excess amounts of NPs in the harvestable tissues 362 

of plants (Manceau et al. 2008). It has been suggested that the plants can accumulate NPs in their original form 363 

or as metal ions (Cota-Ruiz et al. 2018). However, the uptake and bioaccumulation vary with varying 364 

physicochemical features of NPs (Ahmed et al. 2018b; Peng et al. 2015; Rico et al. 2011, 2015). 365 
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In a study, the translocation and biotransformation of CuO-NPs in rice plants were explored. It was 366 

revealed that CuO-NPs get accumulated in epidermis and exodermis regions of the plants and get precipitated 367 

with citrate or phosphate ligands or get bound to amino acids forming Cu-cysteine, Cu-citrate, and Cu3(PO4)2 368 

kind of products or get reduced to Cu(I) (Peng et al. 2015). Cu(I) is a highly redox active species capable of 369 

producing hydroxyl radicals by Fenton-like reactions, and so its presence in even smaller quantities has 370 

significant biological importance. Servin et al. (2017a) compared bioaccumulation of un-weathered and 371 

weathered CuO-NPs, bulk and ions in lettuce plants after 70 days. In the case of CuO-bulk, weathered material 372 

was found to decrease Cu accumulation in plant roots, whereas, weathering had a positive impact on 373 

bioaccumulation of NPs. The authors further unearthed that in roots exposed to weathered NPs, the major 374 

fraction of Cu, i.e., 94.2% was present in oxidized form as CuO, while the rest of the fraction i.e., 5.7% could 375 

bind to sulfur in reduced form as Cu2S. In contrast, roots exposed to un-weathered NPs showed negligible 376 

biotransformation. As the ageing/weathering have a profound effect on the particle-size, particle-size 377 

distribution, surface properties, composition, reactivity etc., it is an important aspect which needs to be 378 

considered while assessing the environmental implication of Cu-based NPs. Similarly, the translocation and 379 

biotransformation of NPs is a plant-specific phenomenon which requires adequate attention.   380 

The nano-phytotoxicity studies on accumulation and uptake of NPs have generated important data for 381 

understanding the fate of Cu-based NPs in plants (Ingle et al. 2014; Ma et al. 2010). Once NPs infiltrate the plant 382 

system, they may traverse to different organs (leaves, stem, and fruits) or may get compartmentalized at different 383 

locations viz. vacuoles, walls, stellar system, cytoplasmic matrix, lipid envelopes, and nucleus (Ahmed et al. 384 

2018b; Rajput et al. 2017b, 2018a;  Rastogi et al. 2017). The translocation efficiency varies greatly in different 385 

plant species, for instance, alfalfa translocates 3-5% of Cu from root to shoot on exposure to 0-20 mg L-1 Cu-386 

NPs, whereas only 0.5-0.6% translocation was observed in lettuce (Hong et al. 2016). Before the plant uptake, 387 

the dissolution of Cu-NPs increases the likelihood that Cu is internalized as Cu2+ ions or in the form of organic 388 

complexes (Keller et al. 2017). A recent study revealed the adsorption and accumulation of Cu-based NPs in 389 

tomato plants leads to the adsorption of nano-CuO on the roots (Ahmed et al. 2018b). Similarly, maize roots 390 

showed 3.6 fold greater Cu content under CuO-NPs treatments (Wang et al. 2012). Also, the Cu content was 7 391 

times higher in shoots of maize treated with 100 mg L-1 CuO-NPs. In this context, Zuverza-Mena et al. (2015) 392 

also reported the translocation of Cu-based NPs in cilantro and their significant accumulation in shoots. 393 

Differential accumulation profile of CuO-NPs has been reported in ryegrass and radish (Atha et al. 2012). Wheat 394 

and bean seedlings grown on dual agar media have been adequately discussed pertaining to the bioavailability of 395 

Cu-NPs and their relationship between accumulation and uptake (Woo-Mi et al. 2008). Cu-NPs were toxic to 396 

both plants and also bioavailable. A Cu ion released from Cu-NPs has negligible effects in the studied 397 
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concentration range, and the apparent toxicity is clearly due to Cu-NPs. Bioaccumulation increased with 398 

increasing concentration of Cu-NPs and agglomeration of particles was observed in the plant cells by using 399 

transmission-electron microscopy-energy-dispersive spectroscopy (TEM-EDX). In shoots of wheat grown in the 400 

sand matrix, the bioaccumulated Cu was detected as Cu(I)S complex and CuO (Dimkpa et al. 2012). The level of 401 

Cu accumulation in wheat shoots under CuO-NPs exposure was almost equal to the concentrations quantitated in 402 

bulk (Dimkpa et al. 2012).  403 

In a very recent study, Keller and co-workers exposed leaf tissues of lettuce, collard green, and kale to 404 

nano-CuO and detected CuO-NPs in leaf surfaces by use of single particle inductively coupled plasmon mass 405 

spectroscopy (sp-ICP-MS)  (Keller et al. 2018). Among all three vegetables, lettuce retained the highest amount 406 

of CuO-NPs on leaf surface even after washing. For this retention, the varying degrees of leaf surface roughness 407 

and hydrophilicity among the tested vegetables have been suggested to play an important role in holding CuO-408 

NPs (Keller et al. 2018). Overall the data from these studies indicate that certain fractions of CuO-NPs are taken 409 

up by plants which may result in undesirable accumulation in edible plant tissues ultimately exposing humans 410 

via the food chain. 411 

The bioaccumulated nano-Cu or CuO is also subject to transportation and transformation in plants 412 

(Ahmed et al. 2018c). For instance, the treatment of hydroponically cultured lettuce plant with CuO/Cu-based 413 

NPs caused a greater accumulation of Cu than cupric ions (Trujillo-Reyes et al. 2014). Additionally, the xylem 414 

and phloem based transport system to shoots and back to roots were proposed for CuO-NPs accumulation in root 415 

cells, cytoplasm, intracellular space, and nuclei of xylem and cortical cells. However, the CuO-NPs was reduced 416 

from Cu (II) → Cu (I) in due course of translocation (Wang et al. 2012). A similar transformation of CuO-NPs 417 

has been reported with an elevation in the degree of saturation of fatty acids (Yuan et al. 2016). In another study, 418 

when Zea mays were exposed to CuO-NPs, ionic, and bulk CuO, the Cu content in root and shoot of the plant 419 

was found enhanced under CuO-NPs (Wang et al. 2012). A micro X-ray fluorescence (µXRF) study revealed 420 

that Cu-NPs may get accumulated in outer parts of the root (Servin et al. 2017a). The translocation of Cu-NPs 421 

also varies depending upon the growth media. For instance, alfalfa, lettuce and cilantro exposed to CuO, Cu and 422 

Cu(OH)2 NPs based pesticide in soil showed >87-99% Cu accumulation mostly in roots with very little 423 

transportation to shoots and negligible in leaves (Hong et al. 2015; Zuverza-Mena et al. 2015). In some recent 424 

studies, Cu-NPs were also detected in leaves, stems, and fruits of cucumber and tomato when grown in soil 425 

system (Zhao et al. 2016a). The uptake of CuO-NPs in tomato, alfalfa, cucumber, and radish seedlings was also 426 

noticed in the range of 4-1748 µg g-1 dry biomass when grown on semi-solid agar media (Ahmed et al. 2019). In 427 

a comparative study between soil and hydroponically grown tomato plants, the organ wise distribution of CuO-428 

