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PREFACE 

The aim of the present study is to construct a rigorous phenomenologi

cal theory of the interactions of electromagnetic and elastic fields in 

solids, with partLaular attention to ferromagnetic materials, This theo

ry will be basedon a set of postulates, as, for example, the invarian

ce under rigid-body motions of the energy balance, a principle first 

stated by GREEN and RIVLIN, and the principle of COLE!1AN and NOLL, We 

shall use a finite-strain concept, as this to our opinion greatly cla

rifies the derivation of the basic relations, In cases that a smali

strain approximation is justified, this approximation will be made af

ter the deduction of the general equations, Moreover, we shall assume 

that we may apply the methods of thermodynamics. The first law of ther

modynamics serves as the basis for our local equations of balance and 

jump conditions, while from the second law some of the needed constitu

tive equations may be obtained, while for the other restrictions are 

found, 

In this way we shall set up a complete, general nonlinear system of 

equations of balance, constitutive equations and jump conditions. The 

present theory deals especially with ferromagnetic media, without meeha

nical or electromagnetic dissipation, and effects as gyromagnetic ac

tion, magnetostriction, exchange interaction, thermomagnetic and thermo

electric effects, etc. will be discussed. The theory may be extended to 

include dissipation effects as for instanee was done by ALBLAS, ~bre

over, Cosserat-media, i.e. media with internal mechanica! moments or 

higher-order electromagnetic moments, can be studied in an analogous 

way. 

A system of linear equations and boundary conditions '"as extracted from 

the general nonlinear equations derived in the first part of this thesis~ 

Although this system is a linear one, it is still very complex. However, 

if numerical values based on existing experimental data, are used, it 

turns out that many of the terms in these equations are negligible com-
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pared to a few which are dominant. To find the conneetion between our 

work and the physical and experimental literature, we have interpreted 

the coefficients occurring in our linearized equations in terms of 

known technical effects, as for instanee magnetic anisotropy, magneto

striction, thermoelectric effects etc. This was done for the practical 

· important case of a ferromagnetic material with cubic synunetry. 

The general theory is illustrated by two examples: the first concerning 

the vibrations of a cylinder in a ,magnetic field and the second one 

dealing with the buckling of magnetoelastic plates. Fbr the latter pro

blem, the equations are simplified for the case Of a soft-ferromagnetic 

material. 

Threughout this thesis Gaussian units are used and the Maxwell-equations 

are written in theMinkowski-formulation. For the conversions from 

Gaussian-units to Giorgi-units and from the Minkowski•formulation to 

the Chu-formulation we refer to the Appendices I and til, respectively. 

On the whole we have employed a Cartesian tensor notafion whereby the 

summation convention is applied. This means that summation over any re

peated subscript must be executed, where the summatio~ runs from I to 3, 

References to literature are denoted by a number in sJuare'brackets 

(e.g. [1]), sometimes preceded by the name of the autbor and/or follow

ed by a further indication. ll1e shall number the equadons in each chap

ter independently. When referring for example to equation (I} of Chap

ter I, we write (I) in Chapter I and I. (I) in the othèr chapters. 
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I. BASIC CONCEPTS 

I.l. Motion and thermodynamics 

Let us consider a finite body B with material points X and identify the 

material point X with its position! in a fixed reference configuration 

(viz. Fig. I.J). 

Fig. I.t. 

The region of space occupied by the body in its undeformed state is 

chosen as re.ference configuration. A motion of the body is defined by a 

sufficiently smooth vector function ~ which assigns position 

toeach material point X at each instant of time t (cf. [1], pp. 325-

328). We restriet our attention to motions in which mass elements are 

conserved for each material volume of B. The components of ! and ~ with 

respect to a fixed cartesian coordinate system are designated with Xa 

(a • 1,2,3) and xi (i • 1,2,3), respectively. The coordinates Xa are 

called material or Lagrange coordinates and xi space or Euler coordi

nates. 

The mapping descrihing the motion is assumed to be one-t:o-one, so that 
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(I) has a unique inverse 

(2) 
-I ! = x <.~. t) =: ,!S(~. t) • 

Furthermore, we take the Jacobian J to be positive: 

(ax.) 
( 3) J = de t a/ > 0 • 

a 

The velocity! is defined by 

(4) 

d Throughout this thesis we shall use the symbol dt ot a superposed dot 

to denote differentiation with respect to t holding the material coor

dinates X fixed. Thus 
a 

(5) 

. 
d~ 
dt = 4\ := 

ai(_!, t) 

at 

~ is called the material derivative of ~. 
a By the symbol ät we denote differentiation with respect to t, whereby 

the space coordinates X( are assumed to be fixed. Hencf 

(6) a~ ät := 

It is easy to establish that the following relation holds between these 

two derivatives: 

(7) 

where 

(8) 
a~(~. t) 

~ . := -"--
,l 

We shall also use the so called Jaumann~derivative, defined by 

(9) 

6 

~~. . 
Dt l 1 ••• ln 

V 
- ~. . 

ll' • .ln 
:= 



n 

cl> i I' •. in + Jl cl> i I' •• iv-I j iv+I' • .in V[j ,i) 

where cl> is an arbitrary tensor of order n and the symbol [ ] stands for 

the asymmetrie part of a two-tensor 

(JO) A[.'] := !(A .. -A .. ) • 
~J ~J J~ 

It fellows immediately from the definition that there is no difference 

between the material deriva·tive and the Jaumann-derivative of a scalar 

function. Hence, for n = 0, 

'ïJ • 
(IJ) cl> = cl> 

Following Green and Rivlin [2], we consider motions of the continuurn 

which differ from these given by (I) only by superp9sed rigid-body 

motions. Thus 

(12) * x. 
~ 

x~(X,t) = b.(t) + Q .. (t)x.(X,t), 
~ - ~ ~J J -

where b~(t) is a uniform vector and Q .. (t) a uniform, orthogonal tensor. 
~ ~J 

We say that a quantity is invariant under superposed rigid-body motions 

if the transformation x. + x~ does not change this quantity. The 
~ ~ 

Jaumann-derivative of an invariant quantity remains invariant. 

In this thesis, we shall base the derivations of the equations of 

balance and the constitutive equations on two postulates, i.e. the 

first and secend law of thermodynamics ([3]. pp. 9-11). 

We write the first law in the form 

(13) Ë = W + V • 
where E is the internal energy, W the net werking per unit of time and 

V the supply of heat per unit of time, not from mechanica! origin. We 

suppose' (13) not only to hold for the total volume of B, but also for 

any partial material volume. 

As a secend axiom, we postulate the Clausius-Duhem inequality in the 

form ([3], eqs (2.25) and (2.27)) 

(14) PS - t - pcr > 0 i,i e - • 
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where p is the density, S the entropy per unit of mass, ~i the entropy 

influx per unit of surface and unit of time, 8 the temperature and o 

the heat supply per unit of mass and unit of time, not from mechanica! 

origin. 

The quantities V and o are related by 

(15) V ; I pa dV - T hini dS , 

V S 

where V is a material volume with complete boundary S~ hi the heat ef

flux and ni the unit normal on S. 
Usually, the entropy flux is taken to be equal to 

( 16) 

However, we shall not assume (16) a priori, but we shall derive this 

relation in Chapter III (viz. p. 40) as a constitutive relation for the 

material considered there. 

1.2. General balance equations 

Underlying all purely mechanica! theories of elastic bodies are four 

fundamental principles of conservation. These are: 

i) conservat ion of mass, 

ii) conservation of linear momentum, 

iii) conservation of angular momentum, 

iv) conserva ti on of energy. 

The following integral equations of balance express these basic princi

ples of mechanics in a mathematica! form sufficiently general for our 

purposes. 

i) Ma.ss 

(17) 

8 

d 
dt J p dV • 0 • 

V 



i i) Linear momenturn 

( 18) 
d 

J 
dV p eLS+ 

J 
pF. dV . dt ppi t .. n. 

~J J ~ 

V s V 

iii) Angu Zar momenturn or moment of momenturn 

(19) d~ J p{sij + x[iPj]}dV = p {mijk + x[itj]k}~ dS + 

V S 

+ J p{L .. + x[.F.]}dV. 
~J ~ J 

V 

iv) Energy 

(20) 
d 
dt J pE dV 

V s 
p {t .. V.+ m.k.\l'k- h.}n. eLS+ 

~J ~ 1 } ~ J J 

+ J p{F.V. + L .. $"2 .. + o}dV . 
~ ~ ~J ~J 

V 

In these formulae the region of integration V is, in general, a moving 

region that contains the same set of material points at each instant t 

(material volume). Further, S is the complete boundary of V and nis 

the outward unit normal onS. The quantities that occur in (17) to (20) 

are named as follows: 

p mass density mijk couple-stress 

P· momenturn density L .. extrinsic body couple, 
~ ~J 

t . . stress tensor E energy density 
~J 

F . extrinsic body force, h. heat efflux 
~ ~ 

s .. spin density 0 heat supply 
~J 

while the contributions m.k. r2 .k and L .. $"2 •• represent the energy influx 
~ J ~ ~J ~J 

caused by the couple-stresses and the energy supply owing to the body 

couple, respectively. 

All components are taken with respect to a cartesian frame of reference. 

We remark that these equations of balance hold for arbitrary regions V. 

The fluxes in the equations (17)- ( 20) have a eertain indefiniteness, 

i.e. it is always possible to replace a part of the flux by a volume 
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souree or vLce versa (equivalence of surface and volume sources, cf. 

[1], p. 469). Therefore, we first take a eertaio form for our surface 

sources, consistent with (17)- (20), from which constitutive equations 

and boundary conditions fort .. , m. 'k and h. can be derived. 
LJ LJ L 

Each of the equations of balance has the typical structure 

( 2 I) 
d 

dt J p'l' dV 

V 
f 

s 
8.n. dS + 

L L 
f p<l> dV , 

V 

where 'i' is the density of the quantity LO balance, 8i is its f l ux and <I> 

is its supply. 

Let us consider a material volume V within which there occurs a surface 

r(t) that is a singular surface with respec t to 'i' and possib ly also 

with respect to ~· The singular surface, assumed smooth, may be in 

motion with veloci ty W. Examples o f s ingular surfaces are shock waves, 

slipstreams, as well as the boundary of a solid body. 

E (tl 

Fig. I. 2 . 

We assign t o the surface r(t) a unit nor mal ~ (cf. Fig. 1. 2) . Further, 

we assume that r(t) divides V into two r egions V+ and V-. The same 

holds fo r the boundary S, the two parts being S+ and S- . In general, 

the r egions and surfaces V+, V-, S+ and S fail t o be material . 

We use the no tatien [ A] for the difference A+ - A of the limiting 

values A+ and A- of t he quantity A as the surface of discontinui t y i s 

10 



approached from either side. 

We say that E(t) is a material singular surface if 

(22) W := W.n. 
n l. l. 

V.n. 
l. l. 

Let the following conditions be met: the quantities a(p~) and ~ are 
at 

bounded 1n the neighbourhood of E(t), while on each side of E(t) the 

quantities p~, Vini and 9ini approach limits that are continuous tune

tions of position. Then it can be shown ([1], sectien 157, 193) that 

the global equation of balance (21) is equivalent to the following 

local equation 

(23) p~ + (p+pV .. ) ~ = 9 . . + ~, 
1,1 1 '1 

tagether with the jump condition on E(t) 

(24) 0 , on ï ( t) . 

If E(t) l.S a material singular surface, the condition (24) reduces to 

In the next sectien we shall nat only deal with balance equations of 

the farm (21), but a lso with 

(26) 
d 

J 
ljJ.n . dS f e . d<".. 

J 
dS dt + ~p.n. 

' l. l. l. l. l. l. 

s c s 

where S is a material surface with complete boundary C. 

According to [I] (section 80, 277 and 278), equation (26) is equivalent 

to the following system of local balance equations and jump conditions 

(2 7) 
aljJ i 
--;;--t + e .. k (-ek+ek' ljJ,V) . + ljJ .. V.- Ql· 

o l.J ~m ~ m ,J J,J l. l. 0 ' 

(28) [ljJ . (\.J -V.n.) + ljJ.n.(W n . -V . )+ e . . kekn.] = 0, on o (t). 
l. n J J J J n l. l. l.J J 

In these equations, eijk is the permutation tensor, o(t) is a line of 

discontinuity formed by the intersectien of E(t) with S. Furthermore, 

Wn is the component of the velocity of o(t) along ~· ~ being the unit 
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normal on l:(t). 

1.3. Electromagnetic equations 

The following five global equations of balance can serve as a basic sys

tem for the e lee tromagne tic theory of rnaving media. In Gauss ian units, we have 

i) 

(29) 

i i) 

(30) 

iii) 

(31) 

Faraday 's law 

d 
J ë"Tt 

s 

Gauss' first 

0 f s 

Ampère's law 

d 
J ë"Tt 

s 

c J 
411 

s 

B.n. 
1 1 

law 

B.n. 
1 1 

D.n. 
1 1 

iv) Gauss' seaond law 

(32) 0 f D.n. 
1 1 

s 

dS 

dS. 

dS 

c 

dS - 411 

v) Ganservation of aharoge 

f (E. + 
1 

- e .. kV.Bk)d6. 
1 c 1J J 1 

c 

f (H. -
1 

- e .. kV . Dk) c:U . + 
1 c 1J J 1 

J QdV 

V 

(33) 
d 

J Q dV = - f (Ji -QVi)ni dS . dt 
V s 

We note that the latter equation is not independent of the preee dr ing 

ones, as it is a direct consequence of the laws iii) and iv). 

The quantities which occur in the above equations are named as follows: 

E = electric field intensity, 

D 

J 

12 

electric displacement 

electric current density, 

H = magnetic field intensity, 

B 

Q 

magnetic induction 

free charge 



artd 

c = 2,998 x 10
10 cm/sec = speed of light in v~cuum. 

We note th~t surf~ce ch~rges and surface currents are excluded in the 

above formulae. 

By using (23), (24), (27) and (28) we can derive from (29) to (33) the 

following system of local balance equations with jump conditions 

(34) 

and 

(35) 

1 :3Di 411 
---+-J.=e H. c 3t c ~ ijk-"k,j • 

lQ.+J 0 
3t i,i 

[eijkEjnk + ..!_ B.W ] 0 
' c ~ n 

1 
[e. 'kH.nk -- D.W ] = 0 • ~J J c ~ n 

[J.n. - Q.W] - 0 on I: (t) • 
~ ~ n 

B •• = 0 , 
~.~ 

D •. 
~.~ 

[Dini] 0 

[B.n.] 
~ ~ 

0 

• 

• 

The equations (34) are the well-known Maxwell equations. They consti

tute a system of seven independent equations for the sixteen unknawns 

Ei' Di' Bi' Bi' Ji and Q. In order to obtain a complete set of equa-. 

tions, we shall derive constitutive equations for Ei' Hi and Ji in 

Chapter III. 

We introduce the magnetization per unit of mass M and the polarization 

per unit of mass! by means of the equations ([4], p. 11) 

We note that the electromagnetic fields !• ~. etc., are not invariant 

under superposed rigid-body motions. Therefore, it is desirabie to in-
. . . * * troduce the convect~ve quant~t~es!, Q, etc., that are the values 

measured by an observer translating with velocity y with respect to the 
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inertial space. 

In the sequel, we shall neglect all terms proportional to v2tc2• In 

this nonrelativistic approximation, the following relations for the 

convective fields hold: 

* I B~ Bi 
l n. ~ D. +- e .. kv.~ -- e .. kv .E • 1 1 c 1] J 1 c 1] J k 

* I * I 
Ei Ei +- e .. kv .Bk Hi Hi -- e .. kV.D . c 1J J c 1] J k 

(38) 

* I * I p, ~ P. - ë' eijkvj~ M. ~ M. +-e .. kv.Pk 
1 1 1 1 c 1J l 

* ~ Ji - Qvi Q* =Q. J. 
1 

It has to be noted that these convective fields are invariant under 

superposed rigid-body translations. 

Let us consider a region of space containing moving pdnderable charges 

in vacuum. The variables of this problem, i.e. Ei' Dp' Hi' Bi' Jp Q 

and Vi' must satisfy the following systems of equations: 

i) the Maxwell equations (34), 

ii) the constitutive relations 

(39) J. = Qv. ' 1 1. 

iii) the momentum balance (cf. [4], p. 104, eq. (43)) 

(40) J (QEi + eijkJj~)dV = ddt J pVi dV • 

V V 

Using these relations, it can be proved that the follo~ing balance of 

energy holds 

(41) d 
dt 

s 

f I I {--8 (E.E. +H.H.) + h pV.V.}dV 
TI 1. 1 1. 1 ~ 1. 1. 

V 

f 
c I 

{- --4 e. 'kE.H. +a- (E.E. + H.H.)V.}n. dS 
'11' 1] J -K. .. J J J J 1 1. ; 

We remark that it is also possible to derive from (41) the jump condi: 
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ti ons (35). 

For reasons, that will become clear in the next chapter, it will be 

useful to express the left-hand side of equation (41) in convective 

quantities. Taking into account (38) the balance of energy (41) can be 

rewritten into the ferm 

f {- 4
c e .. kE.H.. + _!_ (E~E~ + H~H~)V. + 
11 l.J J --k 811 J J J J l. 

s 

1.4. Constitutive principles 

As the equations of balance, discussed in the sections 1.2, 1.3 con

stitute an incomplete set, they must be supplemented by a system of 

constitutive relations expressing the various fluxes, densities and 

supplies whicb appear in these balance laws in terms of an independent 

set of variables. The equations of balance are common to all mechanica! 

theories. On the other hand, the constitutive relations distinguish one 

continuurn theory from another; in fact they serve to define the materi

al under consideration. 

In order to set up a system of constitutive equations, we divide all 

variables into a set of independent variables 

and a set of dependent variables, the latter being functions of the 

dependent ones. 

The constitutive theory, presented in this thesis, will be basedon the 

following series of postulates. 

i) The prinaipLe of equipresenae ([l], p. 703-704), according to 

which the same independent variables should appear in all consti

tutive relations unless their presence contradiets the equations 

of balance, the entropy inequality, the principle of objectivity 

15 



(44) 

ii) 

stated below, or some material symmetry. 

Hence, for every dependent variabie ~ the following relation holds 

(I) (2) (n) 
~ = ~(q ,q •.•• ,q ;_!,t) 

The prinaip~e of objeativity 

We state this principle in the following way: the properties of a 

material are not influenced by rigid-body motions. As a conse

quence of this principle, the dependenee of the functions in (44) 

can occur only through dependenee on objective combinations of the 

independent variables. 

As a consequence of this principle one has the following theorem 

of Chauchy (cf. [5], pp. 887-888, 901-904): 

A function of a system of n veetors 

(I) (2) (n) 
~ • ~(V. ,V. , ... ,V. ) , 

l l l 

that is .invariant under rigid-body rotations Q •• • by which the 
lJ . 

veetors transform according to 

v~a) .,.. Q •• v~a) ' 
l lJ J 

can only depend on the scalar products 

a,b = 1,2, ... ,n , 

and on the determinants 

a,b,c = 1,2,, .. ,n 

iii) The prinaip~e of Co~eman and No~~ ([6]). 

16 

Before stating this principle we define a thermoBynamic process as 

thesetof all variables {dependent às wellas independent),· 

satisfying the equations of balance. Moreover, such a process is 

called admissible if it is compatible with the constitutive as

sumptions (44). 

The said principle of Coleman and Noll can now be formulated in 

the following way: 



For every thermadynamie proeess admissible in a body of a given 

material and for every part of the body and at every time t the 

entropy inequality (14) is valid. 

Throughout this thesis we restriet ourselves to elastie media. The 

theory of .·elasticity is eoneerned with the meehanies of deformable 

boclies whieh reeover their original shape upon the removal of all 

forees eausing the deformation. An elastie body possesses a natura! 

state, being the onloaded strate of the body. 

Moreover, as an elastie material has no memory, the eonstitutive equa

tions are not influeneed by the history of the motion. Therefore, we 

pos i t: 

iv) The prinaipZe of momentary action 

The value of a dependent variable at time t is determined by the 

values of the independent variables at the same time t. 
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II. EQUATIONS OF BALANCE 

II.l. Introduetion 

In this chapter, we shall derive a system of local equations of balance 

of mess, momenturn and moment of momentum, for a cond~cting, polarizable 

and rnagnetizable medium. The equation for the rnomen t 
1 

of momenturn is 

derived under the restrietion that the magnetization is saturated. 

Moreover, we shall not consider magnetic dissipation effects. 

We first postulate a global equation of balance of energy, from which 

we derive, in the way described in Section I.2, a local equation. We 

proceed by stating the following postulate: 

The energy balance equation is invariant under superposed rigid-body 

trans lations and rota ti ons. 

By making some a priori assurnptions concerning the invariance of the 

quantities involved, we then arrive at the equations of balance we are 

looking for. This method is first formulated by Green and Rivlin [2]. 

In an analogous way we shall construct a sys tem of j ump con di ti ons for 

the density, the stresses, the couple-stresses and the heat fluxes. 

In the last sectien we shall set up a system of global equations of 

balance, equi valent to the local equations and the j ump con di dons ob

tained in the foregoing sections. 

In the next chapter, these equations of balance will be supplemented by 

a set of constitutive equations. 

II.2. Ba1ance of energy 

We postulate the following integral balance of energy, as a generaliza

tion of equation I(42) for conducting, polarizable, magnetizable and 

deformable media. 
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(I) ddt I pE dV 

V V 
I {pr + pF~m)V.}dV + 

l. l. 

In this equation, pE is the total energy density that can be divided 

into the following terms 

where 

pU 

(3) 

the electromagnetic energy of the long-range inter

action and of the external field; 

the short-range energy or internal energy, i.e. the 

deformation energy, the anisotropy energy, the 

polarization energy, etc.; 

the classica! kinetic energy; 

the remaining part of the kinetic energy, descended 

for instanee from the electromagnetic momentum and 

the spin of the magnetization vector. This term will 

be specified by means of invariance requirements. 

According to equation 1(42), pT must satisfy 

M. = 0 • 
l. 

Equation (I) says that the time ra te of change of the sum of electro

magnetic field energy, internal energy and kinetic energy is equal to 

the rate at which work is done by the mechanica! body forces (pF~m>v.), 
l. l. 

the surface tractions (T •. v.n.) and the couple-stresses (M.k.fl.kn.), 
l.J l. J . . l. J l. J 

plus the heat souree (pr) and the heat flux (-Q.n.), supplemented by 
J J 

the flux of electromagnetic energy across the surface S. This latter 

contribution consists of the Poynting-vector (- ~ eijkEkH~), the 
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. . ( I ( * * convect~ve flux of electromagnet~c energy --8 E.E. 
. 2 ~ ~ ~ 

+ H~H~)V.), and of 
~ l. J 

electromagnetic momenturn ( 4 ~c eik~EkH~VjVi)' plus a term, representing 

the flux of electromagnetic dipole energy (R.), the form of which is 
J 

still undetermined (cf. also [8]). By means of requirements of invari-

ance, we shall obtain an explicit expression for !· According to equa

tion 1(42) this vector ! must satisfy the relation 

(4) if P = M = 0 • 

In order to facilitate the forthcoming calculations, we split up! into 

(5) 

The choice of the expression -- (E~E~ + H~H~) for the electromagnetic 
81! ~ ~ ~ ~ 

energy is motivated by the form of this energy in a vacuum. We notice, 

that it is always possible to take a distinct expressi~n for this 

energy, that also coincides with the vacuum-energy. Such an alternative 

I * * * * expression could be, for instance: 811 (EiEi + BiBi). However, an ana-

logous theory, as the one that will be described in the forthcoming 

sections, could be set up on the basis of this alternative energy. In 

this case, only the constitutive equations would alter. For instance, 

we should obtain a different stress tensor. By a transformation of the 

energy functional, however, it is always possible to get back the con~ 

stitutive equations that we will derive in the next chapter. 

The global balance of energy (I) yields, in the way described in Sec

tion 1.2, a local equation of balance. By using (2) and (5) and the 

electromagnetic equations of Section 1.3, this local equation can be 

worked out into the form 

(6) I - (Q.E. +- e. 'kJ .Bk)V. - p(P.E .. +M.H .. )V. + 
~ c ~J J l. J J,~ J J.~ l. 

1 d 4np d 
- 4Trc dt [eijk(DjBk + Ej~)Vi] + -c- dt (peijkpj~Vi) + 

--
4

1 e .• k(D.Bk+E.R. )V •• v.- R •• - pE.P. - pH.M. + TrC ~J J J-K. ~.~ l. J.,l. l. l. l. l. 

+ pU + p(V.- F~m))V. + pT + (U+ IV-V.+ T)(p + pV •• ) .,. pr + 
l. l. l. l. l. J•J 

20 



- T .•• V. - T •• V •• - (M .• kn .. ) k + Q •• - J~E~ ~ 0 • 
lJ,J l lJ l,J lJ lJ ' l,l l l 

Starting from •J1he principle, that states that this relation is in

variant under superposed rigid-body translations and rotations, we 

shall derive in the next two sections equations of balance of mass, of 

momenturn and of moment of momentum. A similar metbod is used by Alblas 

[7]-[9] and Parkus [10]. 

11.3. Balance of mass and of momenturn 

We assume that the quantities: p. ('V. -F~m)), U, r, T •• , (M.k.n.k) and 
l l lJ l J l 

Qi are invariant under superposed rigid-body translations with velocity 

~(t), while the remaining quantities occurring in (6) transferm accord

ing to 

v ... v. 
l l 

- b. 
l 

T,. T + 'r. b. 
l l 

D. • D. I 
B. • B. 

I 
+- e. 'kb·~\ • -- e. 'kb.E k ' l l c lJ J l l c lJ J 

(7) E. • E. 
1 H.,. H. I 

+- e. 'kb.Bk ' --e .. kb.D k • l l c lJ J l l c lJ J 

pi .. pi 
I M ... M. 1 

-- e. 'kb.:!-~ • +-e .. kb.Pk • c lJ J l l c lJ J 

J, .. J. - Qb. Q .. Q. 
~ 

+ R:~ ~ >b. -(2) 

' 
R. ,... R. + R •• kb .bk l l ~ l l lJ J lJ J 

We note that 

the following. 

-(1) -(2) 
R.. and R. 'k are unknowns, that will be determined in 
lJ lJ 

We transferm (6) by superposing a rigid-body translation with velocity 

~(t), and we subtract the original equation from the transformed one. 

After the negleetien of terms proportional to c-2 , and aftersome re

arranging, we obtain 

(8) 
2 

[ - Rk-<2. >. - {i!L ) + l . 
k e.k.PkM• .]b.b. 2 (p +pV .. )b.b. + 

lJ. c J "' "' 'l l J J. J l l 

+ {
4

2 e. 'kE.H. + pT.)h· + [{p +pV .. )(T.-V.)- pV. + pF~m) + nc lJ J--k l l J,J l l l l 

21 



1 + T ... + Q.E. +- e .. kJ .Bk + pP.E .. + pM.H .. + 
1J,J 1 c 1J J J ],1 J ],1 

The first term of (8) can be eliminated by choosing 

(9) 

because in that case 

2 
(JO) i(2) 4 ~P o P M --kij = - -c- kiejR.m 9.. m 

Bes i des this, (9) a lso gi ves 

(IJ) 

We note that the relation (8) is valid for arbitrary ~(t). Hence, the 

coefficients of bibi' bi and bi have to be zero, which leads us to the 

following relations 

{!2) 

( 13) 

(14) 

p+pV .. 0, 
1,1 

pV
1
• "' T •.. + pF~m) + Q.E. + l e. 'kJ .K + pP .E. '.+ 

1J 0 J l l C lJ J-k J J,l 

I d 
+ pMjHj,i + 4~c dt [eijk(DjBk -Ejl\)] + 

I 4~ 2 

+ 4 ~c eijk(Dj~-Ejl\)VR.,R.- (-c- ejkR.PkMR.V/,i. 

On deriving (14), the equations (11)-(13) are used. 

We note that (12) expressas the conservation of mass and (14) repre

sents the balance of momentum. 

The relation (13) can be satisfied by taking 
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( 15) 
2 

pT = -4 e .• kE.RV. + pK, 'ITC lJ J--k l 

where pK is invariant under superposed rigid-body translations. Conse

quently, pK may not depend on the velocity. lt follows from (3) that pK 

must he zero if polarization and magnetization are absent. 

By the results obtained above, we have specified ~ and pT but for some 

invariant parts. However, these parts do not need to he modified any 

further, because it is always possible · to replace them by a surface or 

volume source. 

Defining the electromagnetic volume force !(e) by 

(16) F~e) :=Q.E.+.!. e .. kJ.B. + pP.E .. + pM.H .. + 
l l C lJ J ~ J J,l J Jol 

I d I 
+ 4'1Tc dt [eijk(DjBk-Ejl\)] + 4'1Tc eijk(Dj~-Ejl\)V.Q,,.Q, + 

41Tp2 
- (-c- ejkR.PkMR.Vj) ,i = 

I =Q.E .. +- e. 'kJ.R + pP.E .. + pM.H .. + 
1 c lJ J-k J J,l J J,l 

p d 41Tp 2 
+ ë dt [eijk(PjBk +Ej~)] - (-c- ejkR.PkMR.Vj) ,i 

the equation of balance of momenturn reduces to 

(17) 
• _ (m) (e) 

pV. -T ... +pF. +F .• 
1 lJ .J l 1 

With the aid of the electromagnetic equations of Section 1.3, the 

electromagnetic volume force can be rewritten as 

( 18) F (.e) d I ] _14 1 = P dt [- -4 - e .. kE.R + r.- .. ..,. [-4 - e.k"K H.V.] . , 1 1rpc lJ J-K lJ,J 'ITC J .,-k., l ,J 

where 

is the electromagnetic momentum, and 

defined by 

.f!. 
lJ 

a Maxwell stress tensor 

( 19) .M I ** ** ** ** r;. := --4 [E.D. + H.B. - ~ö .. (EkEk + H_ R )] • lJ 1r 1 J 1 J lJ -K-K 
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After substitution of (9), (12), (14) and (15) into (6), the local 

balance of energy reduces to 

(20) p U + p K - p r - T •• V • • + Q. • - (M •• kfl .. ) k + 
~J ~.J ~.~ ~J ~J ' 

11.4. Balance of moment of momenturn 

The moment of momentum equation that we shall derive in this section, 

is valid for a more limited class of materials than the equations ob-
• 

tained in the last section. In this section, and in what follows, the 

following restrictions are imposed: 

i) 

(21) 

ii) 

The magnetization is saturated, thus 

where the constant Ms is the saturation magnetization. 

Magnetic dissipation is not taken into account. 

iii) Only the spin of the magnetization vector contributes to the 

kinetic energy term pK. 

If these restrictions are satisfied, the kinetic energy K must be con

stant (cf. equation IV.(53)). Bence 

(22) pK - o • 

We have not yet specified the tensor n .. occurring in (l) in combina
~J 

tion with the couple-stress M. 'k' By 
~J 

choosing an explicit expression 

for n .. , we define at the same time the tensor M. 'k' We shall 
~J ~J 

the tensor n .. with the angular velocity of the magnetization 
~J 

so 

(23) 

By using (23) we obtain 

(24) 2 * •* •* M .. ko .• • - 2 M .. kM[ .M.] • n 'kM. , 
~J lJ M ~J ~ J J J 

s 

24 

identify 

vector, 



where the tensor IT •• is defined by 
lJ 

(25) 2 * IT •• := -2 Mk •• r-\ . 
lJ M lJ 

s 

In (24) we have used the fact that we may take 

without loosing any information. 

After substitution of (22) and (24) into (20), the energy balance 

becomes 

(26) • •* •* 
pU- pr + Q •• - T •. V .. - IT ••• M.- rr •• (M.). + 

l,l lJ l,J lJ,J l lJ l ,J 

According to the principle stated in the Introduction, this relation 

has to be invariant under superposed rigid-bo~y rotations, We note that 

the material derivative of an invariant quantity is not necessarily 

invariant too. A derivative that preserves invariance is the Jaumann

derivative, defined inSection l.I. Therefore, we replace in (26) the 

material derivatives by Jaumann-derivatives, obtaining 

(27) 
V V* V* 

pU- pr + Q •• - T .. V .. -IT ... M. -IT .. (M.) . + 
l,l lJ l,J lJ,J l lJ l ,J 

*V* * * * * - pH
1
.M

1
. + pH.M.V[. ']- J.E. = 0 , 

l J J,l l l 

Let us consider a superposed rigid-body rotation, described by 

where ~ is an arbitrary but uniform vector. 

We state that all quantities occurring in (27) are invariant under 

these rotations, except the velocity ~ and the magnetic field~*, that 

transfarms according to 
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(29) 

where r is the gyromagnetic ratio which is of the order c- 1• We note 

that this transformation is a consequence of the Barnett-effect (cf. 

[7]). 

Transtorming (27) by superposition of the rigid-body rotation (28), and 

subtracting the original equation yields 

(30) p V* * 
w.{-r (M. + M.V[. ']) + e .. k[T.k +(IT. M.) + l l J J,l lJ J J~-K .~ 

Since (30) is valid for arbitrary ~· the following relation must hold 

(31) 

This equation represents the local balance of moment of momenturn for a 

polarizable, magnetically saturated, nondissipative m~dium. 

Another quantity, frequently used in the theory of magnetodynamics, is 

the so called effective magnetic field G*. This field can be defined by 

the equations 

(32) * * G.M. "' 0 
l l 

By means of (32) the relation (31) can also be written as 

(33) 

* * Multiplying (33) by Mj, ~•e obtain the following expresision for Gi 

(34) 

where we have used (21) and (32) 2• 

11.5. Jump conditions 

We substitute (2), (5), (9), (IS) and (24) into the global balance of 

energy (1), in order to obtain 
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(35) f I ** ** I {--8 (E.E. +H.H.) + pU + -2 pVl.Vl. + 1! l l l l. 
d 

V 
2 

+ 411c eijkEj~Vi + pK}dV 

f * * (m) + {pr- J.E. + pF. V.}dV, l l l l 
V 

Equation (35) bas tbe typical structure of tbe general balance equation 

1.(21). Hence, ~e can derive from (35) a discontinuity condition simi-
' lar to equation 1.(24). By using 1.(36)-(37), this condition may be 

written as 

(36) I ** ** I 2 [{--8 (E.E. +H.H.)+ pU + -2 pV.V. + ---4 e .. kE.KV. + 1! l l l l l l 1!C lJ J-K l 

'* c + pK}(V.n. -W) - {T .. V. +TI .• M. - Q.- ..,.- e.k 0 E1.H0 + 
"' "' n lJ l lJ l J '11! J "' "' "' 

on I:(t). 

With tbe relations 

(37) c I ** ** I ** ** [- 41! ejktEkHt - 811 (EiEi + HiHi)Vj + 41! (EiDi + HiBi)Vj + 

2 

+ eikR.EkHtVjVi + 7 eikt(PkBt +EkMt)VjVi)nj = 

* 2 * 2 I 21l[(pMl.nl.) + (pP.n.) ]W - [{--8 (E.E. +H.H.) + 
l l n 1! l l l l 

I 41lp 2 
- 411 (El.Dl. +Hl.Bl.) --- e •. kP.M. (V. +W n.)}(V.n. -W )J , c lJ J-K l n l J J n 
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which will be proved in Appendix II. , and 

(38) 

which can be inferred directly from equation I. (38), the jump condition 

can be rewritten as 

(39) [{ipV~V~ + pU + pK + p(E~P~ + H~M~) + . . ~ ~ ~ ~ 

p * * * * 4Tip
2 

* * -- e .. kV.(P.Bk + D.~1)- -- e .• kP.M.. (V. +W n.)}(V 0 n 0 -W) + c ~J ~ J J 1<. c ~J J--k ~ n ~ ,. ._ n 

'* + {- T •• V. -TI .. H. + Q.}n. + 
~J ~ ~J ~ J J 

on E ( t) • 

Again, we postulate that the condition (39) has to be invariant under 

rigid-body motions. 

Under a superposed rigid-body translation the veloeities V. and W 
J. n 

transferm according to 

while all other quanti ties occurring in (39) are invariant. 

Transferming (39) by superposition of a rigid-body translation and sub

tracting the original equation results in the following jump conditions 

for the density and the stresses 

(41) 

(42) 

( p (V. n. - W )) = 0 , 
~ ~ n 

on E(t) , 

* 2 * 2 [T •• ]n. • 2d(pM.n.) + (pP.n.) ]n. + 
~J J J J J J J. 

+ [{pV.- .e_ e •. k(P.Bk+D.M.) + 
~ c ~J J J--k 

4'1fp2 
- e.k.PkM.(ö .. +n.n.)}(V n -w)] , 

c J "' "' l.J ~ J m m n 
on E(t). 

The requirement of invariance under superposed rigid-body rotations 

yields in the usual way 
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(43) 0 ' on I:(t) , 

where we have used (28), (29), (41) and (42), 

These jump conditions are simplified considerably, if the discontinuity 

surface is a material one. 

By substituting I.(ZZ) into (41)- (43) we arrive at 

(44) [T •• ]n. * 2 * 2 I: ( t) ' .. Zn-[ (pM.n.) + (pP.n.) ]n. 
' 

on 
lJ J J J J J l 

(45) (M~injJk]~ 0 '' on I: (t) 

(46) [Q.]n. [T .. V. - * 2 * 2 + n .. il~]n. Z1r{ (pMi ni) + (pP.n.) }V. 
J J lJ l l l J lJ l J 

on I:(t). 

In some of the following chapters, we shall consider problems concern

ing solid bodies placed in a vacuum. LetS be the boundary of the body, 

1 * * . et Ti and Q be prescr1bed surface forces and surface heat supply. 

Further, we takeS to be free of surface moments. In this case, the 

system (41) to (43) reduces to the following set of boundary conditions 

(4 7) 

(48) 

(49) 

T .. n. 
lJ J 

* 2 * 2 * 21f{(pM.n.) + (pP.n.) }n. + T. 
J J J J l l 

Q.n ... q* ' 
J J 

onS, 

onS. 

onS, 

On deriving the boundary condition (49), the equations (29), (43) and 

(44) have been used, 

II.6. Global equations of balance 

In the preceding sections we have set up a system of local equations of 

balance, together with jump conditions, for the mass, the momentum, the 

moment of momenturn and the energy. This system must be equivalent to a 

set of global equations of balance si mil ar to equations I. (I 7)- (ZO). In 

this sectien we shall derive such a set of global equations. 
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The global balance of mass belonging to (12) and (41) is found most 

easily. Since there is no supply of mass, this one reads 

(50) ddt J p dV = 0 • 

V 

We arrive at the global balance of momentum by means of integration 

over the volume V of (17), into which the expression (18) for the 

electromagnetic volume force is substituted: 

(51) ddt J {pVi + 4!c eijkEjlic}dV "' 
V 

Besides the local equation (17), we can derive from (51) also the jump 

conditions for the stresses (42), oy means of equation 1.(28) and the 

electromagnetic equations of Section 1.3. 

It is easy to see that (51) can be made to correspond wi th :I. (48) by 

taking in the latter: 

the moment density equal to 

(52) I pp. = pV. + -4 - e .. kE.H. 
1 1 rrc 1J J-K 

the stress tensor to 

and the body force to 

(54) pF. = pF~m) • 
1 1 

Substituting these expressions into the balance of angular momentum 

1.(19) yields 

(55) 

30 

d 
dt J p{sij + x[i(Vj] + 4rr~c ej]k~EkHi)}dV 
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As can be shown by some simple calculations, the local balance of 

moment of momenturn (31) and the jump condition (43) canbe inferred from 

(55) if we take: 

the spin density 

(56) 

the couple stress 

(5 7) 

and the body couple 

(58) pL .• = 0 • 
lJ 

The right-hand side of (56) represents the intrinsic angular momentum 

of the spin of the magnetization vector. 

Substitution of (53), (56) to (58) into (55) results in the following 

global balance of moment of momentum 

With the relations (23), (54), (57) and (58) the global balance of energy 

I. (20) becomes 

(60) d~ J pf dV = f {tijvi + rrijM~ - hj}nj dS + 

V S 

{pF~m>v. + pcr}dV • 
l l 

Obviously, this relation corresponds with (I) if pf is given by (2) and 

if we take 
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the heat flux 

(61) h. ejkiEkHR. + {T~1. I = Q. + - 4nc ejkR.EkHR.Vi}Vj J J lJ 

and the heat supply 

(62) pa pr • 

We <..onclude by noting that the four equations (50), (51), (58) and (59) 

cons ti tute a sys tem of global equations of balance for the ma ss, the 

moment, the moment of momenturn and the energy, that is equivalent with 

the local equations and jump conditions found in the sections 1.2-1.5. 
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111. CONSTITUTIVE EQUATIONS 

111.1. lntroduction. 

The balance equations, derived in Chapter II, are not sufficiently in 

number for the determination of the unknown variables. Therefore the 

system must be supplemented by a set of constitutive equations in 

order to obtain a complete system. In this chapter, we shall set up a 

system of constitutive equations for the entropy, the polarization, the 

stresses, the couple-stresses, the heat flux, the electric current 

density and the entropy flux. This theory will be based on an entropy 

inequality similar to equation !.(14). 

Since the constitutive equations characterize the medium under conside

ration, we must first specify the class of materials we wish to regard 

in the present work. Throughout this thesis, we shall investigate a 

medium that is polarizable, magnetizable and thermoelastic, without 

mechanical or electromagnetic dissipation. Moreover, we take into ac

count exchange interaction and heat conduction. These features of the 

material underly the choice of a set of independent variables. After 

such a selection has been made, we shall derive constitutive equations 

by means of the principle of Coleman and Noll, discussed in Section 1.4. 

Following the second postulate of Section !.4, we proceed by rewriting 

the constitutive equations in a form that is invariant under superposed 

rigid-body rotations. This will be done by transforming our primary set 

of independent variables into a set of invariant variables. To this end, 

we shall use the theorem of Cauchy, formulated in Section !.4. 

As we have already mentioned before, the stress tensor T .. has a cer-
lJ 

tain arbitrariness. On the analogy of the work of Brown ([11], Section 

5.6), we shall introduce some alternative definitions of the stress 

tensor in Section 5 of this chapter. 
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In the last section, we shall compare the results of the present theory 

with some recent articles treating similar subjects. 

111.2. EntropY inequality 

One of the basic postulates. underlying the derivation of the constitu

tive equations, is formed by the entropy inequality or Clausius-Duhem 

inequality, formulated inSection l.I. In that paragraph, we have pos

tulated the inequality mentioned above as follows (cf. equation 1.(14)) 

(I) PS• - pr - ~ > 0 
9 "'i,i - • 

We remark that the entropy flux !• occurring in this inequality, is 

still undetermined. However, we shall derive a constitutive equation 

for this quantity in the present chapter. In ~rder to facilitate the 

forthcoming calculations, we introduce the vector~ by 

Q. 
(2) ~ + ..2:. 0 i := "'i 9 

In the following section we shall prove that, for the class of materi

als under consideration, the vector ~ is equal to zero. Then, we have 

shown that the familiar expression for the entropy flux 1.(16) is 

valid in our case. 

Motivated by the special form of the energy balance 11.(20) and by the 

selection of the independent variables in the next section, we replace 

the internal energy density U by the thermodynamic function E defined 

by 

(3) E := U - 9S - P~E~ 
~ ~ 

Eliminating the heat supply r from (I) by means of the energy balance 

11.(20) and substituting (2) and (3) into the thus obtained relation, 

yields the following inequality 

(4) 

'* I + ll •• (M. ) • + T •• V . . - 9cr . • - ë Q. 9 . ~ 0 
~J ~ ,J ~J ~.J ~.~ " ~ .~ 
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Starting from the above inequality, we shall derive in the next section 

a system of constitutive equations. 

111.3. Derivation of the constitutive equations 

Before we are able to set up a system of constitutive equations, we 

first must specify the class of materials these relations refer to. 

This will be done by selecting a set of independent variables S. 

Since we are interested in magnetizable, polarizable and thermoelastic 

materials, this set must contain the variables F. , M~, E~ and e, where 1.(1 l. l. 

(5) 

the deformation gradient. 

it is always possible i:o enter H~ or B~·instead of * Of course, Mi and 
l l 

* . * . s. * * or Di 1nstead of Ei 1.n the set We do not choos.e Hi (or Bi) because 

this quant i ty is not invariant under superposed rigid-body rotations 

* * -(cf. II.(29)). The reason that we haveselectedEi and not Pi lies in 

the fact that we prefer a constitutive equation expressing P~ as a 
l. 

. f* h. * . f* funct1on o Ei to one .t at g1ves Ei as a funct1on o Pi. 

Further, we wish to take into account exchange interaction and heat 

conduction, what can be accomplished by including in S 

(6) M. 1(1 

respectivèly. 

* aM. 
l. 

:== ax 
Cl 

and 

We· do not consider mechanica! or electromagnetic dissipation. Hence, S 

does not contain time rates like ~i or M~. 

In this way, we arrive at the following set of independent variables 

(7) 

According to the principle of equipresenèe, discussed in Section I.4, 

each dependent variabie must be a function of all independent vari

ables, unless the contrary is proved. In particular, we have 

* p. 
l. 
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(8) 

and 

(9) 

I: (F. ,M~ ,M. ,E~ ,9,8 ) , 
1a 1 1a 1 a 

o"' cr(F. ,M~,M. ,E~,8,8). 
- - 1a 1 1a 1 a 

We note that, just as the internal energy U, also the functional I: 

should be invariant under superposed rigid-body rotations~ This condi

tion is fulfilled if I: satisfies the following relation (cf. [11], 

p. 84) 

(JO) ~F + 
élF[. j ]a 

let 

The derivatives I: and cr .. , occurring in (4), can be worked out by 
l,l 

means of (8) and (9) into the form 

(11) 

(12) 
ao i * a cr . élcr i * 

+ - M •• + -
1
- M. • + -- E •• + 

CIM~ J,l oM. J<X,l élE~ J,l 
J JCl J 

By substitution of (11) and (12) into (4), after eli~nation of M: from 

(4) by means of the angular momentum eq~ation taken in the form 
I II.(32) , and with the aid of the relations 

( 13) V •• F. 
l,J JCl 

the following inequality is obtained 

- p(p*l. + .E...)Ê~ + (rr •• axa - P "Mai:. )Ml.~ + 
élE~ 1 lJ élxj a la ~ 

l 
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at · at 1 + P äir Sa+ (T •• - p ~ F. )V .• - ë' Q.9 . + 
a lJ ia Ja l,J 1 ,1 

aa. 
- e-1

-F 
ilF. ja, i 

Ja 

aai * 
9-M .. 

aM~ J,l 
J 

aa. 
e - 1

- M •. aM. Ja,l 
Ja 

According to the principle of Coleman and Noll, discussed in Section 

!.4, and to the constitutive assumptions (7), the quantities 

ê ' V .• , M. , è , F •. , M •• , 
l,J la a Ja,l Ja,l 

* E •• ' J,l 
e . 
a,1 

can be chosen arbitrarily and independent of any other term in the 

above inequality. Therefore, in order that the inequality (14) is 

satisfied for every admissible thermodynamic process, the coefficients 

of the quantities listed above must be zero. 