NPs in soil culture was found lesser than in hydroponic (Ahmed et al. 2018b). The Cu in soil grown root and 429 
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shoot of tomato plants was found lesser by 20% and 33% than in hydroponically grown plants (Ahmed et al. 430 

2018b). This difference could be attributed to the NPs cluster formation due to the homo/hetero aggregation 431 

processes of the soil system. Besides root exposure, the atmospheric presence of Cu-based NPs also triggers their 432 

bio-uptake. For instance, during the foliar applications of Cu-NPs, most of the Cu remained in fruits or leaves 433 

with a little transport via phloem to roots. For example, Lactuca sativa exposed to Cu-based nano-pesticide 434 

accumulated 1350-2010 mg Cu kg-1 dry biomass after 30 days (Zhao et al. 2016a, b). A small fraction (17-56 mg 435 

kg-1) of Cu was also found in roots via phloem transport (Zhao et al. 2016a). In a study, the microscopic analysis 436 

showed the presence of dense material in root cells of O. sativum L. treated with CuO-NPs and confirmed the 437 

presence of Cu by bulk-X-ray absorption near edge structure (XANES), and interestingly the most dominant 438 

form of dense material was CuO (Peng et al. 2015).  439 

Being very small in size, NPs have the potential to enter, translocate, and penetrate physiological 440 

barriers to travel within the plant tissues, and microscopic studies showed the accumulation of NPs in various 441 

parts of the plant (Ahmed et al. 2018a; Rajput et al. 2018a, d). 442 

 443 

6 Toxicity of Cu-based-NPs in plant system 444 

 445 

The long-term effects of Cu-based NPs accumulation in plant systems are still scarcely known. It has been 446 

suggested that the Cu-based NPs may cause morphological, physiological, genetic, and epigenetic changes 447 

which may alter plant growth and nutritional status. Plants as primary producers are very critical for the 448 

sustainability of an ecosystem and functions as an indispensable link for perpetual food supply and human 449 

nutrition. In the environment, plant roots make close associations with soil particles and virtually everything that 450 

enters in the soil system (Ahmed et al. 2017; Anjum et al. 2013). Variants of Cu-based NPs once released in the 451 

environment may eventually enter either intentionally or accidentally into the soil-plant system. Plants in soil 452 

environment can be the non-target organisms of Cu-based NPs. The critical toxicity level of Cu in many crop 453 

species varies between 20-30 µg g-1 leaf dry biomass (Anjum et al. 2015; Yruela 2009). Thus, the potential 454 

toxicity assessment of Cu-based NPs to plants is relevant to a large extent. Several studies have reported the 455 

impact of different species of Cu-NPs in various culture media such as agar, hydroponic nutrient solution, sand, 456 

filter paper, soil, and soil-sand mixtures (Dimkpa et al. 2013; Kim et al. 2013; Moon et al. 2014; Musante and 457 

White 2012) (Table 2). The exact mechanism of plant defence under NPs toxicity is not fully understood. 458 

Generally, the phytotoxicity of NPs expressed in two steps: (1) chemical toxicity based on chemical 459 

composition, and (2) stress stimuli caused by the surface, size, or shape of the NPs. The antioxidant defence 460 

machinery of plants becomes activated against external/internal NPs stress stimuli. Underexposure with NPs 461 
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having enough physicochemical features to exert toxicity, plants trigger their antioxidant defence mechanism to 462 

prevent oxidative damage, as well as enhance their resistance towards NPs toxicity.  For instance, cucumber 463 

plants grown hydroponically in the presence of CuO-NPs (50 nm) were found with augmented anti-oxidative 464 

enzymes viz.  catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) (Kim et al. 2012). However, 465 

C. sativus when grown hydroponically in the presence of Cu NPs (10-30 nm) experienced significant phytotoxic 466 

effects which were not ameliorated by antioxidant enzymes adequately (Mosa et al. 2018). The NPs arbitrated 467 

phytotoxicity is predominantly related to their physicochemical properties.  The Cu-based NPs cause 468 

phytotoxicity via the dissolution and release of higher concentration of ions such as Cu2+ or the production of 469 

excess reactive oxygen species (ROS) (Ahmed et al. 2019; Letelier et al. 2010). ROS can affect mitochondrial 470 

respiration, apoptosis, lipid peroxidation in the cell membrane, and induce a range of antioxidant responses 471 

(Dimkpa et al. 2012; Shaw and Hossain 2013). Recent studies of CuO-NPs phytotoxicity showed negative 472 

impacts on seed germination and overall plant growth of various crops such as Lactuca sativa (100-300 mg L-1), 473 

Medicago sativa (0-20 mg L-1), Triticum aestivum (200 mg L-1), Vigna radiate (500 mg L-1),  Zea mays (2-100 474 

mg L-1), Cucumis sativus (100-600 mg L-1), Oryza sativa (0-1000 mg L-1), Brassica juncea (0-1500 mg L-1), and 475 

Glycine max (50-500 mg L-1) (Rajput et al. 2017b). 476 

 The studies pertaining to toxicity assessment of Cu and Cu-based NPs, and understanding of its 477 

molecular mechanism warrant more systematic and in-depth investigations. The available data on the toxicity, 478 

chemistry, and Cu-NPs plant interactions suggesting adverse outcomes on plant growth are presented in Table 2.  479 

 480 

6.1 Effects on seed germination, morphometry and plant growth 481 

 482 

Seed germination commences a plant’s physiological process, and therefore it is an important attribute when toxicity 483 

of a xenobiotic is examined. The Cu-based NPs have been found to inhibit seed germination in various crops (Table 484 

2). For instance, Coriandrum sativum cultivated in soil mixed with 20 and 80 mg kg-1 of each Cu, CuO, and 485 

Cu(OH)2 NPs (Kocide and CuPRO) exhibited significant (p≤0.05) reduction in seed germination (Zuverza-Mena et 486 

al. 2015). In another study, the seed germination by CuO-NPs was reduced to almost 50%. Similarly, treatment with 487 

Cu-NPs at 80 mg kg-1 reduces the shoot elongation by 11% (Zuverza-Mena et al. 2015). The CuO-NPs (~18.4 nm) 488 

at 0.02-2 mg ml-1 also causes severe toxicity in tomato plants (Ahmed et al. 2018b). Furthermore, Solanum 489 

lycopersicon plants are grown in both soil and hydroponic media showed significant internalization of Cu in 490 

different plant organs with oxidative burst and reduction in plant height and weight (Ahmed et al. 2018b). Moreover, 491 

the Cu, CuO and core-shell Cu/CuO-NPs at different concentrations caused severe reduction in root length of 492 

Hordeum vulgare L. (Shaw et al. 2014), H. sativum distichum (Rajput et al. 2018a), H. vulgare (Qiu and Smolders 493 
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2017), Z. mays, C. sativus (Kim et al. 2013), T. aestivum (Gao et al. 2018; Woo-Mi et al. 2008), and L. sativa (Liu et 494 

al. 2016; Trujillo-Reyes et al. 2014). The CuO-NPs (~ 40 nm) at 500 mg kg-1 soil as fresh and after 28 days of 495 

mixing of CuO-NPs with soil caused a significant decrease in maximal root length (Gao et al. 2018). In the same 496 

study, it has been suggested that the exudates secreted from wheat roots in CuO-NPs amended soil enhanced the 497 

dissolution of Cu ions in pore water, which played an important role in enhanced phytotoxicity (Gao et al. 2018). 498 

Similarly, in a study by Qiu and Smolders (2017), CuO-NPs (~ 34 nm) at various concentrations ranging from 50-499 

1000 mg kg-1 at two different pH (4.8 and 5.8) increases the toxicity of CuO-NPs affecting root elongation. The 500 

CuO-NPs inhibited C. sativus seed germination when administered at 600 mg L-1. At this rate, only 23.3% 501 

germination was recorded over untreated of control (Moon et al. 2014). Some earlier studies also reported that CuO-502 

NPs reduced C. pepo biomass by 90% (Stampoulis et al. 2009), seedling growth of Phaseolus radiatus and T. 503 

aestivum (Woo-Mi et al. 2008), shortened primary and lateral roots of the B. juncea L (Nair and Chung 2015a), 504 

affected agronomical/physiological parameters in Origanum vulgare (Du et al. 2018), and decreased root growth in 505 

M. sativa grown in hydroponic culture (Hong et al. 2015). In Allium cepa, 80 mg CuO-NPs L-1 damaged the root cap 506 

and meristematic zone and reduced the growth of the root tip (Deng et al. 2016). 507 

 Morphometric observations indicated a decline in root and shoot growth for Cu-based NPs treated plants. 508 

Also, Cu-based NPs pose deleterious effects on plant germination (Deng et al. 2016; Moon et al. 2014; Nair and 509 

Chung 2015a; Rajput et al. 2018a, b). The reduction in root and shoot growth could limit the surface area for water 510 

uptake and photosynthesis respectively and consequently affects the plant performance. 511 

 512 

6.2 Effects on cellular ultrastructure 513 

 514 

Several studies on the ultrastructure of plants cells after Cu-based NPs exposure showed remarkable changes in 515 

plant roots and leaves. In roots, violations of the integrity of the cell wall of the epidermis and endoderm, 516 

vacuolization and disorganization of fragments in the endoplasmic reticulum, swelling of the mitochondria, and 517 

destruction of the mitochondrial cristae have been observed with rare leucoplasts with disorganized and partially 518 

destroyed thylakoid. In the chloroplasts of the leaf parenchyma, the size of starch grains and plastoglobules 519 

increased significantly; the area of the thylakoids decreased, and inter-thylakoid space expanded (Rajput et al. 520 

2018d). These changes can be indicative of lowering the photosynthetic processes with relation to CuO-NPs toxicity 521 

(Rajput et al. 2015). 522 

Plastoglobules are subcompartments of thylakoids that play an important role in lipid metabolic pathways 523 

(Austin et al. 2006), the chloroplast to chromoplast transition and the formation of coloured carotenoid fibrils 524 

(Vishnevetsky et al. 1999). Previous studies showed an increased number of plastoglobules due to biotic, abiotic and 525 
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CuO-NPs induced stress in Landoltia punctate (Lalau et al. 2015). The excess concentration of CuO-NPs severely 526 

affected starch content, stomatal aperture, epidermis, endodermis, cell wall, mitochondria, nuclei and vascular 527 

bundles of H. sativum (Rajput et al. 2018a). 528 

 The identified changes in the root and leaf cell ultrastructure, especially in the photosynthetic apparatus are 529 

associated with altered plant growth and performance.  530 

 531 

6.3 Effects on plant physiology and photosynthetic systems  532 

 533 

Photosynthesis is a key process for the conversion of light energy into chemical energy, which is performed by 534 

chloroplast, and other components of the photosynthetic machinery embedded in a highly dynamic matrix and 535 

thylakoid membranes (Rottet et al. 2015). Cu-based NPs may also affect photosynthesis, and cause a decrease in 536 

electron transport, thylakoid number per granum, photosynthetic rate, transpiration rate and stomatal conductance 537 

(Da Costa and Sharma 2015; Perreault et al. 2014). Musante and White (2012) observed that both bulk Cu and Cu-538 

NPs reduced the transpiration rate by 60-70% in C. pepo relative to untreated controls. For the successful 539 

photochemical phenomena, chloroplast ultrastructure, thylakoid, grana formation, and physiological activities of 540 

photosynthetic machinery are important (Miller et al. 2017; Tighe-Neira et al. 2018). Thus, any structural and 541 

ultrastructural alteration in chloroplast apparatus and functionality associated subcellular organelles such 542 

plastoglobules starch grains may adversely impact the overall photosynthesis (Figure 2). Toxic effects of CuO-NPs 543 

were further shown in experiments with O. sativa. The CuO-NPs decreased Fv/Fm up to a complete loss of 544 

photosystem (PS) II photochemical quenching at a concentration of 1 mg L-1 and declined the photosynthetic 545 

pigment contents (Da Costa and Sharma 2015). It has further been reported that the CuO-NPs had a detrimental 546 

impact on the structure and function of the photosynthetic apparatus especially on photosynthetic pigments, 547 

chlorophyll, and grana (Tighe-Neira et al. 2018).  Spring barley grown in hydroponic system showed accumulation 548 

of CuO-NPs in leaf cells and disorganized chloroplast structure and thylakoid in the mesophyll cells (Rajput et al. 549 

2018a).  550 

 Thus, the declining photosynthetic efficiency can be a good forecaster of NPs toxic effects on plants. 551 

 552 
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 553 

Fig 2. Schematic presentation of effects of Cu-based NPs on photosynthesis  554 
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6.4 Effects on plant metabolism and nutrient content   555 

 556 

Several studies have demonstrated that Cu-based NPs also significantly affect the metabolism and nutrient content 557 

of plants. For example, foliar application of Cu(OH)2 nano pesticide (50-1000 nm) at 1050-2100 mg L-1 alters 558 

metabolite level of L. sativa leaves (Zhao et al. 2016b). Gas Chromatography-Time-of-Flight Mass Spectrometry 559 

(GCTOF-MS) based analysis combined with Partial Least Squares-Discriminant Analysis (PLS-DA) multivariate 560 

analysis shows disturbance in tricarboxylic acid (TCA) cycle and amino acid related pathways (Zhao et al. 2016b; 561 

2017b). An increased level of potassium, putrescine, and spermidine in Cu(OH)2 nano-pesticide treated plants has 562 

been suggested to reduce the oxidative stress and enhance the tolerance (Zhao et al. 2016b). Similarly, in cucumber 563 

grown with Cu-NPs (40 nm) in soil (200-800 mg kg-1) and hydroponics (10 and 20 mg L-1) exhibited perturbation in 564 

iron, sodium, phosphorus, zinc, sulphur, and molybdenum uptake and alterations in cucumber fruit metabolite 565 

profile (Zhao et al. 2016a). Additionally, TCA cycle and galactose metabolism also get compromised (Zhao et al. 566 