To illustrate this procedure, let us consider as an example the coef

ficient of è. According to the constitutive assumption (7), this coef

ficient is independent of è. Since all terms occurring in (14) are in

dependent of è, but for the second one, that is linear in è, it is 

evident that the inequality (14) is only to satisfy for every value of 

ê by taking the coefficient of è equal to zero. 

Analogous reasoning for the other coefficients, leads to the following 

results: 

s = az 
-äë' ' 

(15) 

* - 2l.. p. 
l * aE. 

(16) 

l 

(17) T .. az 
p~F. lJ ia Ja 

a x az TI •• a 0 ax. - p--= , 
lJ aM. 

J l(l 
(18) 
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(19) 

(20) 

ai: as= o, 
a 

aa. aa. a a. aa. 
1 1 1 1 

-w:-=~=-* =-ae= 
Ja Ja aE. a 

J 

Multiplication of (18) by F. gives 
Ja 

(21) 11 •. 
1J 

0 . 

By using (16), (17) and (21) and the invariance condition !(JO), the 

first term of (14) can be shown to be equal to zero. to this end, we 

first prove 

(22) M*<H*-p..2!..+11.) e. 'k • P . 
1J J 1 aM~ 1~,~ 

1 

e. 'k{pH~M~ + 11." .M~ + p ~ F '] + 
1J 1 J 1x.,x. J aF[ia J a 

p * 
=- r ~, 

according to 11.(31). 

The first term of (14) becomes then 

(23) *'* - pGk~ = 0 , 

as a consequence of equation 11.(32) 1• 

Substitution of these results reduces the inequality (14) to 

(24) 
aai * 

9-M .. 
aM~ J '

1 

J 

* * + J.E. lt 0 . 
1 1 

Furthermore, it follows from (20) that a can be at most a function of 9 
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(25) a. = a. (9 ,M*) • 
l l -

In order to prove that ~ is equal to zero, let us consider a process in 

which M~ • is arbitrary, but 
J,l 

9 • = E~ = 0 • 
,l l 

In that case, it turns out that the inequality (24) is only to satisfy 

by taking 

(26) 0 • 

Hence, 

and (24) further reduces to 

(28) 

Let us denote the left-hand side of (28), for the case that 

by V, thus 

F. 
la 

V V 1 a l 
[

Q. (0,0,0,0,9,9 ) dcr. (9)] 
(29) = (9,9a) :=- + e ~ e,i ~ o 

As follows from (29), V attains its minimum value V= o for e . 0 
,l 

(then also ea. 0). 

Hence, we must have 

(30) av I = o • 
"
9
,i e .-o ,,l 

which implies that 
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(31) 
dcr.(O) Qi(o,o,o,o,e,o) 

e ---1--- + = o . de e 

We note that {31) is valid for every admissible temperature distribu

tion, hence also for a uniform one. On physical reasons, it is unlikely 

that in an undeformed body, without electromagnetic interactions and 

with a uniform temperature field, there is a flux of ener~y. Hence, the 

right-hand side of (31) must be equal to zero, by wh~ch we have proved 

that 

{32) 
dcr. {9) 
___ l ___ = 0 

dO 

Consequently, ~is a constant. This constant may be taken equal to 

zero, because only the derivative of ~ enters the entropy inequality. 

At this point, we have shown that, for the class of materials under 

consideration, the well-known relation for the entropy flux 

(33) ~i 

Q. 
l -e· 

is valid. 

There now only ~wo terms remain in the entropy inequality 

(34) 1 * * - ö Q.O . + J.E. ~ 0 • 
0 l ,l l l 

It is not possible to 

However, if we •ssume 

dent variables ~a {or 

yields conditions for 

Therefore, we take 

satisfy this relation in a general nonlinear way. 

that the dependenee of ~ and d* on the indepen-

e 
1
.) and E~ is a linear one, the inequality (34) 

' l 
the coefficients in these linear expressions. 

(35) 

and 

(36) 

0 {Q) * 
Q• =- K •• o. + B

1
.j. EJ., 

l lJ ,J 

J* ~ .. E~ + B(J) e,j 
i ~1J J ij 9 

The inequality (34) is now satisfied if Kij and crij are positive defi

nite tensors, and if 
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(37) 

We note that the latter relation is not necessary but only sufficient. 

The relation (37) can also be derived by use of the Onsager-relations 

(cf. [12], p. 216). 

The coefficients K •• , cr .. and B •• are, in general, functions of the 
l.J l.J l.J 

elements of S. The constitutive equations (35) and (36) are known as 

Fourier's law and Ohm's law, respectively. The coefficients K •• and cr .. 
l.J l.J 

are named thermal and electrical conductivity, respectively. The coeffi-. 
cients s .. are responsable for thermoelectric effects, as there are the 

~J 

Seebeck-effect, the Peltier-heat and the Thomson-heat (cf. [12], Ch. 

12). 

By use of the equations II.(22), II.(24), (3), (8), (16), (17) and (21), 

the energy balance 11.(20) reduces to 

(38) . * * p9S + Q. . = pr + J
1
.E

1 
•• 

l.,l. 

In principle, at this point the general nonlinear theory is completed. 

For convenience, let us survey the equations that we have found. We 

have-

i) The eleatromagnetia equations, i.e. 

seven, independent, Maxwell-equations (1.(34)), 

six relations, defining ~ and! (1.(47)-(48)). 

ii) The ba~noe equations, i.e. 

one balance of mass (1.(12)), 

iii) 

three balances of momenturn (1.(14)), 

three balances of moment of momenturn (1.(31)), 

one balance of energy (38). 

The oonstitutive equations, i.e. 

one for the entropy (IS) • 

three for the polarization ( 16). 

nine for the stresses (17). 

nine for the couple-stresses (21), 

three for the heat flux (35), 

three for the electric current density (36). 
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Togetherthese 49 equations constitute a complete system for the 49 

unknown variables 

x~, p, E~, D~, P~, H
1
., B

1
., M., J., Q, 0, S, T .• , IT .. , Q., 

~ ~ ~ ~ 1 ~ lJ lJ ~ 

The jump conditions belonging to the above equations are given by 

I.(35), II.(41), II.(42), II.(43) and II.(39). 

In concluding, \ve make the following remarks: 

i) The constitutive equations obtained in this chapter, are not 

written in a form that is invariant under superposed rigid-body 

rotations. This will be done in the next section, 

ii) Before we can work out the constitutive equation~ any further, we 

need an explicit expression for the functional E. Such an expres

sion will be given in Chapter VI. 

iii) The system of equations, summarized above, is highly nonlinear and 

hard to solve in their present form. Therefore, we shall linearize 

these equations in Chapter V. 

III.4. Invariant form of the constitutive equations 

From the relation (19), it follows that the functional E is independent 

of the gradient of the temperature oa. so 

(39) E=E(F. ,M~,M. ,E~,O). 
1a ~ 1a 1 

We note that E cannot be any function of the above variables, because E 

must be invariant under a rigid rotation of the body. The theorem of 

Cauchy (cf. Section !.4) statea that if E is a functional which is 

invariant under ri.gid-body rotadons, E must reduce at most to a func

tion of the scalar products and the determinant& of the independent 

variables. 

Under a rigid-body rotation, the coordinates transfarm according to 

(40) x ... Q •• x. 
1 lJ J 

where Qij is a rotation tensor, satisfying 

(41) 
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The above rotation transforms the independent variables according to 

(42) M. • Q •• M. , l.a l.J Ja 

* . * M. • Q •• M. , 
l. l.J J 

* * E. • Q •• E. , 
l. l.J J 

Under the conditions mentioned above, the said theorem of Cauchy states 

that E may depend only on 

e • 
the scalar products, such as 

etc., 

and the determinants, such as 

e .. kF. F."Fk , l.J l.a Jp y 
* e .. kF. F. 0 M. , l.J l.a J.,-"k 

We note that it can be proved that only the quantities 

A * cal3 :== FiaF iS ' 
:= F. M. a l.a l. 

(43) 
* AaS ·- FiaMil3 !:. :• F. E. a I. a l. 

and 

e ' 

etc. 

need to be considered without any loss of generality, since all of the 

remaining quantities are expressible in termsof the set (43). For 

instance, we have 

(44) 

For the proof of the above assertion• confer [13], p. 1309. 

For reasons, that we shall give right away, we prefer to use instead of 

the right Cauchy-Green tensor Cal3 the deformation tensor Eal3' defined 

by 

(45) HF. F." - ö ") • I.a I.., a., 
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The advantage of the tensor Eaa lies in the fact that it goes to zero 

in·case of absence of deformation. 

If the exchange energy is invariant, i.e. if the relation 

(46) ar M = o • 
oM[. j]a 

la 

holds, the tensor AaS may be replaced by the symmetrie tensor Gaa• 

defined by 

(47) 

The proof can be found in [13], pp. 1310-1311. In wha~ follows, we 

suppose that (46) is valid. 

The definitions (45) and (47) enable us to replace (39) by 

We note that by I: according to (48), the invariance condition (JO) is 

satisfied identically. 

The constitutive equations, derived in Section III. 3, can be expressed 

in invariant variables. This results in the following system 

(49) 

(50) 

(51) 

(52) 

In this way we have obtained a system of constitutive equations, that 

is invariant under superposed rigid-body motions. 

At this point, we would like to recapitulate the conditions under which 

the constitutive equations are valid. These are 

i) The material is thermoelastic, magnetizable, polarizable and 

electrically and thermally conductive. 
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ii) Exchange interaction is taken into account. 

iii) Elastic and magnetic dissipstion are excluded. 

iv) The magnetization is saturated. 

v) The exchange energy is invariant under superposed rigid-body 

rotations. 

vi) The heat flux and the convective electric current are linèar 

functions of the temperature gradient and the convective electric 

field. 

III.5. Alternative definitions of the stresses 

So far, we have used a stress tensor Tij' that is given by the con

stitutive equation (17) and that has to satisfy the momentum equation 

II.(I7) tagether with the jump conditions II.(42). In principle, this 

stress tensor is characterized by the energy balance II.(I), and, more 

specified, by the vector ~. occurring in this equation. By choosing an 

ether expression for ~. we arrive at a stress tensor differing from 

T ..• Hence, we notice that, although they havetomeet some common 
lJ 

restrictions (e.g. invariance), the stresses are not unique. 

In the monograph by Brown ([11], Section 5.6) a number of frequently 

occurring stress formulations is given. These stress tensors are only 

then completely defined, if the system consisting of the cÓnstitutive 

equations, the balance of momentum and the jump conditions is known. 

In this sectien we shall present these systems for some alternative 

stress definitions. 

To render the equations amenable, we shall restriet ourselves to the 

static theory of a nonconducting body in a vacuum. Moreover, ue shall 

neglect exchange interaction. We assign the stresses used in the pre

ceding part by Ti~). Under the restriedons mentioned above, the fol

lowing equations ~orT~!) hold (cf. (17), II.(17), II.(31) and II.(47)) 
lJ 

T~!) • p ...E_F 
lJ aFia ja 

T~!). + pP.E .. + pM.H .. + pF~m) 0 , 
lJ,J J J,l J J,l l 

(53) 

45 



(I) 2 2 T .. n. = 2n{(pM.n.) + (pPJ.nJ.) }n1. , 
lJ J J J 

onS. 

The stresses defined by (53) are called the stresses according to the 

Maxwell-model I. In this formulation, the electromagnetic body force, 

occurring in the momentum equation, can be written as the gradient of 

the Maxwell stress defined by II.(19). 

An alternative stress tensor, named Maxwell-model II, is defined by 

(54) 
(2) (I) 2 

T •• :=T •• - 2np (M.!-1 +PkPk)o ..• lJ lJ ''k 1\. lJ 

It is easy to show.that for these stresses the following equations are 

va lid 

(55) 

T~:). + pP.D .. + pM.B .. + pF~m) = 0 , 
lJ,J J J,l J J,l 1 

(2) 2 2 2 
T .. n. = 2np (Mt + Pt)n. , lJ J 1 

on S, 

where Mt and Pt are the tangential components of Mand P onS. We note 

that the role played by ! and ~ in the first definition is taken over 

by Q and! in the formulae (55). In case of a dynamic problem, we have 
. . . * * to substltute the convect1ve f1elds ~ .• f, etc., for ~· f, etc., 

respectively, in order to preserve invariance. 

A stress tensor, to which will be referred as the Amperian-current 

model, is defined by 

(56) := T~~) - pP.D. - pM.B. + ~o 1 .J.pU (Bk+ l!l) + lJ 1 J 1 J 'k '1\. 

For these stresses the following relations can be ded~ed 
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(57) 

T~~). + (pP.) .D.- (pP.) .D. + (pM.) .B.- (pM.) .B. + 
l.J.J l. .J J J ,l. J l. .J J J ,l. J 

+ pF~m) = 0 , 
l. 

(3) 
T[ij] = 0 , 

(3) I 1 
T .. n. •- -

4 
(B.B. - !o .. BkBk]n. - -

4 
[D.D. - !o .. DkDk]n. = l.J J n 1. J l.J J n 1. J l.J J 

- - 2 2 2 = pB.(M.n. -M.n.) + pD.(P.n. -P.n.) - 2np (Mt +Pt)nl.. 
J J l. l. J J J l. l. J 

on S. 

In conclusion, we mention a stress tensor that. at least for the 

magnetic part, can be based on a magnetic pole model. This tensor is 

defined by 

(58) T~~) := T~~) + pE.P. + pH.M. , 
l.J l.J l. J l. J 

from which it can be interred that 

{59) 

T~~) = p ~ F. + pE.P. +pH M 
l.J aFia Ja 1. J i j • 

T~~). - (pP.) .E. - (pM.) .H. + pF~m) 0 , 
l.J,J J ,J l. J ,J l. l. 

(4) 
T[ij] = 0 

{4) 2 2 T .. nJ. == pE.P.n. + pH.M.n. + 2n{{pM.n.) + (pPJ•n.) }n., onS. 
l.J l. J J l. J J J J J l. 

Brown, [IJ], introduces also a stress related tp a magnetic dipole 

moment. However, because this stress is not a tensor, we leave it out 

of consideration. 

For physical backgrounds of the several stresses defined in this sec

tion, we refer to [IJ], Sectiens 5.1 and 5.6. 

47 



III.6. Literature survey 

The first consistent nonlinear treatment of an electrically polarized 

elastic continuurn in interaction with an electrastatic field appeared 

in a paper by Toupin [5] in 1956. Toupin has extended the aforesaid 

theory by including dynamical problems in a paper [14] of 1963. Toupin 

started with the postulation of a set of global balance equations from 

which local balance equations, constitutive equations and jurnp condi

tions are derived, holding for perfectly elastic dielectrics. The 

results of these papers can be made to fit those of our theory by 

taking in the latter the convective magnetization ~* equal to zero. 

However, we must note that in [14] Toupin has used a stress tensor that 

differs from the tensor Tij' used throughout this chapter, by the 

amount 

One among several other workers, who investigated the static behaviour 

of elastic media in interaction with electromagnetic fields, is Eringen 

([15], [16]), At certain points, Eringen is slightly at varianee with 

the present theory. For instance, the expression for the electramag

netic body force derived in [16] differs a term 

41rp 
- e. 'kJ,M. c 1J J"'"k 

from the formula according to II.(I6) in case of a static situation. 

~In the paper [17], Tiersten treated the quasi-static behaviour of 

electrically polarized thermoelastic bodies. The ,resulting equations 

are derived by means of an application of the laws of continuurn physics 

to a macroscopie model consisting of an electronic charge continuum 

coupled to a lattice continuurn. The aforementioned author has also 

written two articles on quasi-static magnetoelastic interactions, [13] 

and [18]. In [13] a similar method as in [17] is used, but now the 

lattice continuurn is coupled to an electronic spin continuum, while in 

(18] a variational method is used. In [13], also the linear equations 

for a small dynamic field superimposed on a large static field are 

obtained from the general system of nonlinear equations. Quite recently, 
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Tiersten and his co-writer Tsai, [19], derived the differential equa

tions and boundary conditions descrihing the behaviour of a finitely 

deformable, polarizable, magnetizable and heat conducting insuiator in 

interaction with an electromagnetic field. In this paper, a metbod is 

used that is an extended combination of those of [13] and [18]. Both 

ionic and electronic polarization are included in this treatment and 

the gradient of the polarization is included in the set of constitutive 

variables. The results of all these papers, as far as they refer to the 

problems considered bere, are in agreement with those of this thesis. 

However, in [19] a stress tensor is used that differs from the one used 

in [13] and [18] (this can beseen from equations (6.17) with (5.14) of 

[19]). The paper [19] contains a detailed literature survey in its 

Introduction. We note that, to our opinion, the approach in the afore

mentioned papers is Dather artificial and that the fundamental deriva

tions are hard to understand. 

Quasi-static magnetoelastic effects are also investigated by Alblas 

[7], Brown[JJ], Kaliski [20] and by Akhiezer, Bacyakhtar and 

Peletminskii [21]. In the articles [7] and [20] magnetic dissipation is 

taken in to account. Brown' s monograph [IJ J is one of the fundamen tal 

works on magnetoelastic interactions, although it deals mainly with 

static magnetic fields. Two different methods are described in [IJ]. In 

the first methad field and stress concepts play a dominant role, while 

in the second energy considerations were the basis of the treatment, 

where the key principle was the minimization of a thermadynamie poten

tial. Underlying the derivation in [20], are a spin equation and an 

energy balance. The book [21] deals mainly with spin waves, but one 

chapter is devoted to magnetoelastic interactions, whereby an infini

tesimal magnetostrictive approximation is used. 

The ultimate equations of these papers all correspond with each other 

and also with the results of the present theory, if in the latter all 
-I terms proportional to c are neglected. 

In [9], Alblas has extended the theory of [7], by including polariza

tion and dynamica! effects. The same class of problems is reported in 

the monograph by Parkus [JO]. The works of these two authors are based 

on an energy balance, that is of a similar kind as the one used by us. 
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This energy law was elaborated to yield balance equations with the aid 

of a method of Green and Rivlin ([2]), that is also d~scribed in Sec

tien II.l of this thesis. Further, they also employed a Clausius-Duhem 

inequality for the derivation of the constitutive equ,.tions. These 

papers, just as the present thesis, do refer to "slowly" moving media, 

i.e. relativistic effects are neglected. This is achieved by omitting 
-2 all terms that are proportional to c • As a result, none of the afore-

mentioned works is Lorentz invariant. In [9], the Chu-formulation of 

electrodynamics is used and applications to magnetoelastic wave propa

gation in the infinite space and in the half-space are given. When 

comparing the results of [9] and [10] with each other and with those of 

our work, complete agreement is found. 

Parkus has also derived the magnetoelastic equations for a much more 

restrictive class, by means of a variational method, in [22], Ch. IV, 

by following a method developed by Brown. A variational principle was 

also used by Vlasov and Ishmukhametov [23], They employed the principle 

of Hamilton, in order to obtain balance laws of momenturn and of moment 

of momenturn and constitutive equations for the electric field intensity 

and for the effective magnetic field, holding for an elastic medium 

that is both polarizable and magnetizable. In [23], an approximation, 

based on infinitesimal deformations is applied. We no~e that the 

balance of momenturn found in [23] and the one according to equation 

II. ( 17) are slightly distinct. We will return to this subject at the 

end of the next chapter (viz. Sectien IV.B). 

In the book of De Groot and Mazur [24], dealing with nonequilibrium 

thermodynamica, ene chapter is devoted to irreversiblei processes in 

polarized media. A dynamic, but nonrelativistic, theor~ is presented, 

based on a set of electrodynamic balance laws, in which in a to some 

extent arbitrary way, but consistent with pertinent invariance condi

tions, mechanica! and thermal contributions are introduced. The 

results seem to be equivalent to ours, but a complete comparison is 

difficult, as in [24] only constitut_ive equations for fluids are de

duced. 

To conclude this literature survey, we mention the book of Penfield and 

Haus [25]. By means of both the principle of virtual work and the 
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principle of Hamilton, these authors derive an expression for the 

electromagnetic body force in an elastic continuurn that is polarizable 

and magnetizable. The equations of [25] are written in the Chu-formula

tion, whereas in the present work the Minkowski-formulation is used. 

After reformulating the results of [25] in the Minkowski-notation, it 

turns out that the expressions for the electromagnetic body force 

according to [25] and to equation II.(I6) of our work, completely cor

respond with each other. For the details of the calculations underlying 

this statement, confer Appendix III. 
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IV. HAMILTON•s PRINCIPLE 

IV.l. Introduetion 

In the chapters II and III, equations of balance, constitutive equations 

and jump conditions for the electromagnetic interactions with thermo

elastic media were derived by a metbod that was based on a balance of 

energy. In the present chapter the same system of equations will be de

rived in an other way, namely by means of Hamilton's principle. In this 

chapter, we shall restriet ourselves to the case of a medium that is 

neither electrically nor thermally conductive, This means that we do not 

consider thermal effects and we take equal to zero the charge Q and the 

current J. Furthermore, we shall consider only material: discontinuity 

surfaces. 

Hamilton's principle is a variational principle, The so called action 

integral is required to be unchanged when certain variables are altered, 

The action integral is an integral over a time interval Ct 1,t2J and over 

a material volume V of the Lagrangian .C. Denoting a variatien by ó, 

Hamilton's principle can be formulated as 

(I) 0 • 

The variations in (I) are zero at the times t 1 and t 2 and on the boun

dary of V. 

The advantage of Hamilton's principle lies in the fact that the techni

que is straight away and very unsusceptible to errors once the Lagran

gian is written down. However, the choice of an explicit expression for 

the Lagrangian will always remain open for discussion. In the next sec

tien we shall postulate a for~ for the Lagrangian, 
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The theory given in this chapter can serve two different purposes. On 

the one hand, we can use Hamilton's principle in order to corroborate 

the results obtained in the chapters II and III. On the other hand, we 

may state that, if Hamilton's principle yields equations that are iden

tical to those of the chapters II and III, the used expression for the 

Lagrangian is the correct one for the problem under consideration. 

Hence, in the latter case Hamilton's principle serves as a confirmation 

of the correctness of the form of the chosen Lagrangian. From the thus 

found expression, one can then easily derive the Lagrangians for every 

more restrictive class of problems. Furthermore, this expression can 

also serve as a basis for an extension to more general media, e.g. dis

sipative or conductive media. 

A complete description of the features of Hamilton's principle is be

yond the scope of this thesis. For an excellent treatment of this prin

ciple, we refer to [25], Chapter 6, and to the references mentioned 

there. In the references [18], [22] and [23], also variational princi

ples are employed for the deduction of the equations governing the be

haviour of elastic media in interaction with.electromagnetic fields. 

IV.2. Lagrangian 

The basic step in the application of Hamilton's principle is formed by 

the choice of the Lagrangian. Here, we postulate the following expres

sion for the Lagrangian t, fora moving, polarizable, magnetizable, 

elastic medium 

(2) 1 * * * * * * * * t =-=- (E.E. - B.B.) + pE.P. + pB.M. + 
OTI 1 1 1 1 1 1 1 1 

2 * * + pK- pU- 2Tip M.M. + !pV.V .• 
1 1 1 1 

In the following sections we shallshow that, by using this expression 

fort, Hamilton's principle will yield equations identical to those of 

the preceding two chapters. 