2016b). CuO and Cu(OH)2 nano pesticides also decrease the level of shoot phosphorus and iron in lettuce (Hong et 567 

al. 2015). Moreover, CuO- NPs (<50 nm) at 500 mg kg-1 soil has shown to reduce iron, manganese, zinc, and 568 

calcium in common bean (Dimkpa et al. 2015). Moreover, micro- and macronutrients elemental composition in 569 

cilantro has been found to be suppressed when grown with CuO-NPs (101-102 nm) and Cu-NPs (102-103 nm) at 0-80 570 

mg kg-1 soil (Zuverza-Mena et al. 2015). The Cu-based NPs have also been documented to bring down the 571 

agronomically important characteristics of plants. The CuO-NPs (<50 nm) reduces carotenoids level in rice at 1 and 572 

1.5 mM (Shaw and Hossain 2013). Similarly, the decrease in the firmness of cucumber fruits has been reported upon 573 

treatment with CuO-NPs of <50 nm (Hong et al. 2016). Also, the grain yield of rice has been shown to reduce 574 

significantly by CuO-NPs (~ 43 nm) at 500 and 1000 mg kg-1 (Peng et al. 2017). 575 

 Summarizing these results, it can be concluded that Cu-based NPs at a certain concentration negatively 576 

affected plant metabolism and nutrient content. 577 

 578 

6.5 Genotoxic and cytotoxic effects  579 

 580 

Genotoxicity is one of the most devastating effects exerted by NPs on plants. A variety of toxic effects have been 581 

reported for NPs which may interact with biological systems via five main modes: (i) chemical effects as metal ions 582 

in solution upon dissolution; (ii) mechanical effects owing to hard spheres and defined interfaces; (iii) catalytic 583 

effects on surfaces; (iv) surface effects owing to binding of proteins to the surface, either by non-covalent or 584 

covalent mechanisms or oxidative effects; and (v) changes in the chemical environment (pH). Metal and metal oxide 585 

NPs have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but 586 
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the molecular mechanisms through which this occurs are poorly understood. For the first time, it was reported that 587 

CuO-NPs induce DNA damage in crops and grassland plants (Atha et al. 2012). The Cu–NPs, up to 20 µg ml-1 588 

increased the mitotic index of actively dividing cells in A. cepa with a gradual decline in the mitotic index as the 589 

concentration increased (Nagaonkar et al. 2015). Smaller sized NPs, increasing concentrations, and exposure 590 

duration of NPs have been related to greater genotoxic responses, leading to mito-depressive effects in the cell 591 

cycle. Micronuclei formation, disturbed chromosomes, chromosome fragments, stickiness, bridge, laggards’ 592 

chromosomes and decrease in mitotic index are the most obvious anomalies in plants exposure to silver, copper, 593 

titanium dioxide, zinc, zinc oxide, selenium oxide, multi-wall carbon nanotube, tetramethylammonium hydroxide 594 

and Bismuth (III) oxide NPs. The severity of abnormalities depending on the concentration, duration time and 595 

particle size are different. Finally, if the DNA repair mechanisms are not enough to restore these alterations, it can 596 

lead to loss of genetic material and mutation in DNA (Karami and Lima 2016). The plant DNA is also affected by 597 

cellular oxidative stress generated by Cu-based NPs. Atha et al. (2012) reported oxidative-stress induced DNA 598 

lesions in R. sativus, Lolium perenne, and L. rigidum by CuO-NPs (10-1000 mg L-1) that include 2,6-diamino-4-599 

hydroxy-5-formamidopyrimidine, 8-OH-dG, the 2´-deoxynucleoside form of 8-OH-G, and 4,6-diamino-5-600 

formamidopyrimidine (Atha et al. 2012). Cu-based NPs exposure has been attributed to induce genotoxic effects and 601 

affect the normal cell cycle. Chromosomal aberrations such as sticky and disturbed chromosomes in 602 

metaphase/anaphase, c-metaphase, bridges, laggard chromosomes, disturbed telophase, and vacuolated nucleus 603 

resulted after exposure to Cu/CuO-NPs in onion and black cumin (Deng et al. 2016; Kumbhakar et al. 2016; 604 

Nagaonkar et al. 2015). These aberrations are very similar to those induced by ethyl methanesulphonate (EMS) and 605 

gamma radiation. With the use of random amplified polymorphic DNA (RAPD), the genotoxicity of CuO-NPs (~50 606 

nm) has been demonstrated in buckwheat (Lee et al. 2013).  The authors demonstrated changes in DNA bands in 607 

RAPAD profiles of buckwheat exposed by 2,000 and 4,000 of CuO NPs mg L-1 (Lee et al. 2013). The changes in the 608 

genetic pattern induced by Cu-NPs toxicity could be attributed to changes in genomic DNA template stability due to 609 

mutations homologous recombination, deletion of large DNA segments and might be due to the strong binding of 610 

NPs with plant DNA (Ahmed et al. 2018b; Lee et al. 2013). The DNA isolated from young tomato leaves upon 611 

interaction with various concentrations of CuO-NPs exhibited concentration-dependent fluorescence quenching of 612 

acridine orange-DNA complex and ethidium bromide-DNA complex (Ahmed et al. 2018b). The CuO-NPs are able 613 

to interact with plant DNA in both intercalative and non-intercalative mode with perceptible changes in other 614 

macromolecules like amide I and II of proteins and carbohydrates (Ahmed et al. 2018b). The transfer of CuO-NPs to 615 

progeny (harvested seeds) of Arabidopsis thaliana has been studied by XANES in the form of CuO (88.8%), 616 

moreover, Cu in seeds has been detected as Cu-acetic acid (3.2%), Cu2(OH)PO4 (2%), and Cu2O (6%) (Wang et al. 617 

2016). Recently, the change in the gene expression pattern of plants exposed to CuO-NPs has been reported. Wang 618 
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et al. (2016) documented differential expression of gene Fe-SOD and gene Aux/IAA in the regulation of A. thaliana 619 

root growth when exposed to 20 and 50 mg L-1 CuO-NPs. Similarly, altered gene expression has been observed by 620 

surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) in cucumber seeds after treatment with 621 

nano-CuO at 600 mg L-1 (Moon et al. 2014). In this study, among 34 differentially expressed proteins about 9 622 

differed from those exposed to control and bulk-CuO treated plants. A protein (5977-m/z) has been found as the 623 

most distinguished biomarker for the determination of CuO-NPs induced phytotoxicity (Moon et al. 2014).  624 

Interaction of Cu-NPs with plant root exudates also influences the fate of Cu-NPs and magnitude of 625 

toxicity. Huang et al. (2017) determined the thermodynamic parameters for the interaction of Cu-NPs (40 nm) with 626 

a mixture of synthetic root exudates (SRE) and its components such as sugars, amino acids, organic acids, and 627 

phenolic acids by nano isothermal titration calorimetry. The data revealed a strong binding constant (Kd = 5.645 × 628 

103 M-1) for Cu-NPs SRE interaction, however, the binding of Cu2+ was found stronger but varied for individual 629 

SRE components (Huang et al. 2017).  630 

The DNA damage and chromosomal aberrations raise the concern about the safety associated with 631 

applications of the NPs. However, the studies on the phytotoxicity of NPs are scarce, especially with regard to its 632 

mechanisms, and on its potential uptake and subsequent fate within the food chain. 633 

 634 

6.6 Effects on plants ROS and anti-oxidative activities 635 

 636 

One of the widely reported toxicity mechanisms is the generation of NPs-induced ROS and consequent stimulation 637 

of cellular antioxidant defence mechanisms in plants. The NPs could enhance ROS generation in plants, and cause 638 

oxidative stress, protein oxidation, lipid peroxidation, DNA damage and finally cell death (Ahmed et al. 2018b; 639 

Mosa et al. 2018). To avoid oxidative stress, plants activate a defence mechanism involving the anti-oxidative 640 

enzymes (Rajput et al. 2015). 641 

The ROS generation reportedly induces damage to cellular membranes resulting in respiratory loss and 642 

lipid peroxidation leading to disruption of vital cellular functions (Gueraud et al. 2010; Maness et al. 1999). In the 643 

presence of high concentrations, Cu can promote the generation of ROS by Fenton reaction (Cu+ + H2O2 → Cu2+ + 644 

OH● + OH¯) due to its high redox-active nature (Halliwell and Gutteridge 1985). ROS interaction with protein 645 

sulfhydryl (-SH) groups may cause enzyme inactivation which in all likelihood may lead to necrosis, chlorosis, and 646 

growth inhibition (Das and Roychoudhury 2014; Xiong and Wang 2005; Yruela 2009). Among ROS, hydroxyl 647 

radicals formed via Haber-Weiss reaction (H2O2 + O2
●¯ → OH● + OH¯ + O2) are considered to be more toxic 648 

(Letelier et al. 2010). To mitigate the ROS stress induced by Cu-NPs, plants elevate the activity of antioxidant 649 

enzymes such as superoxide dismutase (SOD) (Wang et al. 2016), ascorbate peroxidase (APX) (Hong et al. 2015; 650 
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Shaw et al. 2014), glutathione reductase (GR) (Shaw et al. 2014), catalase (CAT) (Ahmed et al. 2018a,b; Trujillo-651 

Reyes et al. 2014), and peroxidase (POD) (Nair and Chung 2014). In addition to this, Cu-NPs arbitrated oxidative 652 

stress can also be measured in terms of antioxidant levels and proline (Shaw and Hossain 2013; Zhao et al. 2016b). 653 

The CuO-NPs exposure also increased the lipid peroxidation and triggered an imbalance in oxidative enzymes viz. 654 

GSH, CAT and POD (Dimkpa et al. 2012). The enhanced lipid peroxidation also accompanies low GSH and 655 

GSH/GSSG ratio (Shaw et al. 2014; Shaw and Hossain 2013) and high SOD activity that converts superoxide 656 

radicals into hydrogen peroxide (O2
● → H2O2) (Kim et al. 2012; Nekrasova et al. 2011). Besides, antioxidant 657 

enzymes enhanced malondialdehyde (MDA) content also serves as an oxidative stress marker for Cu-based NPs. For 658 

instance, the highest levels of MDA were observed in C. sativus shoots and roots treated with 100 and 200, and 50 659 

and 100 mg L-1 Cu-NPs grown in a hydroponic system, respectively. An increase in MDA levels is directly 660 

proportional to the concentration of the Cu-NPs used for the treatment (Mosa et al. 2018). Similarly, the CuO-NPs 661 

increased lipid peroxidation and ROS in Pisum sativum (Nair and Chung 2015b).  662 

To better understand the toxic nature of Cu-based NPs and their targeted applications, the endpoints of 663 

toxicity should be carefully scrutinized. 664 

 665 

7. Toxicity on aquatic systems 666 

 667 

The impact of Cu-based NPs on aquatic environment is an important issue due to extensive utilization of Cu-NPs, 668 

releasing metal ions in aqueous solution, making them bioavailable and toxic (Bondarenko et al. 2013; Chang et al. 669 

2012; Mukherjee and Acharya 2018). The probabilistic model predicts environmental concentrations of Cu-NPs 670 

0.06 mg L−1 in major Taiwanese rivers with 95% confidence interval (CI): 0.01–0.92) (Chio et al. 2012). This model 671 

raised concern on Cu-based NPs adverse effects on aquatic organisms. In addition, several studies highlighted 672 

toxicity of Cu-based NPs on aquatic organisms including gill injury and acute lethality in zebrafish and toxicity to 673 

algal species (Aruoja et al. 2009; Griffitt et al. 2007; Griffitt et al. 2009), induction of oxidative stress in the liver, 674 

gills and muscles of juvenile Epinephelus coioides (Wang et al. 2014) and in mussels (Gomes et al., 2014), damage 675 

to gill filaments and gill pavement cells of freshwater fish (Song et al. 2015b), disruption of secondary lamellae of 676 

gills, damage in the liver showing pyknotic nuclei (Gupta et al. 2016), affected proliferation, cell cycle progression 677 

and cell death of amphibians (Thit et al. 2013). The summarized review on NPs toxicity on aquatic habitats suggests 678 

lethal effects on Pseudokirchneriella Subcapitata, Desmodesmus subspicatus, Xenopus laevis, Rana catesbeiana, 679 

Mytilus edulis, Mytilus galloprovincialis, Crassostrea virginica, Daphnia magna, Thamnocephalus platyurus, Danio 680 

rerio, Lytechinus pictus, Oncorhynchus mykiss and Cyprinus carpio (Mukherjee and Acharya 2018). Pradhan et al. 681 

(2015) found that CuO-NPs induce oxidative stress, damage to DNA and plasma membrane of aquatic fungi. 682 
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Similarly, Giannetto et al. (2018) found that CuO-NPs affected oxidative stress-related genes of Arbacia lixula 683 

embryos. A short-term study on diatom showed that Cu-NPs inhibited the growth, photosynthesis and induced 684 

oxidative stress on Phacodactylum tricornutum (Zhu et al. 2017). Three different Lemnaceae species (Spirodela 685 

polyrhiza, Lemna minor and Wolffia arrhiza) commonly found in freshwater lakes exposed to Cu-NPs expressed 686 

different sensitivities (Song et al. 2015a).  687 

 These data suggest that the toxicity of Cu-based NPs can be influenced by the species, exposure duration, 688 

and dose.   689 

 690 

7.1 Toxicity on aquatic plants  691 

 692 

There are potentially many sources of NPs in the aquatic ecosystem such as geogenic sources, industrial sources 693 

including medical and pharmaceutical, runoff from household’s farms, leaching from landfills etc. Xenobiotic 694 

substances could have a great impact on aquatic biota as well as constitute a serious danger for the aquatic 695 

ecosystem (Moore 2006). One of the anthropogenic sources of Cu-based NPs in the aquatic system is polymer-696 

coating found in marine paints or fabric with antimicrobial and biocidal properties. This kind of material is used 697 

for antifouling of boats and immersed structures, and CuO-NPs are frequently one of the ingredients (Almeida et 698 

al. 2007). A study showed that CuO-NPs alone (0.004 g L-1) is less toxic to green alga Chlamydomonas 699 

reinhardtii than CuO-NPs coated with the polymer after 6 h of exposition (Melegari et al. 2013). Nonetheless, 700 