We note that the form of the Lagrangian according to (2) corresponds 

with the expression used by Vlasov and Ishmukhametov in [23]. 

By use of the relations 1.(36) and I.(37), the Lagrangian (2) can also 

be written as 
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(3) I * * * * * * l = ~ (E.E. -H.H.) + pE.~. + pK- pU + !PV.V .• 
0~ 1 1 1 1 1 1 1 1 

In this form, the Lagrangian is identical to the one used by Penfield 

and Haus ([25], p. 174, eq. (6.51)) if the latter is rewritten into 

Minkowski-notation. 

In this chapter, we shallemploythe expression (2). l~e note that the 

kinetic energy of the magnetization vector K is a function of M* and 

** !! • i.e. 

(4) K = K(M* M*) - ·-
while, since thermal effects are left out of considerat~on, for the in

ternal energy the relationship holds 

(5) 

Moreover, we note that all variations occurring in the above formulae 

will be taken with respect to a system that moves together with the me

dium. 

Note. We remark that it is possible to include also the chargeQ. and the 

ele<:tric current .:!_, by adding tO" ö.C the amounts (cf. [26], eq. (IX.I47)) 

(6) .!. J.öA. - Q.ö!p , 
c 1 1 

where ! and lP are the electromagnetic potentials that can be introduced 

by 

(7) 

(cf. [4], Section 1.9). 

IV.J. Restrictions on the variations 

As the region V on which the action integral is defined constitutes a 

material volume and since we take ö to be a varlation with respect to 

a system that moves together with the medium, we have (compare the ma

terial derivative of an integral over a material volume) 

54 



(8) {ó..C +..C(óU.) .}dVdt=O, 
l. ,1. 

where U is the displacement vector. 

Furthermore, the variations must be restricted by the following require

ments 

i) The total mass of V is conserved. 

ii) The two Maxwell-equations 

I 
aB. 

(9) l. 
-e. 'kEk . ' B .. = 0 ëä"t= l.J ,J 1.,1. • 

and the iump conditions 

( 10) 
I 

[e .• kE.~ +- B.V.n.D = O, [B.Dn. = 0 on E(t) 
l.J J I< c l. J J l. l. 

where E(t) is a material discontinuity surface, must be satisfied 

a priori. The other two Maxwell-equations plus jump conditions 

will be obtained as aresult of Hamilton's principle. 

iii) The magnetization is saturated. 

The conservation of mass gives 

( 11) ó p dVdt {óp + p(óU.) .}dVdt = 0, 
l. ,1. 

from which it follows that 

(12) óp = -p(óU.) .• 
l. ,1. 

By putting 

( 13) !. • pL 

and by using (12), the relation (8) can be written as 

t2 

(14) I I póL dVdt - 0 • 

t 1 V 
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The interchange of the order of variation and derivations is governed 

by the following relations 

(15) ó (-()-) = .2_ 5- d 
a x. axi 

(óu.).-3 -. 
1 J ,1 xj 

a = 2._ ó a a 
ó{n:) -n: (&U.)rx;- • at J x. 

J 

The Maxwell-equations (9) can be satisfied by introducing the vector 

potential ~ and the scalar potential ~ by (cf. [4], Settion 1.9) 

{16) 

The jump conditions (10) are then satisfied if we assume ~ and ~ to be 

everywhere continuous, i.e. 

(17) [~] = [A.] = 0 on E(t) , 
1 

This can be shown by substituting (16) into (10), giving 

(18) 
e .. k[A .]n. = 0 , 

1J -l.<:,J 1 

ol!l. E(t) , 

When ~ and A are continuous on E(t), then the tangential derivatives 

are too, Hence, (18) 2 is satisfied identically, while (18) 1 becomes 

(19) 

That this relation holds for continuous ~ can be proved as follows: 

Since the tangential derivative of~ is continuous we have 

(20) 
a~ 

[A •• ] = [-., -]n. on E (t) 
1,J on J 

where (aAi/an) is the normal derivative of Ai on E(t), 

With this (19) becomes 
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(21) 
I dA. 

- ë eijk[~ ~- Aj.~v~~ + Aj,kv~n~] = 

I dA. àA. aA. 
- ë eijk[~ ~ - anJ n~V~~ + "ät ~Vtn~] 

I dA. I d 
"' - ë eijk[~)~ = - ë eijk FfA}~ 0 • 

according te (17) 2• 

We note the A is net uniquely defined by (16) 2, for we may always add 

te A the gradient of an arbitrary scalar function. Therefore, we impose 

on A and ~ the supplementary condition (cf. [4]. p. 24. eq. (12)) 

(22) 

From (16), we obtain for the variations of! and !• with the aid of 

(15). 

(23) 
öB. = e .. k(ö~) • - e .. kA. • (öu.) .• 1 1J oJ 1J -K,~ ~ tJ 

The variatien of M* is restricted by the condition that the magnetiza

tion is saturated. For 

(24) 

gives 

(25) 

which relation is satisfied, if 

(26) * * óM. = e .. kM.ö~ , 
1 1] J . K 

for arbitrary ó11t• 
The relations (12), (23) and (25) assure us that the constraints stated 

in the beginning of this sectien are net violated. 
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We now shall elaborate the relation (14), by taking into account (12), 

(23) and (25), for arbitrary variations of~-!'!*,~ (or ~*) and ~· 

In the next sections, these variations will be studied successively. 

IV.4. Variation of the scalar potential ~ and the vector potential A 

In this section, we shall take only the variations ö~ and öAi unequal 

to zero. 

For convenience, we write the electromagnetic fields occurring in the 

first four terms of (2) in their nonconvective form, i.e. 

(27) I 
l = ~ (E.E. - B.B.) + pE.P. + pB.M. + 

O'IT 1 1 1 1 1 1 1 1 

We now substitute {16) into (27) and we wish to apply Ramilton's prin

ciple for the thus obtained Lagrangian and for variations lvith respect 

to ~ and Ai. However, as we have imposed on~ and! the restrietion 

(22), the Lagrangian (27) must be supplemented by a term 

where A is a Lagrange multiplier. 

By use of (23), we then obtain from {I) and (27) 

(28) 
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dVdt = .!_ 
4'1T 

I tl 
4'1TpP.)(-ö~ • --~ öA.) + 

1 ,1 C at l. 

- (e •• A •- 41fp:t-f.)e •• köA. • + :l.(öA •. +..!.~ ö~)JdVdt= 
1~m m,~ 1 1] k,] 1,1 c at 

1 
"'41f 

1 aAi i I • a). 
[{-~ .. -- ~+ (4'1TpP.) • -- ~t}ö~ + 

,11 C ot 1 ,1 C dL 

2 
I a~ i I a Ai I a 

+ {----&.:.-- -- +-- (4'1TPP;) - A ... + A ... + 
c at c2 at2 C at L ],]1 1,]] 



+ e .. k(4np~) . -À .}5A.] dVdt + 
lJ -"k 0 J 0l l 

+ I 
4ii 

I aA. I 
[{[!p. +- ~t

1
-4npP.]n. -..!.[À]V.n.H!P + 

ol c 0 l l c J J 

I I aAi 
+ {-- h. + --- 4npP.]V.n. + 

c 0 l c at 1 J J 

+ [A. . -A. . - 4npe. 'k~ ]n. + [ À]n. }óA. Jd.Sdt "' 0 0 J 0 l l 0 J lJ -K J l l 

where L(t) is a material discontinuity surface that intersects V. 
Since (28) must hold for arbitrary OfP and êAi 0 we find from it 0 by putt

ing equal to zero the coefficients of OfP and êA. 0 the equations 
l 

I aA. . I a 
!P .. +- --2:.z2:.- (4npP.) . =-- ~ Àt 0 

0 ll c at 1 0 l c o 

(29) 

+ e. 'k(4np~) . = -À • 0 lJ -"k 0 J 0 l 

and the jump conditions 

I aAi I 
h . +--- 4npP

1
.]n

1
• =- [À]V.n. 0 

0 l c at c J J 

(30) 

-[A .. - A .. + 41Tpe .. k~]n. [À]n. on L(t). 
l 0 J J 0 l lJ -K J l 

From the two relations (29) \ve can deduce that 

(31) 

while from (30) we find 0 by multiplication of the secend condition by 

(32) [À] = 0 on L(t) • 
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We note that there are no begin conditions given for À, If we assume 

that at a time t, 
" 

(33) À = ~ = 0 for t = t., • at • 

we find as the solution of (31) 

(34) À = 0 • 

The precise meaning of the conditions (33) will he specified lateron. 

We introducé the fields ~ and ~ by 

(35) 
D. 

l. 

Assuming (32) to hold• we then find from (29) and (30) with (35) 

(36) 

and the discontinuity conditions 

(37) 
1 [e .. kH.a -- D.V.n.D = 0 on E(t) , 

l.J J K C l. J J 

Hence. by variation of the action integral with respect to ~ and,!• 
.. * * " w1.th constant ! • ,!:! and .!!.• we have denved the lacking two Maxwell-

equations together with their discontinuity conditions, 

Note. We reeall that if À was not taken equal to zero. the right-hand 

sides of the ~ relations (36) would het ~; and À i• respectively • 
• This means that the conditions (33) express the fact that there exists 

a time t 0 at which the Maxwell-equations (36) are satisfied. Hence. we 

may conclude from the foregoing that. if the Maxwell-equations (36) are 

satisfied at one moment, they hold at every time t. 
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IV.5. Variation of the pofarization p* 

Let the only variation unequal to zero be 6P~, i.e. let us hold ~. !• 
~* and ~ fixed, According to (4) and (5), wethen have 

(38) au * êU = -- êP. and êK = 0 , 
aP~ l. 

l. 

respecti vely. 

In this case, (14) with (2) and (13) becomes 

(39) {pE~êP~ - p !!!._ êP~}dVdt = 0 , 
l. l. ap~ l. 

l. 

which gives the constitutive equation 

(40) * au E. =
l. 

oP~ 
l. 

By means of the Legendre transformation 

(41) * * E • U -P.E. 
l. l. 

where 

(42) E = E (F. ,M\E~ ,M. ) , 
l.a l. l. l.a 

equation (40) passes into 

(43) p~ =- ~ 
l. 

We note that this relation is identical to the constitutive equation 

III.(16), 

IV.6. Variation of the magnetization ~* 

. * . h * When vary1.ng ~ , w1.t constant ~. !• ~ and ~. we find from (4) 

(44) aK * oK '* êK • - êM. + --;-; êMi 
êlM~ l. oM. 

l. l. 
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* We define the vector ~ by 

(45) 

wbere the coefficient À will be chosen in such a way that 

(46) G~M~ = 0 , 
~ ~ 

Relation (46) is satisfied if 

(47) 

With the definition (45) and with allowance for the restrietion (25), 

the relation (44) can be rewritten as 

For the variation of the internal energy U with respect to M*, we have 

according to (5) 

(49) 

with E defined by (42). 

With the foregoing results, relation (14) can .be worked out for varia

tions with respect to ~*· Replacing ö~* by the expression (26), wethen 

arrive, after some operations analogous to those of the preceding sec

tions, at 

(50) * * * * ar t ar e. ·é·l\ = e. 'kl\[H. -- +- (p aM. FR.a.) R.J ' 
~J J ~J J aM~ P Ja. • 

J 

and 

(51) 

It is easy to show that the discontinuity condition (51) is equivalent 

to II.(45), by substituting into the latter the constitutive equation 

III.(21). 
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We eliminate (ar: /<1M~) from (SO) by means of the invariance condition 
J 

III.(IO). By this procedure the relation (SO) transfarms into 

(52) 

By use of the constitutive equations III.(16), III.(I7) and III.(21), 

it can be proved that (52) corresponds to the angular momentum equation 

11.(33), provided that the vector~* represents the effective magnetic 

field, as introduced by 11.(32). In order to be able to verify this 

last assertion, we need an explicit expression for the kinetic energy K. 

According to Brown [27], p. 42, eq. (3-52), the energy K is, in case of 

a magnetically saturated medium, equal to 

M 
(53) K • ; (I ~ y} (aS - 13&) , 

where a, 13 and y are the components with respect to some Cartesian coor

dinate system, of the unit vector ! defined by 

(54) I * e =- M • 
- M -s 

The expression (53) is equivalent to the one used by Vlasov and 

Ishmukhametov [23], eq. (23). 

With (45), (47) and (53) we obtain 

(SS) 

which after multiplication by ~t, leads to 

(56) 

* It is evident from the equations (46) and (56) that the vector ~ de-

fined by (45) is indeed identical to the effective magnetic field ac

cording to II. (32). 
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IV.7. Variation of the displacement Q 

Finally, let us consider the variations óUi' In this case, we obtain 

from (4) and (5) 

óK = 0 
(57) 

óU = ..!!!._ öF. = a:I: F. (öU.) . , 
êFia 1a ia Ja 1 ,J 

where (41) is used, 

With (2), (12), (13) and (57), the relation (14) becomas, when ~. !• !* 
and ~ are held fixed, 

(58) . I * * * * I * * * {-
8 

(E.E. -B.B.)(öU.) . +.,.- (E. +4TTpP.)óE. + 
TI J J J J 1 ,1 ~TI J J J 

- .!_. (B~- 4TipM~)öB~- p "F(li: F. (öU.) . + pV. dd öU. + 
qTf J J J o ia Ja 1 ,J 1 t 1 

2 * * + 2TTP M.M.(öU.) .}dVdt = 0 • 
J J 1 ,1 

By means of the transformation rules 1.(38) and the relations (35),this 

equation can be rewritten as 

(59) I I I {-
8 

(E.E.-B.B.)(öU.) .+-4 D.óE. -.,.-H.öB. + 
TI J J J J 1 ,1 TI J J 4TT J J 

p d ar 
-- e .. k(P.B. +E.M. )-dt óU. - p -;--F F. (öU.) . + c 1J J-k J-K 1 o ia Ja 1 ,J 

d 2 4TIP
2 

· } V + pV. -dt óU. + 2Tip M.H. (óU.) . + -- e 'k" V .PkM" (óU.) . d dt = 0, 1 1 J J 1 ,1 C J ,<, J X. 1 ,1 

After substitution of (23), with ö~ = öAi = O, into (59) this relation 

can be elaborated, by partial integration and with the aid of the well

known electromagnetic equations into the form 
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(60) 
• ()I: 

{[ -pV. + (p 1iF':- F. ) . +pP .E •. + pM.H .• + 
l ia JC!. , J J J ,1 J J ,1 

[-p ~Fai: F. --
4
1 

{E.D.+H.B.-jo .• (EkEk+RH_)}+ 
o ia Jet ~ 1 J 1 J lJ -K-K 

From this relation, the following momenturn equation and boundary condi

tion can be found 

(61) p v. - (p a:I: F. ) . + F ~e) 
l ia Jet tJ l 

with F~e) according to 11.(16), and 
l 

(62) 

on I:(t), where T~. is given by 11.(19). 
lJ 

With the conditions (17)
2

, (20) and (37), it can be proved that the 

right-hand side of (62) is equal to zero. 

We note that the relation (51) corresponds with the momenturn equation 

11.(17), if into the latter the constitutive equation 111.(17) is sub

stituted. 

As ct,mcernes the discontinuity condition (62), we state that this con

di.tion, in a way analogous to the one used by the derivation of II. (37), 

as described in Appendix 11, can be transformed into 
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(63) aE 
[p ~ F. Dn. 

ia JCl J 
* 2 * 2 2w[(pM.n.) + (pP.n.) Dn. on E(t) • 
J J J J 1 

The latter equation can, with III,(l7), be showed to beidenticalto 

the jump condition for the stresses II,(44). Confer also the jump con

dition that could be obtained from the global balance equation of roo

menturn n. (51). 

IV.8. Conclusions 

As we have said in the introduction, the aim of the present chapter was 

to find an expression for the Lagrangian that corroborates the results 

of the preceding chapters by application of Hamilton's principle, We 

have succeeded in this goal, ai. far as the expression (2) for .C did 

yield the Maxwell-equations, the balance equations of 1POmentum and of 

moment of momentum, tagether with their discontinuity conditions, and 

the constitutive equation for the polarization. The stress tensor and 

the couple-stress tensor, as introduced in Chapter II, are in the theory 

described in the present chapter, automatically eliminated. 

In conclusion, we shall briefly review four papers, that al~o employed 

Hamilton's principle for the investigation of electromagnetoelastic in

teractions. First we name the works of Tiersten [18], Parkus [22] and 

Penfield & Haus [25], He have discussed these raferences already in 

Section III,6, where we have seen that they are in cor~espondence with 

this thesis. 

There remains the artiele of Vlasov and Ishmukhametov [23]. In this 

paper, an elastic medium that is polarizable as well as magnetizable is 

considered. The authors restricted themselves to the theory of small de

formations, i.e. to the infinitesimal elasticity theory. l·!e. remark that, 

to our opinion, the structure of the paper is not very lucid. So they 

introduced, for instance, three kinds of variations: 

ö, a variatien with respect toa laboratory system of coordinates, 

ö 1, a variatien in a coordinate system that translates together with 

the medium, and 

o2, a variation in a system that moves in translation and rotatien with 

the medium, 
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However. it is not always clear which variatien is used for the deriva

tion of the equations of [23]. E.g., notice that the sentence (cf. 

P• 144 of [23]): 

Varying with respeat to ~ !_ and!:! with aon.stant ~l q>, ! and !• 

is only compatible with the variatien o, Hence, we must go out from 

ö dVdt = 0 • 

with 

oq> = ÖA. = öE. = oB. = 0 , 
~ ~ ~ 

and then equate to zero the factors preceding ou. <~ o1u. in the linear 
~ ~ 

approximation of [23]), o 2 M~ and o 2 P~ (instead of o 1 M~ and o 1 P~), in 

order to arrive at the equations (25)-(28) of [23]. The equation of mo

tion (30), however, is not completely correct, It must be supplemented 

by the amoun t 

2 41Tp 
-(-- e.k.v.PkM") • 

c J ~ J ~ .~ 

while further the electromagnetic quantities in the last two terms 

should be replaced by its convective values, If we require the internal 

energy to be invariant under superposed rigid-body rotations, it can be 

shown, with the aid of III,(IO), III,(I6), III.(I7), III.(20) and 

II.(33) that the last two termsof eq. (30) of [23] are equal to zero, 

Hence, the, corrected, momenturn equation (30) of [23] is equal to 

II, (I 7). 
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V. LINEARIZATION WITH RESPECT TO AN INTER~IEDIATE STATE 

V.l. Introduetion 

The dynamic equations of a polarizable, magnetizable tihermoelastic 

medium, as outlined in the previous chapters, are hig~ly nónlinear and 

complex. Apart from the usual nonlineari ties, as contailned in the fini te 

strain theory of elasticity, there emerge difficulties from the balance 

equations and the boundary conditions, since they are formulated in 

Eulerian coordinates. 

To render the equations aroenable, we shall linearize this system of 

nonlinear equations derived in the preceding chapters. To this end, we 

first introduce an intermediate state. In this state, ~he medium is in 

interaction with a finite electromagnetic field. On thls field, a small 

dynamic field is superposed. The nonlinear equations will now be lin

earized in the disturbances caused by this small field. 

In the final section, the thus obtained equations will be ~urther 
• I 

simplified by taking account of the fact that, althougp th~ fields are 

large, the deformations in the intermediate state are emall. 

The linear equations that will be derived in the present chapter, can 

be used, for instance, for the investigation of the stability of the 

interroediate state. If the disturbances tend to grow without limit, we 

state that the intermediate state is unstable, This principle will be 

applied in the study of the stability of magnetoelastic plates in the 

final chapter of this thesis. 

V.2. Statement of the problem 

Let us consider an elastic medium, initially free from. stre:ss (state ~). 

On the application of large electromagnetic fields, the state of the 

medium alters (intermediate state 5). An extra field, that is infini

tesimally small, is superposed on the basic fields. This extra field 
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brings the medium into the present configuration :• 

Fig. V.1. 

Hence, we distinguish the following three configurations (cf. Fig. V.t). 

i) the un.diformed or natura~ s"tate .! (Xa); 

ii) the intermediate state i (~i), in which only the large electro

magnetic fields a:re applied; 

iii) the ppesent o;r spatuû sta.te : (xi), that differs only slightly 

from the intertllediàte configurai:ion. 

We take the magnitude of the magnètic field in.the intermediate state 

large enough to make the magnètization in the medium saturated. 

The quantities in the intermediate st~te will be labeled with an upper 

index 
0

, while the disturbances will be denoted by lower case letters. 

For instance, we have for the displacements 

where 

(2) 

Moreover, we have 

(3) * 0* * M = M + m 8 = 8° + ~, etc., 
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with the restrictions 

(4) 
I!!!* I 

---<<I ' 
l.t(*l 

etc. 

In the present chapter we wish to derive a system of equations, that is 

* linear in the small quantities ~·!!!, etc., under the assumption that 

the i-state is known. 

As the magnetization is saturated, the following relations must hold 

(5) 

and 

(6) 

from which, after neglection of terms that are of second order in lm*l, 

i t follows that 

(7) 

The balance equation of mass II.(12) yields the following linearized 

relation between the density in the present state (p) and the one in 

the intermediate state (p
0

) 

(8) 

In (8) , i denotes differentiation wi th respect to xi' but; in the linear 

approximation this may be replaced by differentiation with respect to 

~i. Hence, in this approximation we have 

as can easily be proved with the chain rule of differentiation. We 

note, that in the sequel it is always allowed to read a/a~. for the 
l 

symbol .1. 
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V.3. Linearization of the constitutive equations 

We wish to express the constitutive equations, derived in Chapter 111, 

in terms of the small quantities ~· ~*, ~* and e. However, before we 

can do this, we must first linearize the independent variables, occur

ring in III. (48), with respect to these quantities. 

From the definition III. (5), it follows, with the aid of (2) 2, that the 

following, linear, expression for the deformation gradient holds 

(9) 

With this relation, and with the definition 111.(44), we can deduce the 

linearized expression for the deformation tensor 

( 10) E~ 0 = E: 0 + e .. i;... i;.. 0 , 
~'"' ~'"' ~J ~.a J,.., 

where 

(IJ) and e .. = j(u .. +u .. ). 
~J ~.J J,~ 

In an analogous way, we can linearize the remaining objective constitu

tive variables, defined in Section 111.4, obtaining 

(12) A 
0 

A + Li;.. 
0: (l J J ,a 

where 

( 13) 
0 0* and 0* * A = M. Ç.. Àj = M. u. + m. 
0: ~ ~.a ~ ~.j J 

and 

(14) 
0 

+ ó.i;.. !::. = !::. ' a (l J J,a 

where 

(15) 
0 0* 0* * 

!::. = E. i;.. and ó. = E. u .. + e. a ~ ~.a J ~ ~.J J 

and, in conclusion, 

(16) 
0 

Gal3 = GaS + g .. i;.. i;.. 13 
~J ~.a J, 

, 

where 
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(17) 

We now are able to linearize the constitutive equations. To this end, 

we write the partial derivatives of the functional E, with respect to 

E a• A • G a• A and a. as a power series in the small variables de-aw a aw a · 
fined above, retaining only linear terms. 

Starting with the constitutive equation for the entropy 111.(49), we 

get 

(18) s 

where 

2 
(] .. 

l.J 

(19) 

72 

al: (~~)o - äë = - OC' 

o + 109 + 2 3 * 4 * s * S a . • u .• + o.m. + o
1
.e

1
• + a . . m .. 

. -

l.J l. .J l. l. l.J l.,J 

2 0 

( a E ) "* - aeaA Ei ~j.a • 
a 

0 s + s 



Analogously, we obtain from 111.(50), for the polarization 

(20) * p, 
l. + 

where 

0* (a~r) o ~i,a P. l. a 

I ( a2r )o n. ~ ~i,a l. a 

2 (a~) o (\}k,a 

2 0 

nijk ( a r ) ~ ~ ~ + 
a~ aE

8 
i,a j,S k,y a a y 

2 0 2 0 
(21) _ (--a __ r __ ) Mo*~ ~ _ (_a _r_\ Eo*~ ~ 

a~aaA 8 j i,a k,S \a~aa~ 8 } j i,a k,S 

3 
2 0 

n .. (~)~ ~ l.J a~aaA 8 i,a j,S 

4 
2 0 

n .. -(-.a_r )~ ~ 
l.J a~aa~ 8 i,a j,S 

5 
2 0 

( a r ) o* 
nijk = -2. M. ~ ~ ~. . 

a~ ac
8 

J,~ k,S ~.y J.,a a y 

The relation for the couple-stress 111.(52) leads to 

(22) IT •• 
l.J 

0 

IT .. + 7f .. 
l.J l.J 

where 

73 



I 
1f •• = 

l.J 

(23) 

The equation for the stress III.(51) can be linearized to 
I 

) 
0 

I~. ,"e 2 3 * 4 * (24 Tij • Tij + '1.J + 1 ijkt~,t + 1 ijk~ + ~ijkek + 

where 
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(25) 
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2 0 o( a E ) o* o* + 2p M. ~. ~ ~ + aA êGQ I l. ~.p J ,ex t,S p,y 
ex "y 

2 0 o( a E ) o* o* + · 2p . E . ~ . ~ ~ • 
êó êGB l. ~,p J,ex t,S p,y ex Y 

For later reference, we rewrite the coefficient of ~.t in (24) in the 

form 

(26) 

where ëijkt follows from (25) 3 and (26). In the next ch~pter, it will 

turn out that in a very good approximation, êijkt may be taken equal to 

(viz. p. I 16) 

(27) 

In the angular momenturn equation II.(31), there appears the antisym

metrie part of the stress tensor. For this tensor, the following con

stitutive equation holds 

(28) 

Linearization of this relation gives 

(29) 

5 (a) * o 
+ 1 ijkt~,t = T[ij] + t[ij] ' 

where 
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(30) 

5 (a) o o* ( a2r ) 9 
o* 

'l·J·k·. 2p M[.~'J ~A·~a K ~.a~ + 
"' l J • ct 0 0 Q --k. p "''" p 'y ct .,y 

There are still two constitutive equations left to discuss, i.e. 

Fourier's law III.(35) and Ohm's law III.(36). Using the assumption, 

that the coefficients of conducti vi ty are independent of the temperature 
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gradient, we can infer 

(31) ., o + lk.a 2 3k .• m*. 4 * Q
1
• .. Q

1
• - K •• a . + k .. ku. . + + k .. e. + 

lJ ,J l lJ K,J lJ J lJ J 

5 * 0 
+ k. 'km. k = Q. + ql. ' 

lJ J. l 

where 

(32) 

while Ohm's law becomes 

(33) 

where 
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(34) 

At this point, we have decomposed each constitutive equation into a 

part related to the intermediate state, assumed to be known, plus a 

* * part that is linear in the disturbances: ~· ~ e and e. 

V.4. Linearization of the balance equations 

In this section, we shall in a similar way as in the preceding section, 

split up the electromagnetic and the mechanica! balance equations. 

Let us start with the Maxwell-equation 1.(34) 1 

With the definition 
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0 

a a I (35) ;rt • ;rt , 
§_=constant 

and the decompositions 

(36) 

where 

0 
B. • B· + b. 

l. l. l. 
etc., and V i 

we find, after neglection of terms that are small of second order in 

the disturbances, that 

(38) 
<lBi dBi aBi 
~--=-----V= 

<lt dt ax. j 
J 

0 0 0 a B. a b. 
= __ l. + __ l. - Bo + Bo Vo 

at at i,jvj i,j kuj,k • 

Moreover, we obtain by utilizing the chain rule of differentiation, 

(39) 

We note that, if the electromagnetic fields in the §_-state are uniform, 

the last two tertns of (38) and the last one of (39) may be omitted. 

In the seque 1, we shall drop the index 
0 

in a 
0 
I at. Hence' in the remain

ing part of this chapter, we must read for a/at the partial time deriv

ative referred to the §_-state. We notice that, in the equations for the 

disturbances, it makes no difference whether a/at is taken with respect 

to the §_- or the x-state. 

By using the foregoing results, we can decompose the electromagnetic 

equations of Section 1.(3). We obtain the system 
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(40) 
0 

~0 "t + J. . .. 0 , 
" l.,l. 

0 

B. 
l. 

D~ 
l. 

D ~ • == 41TQ , 
l.,l. 

for the ~state, while for the disturbances we get 

I <lbi I o I o o o 
- -.,--- B •• v. +- B •• Vku. k = - e .. k(ek . -R .u •• ) c "t c l. , J J c l. , J J , l. J , J -~~.,.. .. 'J 

0 

b .. - B .. u. . 0 , 
l., l. l. ,J J, l. 

I <ldi I o I o o 4rr . 
- ---- D •• v. +- D •• vk u. + -c J

1
. c at c 1. ,J J c 1. ,J J ,k 

e. 'k(hk • - H.o .u •. ) l.J ,J --k,,., "'•J 
(41) 

0 
d •• - D •• u. • 4rrQ , 

l.,l. l.,J J ,l. 

0 0 0 

bi "'h. + 4rrp m. - 4rrp M.u •• 
l. l. l. J .J 

d. + 4rrp 
0 

- 4rrp 
0 0 

= e. Pi P.u •• 
l. l. l. J .J 

The transformation rules 1.(38) pass into 

(42) 

and 

(43) 

o I o o 
• D. +- e .• kV.H. 

1. c l.J r11: etc., 

etc. 

Considering the mechanical balance equations, we note that we have al

ready employed the balance law of mass for the derivation of (8). 
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In order to linearize the momentum equation II.(I7), we first split up 

the electromagnetic force F(e), according to II.(I6), into a part 

related to the ~-state (!(e)o) plus a small extra term (!(e)). The 

mechanica! body force will be taken equal to zero. We obtain 

(44) 
(e)o o o I o o o o o o o o 

F. =Q.E. +- e .. kJ.Bk + p P.E •. + p M.H •. + 1 1 c 1J J J J,1 J J,1 

• and 

0 0 0 0 0 0 
+ p E .. p. + p M.h .. + p H .. m. + 

J,1 J J J,1 J,1 J 

o2 4'llp 0 0 0 

- (-- ek" VkP.M ) .u .. c Nm N m ,J j,1 

By using the relations (8), (24), (44) and (45), the balance of momen

tum can be divided into the equation for the ~-state 

(46) T~. . + F ~e) o , 
1J ,J 1 

plus the linear equation for the disturbances 

(47) o. o•o To + f(.e) • p v. - p v.u .. = t ... - .. ku. • 1 1 J,J 1J,J 1J, K,J 1 

In an analogous way, the balance of moment of momentum II.(31) yields 

the equations 
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(48) 

and 

(49) 

0* 0 

(M. lik•) u • + J ._ ,m m, .. 

Under the absence of heat sourees (i.e. r = 0), the balance of energy 

III.(38) can be split up into 

(50) 

and 

(51) 

We now have constructed a complete system of linear equations for the 

disturbances ~· ~*, etc. In the next section the jump conditions will 

be linearized. 

V.5. Linearization of the boundary conditions 

The discontinuity conditions, derived in the Sections I. 3 and 11.5, are 

given in the deformed configuration, As this configuration is unknown a 

pl'ióri, '..re wish to refer these jump conditions to the 1-state, whic.h is 

assumed to be known, In this section, this will be done for the problem 

of a solid body in vac.uum. In an analogous way, the jump conditions on 

a material disc.ontinuity surface can be transformed to the 1-state. 
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Fig. V.2. 

Let us consider a solid body in vacuum with boundary S 0 
in the i-state 

and S in the x-state. The unit outward normal on S
0 

is named N° and on 

S: !!.. (cf. Fig. V.2). Moreover, let.!::. be the displacement of à material 

point of the boundary, from its positian i ons" to i'ts present posi

tion x on S. Hence 

(52) .!::. =~-i. 

According to [I], Section 182, the following relation between! and!!. 

holds 

(53} 
0 dSO 

n. = Jl; •. N. -;"ër , 
1 J,1 J a.;> 

where the Jacobian J, for small deformations may be approximated by 

(54) J = 1 + u ••• 
1,1 

Substituting (52) and (54) into (53), utilizing the fact that n is a 

unit vector, thus 

and retaining only linear terms in u .. , yields 
1,J 

(56) 
0 0 0 0 0 

N
1
• + u. kN'NkN. - u .. N. 

J. J 1 J,1 J 
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With this relation, we can transfarm the boundary condition for an 

arbitrary quantity 

. (57) § (~_. t) 

holding on S 

(58) [~(x,t)]n. 
- l. 

0 • on S 

to one with respect to S
0

, reading like 

(59) [~(~,t)](N~ + u. kN:Nk
0

N~ - u .. N~) = 0 , 
l. J. J l. J ,l. J 

on So • 

By using this result and with the decompositions of the variables de

fined in the preceding sections, we can split up the boundary condi

tions into a set for the s_-state plus a set for the -·.!-state, both with 

respect to the surface S
0

, 

We start with the electromagnetic jump conditions !.(35). Note that the 

velocity Wn' occurring in I. (35), is the velocity of the discontinuity 

surface. Hence, in our case, it is the velocity of the boundary, so 

(60) W = V.n. 
n l. l. 

Because there is no velocity outside the body, as there is a vacuum, we 

shall drop the upper index 

We obtain 

of V in the following boundary conditions. 

e .. k[E~]N~ +- [B~]V~N~ 0 • [D~]N~ 0 • l.J J c l. l. 

(61) e .. k[H~]N~ [D~]V~N~ 0 • [B~]N~ 0 • l.J J c l. l. 

[J~]N~ - [Q
0

]V~N~ 0 • on S
0 

l. l. l. l. 

for the s_-state, and 
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(62) e. 'k[h.]Nko 
~J J ' 

[B~]u •. N~ = 0 , 
1. J '1. J 

[j. ]N~ - [q]v .N~ - [Q.
0

]v.N~ - [J~]u .• N~ + [{r]v~u .. N~ = o 
1. 1. 1. 1. ~ 1. 1. J,l. J ; 1. J,l. J 

for the disturbances. 

Decomposition of the mechanica! boundary conditions 

(63} 

0 0 

T .. N. 
~J J 

0 0* 0 2 0 0* 0 2 0 
21f{(p M. N.} + (p P. N.) }N. + 

J J J J 1. 

on So 

for the I-state, and for the disturbances 

(64) 

0 
q.N. 

J J 

onS
0 

(47)-(49) gives 

Thus, we have supplemented the system of linear consti~utivL equations 

and balance equations•, obtained in the prei:eding sect icms, by a linear 

set of boundary conditions. 
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V.6. Simplification of the linearized equations 

In the pre ceding sections, "''e have decomposed our general nonlinear 

equations into a nonlinear set for an intermedia te state, assumed to be 

known, and a linear system for the disturbances on this state. In the 

intermedia te state, the medium was interacted by fini te electromagnetic 

fields. However, although the fields are large, the deformation of the 

body from its initial contiguration to the intermediate state is small, 

as a consequence of the fact that the numerical values of the relevant 

material coefficients are very large for ferromagnetic materials. The 

sa me ho lds for the eh anges in the tempera ture. Therefore, He may use 

the infinitesimal thermoelastic theory for the determination of the 

intermediate state. 

Let us compare two problems, concerning 

i) a rigid body, with fixed temperature, 

ii) the real thermoelastic body , 

both interacted by the same electromagnetic fields. 

We assume that for the rigid-body problem the electromagnetic fields, 

in- and outside the body, can be calculated. These fields will be in

dicated by a lower pre-index 0 , e.g. ,!_, 
0

!1_, J! , etc. In the first 

problem we have 

(65) u .. 
0 ~, J 

0 and 8 
0 

where 8
0 

is the temperature ~n the initial state. 6
0 

is assumed to be 

uniform. 

In the second problem the body is strained and the temperature of the 

body is changed. As a consequence, also the electromagnetic fields are 

altered. However, since the deformations and the changes in temperature 

are small, the corrections on the fields are small too. Therefore, the 

values of the electromagnetic fields in the real problem will differ 

only slightly from those in the rigid-body state. Hence, we may state 

that 

(66) I u~ .1 « 1 , 
l.,J 

<< I , << I ' << I ' 

etc. 
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Moreover, as a consequence of the uniformity of the initial temperature 

6
0

, He have 

( 6 7) 

so also the temperature gradient is small. 

Let us consider as an example a coefficient of sin (18), say 3a .. This 
1 

coefficient is related to the I-state. If we denote the same coeffi-
3 

cient, but now referred to the rigid-body state, by 
0
0i' hence 

(68) 3a =- (~)6 
o i aeaA ia ' 

o a 

we may put 

(69) 
3 
a . 

1 

3 3-a. + a . 
0 1 1 

3-As a consequence of the aforesaid ·arguments, we may state that a i is 

proportional to U~ . and hence small compared with :ai. Hence, the term 
3 * 1 'J 
crimi' occurring in (18), becomes 

(70 ) 
3 a. 

1 

At this point we 

we shall neglect 

m~ is O(u .. )M , 
1 1' J s 

( 71 ) 3 * a. m. 
1 1 

introduce the following approximation: in the sequel, 

terms that are of the order 0 (U~ . u. . ) . Noting that 
3 l,J 1,J 

we then may approximate a. m~ by 
1 1 

3 * a .m. 
0 1 l 

Similar considerations result in the following simplifications for the 

equations in the disturbances, derived in the preceding sections : 

i) In the const i tutive equations of Section V. 3, the coeffi c i ents aa, 
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all , etc. (a = 1, 2, ... , 5), may be approximated by replacing t;. by 
l , O: 

6. , M~ by 
la l 

M. , E~ by E., 9° by 8 and p
0 

by p
0

, where p
0 

is the 
0~ ~ 0~ 0 

density in the natural state. Furthermo re, the derivati ves of L 

may be taken with respect to the rigid-body state, inste ad of to 

the I-state. For instance, the coeffi c ient 2a . . of (19) 3 becomes 
lj 



(72) 
2 

0 . . 
lJ 

ii) Into the linear balance equations (41), (47), (49) and (SI) we may 
• • 0 0 

substitute for the electromagnetic quant1t1es ~ , ! , etc., their 

values according to the rigid-body state 0 ~, o!• etc., and we may 

replace p 
0 

by po, 8° by 8
0 

and '.!.._
0 

by o'.!...· Furthermore, the quanti

ties P~, J~, T~ ., IT~ ., S
0 

and Q~ may be taken with respect to the 
l l lJ lJ l 0* 

rigid-body state. Hence, for instance, Pi may be replaced by 

(73) * P. 
0 l 

iii) Approximations, similar to those mentioned above, may be applied 

to the boundary conditions (63) and (64). Horeover, we replace in 

these conditions N° byE_, i.e. the unit normal on the undeformed 

body, and we refer them to the boundary in the rigid-body state. 

Based on the foregoing stateroen ts, we can draw the conclus ion: 

The disturbances on the intermediate state are to determine, in an 

exactness of the order of O(U~ .u .. ), without explicit knowledge of 
l,J l,J 

this state; we can confine ourselves to solving only the rigid-body 

problem. 

Of course, if we wish to know the complete salution in the same exact

ness, we have to solve also the equations governing the intermediate 

state. However, for the salution of these equations we may use an ap

proximated theory, based on the fact that the differences between the 

values of the fields in the ~-state and in the rigid-body state are 

small. 

We conclude by noting that it is often more desirabie to know the dis

turbances on an intermediate state than the state itself. To illustrate 

this remark, we mention the following two examples. 

i) Let the intermediate state be a static state, while the distur

bances are caused by a small dynamic field. Then, by solving the 

equations for the disturbances, ~Je can determine, for instance, 
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the resonance frequencies for the body in the intermediate state. 

Such a problem will be investigated in one of the next chapters. 

ii) By solving the equations for the disturbances, we can draw a con

clusion about the stability of the intermediate state. This methad 

will be employed in the final chapter of this thesis. 

A complete elaboration of the linearized equations will be deferred 

untill the next chapter, in which an explicit expression for the therma

dynamie functional L will be given. 
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VI. f1ATERIAL COEFFICIENTS 

VI.l. Introduetion 

In the preceeding chapter, '"e have obtained a properly invariant, lin~ 

earized field theory of electromagnetothermoelasticity, consisting of a 

system of balance laws and constitutive equations tagether with a set 

of houndary conditions, In order to he able to elahorate these rela

tions any further, we need an explicit formula for the thermadynamie 

functional E, In the next section we shall select a specific expression 

for E, in the form of a polynomial approximation in the constitutive 

variables, 

We shall continu with the interpretation of the material coefficients 

appearing in the formula for E, Moreover, we shall give some numerical 

values for these coefficients. This will be done for the specific case 

of a single crystal of a magnetically saturated ferro(i)-magnetic ma

terial with cubic symmetry, The values for a polycrystalline medium can 

be obtained by averaging the values for single crystals over a finite 

volume, under the assumption that the crystals are oriented at random, 

On the basis of these numerical values, that will be listed in Table 

VI.!, in each constitutive equation, some material coefficients turn 

out to he dominant, while the remaining coefficients are negligibly 

small compared with them. By utilizing this information, and for the 

special symmetry we are concerned with, we shall, in the final section 

of this chapter, simplify considerably the set of constitutive equations 

ohtained in the foregoing chapter, 

VI.2. An expression for 4 

Underlying our choise of an explicit form for the thermadynamie func

tional E, is the fact that we shall restriet ourselves to problems in 

which the deformations, the deviations from the initial temperature, 

the electric field and the gradients of the magnetization are small, 
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Moreover, the magnetization will be saturated. Therefore, we shall apro

ximate E by a polynomial expansion in which only quadratic terms in Eaa• 

(9 -9~), 11a and their combinations are retained. Since GaS is already a 

second order function of the gradients of the magnetization, we shall 

retain only linear contributions of this quantity. As ~r the magnetic 

interactions, we restriet ourselves to linear terms in !E a, (9- 9 ) and 
{lp ~-

/).a and to quadratic terms in the magnetization (i.e.: lla). In the purely 

magnetic part, we shall include, except a quadratic term, also a fourth 

order.one, As the exchange interaction itself is alreadU a very weak ef

fect, the couplings of this interaction with deformation, temperature, 
' 

magnetization and electric field are left out of consideration. Argu-

mented by these comments, we select for E (confer also [13] and [17]) 

11 11 + - 1- c E E + e (m) 11 E - .!.... e (e) 11 E + 
+ ~aS a f3 2p0 a8yö aS yo aSy a 8y p~ aSy a 8y 

The material coefficients occurring in formula (1) are talled 

X (m) and 
2 a8 

(m) 
4xa8yö 

(e) 
xa.a 

wa.a 

ca.Syö 
(lil) 

e:a.Sy 

b a.Syö 
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the second- and fourth-order anisotropy con.tants, respec-

tively, 

the electric susceptibilities, 

the magneto-electric constants, 

the coefficients of elasticity, 

the piezomagnetic constants, 

the magnetostrictive constants, 



e!:~ the piezoelectric constants, 

aaa the exchange constants, 

c the reduced thermal constant (per unit of degree), 

vaa the thermoelastic constants, 

À(m) the pyromagnetic constants, 
a 

t!~) the thermomagnetic constants, 

À(e) the pyroelectric constants, respectively. 
a 

In the next section, we shall give interpretations and numerical values 

for the coefficients listed above. Bince most of the ferro(i)magnetic 

materials belong to the crystal class Cubic I (cf. [28], Beetion VII.S) 

as for instanee iron (class m3m or m3), nichel (class m3m) and the fer

rimagnetic material yttrium iron gamet (YIG, Class m3m), we shall pay 

special attention to this class. 

The coordinate system, to which the components of the material tensors 

refer, will be taken along the principal axes of the crystal. For a 

material of class Cubic I, the following reductions for the arrays of 

the material coefficients are available (cf. [28], Beetion VII.S, or 

[29]). 

i) The first- and third-order coefficients become zero, which means 

that 

(2) 

ii) 

(3) 

Hence in a crystal of class Cubic I, no piezoelectric or - magne

tic and no pyroelectric or - magnatie effects appear. 

The form of the second-order tensors reduces to a unit matrix, 

thus 
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iii) The fourth-order tensors can. by use of the notatien 

11+ 1. 22+2• 33+3• 23 or 32+4• 13or31+5• 12 or 21 + 6 , 

be written in the matrix form 

cl I c12 c12 0 0 0 bil bl2 bl2 0 0 0 

c12 cl I c12 0 0 0 bl2bllb12 0 0 0 

c12 c12 cl I 0 0 0 b • bl2 bl2 biJ 0 0 0 c • 
al3yó 0 0 0 c44 0 0 

• al3yó 
0 0 ·0 b44 0 0 

0 0 0 0 c44 0 0 0 0 0 b 44 0 

0 0 0 0 0 c44 0 0 0 0 0 b44 
(4) 

4X11 4X12 4X12 0 0 0 

4X12 4X11 4X12 0 0 0 

(m) 4X12 4X12 4X11 0 0 0 

4Xal!yó 0 0 0 4X12 0 0 

0 0 0 0 4X12 0 

0 0 0 0 0 4X12 

In the next section we shall give interpretations for t&e remaining ma

terial coefficients of (1), specified for a single crystal of class 

Cubic I, 

VI.3. Elastic constants 

Let us start with a discussion of the elastic constantso To this end• 

we consider a purely elastic material, for which (I) becomes 

(5) 

In the infinitesimal elaeticity theory (i,e, for small qeformations) we 

get from III.(SI) 

(6) Tij • cijkJI.~.R. • cijkR.~t , 

where 

(7) ei' • i(Ui • + U. i) • 
J .J J. 
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Writing (6) in components along the principal axes yields, by use of 

{4) I' 

{8) 
Til • cllell + cl2{e22 + e33)' 

r 12 2c44e 12 , etc. 

As a first example, we regard a pure sliear in a principal plane, Let 

the only stress component unequal to zero be r 12 , then 

{9) 
TJ2 
-2- • c44 • e12 

Next, we consider a uni-axial tension along a principal axis. Taking 

only r 11 unequal to zero, it follows from (8) that 

( 10) 
(cll- ci2){cll + 2c12) 

(cl! + c12) 

We note that the deformations e22 and e 33 are unequal to zero, For 

these quantities the following relations hold 

{ 11) 

Finally, let us look at a hydrastatic compression, Adding the diagonal 

terms of the stress tensor, we obtain 

{ 12) 
Tkk I 
- = ""{c + 2c ) 3ekk .J 11 12 • 

In case of an isotropie material, the right-hand sides of (9), {10), 

{11) and (12) define the shear modulus G, Young's modulus E, Poisson's 

ratio v and the modulus of compression K, respectively. The array of 

theelastic constants (4) 1 alters in this case only in that we must re

place c44 by 

Hence, for an isotropie medium, the following relations between the 

elastic constants and the moduli that are more common in the technical 

literature hold 
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(14) 

(cl I - cl2) (cl I + Zcl2) 

(cl!+ cl2) 

It is evident from (14) that only two of these moduli a~e independent, 

VI.4. Magnetic constants 

In this section, we shall consider the purely magnetic èffects and the 

magnetoelastic interactions. 