CuO-NPs still decreased the activity of PS II and were found responsible for the generation of ROS. There were 701 

observations for significantly higher intracellular Cu accumulation in the form of aggregate as compared to Cu-702 

free samples (Perreault et al. 2012). Similar results were observed in the plant Lemna gibba such as 703 

morphological changes like abscission of the fronds from the colonies, decrease in frond size and whitening of 704 

the fronds (Perreault et al. 2014). Both observations indicate that surface modification of NPs in order to enhance 705 

their stabilization changes their mechanism of toxicity which seems to be an important issue for expanding 706 

applications of Cu-based NPs in future. Aruoja et al. (2009) performed tests on the bioavailability of Cu-based 707 

pollutants. The authors confirmed that Cu from CuO-NPs was 141-fold more bioavailable to aquatic flora in 708 

comparison to that from bulk CuO. The greater toxicity of CuO-NPs was seen in algae Pseudokirchneriella 709 

(Aruoja et al. 2009) and plant Lemna minor (Song et al. 2015a). That is consistent with the previous statement 710 

that the Cu bioavailability rather than the total concentration is the primary toxicity (Campbell 1995). However, 711 

Perreault et al. (2012) pose a hypothesis that during CuO-NPs solubilisation, a soluble form of copper, mostly 712 

Cu2+ ions are released which can spread into the medium and become the main factor for CuO-NPs toxicity that 713 

is similar to the danger posed by CuSO4.  The P. stratiotes plants grown in the presence of Cu-NPs (1000 mg L-714 
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1) for 14 days exhibited discolouration along with the visible signs of turgor loss in mesophilic cells. 715 

Morphological changes in the root system were more prominent. In comparison to the control plant, blackening 716 

of roots together with inhibition of new growth roots, and a decrease in plant weight, amino acids, and the 717 

content of ascorbic acid reduced by 63% was observed in exposed plants (Olkhovych et al. 2016). The 718 

morphological changes were also observed for plant L. gibba in the form of leaf reduction and detachment of 719 

fronds from the plant. The symptoms were detected after 24 h CuO-NPs exposure with 1.0 mg L-1 (Perreault et 720 

al. 2014). The growth inhibition was observed at 6.4 mg L-1 microalgae culture and for L. minor at 10 mg L-1 in 721 

comparison to Cu-free samples (Melegari et al. 2013, Song et al. 2016). The Cu-based NPs exposure on aquatic 722 

flora is mostly reflected in photosystem dysfunction. The chlorophyll content of L. minor decreased with the 723 

increase in concentration at 100 mg L-1 CuO-NPs (Song et al. 2016). In the algal culture of C. reinhardti, the 724 

decrease of total chlorophyll and carotenoids was observed at 1000 mg L-1 when exposure lasted for 72 h 725 

(Aruoja et al. 2009). For microalgae, Pseudokirchneriella 6.4 mg L-1 was sufficient to evoke abnormality in 726 

photosynthetic system performance (Melegari et al. 2013). In the study of Perreault et al. (2014), lower 727 

photosynthetic electron transport rate for L. giba was observed. The Cu-NPs at a concentration higher than 1 mg 728 

L-1 clearly suppresses photosynthesis on Elodea densa (waterweed) while low concentration (<0.25 mg L-1) has a 729 

positive impact on photosynthesis effectiveness (Nekrasova et al. 2011). The main feature of Cu-based NPs is 730 

that they have the ability to cross the plasma membrane that results in alteration of subcellular organelles. This 731 

condition substantially may cause oxidative stress which is connected to increased enzymatic activity (i.e., POD, 732 

CAT, and SOD) (Melegari et al. 2013). The production of ROS may be the result of conditions when plants are 733 

subjected to harmful stress conditions. The chloroplasts and mitochondria of plant cells are important in 734 

intracellular generators of ROS. Internal O2 concentration is high during photosynthesis, and chloroplasts are 735 

particularly prone to generate ROS; therefore, these cytotoxic ROS can remarkably disrupt normal metabolism 736 

through oxidative damage of lipids, nucleic acids, and proteins.  737 

 In general Cu-based pollutants induce various responses within the photosynthetic organism. The 738 

changes seem to be the most prominent for the CuO-NPs and Cu-NPs following by CuSO4 and bulk CuO. The 739 

Cu-NPs toxicity heavily depends on dosage and further surface modification. 740 

 741 

7.2 Toxicity on aquatic animals  742 

 743 

There is currently a significant gap in our knowledge about CuO-NPs toxicity to aquatic animals. In general, the 744 

Cu(O) NPs toxicity may be a potential environmental concern for crustaceans, as LC50 values are within an order of 745 

magnitude of predicted wastewater concentrations, while chronic and developmental toxicity are a more relevant 746 
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concern for fishes (Braz-Mota et al. 2018). A few studies have noted bioactivity in these animals at high 747 

concentrations (20 μg L-1). The release of manufactured Cu-based NPs into the aquatic environment is rather rarely 748 

known (Moore 2006). Nevertheless, it was proven that NPs association with naturally occurring colloids may affect 749 

their bioavailability and uptake into cells and organisms. Uptake by endocytic routes was previously identified as 750 

probable major mechanisms of entry into cells; potentially leading to various types of toxic cell injury (Moore 751 

2006). Griffitt et al. (2009) demonstrated that the effects of Cu-NPs were not solely due to the release of soluble 752 

metals into the water column. These studies highlight the need for further studies focused on understanding the 753 

mechanisms of NPs toxicity to aquatic organisms as dissolution and the presence of a generic NPs response are not 754 

sufficient to explain the observed effects.  755 

Sedimentation following hetero-aggregation with organic matter and free anions poses a threat due to 756 

benthic, sediment-dwelling and filter feeding organisms. In marine systems, NPs can be absorbed by 757 

microorganisms and transferred to the next trophic levels by consumption. Filter feeders, especially bivalves, 758 

accumulate CuO-NPs through trapping them in mucus prior to ingestion. Benthic fauna may directly ingest sediment 759 

CuO-NPs. In fish, uptake is principally via the gut following drinking, whilst CuO-NPs caught in gill mucus may 760 

affect respiratory processes and ion transport. Currently, environmentally realistic CuO-NPs concentrations are 761 

unlikely to cause significant adverse acute health problems, however, sub-lethal effects e.g. oxidative stress have 762 

been noted in many organisms, often deriving from the dissolution of Cu2+, and this could result in chronic health 763 

impacts (Baker et al. 2014). 764 

The effect of waterborne Cu-NPs and copper sulphate on rainbow trout (Oncorhynchus mykiss) in the 765 

context of physiology and accumulation was also evaluated by Shaw et al. (2012). Overall, these data showed that 766 

Cu-NPs have similar types of toxic effects to CuSO₄, which can occur at lower tissue Cu concentrations than 767 

expected for the dissolved metal. It was also proved that CuO-NPs can induce toxicity to the freshwater shredder 768 

(Allogamus ligonifer) (Pradhan et al. 2012).  769 

Abdel-Khalek et al. (2015) compared the toxicity of CuO-NPs to Nile Tilapia (Oreochromis niloticus) with 770 

its bulk counterpart and reported that the LC50/96 h of CuO bulk particles (BPs) was higher than that of NPs 771 

indicating that CuO-NPs are more toxic. The CuO-NPs could exert more toxic effects despite the fact that they are 772 

smaller in size than the CuO-BPs, and they can form aggregates in suspensions. The authors demonstrated CuO 773 