We first take a purely magnetic material, in which case the functional 

I: reduces to 

(15) 

where we must read p 4J for the density p. 

Reekoning with the fact _that the magnetization is saturated, we intro

duce the unit vector !• with components ei along the pr~ncip~l axes, by 

(16) e
1
• = ..!.... M~ , 

M l. s 

By use of (3), (4) and (16), the expression (15) can be worked out into 

the form 

The term between the brackets [ ] on the right-hand side of (17) con

stitutes the magnetization energy in case of a saturation magnetization 

along one of the principal axes. It will turn out that this contribu

tion is insignificant in our ultimate equations, The, mo~e irtteresting, 

rest term of (17) represents the so called anisotropy energy, Îie, the 

amount by which the magnetization energy must be supplemented when the 

magnetization is not directed along one of the principal axes, The an

isotropy coefficient K1 is defined by (cf. [30], p. 129) 
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(IS) 

We note that this coefficient is of interest for the constitutive equa

tion of the anti-symmetrie part of the stress tensor. This can be shown 

by substituting into the constitutive equation V.(28) the expression 

(15), by which these equation. reduces to 

(19) * az 
T[. '] = pM....- • 

~J L ~ élMJJ 

By means of (17) and (18) this relation can be worked out into 

(20) 3 3 
T[ •. J = K 1(e.e.- e.e.). 

~J ~ J ~ J 

Since T[ij] appears in the angular momenturn equation, the coefficient 

K
1 

will also enter this equation. 

As a following step, we shall regard the magnetoelastic interactions. 

To this end we take the functional E equ~l to 

Under the restrietion of infinitesimal deformations, the constitutive 

relation III. (51) yields, with the aid of (21) 

(22) T •• 
~J 

,2 * * 2 * * + {c~J'k" + 1i bk"' M M.- p ök"b .. M M + 
~ ~ ~Jm m ~ "' ~Jmn m n 

2 * * 2 * * + p ö.kb •• M M + p ö.kb .• M M + 
~ J ..,mn m n J ~ ... mn m n 

where, again, P = P0 • 
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Experimental investigations have established that for most of the fer

ro(i)-magnetic materials, the values of the terros 

2 * * 
p bijldMk\ • 

in case of saturation magnetization, are of the order of 10 7 dyne/cm2, 

while the values of 

2 (m) 4 (m) * * * * 
(p ó i9. 2Xjk + P 4xjkR.mMmMiHV·~ 

are at most of the order of 105 dynè/cm2• Furthermore, ~he elastic co

efficients are of the order of 10 12 dyne/cm2• Hence, in 'a very good ap

proximation we may put 

(23) 

In components. this relation becomes. by use of (4), 

(24) 

We write the diagonal terros of the stress tensor still in a somewhat 

different farm 

(25) 

etc. 

This is clone. because in this form the third term on the right-hand 

side of (25) represents the volume magnetostriction. while the fourth 

term stands for the form or lenghth magnetostriction. 

We introduce the magnetostriction coefficients B0 • B1 and B2 by (cf. 

[30], Sections 8.2 and 8.3) 

(26) 

and 
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The coefficient s0 is a measure for the relative change in volume due 

to magnetostriction, as can be shown in the following way 

Let us consider a stressless state (T .. = 0). Then it fellows from the 
lJ 

vanishing of the trace of the stress tensor, with the aid of (25) and 

(26) that 

(2 7) 

where (aV/V) is the relative change in volume. 

We note that this volume effect is usually very small, and therefore, 

it can often be neglected in practical problems. Experimental data, 

given in [31], p. 641, point out that the volume magnetostriction in 

saturation for nickel is at most a few percent of the lenghth magneto

striction. 

In order ·to interpret the ether t\vo coefficients defined in (26), we 

again take the stresses in (24) equal to zero. Let us call (6~/~) the 

relative increase in lenghth along a line with direction cosines 

(n 1,n 2 ,n
3

) with respect to the principal axes. Then, we have 

(28) 

With (24)' under the condition that T .• o, and with (26) this formula 
lJ 

can be rewritten as 

6~ so BI 2 2 2 2 2 2 .!.) (29) (8 In I + 82n2 + e 3n 3 + T 3 (c 11 + c12) (c I I c12) 3 

This relation is equal to the corresponding one in [31], p. 650, if in 

the latter the fourth-order terms in 8 are omitted, and if the coeffi-

cients 

(30) 
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are introduced. 

If we neglect B0 , it is evident from (29) that ÀIOO represents the ex

tension in the [100]-direction (n 1 = 1, n2 = n3 = 0) due toa satura

tion magnetization in the samedirection (9 1 = I, e2 = e3 = 0). The 

same holds for Àll 1, but now the extension and the magnetization are in 

the [ 111]-direction (ei = ni = j-13) (cf. also [30], p. 170). 

VI.5. Thermal constants 

In this section, we shall discuss the thermoelastic and the thermomag

netic interactions. We start with a thermoelastic medium, for which (I) 

becomes 

(31) l: (E a) c E E - I 8
2 

E 8 aB' = 2P aByo aB yo 7 c - vaB aB 

where 

(32) and 9 = a - a 
0 

In this case the constitutive equations for the entropy III. (49) and 

for the stresses III.(51) become, with the aid of (3) and (4) and in a 

linear approximation, 

(33) S = c9 + v
1

u .. , 
l.,l. 

and 

For a cubic material, the tensor of the thermal conduction coefficients 

K. • takes the form 
l.J 

With (35) Fourier's law III. (35) passes into 

(36) 

(note that E~ 
l. 

0) 

Substitution of (33) and (36) into the energy balance III.(38) with 

E: = 0, yields, after linearization 

(37) pa (cë + v
1
ü .. ) - K 19 .. = pr , where KI 

Q l.,l. ,l.l. 
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After comparing (37) with [32], p. 14, eq. (15), we conclude that 

(38) c8e := cw: the specific heat, 

that K 1 is, indeed, the thermal conductivity, and that 

(39) 

where a is the linear thermal expansion coefficient. 

When the stresses are zero, we find from (34) that 

(40) 

he nee 

(4 I) 
eI I 

a=--
6 

Substitution of (39) into (34) yields 

We note that (42) is in agreement with [32 ], p. 5, eq. (8), if in the 

latter, as this relation only holds for isotropie materials, the coef

ficients 2G(I +v)/(1 -2v) = E/(1 -2v) is replaced by (c 11 + 2c 12), in 

accordance with (14). 

The thermomagnetic interaction can be investigated by retaining in (I) 

the contributions 

(43) E = E (M~ ,8) !P (m) * * !P 3 (m) * * * * 2X·. M.M. + 4XijHMiMj'\_Mt + ~ ~J ~ J 

! c (8 - 80) 2 (m) * * - 80) - - L .. M.M. (8 
~J ~ J 

Substitution of (43) into the constitutive relation III. (49) yields, 

with (3) and (38) 

(44) 

d • h · d f h f · · (m) In or er to get an est~mate of t e magn~tu e o t e coe f~c~ent L , 

let us consider the following problem. A medium is magnetized from its 
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initial state (i.e. 8 = 8 0 , M~ = 0) to its saturation point. This pro
o l. 

cess is assumed to be adiabatic. Hence, (44) leads to 

(45) 6S 0 

where 9 1.s the increase in temperature due to the magnetization. From 

(45) it follows that 

c 
(46) __ lil_ 9. 

e ~~2 
~ s 

The increase in temperature appears, 1.n general, to be very small. Only 

in the neighbourhood of the Curie temperature, there occurs an increase 

in temperature of some importance. For ins tance, for materials like 1.ron 

and nickel at room temperature (i.e. 300°K) this increase is of the or-
-3o 

der of 10 K, while at the Curie point it is about I à 2°K (cf. [30], 

pp. 427-431). With a value for c of approximately 4 x 10 6 erg/gr °K 
w 

(viz. Table VI. I) this gives a value for L(m) of the order of 10-2 à 

10-l (K)-I at 6" ~ 300 K and one of 10 à 100 (K)-I at the Curie tem

perature. However, we note that the effects at the Curie point are of a 

different nature, as at that temperature a phase transition takes place. 

We do not consider this kind o: phenomena. 

Another effect, produced by the thermomagnetic interaction, 1.s the de

crease of the saturation magnetization with temperature (cf. [30], p. 

69). For instance, for iron the value of 4rrpMs decreases from 1735G at 

0°K to 1714G at 300°K and for nickel from 509G a t 0°K to 484G at 300°K 

(cf. [31], p. 54 and p. 270, respectively). Assuming that this process 

is also adiabatic, (45) yields values for L(m) of the order of I à 10 

(K)-1. 

All these values are so small, especially at room temperature, that in 

the sequel the thermomagnetic effects will be neglected. 

VI.6. Exchange constants 

By including in the set of independent variables the gradient of the 

magnetization, \ve take into account the macroscopie effect of the quan

turn mechanical exchange interaction. Since the interactions of the ex-
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change - effect with the polarization, magnetization, deformation and 

temperature are very weak, we leave these out of consideration. 

In order to describe some typical exchange-actions, it suffices to take 

the following expression for ~ 

(4 7) 

I * * + lP et 
1
H .. H .. 

l_ ,J l_ ,J 

Camparing the last term of (47) 

(48) 1 * * -
2pa

1
M .. M .. - ~ 

l.,J l.,J ex 

with the expression for the exchange-energy per unit of volume accord

ing to [33], p. 61, eq. (I 1.12) 

(49) 

and 

u ex 

hearing in 

e. 
l_ 

mind 

* H. 
l_ 

M s 

that 

and = P~ex u 
' ex 

tve obtain the follmáng re lation bettveen the coefficient a 1 and the so 

called exchange-stiffness A 

(SO) 
2A 
2M2 

p s 

Eliminatien from the angular momenturn equation II. (31) of the quanti

ties T[ij] and Tiij by means of the constitutive relations :rr. (SI) and 

III. (S2), into which (47) is substituted, yields 

(S I) * * e .. kM. (Hk + 
l.J J 

Identifying (SI) with the angular momenturn law according to [34], eqs. 

(I) and (S), we again obtain the relation (SO). 
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The numerical values of the coefficient a
1 

are aften determined by mea

surement of the eigen frequencies of spin waves. This rnethod is used, 

for instance, in a paper by Le Craw & 1-/alker [3S] . They inves tigated a 

single crystal of the cubic material YIG, that was magnetized to satu

ration along a [ 11 1]-direction by a static biasing field H
0

• Then, 

small dynamic disturbances of t his state are considered. Let t he static 
0 

state be uniform, and let us take the z-axis along the H -direc tion. 

Thus 

(S2) 

where 

(S3) 

H. (x, t) 
~-

1~1 
H « 1 

M~ + m. (x, t ) , 
~ ~-

and 

0 

H. 
~ 

0 

H. 
~ 

The fact that the magnetization is saturated, implies that (cf. eq. 

V • (7)) 

(S4) 0 • 

hence 

(SS) m = (m ,m ,O) • 
- x y 

As done in [35], we hereafter neglect in (SI) t he magnetic anisotropy 

0). We substitute (S2) - (SS) into (S J) and linearize t his 

equa tion with respect to hi and mi' yielding 

Under the absence of electric fields, the Maxwell-equations give 

(S 7) e. 'khk . 
l.J ,] 

0 and (h . + 4rrpm.) . = 0 • 
l. l. ,l. 

We try to solve the equations (S6) - (S7) by means of the substitution 

(S8) h( ) _ h i(k,x+wt) 
_ ~· t - _e -- and ( ) ~ i (k,x+wt) 

~ ~· t = E_Je - -

where k is t he wave vector and w the angular frequency . 
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If we restriet ourselves to spin waves in the x-z-plane, we may write 

the wave vector as 

Let~ be the angle between k and the z-axis, i.e. the H
0

-direction. 

Then, it follows from (S7) 1 that 

h k 
(60) h 0, x x tan 

A k ~ y 
h z 

z 

Substituting (60) into (S7) 2 and using (SS), give 

h -4npm sin 2 ~ x x 

(61) h y 0 • 
h -4npmxsin ~ cos ~ z 

\.Jith these results, (S6) can be worked out further. 1-lritten l.n compo

nents, we obtain 

(62) 

Solving the characteristic equation of this system, results in the fol

lowing relation for the angular frequency of the spin waves 

(63) 
2 

w 

r2 

This relation corresponds with [3S], eq. (1), if 

(64) 
D 

pnyM 
s 

where D is an exchange parameter, h is Planck's constant, i.e. 

(6S) h I.OS4 x 10-27 erg-sec , , 

and y = -r: the negative of the gyromagnetic ratio. 
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On the basis of the experimental results of [35 ] , the coefficient D 

turns out to be almost insensible to temperature in the range from 

100°K to 400°K, At room temperature, a numerical value for D is found 

equal to 

(66) 
-28 2 

D = 0.99 x 10 erg-cm 

With the value of n of (65) and the values 

(67) pMs= 1390 and r = -1.76 x I07 (c sec)-! 

according to [2 7], we find from (64) a válue of 

(68) a
1 

= 3. 74 x 10-ll cm2 

for the exchange coefficient of YIG. 

Since the value of a
1 

is very small, the exchange interaction is often 

negligible. Yet, at very high frequencies ( > 109 Hz.) these effects can 

have an observable influence. 

VI.7. Electric constants 

For a discussion of the electric effects in a cubic material, we retain 

the following terms in (I) 

(69) 

Substitution of (69) into the constitutive equation for the polariza

tion III. (16) yields 

(70) 

Leaving, for the time being, the magnetoelectric interaction out of con

sideration, (70) reduces to 

(71) * (e) * 
pPi = X Ei , 

from which it is evident that x (e) represents the electric susceptibili

ty (cf. [4], p. 12). 
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Substitution of (71) into I.(37) taken in its convective farm, gives 

(72) D~ = (I + 4rr x (e))E ~ • 
1 1 

Introducing the dieelectric constant or permittivity e: by 

(73) 

we get 

(74) 

* D. 
1 

(e ) 
x 

* e:E . 
1 

41T (e: - I) 

Returning to (70), and camparing this relation with eq. (2.9) of the 

monograph by T.H. O'Dell [36], we conclude that ~ is the magnetoelec

tric susceptibility, In [ 36], the theory and the experiments on the do

main of magnetoelectric interactions up to 1970 are reviewed. For the 

very first time, this interaction is observed by Astrov [37] in 1960, 

who measured this effect in a single crystal of chromium oxide (Cr2o3), 

and almast simultaneously by Rado & Falen [38] in 1961. A magnetization 

of about 3 Amp/m (= I0- 3G) was measured in a crystal Cr2o3 , placed in 

an electric field of 106v/m. 

O'Dell [36] shows that, for the class of crystalline materials with a 

point of symmetry, to which most of the ferro(i)magnetic materials be

long, there can occur no linear magnetoelectric effects. However, a non

linear phenomenon, the so called induced magnetoelectric effect, is pos

sible (cf. [36], p. 142, and [39]). This effect sterns from the lmvering 

of the symmetry of a crystal by the application of a strong electric or 

magnetic field. So, for instance, a crystal looses its point of symme

try under these circumstances. This nonlinear effect can be described 

by including in r the terms 

(e) * * * (m) * * * 
3 ~ . . kE. E.M_ + 3 ~ .. kM.M.Ek 

1J 1 J -1< 1J 1 J 

In the papers [39] to [42] the effect, mentioned above, is demonstrated 

by experimental measurements on YIG. It turns out that the term with 

3 ~~J~ can nat appear, so it suffices to retain only the term with 3 ~~J~' 
by which the constitutive equation for the polarization becomes 
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(75) 

From (75), it follows that the electric susceptibility depends on the 

magnetization. Cardwell [41], found the following relation for the re

lative change in the electric susceptibility due to a magnetic field 

along the [I I 1]-direction fora single crystal YIG placed in an elec

tric field along the [ 110]-direction 

(76) öx(e) ~ 3 x 10-8 
--reJ"~ xB, 

x 

For a value of B of I kG, this gives 

(77) 
(e) 
~ = 3 x 10-s 

~"' ' x 

hence, a very small change. 

The re sul ts found in [ 41] are, wi thin the limi ts of expe rimental error, 

in agreement with those measured by Lee [42 ] . 

The foregoing results show that the effects of the magnetoelectric in

teractions are as weak as that we may neglect them in the following. 

In the foregoing, all electroelastic interactions are vanished. The 

piezoelectric effect disappears due to the particular material symmetry 

we have considered. Moreover, we neglected in (I) the term 

repreaenting the electros triction, because we retained only linear 

terms in óa in the interactions. It should be noted that the symmetry 

of the biased crystal is lower than that of the unloaded crystal. Con

sequently, just as for the magnetoelectric effect, there will appear an 

induced piezoelectric phenomenon in the biased crystal. However, this 

effect is a very weak one, and we shall neglect it in the sequel . 

The piezoelectric effect is, in a technica! sense, more important than 

the electrostriction, this in contrast with the corresponding magnetic 

phenomena. There has appeared a vast amount of literature on the sub

ject of piezoelectricity. We refer only to the standard works by Cady 
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[43] and by Mason [44] and to the more recent book by Tiersten [45], 

The theory of piezoelectricity is employed in the analysis and design 

of crystal oscillators, filters and transducers, 

The electrostrictive interaction is of interest in ferroelectric mate

rials, especially in those in which, due to the symmetry of the crys

tals, no piezoelectric effects occur (cf, [46], p. 51). 

VI.S. Coefficients of conductivity 

In concluding, we shall regard the coefficients occurring in the two 

laws of conductivity, i.e. Ohm's law III. (36) and Fourier's law III. 

(35). 

We first consider O~m's law, in which, untill further notice, the coef

ficients S .. are omitted. Insteadof the electric conductivity o . . , of-
~J ~J 

ten the reciprocal tensor r .• , the so called electric resistivity, is 
~J 

used, Then, Ohm's law III.(36)• with S .. = O, becomes 
~J 

(78) * E. 
~ 

* r .. J. 
~J J 

Since we have assumed a linear relationship between E* and ~*, and be

cause only the dependenee of r .. on E 0 , A and 8 has any practical im-
~J a.., a 

portance (the influence of Mia and 8a will be neglected), we may state 

that 

(79) r. . = r .. (E 0 , A , 8) • 
~J ~J a.., a 

We expand the coefficient r •. in a series in its arguments, about the 
~J 

natural state, and we retain only linear terms in EaS and (9- 9'1) = e 
and quadratic terms in Aa' For small deformations and for cubic mate

rial, this procedure yields 

+ r (t)e)~.. 2 (m) * * (d) 
(80) rij = (r~ u~J + p 13 rijk~~MJ1. + rijk~ek~ • 

In this formula, r
0 

is the resistivity in the natural state, while r(t), 
(m) (d) 

rijk.ll. and rijk~ .. are the coefficients of thermo-, magneto- and elastore-

sistiyity, respectively. 

First, retaining only thermal effects, we obtain 

(81) 
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This leads us to the following relation for the therma+ coefficient of 

resistivity R(t) (cf. [31], p. 763) 

àr /t) 
-roe= T. (82) 

The arrays of the fourth-order tensors, occurring in (80), have, for 

crystals with a cubic symmetry, a form identical to (4). 

Considering only magnetic effects, and defining the unit vector! by 

(83) 

* J. 
s. • J1 where J = IJ*! , 

1 -

the relations (78) and (80) yield 

By writing this relation in the form 

(85) E*J* r~J2 (I + b.r) 
i i • ~ r

0 

we obtain 

where 

(87) 

The relation (86) corresponds with the equation for the relative change 

in resistivity due to magnetization according to [31], p. 764, if in the 

latter the fourth-order terms in a. are omitted. These fourth-order 
1 

terms can be included in (86) by adding to the expansion (80) 
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In an analogous way, we can describe the effects of the deformations on 

the resistivity. In that case we obtain instead of (84) 

Let us suppose that the deformation is solely due to magnetostriution. 

According to (23) with T •• = 0, we have 
l.J 

(89) 

We write (88) in. a form similar to (85) and we eliminate from thi.s 

equation the deformations with the aid of (89). This yields the follow

ing relation for the relative change in resistivity due to magnetostric

tion for a cubic crystal 

Bo ( (d) + 2r(d)) 
(90) t.r ril 12 

(c11 + 2c12) 
+ 

r. r 
"' 0 

3À100 
'( (d) (d)) 
r 11 - r12 (8202 + a2e2 2 2 1 

+--z-· r I I 2 2 + 8383 - 3) + 
0 

2 (d) 

+ 3À111 • 
r44 

<ala2ele2 + a2a3a2e3 + a381e3al) • r 
0 

where (4) and (30) have been used. 

Since the volume magnetostriction is in general negligible, we may omit 

the term with B0 in (90). The remaining two terros can be interpreted in 

the following way 

Let us take the magnetization and the electric current along the [100]

direction, i.e. let 81 = s1 = I, a2 = 83 = 92 = 93 = O, then 
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(91) 
( (d) (d)) 
r11 - r12 

r 
Q 

Applying both fields along the c 111]-direction, i.e. 13i = ei = ~13. 

(i= 1,2,3), gives 

(92) 
2 

(d) 
r44 
r:-· 

In this way, we can infer for the coefficients R(d) and R(d) defined 
I 2 ' 

by 

(93) 

the following relations 

(94) 

(d) 
(d) 2r44 

and R = --. 2 ro 

In principle, from (93) and (94) the coefficients (r(d) - r(d)) and 11 12 
r~:) could be determined. However, thert are very few experimental data 

on the elastoresistivity in single crystals available. For an isotropie 

material (e.g. a polycrystalline medium with a random o1ient~tion of 

the crystals and with the domains in the initial state ~istributed uni

formly over all directions of easy magnetization) we ha~ 

(95) 
(d) (d) 

ril - r12 

thus then 

(9.6) 

Numerical values forthese coefficients can be found in [31], p. 748, 

where we can calculate from the figures 16-5 and 16-6, the following 

global values for R(d) 

R(d) ~ -6.0 x 102 , for nickel , 

(97) 

R(d) ~ -s.o x 102, for iron. 

112 



We note that the elastoresistivity is an effect that is employed for 

the maasurement of deformations on the boundaries of elastic bodies by 

means of strain gauges. 

We have already considered Fourier's law in Sectien VI.S. We have seen. 

there that for small temperature gradients, and under neglection of the 

influence of magnetization, deformation etc. on the thermal conductivi

ty, and àfter omission of the s .. -term, this law reduces to 
~J 

Finally, there remains to discuss the coefficients B •. , which for a 
~J ' 

cubic material become 

(99) S •• = Sö •.• 
~J ~J 

The two terms with Sin III.(35) and III.(36) produce well known thermo

electric phenomena like the Seebeck effect and the Peltier-.and Thomson

heat (cf. [12], Chapter 12). These processes occar when electric and 

thermal conduction interfere with one another. These effects are all 

due to the fact that, as a result of the S-terms, a gradient in tempe

rature causes an electric current, or an electric field produces a heat 

flux. For a description of the effects mentioned above, and for an i~r 

pression of the order of magnitude of the effects we refer to [12], 

Chapter 12. 

Numerical values for a number of the coefficients discussed in the pre

ceding sections, for the materials YIG, nickel and iron, are listed in 

Table VI. I. 
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Name Symbol Unit YIG Ni Fe 
.l>-

Density p gr/cm3 s. 17 8.90 7.87 

Saturation Hagnet. pMs G 139 38.5 136 

Gyromagnetic c. r -I 
-1.76 x 107 -I. 70 )( 10 7 -1.76><10 7 (G sec) 

Elastic C. dyne/cm 2 2.69 )( 10 12 
2. 50 )( 10 12 2.41 )( 10 12 

cl! 

c12 · dyne/cm2 1.08" 10
12 1,60 x 10 12 I. 46 x 10

12 

dyne/cm 
2 o. 764" J0

12 l,l8xJ0 12 1.12 x 10 12 
c44 

2 6,28X10J -3.4 x 104 4.2 x 105 Anisotropy c. KI dyne/cm 

Magnetostrictive c. BI dyne/cm2 3.22 x 106 62 )( 106 -29.5 )( 106 

B2 dyne/cm2 6.44 x 106 86 )( 106 71.2 )( 106 

Specific Heat c erg/ gr °K 4.6 )( 106 4.4 )( 106 
w 

5,81)1(10 7 5,81 )( 107 Thermal Conductivity KI dyne/sec°K 

Lin. Thermal Expansion c. ct (oK) -I IJ x 10-6 11. 7 )( 10-6 

Exchange C. 2 3.74><10- 11 2.16 )( lo-10 
Cl. I cm 

Electric Suscept. x 
(e) 

I. 50 

Resistivity ro Statohm-cm o. 756 )( 10-!7 1.078 )( 10- 17 

Thermal c. of Resist. R (t) (oK)-J 0,007 0,0065 

Magneto-Resist. c. kl 0,063 0,00153 

k2 0.029 0.00593 

k3 -0.036 0,00194 

References: [29]. [30], [31] and [41]. 

TABLE VI.l. Numerical values for the material coefficients 



Notes concerning Table VI.I: 

i) The numerical values in the table hold for single crystals. 

ii) YIG is an insulator, and Fe and Ni aTe-not polarizable. 

iii) The values are valid at room temperature (9G ~ 300°K). 

iv) 

(100) 

(JOl) 

v) 

vi) 

The value of r is calculated from the relation (cf. [30], p. 41) 

r .. - ~ 2mC. 

where e and mare the electronic charge and the electronic mass, 

respectively. In Gaussian units, we have for the quotient 

e 7 -1 ----2 .. 0.88 x JO (G sec) , 
me 

For the g-factor, we have used the results of the gyromagnetic ex

periments (e, g, Einstein-de Haas method) (cf. [ 30], p. 47). 

The coefficients B 1 and B
2 

are calculated from the values of À 
100 

and x111 by use of the relations (30), 

The value of a 1 for iron is calculated from the equation (50). 

Further, we notice that the coefficient a
11 

employed in [29], is 

half a 1• 

VI.9. Elaboration of the linearized constituttve equations 

For convenience, we recapitulate the linearized constitutiv.e equations, 

deri ved in Chapter V• and we elaborate these equations by substituting 

the expression for I: according to {I) • We consider a material wi th a 

cubic symmetry that is magnetized to saturation a long a cube edge, that 

is taken as the x
3
-direction. We assume the magnetization to be uniform, 

hence 

( 102) * M. = o.
3
M 

o ~ ~ .S 

Taking allowance of the particular symmetry of the material and neglect

ing the magnetoelectric and the thermomagnetic interactions as well as 

the thermoelectric effects, we may take equal to zero the following co

efficients 

(103) 0 • 
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Moreover, we employ the simplifications according to Section V,6, and 

we neglect, argumented by the numerical vàlues of Table VI, I, the terros 
• • (m) d (m) • h h • • b d · conta1n1ng 2xij an 4xijkt w1t respect to t ose conta1n1ng ijkt' an , 

in turn, we neglect the terros with bijkt with respect to those with 

cijkt' 
Utilizing the above information, 1•e obtain for V, (18)-(34) the follow-

ing set linear constitutive equations for 

i) the entropy, by using (38) and (41), 

(104) 

i i) 

(lOS) 

(throughout this section, one must re ad p 
0 

for P) 

the polarization 

* x(~) * x(e) * 
P· = -- E.(u .. +u •. ) +- e. 1 p 0 J 1,J J.1 p 1 

iii) the couple-stresses 

(106) 

iv) the stresses, with the aid of (26) and (41), 

( 107) 

v) the antisymmetrie part of the stress tensor, with (18) and (26), 

( 108) 

vi) the heat flux, according to (98), 

( 109) Q ... -~<Ie • • 
1 ,1 

vii) and, finally, for the electric current, we gave the reciprocal ver

sion of Ohm's law according to (78) with r •. according to (80), 
1J 

This relation can be worked out by using 
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( 110) t-f. M'. + m* = & M + m* 
l 0 i i i3 s i 

where 

(lil) 

from which we find that 

(112) 

* * Substituting (lt2) and (80) into (78), and decomposing! and J 

(lt3) 

we obtain 

* E. i" 
0 l 

2 2 * ·* .. ( r & • • + p M r .. 33) ( J]· + J • ) + 
0 lJ s lJ 0 . J 

2 (m) * (d) * 
( (t) 8& •• + 2p Mr .• k

3
m. + r •• k,u. ,) J. 

+ r lJ S lJ K lJ '- K,'- 0 J 

which yields, with the aid of (82) and (87), 

In the balance equations and the boundary conditions, there also appear 

* the field variables referred to the rigid-body state, e.g. 
0
P , 

0
S etc. 

For these variables the following constitutive equations hold 

(ltS) 

* /e) * 
S = O, P. = -- E. 

0 O]. p 0]. 

n .. 
0 l.J 0, T[ .• ] 

0 lJ 

oQi = O • 

0 • 

(e) * * X E. E. 
0 ]. 0 J 

* I * & J* oEi= ro[l - 3' (kt + k3)]oJi +rokt i3 o 3 

tl7 



On deriving the fifth equation of the above set, the relation (26) has 

been used and the volume magnetostriction has been neglected, We note 

that, because the body is rigid, the stress tensor T •. is not a measu-
" l.J 

rable quantity, but that it is merely a mathematical concept. Moreover, 

these stresses do satisfy neither the momenturn equation, except when 

the i-state is uniform, nor the boundary conditions. 

Basedon the numerical values of Table VI.I, it follows from (107) rund 

(108), that the antisymmetrie part of the stress tensor is much smaller 

than the symmetrie part. Hence, in the equation of motion and in the 

boundary condition for the stresses, we may approximate t .. by t('')' 
l.J l.J 

However, we may not at all neglect t[ ij J in the angular IlOmenturn equa-

tion, 
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VII. VIBRATIONS OF A CYLINDER IN A MAGNETIC FIELD 

VII.l. Introduetion 

It is the purpose of the present chapter, to apply the theory of Chap

ter V and VI to a special problem. To this end, the linearized equations 

and boundary conditions derived there are employed for the important 

case of a homogeneous, static intermediate state. Moreover, the equa

tions are specified for the cubic material YIG. We are especially inte

rested in the influence of features as the exchange interaction; the 

magnetic anisotropy, the gyromagnetic coupling etc. 

The linear equations of the preceding chapters are applied to the de

termination of the solution for the steady-state vibrations of an infi

nite cylinder, which is magnetized to saturation along a cube edge by 

a biasing magnetic field in the axial direction. The driving field is 

perpendicular to the cylinder-axis. We notice that the material of the 

cylinder is an insulator, thus electric currents are absent. Noreover, 

thermal effects are left out of consideration. It will be shown that 

the steady-state vibrations are purely axial. 

In aome articles dealing with similar subjects, cf. e.g. [29] and [47], 

the Haxwell-equations are taken a priori in its quasi-static version 

(i.e. c-l = 0). This approach will not be followed here, but we shall 

establish, that under the conditions of our problem, our results dif

fer with those of the quasi-static version only in terms of O(v2/c2), 

However, we must note that this is no longer true in more general p~o

b lems. 

In the present chapter it is shown, on the basis of the data for YIG 

listed in Table VI,l, that some effectscan be neglected. Among the ne

gligible terms are found the stresses of the rigid-body state (i.e. 

OT .. ) and the antisymmetrie part of the stress tensor ccspared \~ith the 
l.J 

symmetrie part. Moreover, it will turn out that for a special. range of 

the numerical values of the parameters of the problem, the exchange in-
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teraction can be neglected, In the latter case, the system governing 

our problem, simplifies considerably. For this case we have found a re

lation for the determination of the resonant frequencies and we have 

calculated some values for the stresses in the cylinder. 

VII.2. Statement of the problem 

!'.!o cos Qt !'.!ocos nt 

t t f t t t - - - --!:io 
XI XI 

J 

x3=z -Á x2 
-, ~- -·-,.... 

l ( ) 

--- --- -
t t t t t 

Fi 9. VII. I. 

Let us consider a homogeneous, nonconducting cylinder of infinite ex

tension, consisting of a single crystal of the cubic material YIG. 

Along the cube edges of the crystal, a rectangular Cartesian coordinate 

system (x 1,x2,x3) is chosen, with the x3-axis in the axial direction 

(cf. Fig. VII.!), The cylinder is placed in a uniform and static magne

tic field ~O' directed along the x3-axis, and as large as that the mag

netization is saturated. The space outside the cylinder is vacuum, The 

cross-section of the cylinder is a circle with radius R. 

On the biasing field ~ 0 a small dynamic field b0cos nt, where bo is a 

uniform and constant vector, is superposed, This driving field is di

rected along the x1-axis, hence perpendicular to the axis of the cylin-
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der. Thus we have 

(I) 

Labeling the electromagnetic quantities outside the cylinder with an 

upperindex +, and those inside the cylinder with -, the solution of the 

rigid-body problem reads 

+ 
oi3HO, H; oi3H0 , M: 0 @Bi - • !,1 l. 9 l. 

(2) B. oi3(H0 + 41fpM
8
), H:- = 6i3Ho• M~ 6i3Ms • 11 l. 0 l. 0 l. 

+ + + + = Q± n: E: p: = J: "'0 . 
fJ l. .g l. 9 l. 9 l. Q 

According to VI.(IIS) the rigid-body stress tensor T .. is equal to 
0 l.J 

(3) 

while the couple stress 0n .• is equal to zero. 
l.J 

In the forthcoming calculations, it will turn out that the stresses ac-

~ording to (3) do not have any essential influence on the equations of 

the disturbances. 

In the sequel, we shall use insteadof the system (x1,x2,x3) the cylin

drical coordinates (r,e,z) defined by 

(4) x1 "' r cos e, x2 = r sin a, x3 = z • 

VII.3. Equations for the disturbances 

We shall elaborate the balance equations and boundary conditions for 

the disturbances, outlined in the Sections V.4.and v.s, by taking al

lowance of the aforementioned restrictions and by employing the simpli

fications discussed in Section VI.9. 

According to VI.(IOS) and with the results of (2), we obtain for the 

polarization 

(5) 
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where in the latter step the relations !,(43) are used, which also lead 

to 

(6) 

From (5) and (6) it follows that 

(7) 
(e) 

1 
(e)H

0 p
1
• =_x_ e. +.:.[_x __ + (I + 41TX(e))M Je •• 

3
û •• 

p 1 c p s lJ J 

Moreover, the constitutive equations VI,(I06)-(108) reduce to 

(8) 

(9) t .. 
lJ 

( 10) 

where the fact that 

( 11) 

has been used, 
* As the material is nonconductive, the quantities qi and i are taken 

equal to zero. 

Utilizing the fact that the intermediate state is a uniform and static 

one and with the results of (2), the balance equations of Section V.4, 

approximated in the way outlined in Section vr:9, become 

(12) 

I • 
- d ... e. 'kh_ • , c 1 lJ -l<,J 

d .... 0 
1,1 

b
1
• • h

1
• + 41fpm

1
• - 41fpM ö. 3u •• , 

s 1 J .J 

for the electromagnetic quantities, and 
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(13) püi t .. . + f~e) 
l.J .J ]. 

where 

(14) f~e) • pM h3 . + e.. e .• 3[ (Ho + 41rpM )p. 
]. s ,l. c l.J s J 

and, finally 

(15) 

the latter relation according to V.(7). 

+ M ê.] 
s J 

M s 

• 

- p eij31fj,kk' 

(i = I ,2) 

Analogously 0 the boundary conditions of Section V,5 reduce to 

(16) 

and 

( 17) 

and 

[e .. ke.]Nk 
l.J J 

[d.EN. = 0 , 
]. ]. 

[eijkhjBNk • [eijk 0 Hj]ut
0
kNk = 0 • 

[b.JN. = [QB
3
]u. 3 ~. = -l11rpM u. 

3
N. • 

]. ]. J • --J s J • J 

t .• N. 
l.J J éiT •• u. .Nk • l.J K,J 

all holding on the lateral surface of the cylinder (r = R), that is as

sumed to be free of mechanical stresses (i.e. T~ = 0). 

We note that 0 because the null-stress eTij is proportional to B1 and 

because B1 << c 11 (or c 12 , c
44

) the right-hand side of (17) is negli

gible compared with the term c .• k.u. •• occurring int ..• Heace, this 
l.J ~ K,~ l.J 

stress has no influence on the disturbances. 

By eliminadon of the quantities t .. , t[. ']' 1r .. 0 p1·, d
1
• and b

1
., the 

l.J l.J l.J 
equations listed above can be reduced to a system for the unknowns ei, 

bi' mi and ui' The boundary conditions still simpJify any further, due 

to the fact that the normal vector N has only a component in the radial 
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direction. Moreover, we note that the problem is uniform in the z-di

rection. Therefore, the steady-state solution will be independent of z, 

so all terms containing ataz may be omitted. Thus, we arrive at the fol

lowing systems 

i) outside the cylinder (r > R) 

(19) 

+ e z,r 

ii) inside the cylinder (r < R) 

- ..!. e - (h: + 4'1TP!Ïl") 
r z,e• c "' "' 

I - I - I I h- +- h +- h"" + 4'1TP(m +- m + -r m", 9) 0 , r,r r r r o,o r,r r r v 

(I + 4'1TX (e)) - I - (I + 4'1Tx'e)) 
--.;._.....;...,g, __ ..;.. ë =- h • ....!..,; _ __;,_.:.l; __ ...:.. ë" = -h-

c r r z,e c o z,r 

I - I - -
- - h " + -r h" + h" r r,o o u,r 

(20) 
( ) I I 4'!TpMs 1 I 

(I + 41TX e ) (è- + - e- + - e: ") • -- (- u "-- u"- u6 r), r,r r r r u,u c r r,o r u , 
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+ l i 
I 

x(e)H 
pÜ = (t - -ree> + 0 .-T +- c-ee • r rr,r r re ,e r rr · 

(e)H 

pÜè 
I 2 x 0 .-

-rer,r +--r +--r --e r ee,e r ar c r 

+l-r I B2 I I 
PUZ T ze,e +-T +M (m +- m + r ma,e> zr,r r r zr r,r r r s 

I • B2 I 2K1 
-rmr=Hm -Mh-+--u +--m + o a s a p r z,a PM e 

s 

M [ll 
2 

- L m J - P stxl mr - 2 me e 2 r • 
r • r 

where 

(21) 

and 

(22) T •• 
~J 

and 

ii~) in conclusion, on the lateral surface (r R) 

(23) 

+ 
e -

r 

41rpM 
- --·-s à c a • 

+ 41rpM + 
e - e = - -----5 à e - e = 0 e a c r• z z 

h+ - h- 41fpm h+ - h- 0 h+ - h- 0 
r · r r• a a • z z • 
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'rr 0 • 're = 0 • 'rz 

m o, me = 0 • r,r ,r 

We note that the terms -r •• are not yet written out in components; this 
lJ 

will be deferred until later on. However, we wish to point out that, 

due to the particular form of the arrays of the elastic constants for 

a cubic mate rial, the first two equations of motion (20) 9 • 10 and the 

first two boundary conditions for the stresses (23) 7•8 contain only the 

displacement components ur and ue, while 'the third ones, i.e. (20) 11 

and (23) 9 • contain only uz• This can be established more easily by 

writing (20) 9 • 10 and (23) 7•8 in components with respect to x 1 and x
2 

instead of r and e. 

VII.4. General solution 

We are searching for the steady-state solution of the system consisting 

of (19), (20) and (23). Regarding this system we conclude that we can 

decompose it into a homogeneaus system in the unknowns ur, ue• er' ee 

and hz• plus an inhomogeneous system in uz• ez• hr• he• mr and me. The 

steady-state solution of the first system reads 

Moreover, leaded by the particular form of the pertinent equations, it 
+ ~I 

seems reasonahle to assume that e- is proportional to c · • This means 
z 7 

that we have to put equal to zero the left-hand side of (19) and of 

(20) 7• This assumption can be verified a posteriori by determining e~ 

from the relations (19) 1•2, (20) 1•2 and (23) 3• 

Utilizing this result, the thus obtained equations turn out to be iden

tical with the system that we would have obtained, if we had employed 

right from the start the quasi-static version (i.e. c-l = O) of the 

electromagnetic ~quations, However, we point out that this conclusion 

does not necessarily hold anymore, if !lEi # 0 or if the f-configuration 

is no lon~r a static state, Furtbermore, it turns o~t that, as uz is 

the only displacement unequal to zero, we have a purely axial vibration. 
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We try to solve the remaining system, consisting of the equations 
(19)4,7,9,10, (20)4,7,11,12,13 and (23)4,5,9,10,11, by introducing the 

scalar potentials ' and ~ by 

(25) 

and by a separation of variables according to 

(26) 

( e ) - n-[weint] • UZ r, 0 t """ 

m
8
(r,e,t) = Rs({l ~ - 9 }eint] 

r ,e ,r 

int 
~(r,e,t) • Rs[{4Tip~ + A}e J 

~(r,e,t) • Rs[~eintJ , 

where w, ~. 9, A and ~ are functions of r and e. 
By the relations (25), the equations (19) 7 and (20) 7 are satisfied iden

tically. 

The relations (20) 12 and (20) 3 are transformed into two other equations 

by means of the operations 

(l- + l) (20) 12 - (ll-) (20) 13 
ar r r ae 

(27) 

(ll-) (20) 12 + (l- + l) (20) 13 • r ae ar r 

Substituting (25) and (26) successively into (20) 11 , the transformed 
12 13 4 4 9 10 . equations (20) and (20) , (20) , (19) and (19) ' , we arr1ve at the 

following system 

(28) 

2 càw + pO w + 2p13à~ • 0 , 

in 
à(ll<l> - aMI + 2BM

5
w - T 9) 

in 
6(;::9- aà9 + T <I>) = 0 , 

0 , 

àA • 0 (all these for r < R) , 

à'!' = 0 , (r > R) 

t27 



where 

(29) 

By means of the operations (27), we have introduced two extra constants, 

which can be determined by substituting the general salution of (28) in

to the original equations (19) and (20). 

Eliminatien from (28) 1 of the variable ~ by using (28) 2•3, yields the 

following equation for w(r,e) 

where 

sl 4pM 132 (JJ + K) 
al 

= _P_ + __ s __ 
c ca a 

I n2 4pM KB
2 

p (Jl + K)SJ2 
(31) (JJK 

s 
a2 =-z - -) 2 r2 ca a ca 

n2 n2 
a3 - p (JJK - -) - ---z r2 ca 

6 
We note that, as a consequence of (28) , the steady-state salution of 

(26) must be periadie in e, with period 2n. Moreover, the function w 

must remain finite for r = O. 

Meeting these conditions, the salution of (30) reads 

3 
(32) w(r,e) I {P J 1 (À r).cos e + iQ J 1 (À r)sin e} , 

n=l n n n n 

where Pn and Qn are complex constants, J 1(Àr) is the first order Bessel 

function.of the first kind, while the numbers Àn are the roots with 

Re(Àn) > 0 of 

(33) 
6 4 2 

À - atÀ + a2À - a3 = 0 • 
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After substitution of (32) into (28), the latter system can be solved. 

By once more substituting the then obtained solution into (26), we ar

rive at the following general solution of the system (19)-(20) 

3 
uz =Re E {P J 1(À r)cos 6 + iQ J

1
(À r)sin 6}ei~t , 

n=l n n n n 

3 dJl(Ànr) 3 J (À r) • 
+ {F - I pnQn I qnPn 

I n } . . 6] l.~t 

n=l dr n=l 
r 1. s1.n e , 

3 J I (Ànr) 3 dJ 
1 

(À r) 
m = Re[{F- I pnQn I qnPn drn }cos 6 + 9 n=l r n=l 

(34) 
dJ (À r) . 

I n }' . B]. l.~t dr 1. s1.n 1.e 

3 
~ = Re[{Cr- 4rrp L p P J 1(À r)}cos 6 + 

n=l n n n 

3 
+ {Dr- 4rrp I p Q J

1
(À r)}i sin B]ei~t , 

n=ol n n n 

where A, B, C, D, E, F, Pn and Qn are complex constauts aud 

(35) 

The boundary conditions (23) yield ten equations for the twelve unknown 

constauts A, B, c, D, E, F, Pn and Qn (n = 1,2,3), As noticed before, 

two extra constauts are introduced by means of the differentiations in 

(27). By substituting (34) into (20) 12 • 1 ~, we find the two lacking re

lations 

129 



M D - ~ E + KF 0 s r • 
(36) 

At this point, we have derived a complete system from which the twelve 

coefficients occurring in (34) can he calculated for given values of H0 , 

R, !1 and h0• However, as this system consists of twelve equations, the 

solution of it is still a very laborious task. Therefore, in the next 

section we shall try to approximate this system by a more simple one, 

holding for a special range of values for R and Q, by taking into ac

count the numerical values of the material constants for YIG. 

Based on the special form of the aforesaid system, we conclude that the 

fundamental solution of our differential equations are coupled at the 

stress-free and couple-stress-free lateral surface of the cylinder. 

However, since the coefficient a 1 is very small, this coupling is very 

weak. In one of the forthcoming sections we shall show that this coupl

ing disappears when the exchange interaction is neglected (viz. Section 

VII.6). 

VII.5. Elaboration of the solution 

We shall elaborate the general solution derived in the last section by 

using the numerical values for the material coefficients of YIG, as 

listed in Table VII. I. With these values we find for the pertinent co

efficients, with the aid of (29), 

12 2 5. 17 (gT:/ cm3) c = 0.764 x 10 (dyne/cm), p 

pM = 1,39 x J0 3(G) • s 2, 32 x 104 (G) 
(37) s 

-9 2 7 -1 -1 
a = 5.20 x 10 (G cm ) r = -I. 76 x JO (G sec ) , 

K = o.903 x 102 + H0 (G) ]J 1.840 x 10 3 + H0 (G) • 

We note that for ferromagnetic materials the value of H0 for which the 

magnetization of the cylinder is saturated is small (in the order of IG) 

compared with M
5 

(e.g. cf. [31], p. 57, Fig. 3-5, or p. 62, Fig. 3-12), 

Therefore, within a reasonable excactness, we may replace 1J and K by 
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(38) K = 0.903 x 102 (G), ]J = 1.840 x 10 3 (G). 

In this approximation, the solution will be independent of H0 • In order 

to simplify the equations of the foregoing section, we impose the fol

lowing two restrictions on the parameters n and R 

(39) 10 7 s n s 109 (Hz) , 

and 

(40) 10-3 s R s 10-l (cm) 

Underlying the choice for the bounds of n according to (39) are the fol

lowing arguments 

i) The lower bound is chosen as large as that the gyromagnetic effects 

have a noticeable influence. 

ii) The upper bound is a reasonable limit of the frequencies that are 

in practice attainable in experiments. 