(BPs & NPs) induced biochemical alterations and oxidative stress in O. niloticus, which suggest ecological 774 

implications of CuO-NPs released in aquatic ecosystems. The study conducted by Braz-Mota et al. (2018) aimed to 775 

understand the effects of CuO-NPs and Cu on two ornamental Amazon fish species: dwarf cichlid (Apistogramma 776 

agassizii) and cardinal tetra (Paracheirodon axelrodi). For fish exposed to 50% of the LC50 for CuO-NPs, aerobic 777 

metabolic rate (MO2), gill osmoregulatory physiology and mitochondrial function, oxidative stress markers, and 778 
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morphological damage were evaluated. The results revealed species specificity in metabolic stress responses. An 779 

increase of MO2 was noted in cardinal tetra exposed to Cu, but not CuO-NPs, whereas MO2 in dwarf cichlid showed 780 

little change with either treatment. In contrast, mitochondria from dwarf cichlid exhibited increased proton leak and 781 

a resulting decrease in respiratory control ratios in response to CuO-NPs and Cu exposure. This uncoupling was 782 

directly related to an increase in ROS levels. The authors revealed different metabolic responses between these two 783 

species in response to CuO-NPs and Cu, which are probably caused by the differences between species natural 784 

histories, indicating that different mechanisms of toxic action of the contaminants are associated to differential 785 

osmoregulatory strategies among species.  786 

Gupta et al. (2016) described the effect of Cu-NPs exposure in the physiology of the common carp 787 

(Cyprinus carpio) using biochemical, histological and proteomic approaches. The results indicated that the activity 788 

of oxidative stress enzymes catalase, superoxide dismutase, and glutathione-S-transferase were significantly 789 

increased in the kidney, liver and gills of the treated groups when compared to control. Histological analysis 790 

revealed that after exposure, disruption of the secondary lamellae of gills, liver damage with pyknotic nuclei and 791 

structural disarray of the kidney occurred. Proteomic analysis of the liver showed down-regulation of several 792 

proteins including the ferritin heavy chain, Rho guanine nucleotide exchange factor 17-like, cytoglobin-1, regulation 793 

of diphosphomevalonate decarboxylase and selenide & water dikinase-1.  794 

The effect of Cu-NPs on the development of zebrafish embryos was depicted by Sun et al. (2016). The 795 

exposure to CuO-NPs at concentrations of 12.5 mg L
-1

 or higher leads to abnormal phenotypes and induces an 796 

inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO-NPs at high doses results in an 797 

underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. The 798 

authors demonstrated that short-term exposure to CuO-NPs at high doses shows hepatotoxicity and neurotoxicity. 799 

On the other hand, cellular and molecular responses of adult zebrafish after exposure to CuO-NPs or ionic Cu were 800 

tested by Vicario-Pares et al. (2018). Another study performed by Bai et al. (2010) was undertaken to test the 801 

toxicity of nano-Cu suspension to zebrafish embryos. It was found that nano-Cu retarded the hatching of zebrafish 802 

embryos and caused morphological malformation of the larvae. The authors claimed that high concentrations (>0.1 803 

mg L-1) of nano-Cu can kill the gastrula-stage zebrafish embryos. Denluck et al. (2018) investigated the role of the 804 

chorion in nanomaterial toxicity. The authors found that the presence of the chorion inhibited Cu-NPs toxicity: 805 

while dechorionated embryonic zebrafish exposed to Cu-NPs had an LC50 of 2.5 ± 0.3 mg L−1, a chorion-intact had 806 

LC50 of 13.7 ± 0.8 mg L−1. In summary, embryo sensitivity increased by at least one order of magnitude when 807 

chorions were removed. 808 
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The toxicity of Cu-based NPs in aquatic environment appears to be one of the most important issues for 809 

assessing whole ecosystem safety. With no doubts, zebrafish embryos are excellent models for the study of 810 

nanomaterial-biological interactions and toxicity. 811 

 812 

8 Techniques used to detect the presence of Cu in plant tissues treated with Cu-based NPs 813 

 814 

It has already been mentioned that new developments in nanotechnology industry increase the amount of such 815 

engineered nanomaterials in the environment, particularly in soils and aquatic ecosystems. This could lead to 816 

unpredicted consequences in the nearest future as plants play a vital role in the ecosystem and worldwide food 817 

supply. That is why NPs detection in environmental samples is of importance (Chaudhry et al. 2008; Mukherjee et 818 

al. 2016). However, not all methods are applicable to this problem due to low concentrations of NPs in 819 

environmental samples and experimental complications in sample preparation. Still, there are several modern 820 

techniques which are being widely applied to detect the presence, visualise the distribution and analyse chemical 821 

properties of NPs in plant tissues or in the soil. The available detection methods could be classified into three broad 822 

sections: spectroscopy, diffraction and imaging. However, the most comprehensive results could be obtained using 823 

the combination of all three methods. Besides, one of the most sensitive techniques is Atomic Absorption 824 

Spectroscopy (AAS). However, this method is destructive and requires special sample preparation procedures. 825 

Different types and combinations of electron microscopy techniques offer environmental scientists a wide 826 

range of capabilities. Scanning Electron Microscopy (SEM) gives a possibility to find and locate metal NPs which 827 

usually have higher electron density. SEM microscopes are often equipped with EDX that extend analytical 828 

capabilities to qualitative determination of elements present in the sample and quantitative determination of element 829 

concentration, thus opening a possibility to study the chemical composition of NPs. High-Resolution TEM reveal 830 

the shape and morphology of tiny NPs of several nanometers in diameter. Selected Area Electron Diffraction 831 

(SAED) and images acquired in bright and dark-field modes could be used to study NPs phase composition and 832 

distribution in the samples. Microscopes equipped with Electron Energy Loss Spectra (EELS) cameras are capable 833 

of revealing the oxidation state of 3d transition metals at nanoscale resolution (Tan et al. 2012). Moreover, these 834 

electron-based methods could be combined in one microscope that provides a great possibility to study the presence, 835 

distribution, chemical composition, morphology, shape and size distribution of NPs in soils and plants. However, the 836 

shortcomings of the method are the limitations on the size of the sample, special sample preparation procedures and 837 

the requirement of ultra-high vacuum. 838 

Furthermore, X-Ray Fluorescence (XRF) is one of the powerful tools to estimate the relative quantity of 839 

elements present in the sample semi-quantitatively (mass %). Often laboratory equipment has a focused X-ray beam 840 
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up to 20-50 micrometres (μ-XRF) that gives a possibility to obtain element concentration maps of the samples with 841 

appropriate resolution. The latter could be used to detect and locate NPs aggregation in plants. There is also a 842 

particular interest in portable XRF devices (pXRF) (McLaren et al. 2012) for agronomic and environmental science 843 

applications as it opens possibilities to conduct in field studies. Such equipment could be used to relate plant 844 

conditions to elemental nutrient deficiencies in the soil (Towett et al. 2016). However, such devices are limited to 845 

spectroscopic data and low sensitivity. On the contrary, sub-micron resolution and high sensitivity of synchrotron-846 

based micro- and nano- X-ray techniques open new possibilities to investigate the interactions between plants and 847 

engineered nanomaterials. Synchrotron-based techniques require minimal sample preparation, are non-destructive, 848 

offer the best balance between sensitivity, chemical specificity, and spatial resolution (Castillo-Michel et al. 2017). 849 

These techniques are particularly adapted to investigate localization and speciation of NPs in plants: μ-XRF and 850 

synchrotron X-ray fluorescence mapping (SR-XFM) offers multi-elemental detection with resolution down to the 851 

tens of nm, in combination with spatially resolved X-ray absorption spectroscopy (μ-XAS or μ-XANES) speciation. 852 

Moreover, such synchrotron-based techniques could be combined with μ-XRD (micro X-Ray Diffraction) and μ-853 

FTIR (micro Fourier-Transform Infrared Spectroscopy) techniques in one beamline (Cotte et al. 2017). 854 

One of the most promising methods to detect the presence of NPs at environmentally relevant concentration 855 

is sp-ICP-MS (Laborda et al. 2014; Laborda et al. 2013). It gives a possibility to obtain qualitative information about 856 

the presence of particulate and/or dissolved forms, quantitative information as particle number as well as mass 857 

concentrations, and characterization information about the mass of element/s per particle and particle size (Laborda 858 

et al. 2016).  859 

TEM remains one of the main tools to analyse Cu–based NPs distribution (Lee et al. 2008; Nhan Le et al. 860 

2016) and composition in plants (Trujillo-Reyes et al. 2014; Wang et al. 2011). The XRF technique was applied to 861 

reveal the elemental composition of C. sativus shoot and root samples treated with Cu-NPs (Mosa et al. 2018). The 862 

microscopic analysis showed the presence of dense material in root cells of O. sativum L. treated with CuO-NPs and 863 

confirmed the presence of Cu by bulk-XANES, and the most dominant form of Cu was from CuO-NPs (Peng et al. 864 

2015). A combination of μ-XRF and μ-XANES was used to study bioaccumulation un-weathered (U) and weathered 865 

(W) CuO-NPs, bulk and ionic form by lettuce (Servin et al. 2017b). The μ-XRF analysis of W-NP-exposed roots 866 

showed a homogenous distribution of Cu in the tissues, while μ-XANES analysis of W-NP-exposed roots showed 867 

near complete transformation of CuO to Cu (I)-sulfur and oxide complexes in the tissues. Duran et al. (2017) 868 

showed that CuO-NPs did not affect seed germination of Phaseolus vulgaris L., but seedling weight gain was 869 

promoted by 100 mg Cu L-1 and inhibited by 1000 mg Cu L-1 of 25 nm CuO and CuSO4. The μ-XRF analysis 870 

showed that most of the Cu taken up remained in the seed coat with Cu hotspots in the hilum. Moreover , μ-XANES 871 

unravelled that most of Cu remained in its pristine form. Zhao et al. (2017a) showed significant growth inhibition on 872 
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both roots and shoots of E. crassipes after 8-day exposure of CuO-NPs (50 mg L-1) which was much higher than that 873 

of the bulk CuO particles and dissolved Cu2+ ions of the same Cu concentration. The XANES was used to reveal the 874 

presence of CuO-NPs as well as Cu2S and other Cu species in roots, submerged leaves, and emerged leaves of plants 875 

providing solid evidence of the transformation of CuO-NPs. Electron microscopy remains one of the most widely 876 

used tools to study distribution, morphology and composition of metal NPs in plants. The possibilities that such 877 

synchrotron radiation techniques as μ-XRF and μ-XANES open to environmental scientists could significantly 878 

change the situation in the sense of revealing precise information on its structure. Moreover, an sp-ICP-MS becomes 879 

one of the most promising technique to obtain the presence and size distribution of NPs at environmentally relevant 880 

concentrations. 881 

 882 

9 Conclusion and future outlook  883 

 884 

The literature unequivocally suggests that the higher concentrations of Cu-based NPs are detrimental to beneficial 885 

soil microorganisms, food crops, aquatic animals and plants. The toxicity of Cu-based NPs is influenced by their 886 

composition, capping/coating material, size, and interactions with environmental components such as abiotic factors 887 

(e.g. pH) and microbial/plant secretions, and naturally occurring organic matter etc. Furthermore, the phytotoxicity 888 

may vary with the varying physiology/anatomy of plant species. Cu-based NPs are either taken up by organisms 889 

(internal efficiency) or adsorbed on external structures (external efficiency). The adherence and bioaccumulation 890 

may also be changed by physicochemical properties of Cu-based NPs, plant genotypes, and 891 

physical/chemical/biological transformation. The available studies considered in this review showed the inadequate 892 

characterization of Cu-based NPs, which could be the major obstacle in properly assessing its toxicity. Moreover, 893 

the disposal/discharge of Cu-based NPs into the environment is not regulated appropriately. After reviewing those 894 

studies, many questions still persist unanswered when the behaviour and fate of Cu-based NPs in biological systems 895 

are taken into consideration. For instance, most of the studies on Cu-based NPs and plants interactions were 896 

performed on agar or in hydroponic media which do not reflect the actual interaction in the more realistic 897 

environment such as the soil system. The fate of Cu-based NPs, their toxicity and accumulation in the soil can vary 898 

significantly in different soil types due to the difference in pH, organic matter content and composition, etc. 899 

Therefore, understanding the connection between association and dissociation/dissolution of adequately 900 

characterized Cu-based NPs in a range of environmental media and the physiology/anatomy of affected organisms is 901 

most urgently needed to further our knowledge regarding the potential toxicity exerted by Cu-based NPs. After all, 902 

we conclude that Cu-based NPs comprised of Cu-NPs, CuO-NPs, and nano-Cu based products used in agricultural 903 

practices have a great potential to negatively impact soil and aquatic micro/macro biota. The current scenario also 904 
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emphasizes the regulated and safe dumping of waste containing Cu-based NPs into agro-ecosystems. In the future, 905 

the concentration of Cu-based NPs in edible parts of food crops must be measured carefully before supplying the 906 

products to consumers. 907 

It is also crucial to develop a unified methodology for testing the NPs toxicity in natural environments. 908 

With the help of this methodology, joint research should be conducted to determine the toxicity of the same NPs 909 

under different climatic conditions and soil types. Such international research could help to develop the permissible 910 

levels of Cu-based NPs application and determine the threshold levels of their contents in different soils. The 911 

kinetics of NPs dissolution and migration to the groundwater should be specifically considered to avoid their 912 

accumulation above the safe levels. Sustainable use of Cu-based NPs could help to utilize the beneficial effects of 913 

their application (i.e. in the form of nanopesticides) without posing a threat to the living organisms. 914 

 The increased application of Cu-based NPs clearly indicates their negative impact on ecosystems. It is, 915 

therefore, imperative to explore Cu-based NPs toxicity and behaviour in water, living organisms (biota), soil and 916 

sediments individually, and their toxicity in a combination of other metallic NPs. Past and future research must 917 

be placed in the context of current risk assessments associated with Cu-based NPs, their use, distribution, and 918 

release in the environment.    919 
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