The range for the values of R is selected in such a way that there are 

resonant frequencies within the reach of (39). 

Using the numerical values of (37) and allowing for the restrictions 

according to (39), it appears that 

(41) 

Substitution of (41) into (33) transforms the characteristic equation 

into 

This equation has the following roots Àn' with Re Àn > O, 

(43) 
_l 

i 2 n, (w,n > 0) • 
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At this point, a remark has to be made. By substituting the expression 

for Àl according to (43) 1 into (35) 1 we find p 1 = 0. However, this 

equality is not correct, because Àl is only approximately equal to w. 

To obtain an improved expression for p 1, we put 

(44) 

substitute this relation into (33), with the coefficients an (n = 1,2,3) 

according to (31), and linearize the thus obtained equation with resp

ect to E. In this way we find, retaining only dominant terms, 

(45) 

Substitution of (45) into (35) yields 

(46) and q 1 

By means of (43), the salution (32) can be written as 

(47) 

Let us note that the arguments of the Bessel functions occurring in 

this formula are complex. We pass to real arguments by introducing the 

so called Kelvin functions ber 1 and bei 1 by (cf. [48], Chapter VII) 

ber 1 (nr) 

(48) 

By utilizing the definitions 

(49) 
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P2 -(P2 + P3)' P3 

Q2 -(Q2 + Q3), Q3 

i(P2 - P3) 

i(Q2 - Q3) 



we can transform (47) into 

(50) w(r,a) {PIJl (wr) + P2berl (nr) + P3beil (nr)lcos a + 

+ {Q 1J
1

(wr) + Q2ber
1

(nr) + Q3bei
1
(nr)H sin a. 

In an analogous way the relations for the other quantities can be re

written. For convenience, we introduce the amplitudes M;c) (r), H~c) (r) • 

~(c)(r), M;s)(r), M~s)(r) and ~(s)(r) by 

m Re[H(c) (r) cos a + H(s) (r)i sin aJeHlt • 
r r r 

(SI) Re[H~c) (r)cos a + M~s) (r)i sin a He ir.lt m = a 

~ • Re[~(c)(r)cos a+ ~(s)(r)i sin a]eWt 

Before writing out the expressions forthese amplitudes, we first make 

the following intermediate calculations: 

It follows from (35) 1, with the aid of (43) and (41), that 

(52) 
2 . 2 2 2 

c -w ± 1n en (I ± iw ) • 
P2,3 ,. 2p8 • +" 2 = iP'ä" 

-1n 

By using these relations and the definitions (48) and (49), we can de

rive 

(53) 

Si nee 

(54) 

2 
• 2 ~a[{ber 1 (nr) + ;bei 1(nr)}P2 + 

n 

2 
+ {-; ber

1
(nr) + bei

1
(nr)}P

3
J. 

2 
w 

"2 « 
n 

n 

the relation (53) may be approximated by 
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By a simi.lar procedure, we oliltain from (35) 

{56) 
2 

± i ;.) - 28M
8

] = 
n 

2 
- 2 ~~n (~ ± ian

2
)[1 + o(;.)J 

n 

which yields with (41) 2 and the definition 

(57) a := 

the relation 

c~r -
= 2 PB~ [{ber 1 (nr) +a bei 1 (nr)}P2 + 

+ {-a ber 
1 

(TJr) + bei 
1 

(nr) }P 
3

J , 

where again terms of O{w2 /n2) .are neglected, 

With the results obtained above, we can derive the following expressions 

for the coefficients of the salution in the form of (51) 

en b ·•c )-P !1p1 Jl(wr) 
- 2p8 eL I nr 3 -cl --r- Ql + 

[ber
1 

(nr) + a bei
1 

(TJr)J 

r Q2 + 

c~r [a ber 1 (nr) - bei 1 (nr) J 

+ Zpi!O " r Q3 ' 
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(59) ~c) (r) F -
Sip Iw 
K"f""" J ; (w r) P 

1 
C\lfll 1 + 2pf3\1 [ber 1 (11 r) +a bei; (llr)JP

2 
+ 

C\lfll 
ber;(llr) - bei;(llr)}P

3 

J 
1 

(w r) 
+ 2p sn [a - PI --r- Ql + 

c 
ber

1
(1lr) 

c 
bei 

1 
(nr) 

2p6 
Q -

2pf3 r Q3 r 2 

<I> (c) (r) K 
rE + 

rl 
rF - 4rrpp 

1
J I (wr)P I i1 fM + 

s s 

4rrp c 
[ber

1 
(llr)P

2 + bei 
1 

(llr)P
3

J 
2pf3 

where 

dJ 
1 

(z) d ber
1

(z) d bei 
1 

(z) 
J; (z) __ d_z_ , ber; (z) = 

dz 
and bei; (z) = 

dz 

3 
From (59) , the constanes C and D are eliminaeed with the aid of (36). 

(s) (s) (s) . 
The expressions for Mr (r), Me (r) and <I> (r) can be obtaLned from 

.(c)( (c) (c) . 
the formulae for ~\ r), Me (r) and <I> (r), respectLvely, by replac-

ing in the latter (E,F,P
1

,i:i
2

,P
3

,Q
1

,Q2 ,Q
3

) by (F,E,Q
1

,Q
2

,Q
3

,P
1

,P
2

,P
3
), 

respecti ve ly. 

By using (22) and (25), the boundary conditions (23) 4 •
5

•9 •
10

•
11

, hold-

ing on the surface r R, can be wri t ten in the form 

<j) - Ij! = o, <j) - Ij! - 4rrpm 0 • ,r ,r r 

(60) m o, me,r 0 
r,r 

c 
+ o, R --u m on r = 

2p6 z, r r 

The complete salution for our problem can no<V be determined by substi

tuting the relations (34) 5 , (50) and (51) tagether <Vith the formulae 

(59) into the boundary conditions (60), equating to zero separately the 

coefficients preceding cos e and sin 8, and calculating from the thus 

obtained system the ten unkno<Vn constanes A,B,E,F,P
1

,P
2

,P
3

,Q
1

,Q
2

,Q
3

• 

Although the formulation of this system is in principle rather trivial, 

the resulting equations are very extensive. Therefore, <Ve shall not 

write out these equations explicitly, but 1ve shall confine ourselves to 

merely indicating ho<V <Ve did arrive at our ultimate result. 
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By means of (60) 1 and (60) 5 the constants A, B, E and F are eliminated. 

Thus, we have reduced the system to a system of six equations for the 

six constants P 1, P2 , P
3

, Q
1

, Q2 and q
3

• In ordertoshorten the formu

lation, we introduce the dimension-less six-vector ~ by 

(61) x := -

where M1 M1 ( ~ R), the modulus of the Kelvin functions, defined by 

for v = I. The angle ev is called the phase. 

The system can now be written in matrix form 

(63) A .. X. = V., 
l.J J ]. 

i,j = 1,2, ... ,6' 

where A .. is the matrix of coefficients, while the inhamogeneaus right
l.J 

hand side V is descended from the term (-h
0

r cos 8) occurring in the 
5 expression for ~. (34) • It appears that the vector V is equal to the 

unit vector 

(64) -:!... = (I,o,o,o,o,o) • 

Our discussion will now be directed to simplifying the system (63), 

within the same excactness as the foregoing calculations, and to i ndi

cating for which values of the parameters w and ~ this approximation is 

va lid. 

To this end, we introduce the t1vo small numbers 6
1 

and 62 by 

(65) 0. 845 x I0-5 

' 
I -3 

62 := ~R ~ 3.60 x 10 

and we de fine 

(66) -3 
E := max(6

1
,62) = 3.60 x 10 , 

where the maximum is taken over the ranges according to (39) and (40). 
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On elaborating the matrix A .. , it turns out that in each ro1"r some terms 
~J 

are dominant compared with the others. This matrix can be written in 

the farm 

c o (6 
2

) I 0 (62) 

1- -
I (6 7) A o (6 

1
) Dl 0 (62) 

1- - - -1 
o (6 

1
) 

I 
o (6 2 ) 

I D2 

where C, D
1 

and D2 are matrices of second order. By defining 

and 

(69) 

2 

ber',' := d ber~ (z~/ 
dz / z=11R 

• 
11 

d
2
bei 1 (z~ 

and be~ 
1 

: = 
2 

, 
dz z=llR 

and after neglection of termsof O(E), thematrices C, D
1 

and D
2 

appear 

to be equal to 

(K 

c 

(70) 

+ 2rrpl\)J QJ 

pM 
s 

QJ 
pM r 

s 

D 

pM r 
s 

(K + 2rrpMS)J 

pM 
s 

ber'] 

~ 

~I (ber'{ + o bei'{) 
I 

bei'{ 

~ 

For the second derivatives of the Kelvin functions, the following rela

tions hold 

2 ber 
1 

(z) ber
0

(z) + bei
0 

(z) 
ber'{(z) - bei

1 
(z) + 

2 z/2 z 
(71) 

2 bei 
1 

(z) -ber
0

(Z) + bei
0 

(z) 
bei'{(z) 2 

+ ber 1 (z) + 
z/2 z 
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He note that the numerical value of the argument TlR is very large 

(TlR ~ 0.278 x 10 3). For large values of the argument z, the following 

asymptotic expansions for the moduli and the phases of the Ke l vin f unc

tions held 

(72) 

z/2 
_e __ [l+ 

hnz 

z/2 
M

1 
(z) = _e_ [I 

hnz 

I 

812 
-I 

z 0( - 2)1 + z .J , 

3 -1 -2 
z + 0 (z ) ] , 

812 

z )TI -I e (z) =- +- + O(z ) • 
I /2 8 

Hence, for z = TlR we have 

(73) 
cos 8

0 
(TlR) = sin 8 I (TlR) + O(E) • 

By defining the angle e by 

(74) 
TlR 3rr e =- + 8- 2krr 
12 

whe re kis chosen in such a way that 0 $ e $ 2rr , the relations (69) can 

be written, with the aid of (71), as 

(75) ber~ = -M 1[sin ê + O(E)] , bei~ = M1[cos ê + O(E)] • 

\-Ie now shall establish that, except for some specific values of n, the 

exact salution of our system may be approximated by the sa lution of the 

reduced system that is obtained by omission in (63) of all terms of 

O(E). It wil l be proved that the errors of this approximation are of 

O(E). , The exceptional values of Q will appear to be equal to the reso

nant frequencies. 

To achieve this purpose, we write the matrix A .. as 
~J 

(76) 
0 

A .. "' A •. + EB •• 
~J ~J ~J 

138 



where A~. is obtained from the matrix A .. according to (67), when all 
1J 1J 

terms of O(e:) are omitted, 

Let x" be the solution of 

(77) 
0 0 

A •• X. =V. 
1J J 1 

then, the solution of (63) may be decomposed as 

(78) 
0 

X. =X. + e:Y. 1 1 1 

where Y is the solution of 

(79) (A 1~J. + e:B •• )Y. = -B .• X~ , 
1J J 1J J 

0 • 

It is evident from (78) that the solutions ! and ! d1ffer only in 

termsof O(e:), provided that the solution! of (79) is bounded, 

Let 11 !11 reprasent the norm of !• then i t fellows from (79) that 

(80) 
0 -1 0 

11!11 s; 11 (A + e:B) II.IIBII.II! 11. 

Further, as ,, 
(SI) 

0 -1 0 -1 0 -1 -1 
(A + e:B) = (A ) [I + e:B (A ) ] , 

where I is the unit matrix, the following inequality holds 

(82) ll (A o + e:B) -1 11 s; _....;.;..11 ~(A;.;;.
0

.;.)_-_
1

1;;...1 -:--

- e:ll B 11.11 (A 
0
)- I 11 • 

We note tha.t the solution !" is bounded if 11 (A 
0

) -lil is bounded, as fel

lows immediately from (77). Furthermore, we state, without writing out 

B explicitly, that all elements B •• are always bounded. Hence, 11 B 11 is 
1J 

also bounded, We then conclude from (80) and (82) that 11 Y 11 is bounded, 
0 -1 

when 11 (A ) 11 is bounded. 
0 -1 

To investigate the boundedness of (A) , we start from (67), where all 

terms of O(e:) are taken equal to zero, from which we infer 

(83) 
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In this relation is, as can be deduced from (70) 1, 

(K + 21rpMs) 
n 

pM 'F 
(84) c-1 s 

= Jó. 
n 
'F (K + 271pMs) • 

where 

(85) 

where the >-sign holds for every value of n in the interval ,(39). Hence, 

llc- 1 11 is bounded, provided that the quantity J, defined by (68), is un

equal to zero. 

Furthermore, as a consequence of (70) 2 and (75), we have 

~-sine 8 r' D-1 
cos 

(sin 8 - Cf cos 8) (-cr sin 8 - cos 8) 
(86) 

cos 8)1· = ~~ (-cr sin 
8 - cos 8) (-sin 8 + Cf 

-cos 8 -sin 8 .., 
Returning to (57), we see that cr is always greater than zero, so (86) 

shows that IID- 111 is bounded. 

The foregoing considerations result in the following final conclusion: 

0 -1 
11 (A ) 11 and, consequently, 11.! 11 are bounded, except for those va lues of 

(wR) where J = 0. Hence, excluding a small neighbourhood of the points 

where J = 0, we may state that the salution X
0 

of the reduced system 

(77) is, to O(e), equal to the exact salution of (63). 

The exceptional values for w are the roots of 

We find for the first three roots of (87) 

(88) (wR) 1 = 1.84, (wR)
2 

• 5,33, (wR) 3 • 8.54 t 

or, expressed in the driving frequency n 

(89) ~ 7.07 x to5 20.5 x 105 32.8 x 105 
"t .. R • n2 • R • 113 "' R (Hz) • 
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Solving (76) leads to 

2f3pMSR{K + 21TpMs) 

ch.J ho , 

(90) 

Substitution of (90) into {34) 1 yields the following expression for the 

displacement in the axial direction 

(91) uz (r, a, t) 

- ~ sin a sin Ot] • 

As follows from this relation, the displacement uz tends to infinity 

when J tends to zero, from which we conclude that for those values of w 

that are zero's of J, there occurs resonance. Hence, the roots of (87) 

are, approximately (in O(e)), the resonant frequencies of our system. 

A complete description of the solution will be deferred until the next 

section, in which it will be shown that the solution determined in this 

section is identical to the solution that is obtained when the exchange 

interaction is neglected a priori. 

VII.6. Negleetien of the exchange interaction 

As we have already noted in Section VI.6, the exchange coefficient a 1 
is very small, Therefore, it seems interesting to investigate how far 

the solution alters, when the exchange interaction is neglected a prio

ri. To this end we put a 1 equal to zero in the equations of Section 

VII.J. It will appear that this reduces. the order of the differential 

equation for w(r,e) from six to two. 

By taking a = 0, the equation (30) reduces to 

(9 2) Aw + aw = 0 , 

where 
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(93) 

Under the usual restrictions, i.e. periodicity in a and boundedness for 

r = 0, the solution of (92) reads 

(94) w(r ,e) = PJ I (wr)cos 8 + QJ I (wr)i sin 8 , 

We note that this relation corresponds 

(34) 1
, if in the latter the summations 

with the solution according to 

are 

find from (~4) the solutions for m • me. 'P 
Ir 

and q can be determined from (35) for n = 

then obtain 

(95) 

omitted, Analogously, we 

and w. The coefficients p 

I, by replacing À
2 by a, We 

As a consequence of the neglection of the exchange interaction, the 

couple-stresses TI •• are equal to zero. Hence, the boundary conditions 
10 11 ~J 

(23) ' are satisfied identically. There are still three boundary con-

ditions left to be met. Since each boundary condition gives two equa

tions, these conditions together with the two relations (36) yield a 

system of eight equations for the eight unknown constants A, ~. c, D, 

E, F, P and Q. 

Calculating from the system mentioned above, the constants P and Q and 

neglecting in the thus obtained expressions p with respect to c/(2pB), 

we arrive at 

(96) P • P
1 

and Q = Q
1 

, 

where P 1 at'l.d Q 1 are gi ven by (90). 

Hence, the solution agrees completely with the one obtained in the pre

ceding section. From this we may conclude that, for values of Q in the 

range of (39), the neglection of the exchange interaction is allowed, 

if the restrietion 

(97) (nR)-l cc I , 

is met. The factor (nR)-l is a maasure for the inaccuracies of the ap-
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proximated solutions of the last two sections. 

We shall now write out explicitly .the complete solution of our problem: 

(98) 

• cos 8 cos rlt-[F-pQ{wJ (wr) _J. J
1

(wr)} + 
o r 

n Jl (wr) 
- Kf pP --r- )sin e sin rlt , 

Jl (wr) n 
m

8
(r,B,t) = [-F+pQ ---+-r pP{wJ (wr) + r K o 

I Jl(wr) - r J I (wr) })cos 8 sin rlt + [-E + pP --r- + 

K n 
cp (r ,e, t) = [ (- M. E +"fM F) r- 41TppPJ I (wr) )cos 8 cos rlt + 

1jl(r,B,t) 

s s 

[ (r~ E - ~~ F) r - 41TppQJ 1 (wr) Jsin e sin nt , 
s s 

(-h@r +~)cos 8 cos nt - ~ sin 8 sin nt • 

where P = P
1 

and Q = Q
1 

are given in (90), p in (95) and further 

2 
I Q2 41Tp HsBp g2 

A=hOR
2

{1 +'"[;[;z-K(K+2npM
8
)]+ CKA 2K(K+2npMs)-;zJ}, 

(99) 

h@Rz 2npMsQ 2pBprlJ
1 

Q2 
B = -"- {-f-- + CKfJ [!l(K +2npM8 ) - ;z]} 

Msho 2pB p n2 3 1 
E = - 8- {(K +2npM

8
) - c. 'K. • J} 
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In the deduction of the results (98), the relation 

( 100) 
dJ I (wr) I 

dr • wJ o (wr) - r J I (wr) 

is used. 

According to (9), the following expressions for the stresses hold 

t = cu + 2pSmr • rz z,r 
( 10 I) 

t = ~ u + 2pS Sz r z,a ma • 

By using the results (98), these expressionscan be written out into 

the form 

(102) 

t rz 

2 a"' J I J I (wr) n J J ( ) 
p., .. (- - ---)}cos 9 cos Ot - { (- - ~) + -er R r 1"" R r 

2 tl J I J I (wr) 
- _P_ (K + 2îipM ) (-R - -)}sin 8 sin Ot • c s r 

In order to give an impression of the order of magnitude of the stress-

h 1 1 d for r • 0 and for R • 10-2 as a function of es, we ave ca cu ate trz 

n. The results are shown.in Fig. VII.2, where 

T(c) = t (r = 0, 8 .. o. nt • O), r rz 
( 103) 

T(s) (r = 0, 8 
11 11 = t • 2 • nt = 2> . r rz 
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Tr r n dyne/cm 

8 I h0 in G 
I I I -2 

7 I R: 10 cm 
I 

I 
I 

:u I I 5 I 
I I u ~ ,, 5 I I 

I I 
I I I r 

4 I I I I, I 
I I 

rh 1l' 'I' I 'I' ,,, 'I' r' 
'" ,, '• ,• ,I• 
,, 'I' rl, 11: •I' T(s) 
rl, 'I' 'I' 'I I I I 

2 Ij I I I ' 
r 

,1, 'I I 
I \ I 

I ' 
I 

I I " / I , __ .", 

' 'I' 
I 

I ' I I ... 
I'---- ..... \ , 

I I I ' " I 
I 

I 

0 0.1 0.2 0.3 0.4 0.5 0.5 

- Î/ [109 Hz] 

Fig . VII . 2 . 

VII. 7. Conclusions 

Based on the results of the preceding sections the following conc l u

sions, holding for the problem treated here and under the well-known 

restrictions, can be drawn: 

i) - 2 
If terms preceded by a factor c are neglected consistently , the 

electromagnetic equa tions may be replaced by their quasi-static 

version. Let us note that t h is only holds '"hen the inten:rediate 

state is a static one in which only magneti c fields are applied. 

ii) In neglecting the exchange interaction, an error is made of the 

order (~R)- 1 . Thi s error is usually very sma l l. 

iii) The resonant frequencies can be de termined from an equation (i.e. 

eq, (87)) that is independent of H0 • Hence t he resonant frequen

c ies are independent of H
0

• It s hould be noted that this not only 

holds for H0 << K (or ~) but also for higher values of H0 , up t o 

va lues in the order of pMs . As follmvs immediately from (87) , the 
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sonant frequencies depend, in a very good approximation, only on 

the density p, the elasticity constant c and the rad~us of the cy

linder R. Hence, the resonances are purely mechanical. 

iv) In general the salution of the problem is coupled at the stress

free and couple-stress-free surface of the cylinder. However, when 

the exchange interaction is neglected, this coupling vanishes. 
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V I I I. SOFT -I~AGNETOELASTI C MATE RI ALS 

VIII.l. Introduetion 

In this chapter, we shall derive a dynamic theory of magnetoelastic in

teractions in sof t-magnetic materials. Such a material is char acterized 

by a linear dependenee of the magnetization on the magnetic field inten

sity in the material. For ferromagnetic materials this linear relat ion

ship only occurs for very low values for the field intens i ty. Mor eover, 

we restriet ourselves to linear elasticity, i.e . to infinitesima l de

formations. ~ve assume the medium to be nonpo larizable , nonconducting, 

isotropie and we leave thermal effects out of consideration. Due to the 

low values for the field intensity, and thus also for the magnetization, 

the effects as gyromagnetic coupling, exchange interac tion and magneto

striction will be neglected. 

We shall first derive a general, nonlinear system of balance equations, 

constitutive equations and boundary conditions. Underlying this deriva

tion is a similar though reduced energy balance as the one employed in 

Chapter II, and the same procedure as in Chapter II and III will be 

follm.;red here. The constitutive equations will be simplified considera

bly, owing to the fact that t he set of independent var iables is much 

more restrictive than that of Chapter III. Next, the system tvill be 

linearized with r espec t to a stati c intermediate state, in a way anal o

gous to the one adopted in Chapter V. These equations tvill be simplified 

further by taking the Maxwell-equations in their quasi-static vers1on 

and by allm.;ring for the f act tha t the de formations in the intermedia te 

state are small (cf. Sect i en V.6). The results of this chapter "'ill be 

app lied in the determination of the stability of elasti c plates i nter

acted by magnetic fields. This "'ill be clone in the final dhapter of 

this thesis. 

Recently, there appeared a paper of Hutter and Yih-Hsing Pao [49] , 

treating the dynamical theory of soft-magnetic elastic materials t hat 

147 



are thermally and electrical ly conductive. The general equations of 

this artiele are, when applied to our more res trictive case, in a one 

t o one correspondence with the res ults of the present chapter. However, 

~n the linearization o f these general equations some e rrors are made , 

for instanee in the linearization of the Haxwell-equations (eq. (5 . 6) 2) 

and of the boundary conditions (e .g. eq. (7.7a)). 

VIII.2. General equations 

I n a way , analogous t o the one followed in Chap ter II , \ve shall derive 

a system of b alance equa tions. Hence, we s tart with a global energy ba

lance in the form of II. (I), into \vhich II. (2), II. (5) , II. (9) and 

II.(15) are substituted. However , asweneglect the gyromagneti c and ex

change interaction and all t he rma l effects, the terms p!C, pr, M.k . S"l 'k 
~ . J ~ 

and Q. must be omitted. All this has no inf luence on the local ba lance 
J 

equations for the mass and the mome ntum, which means tha t the equations 

II. (12) and II. (14) remain valid. On the contrary, the local balance· 

equation of moment of momenturn II. (31) reduces t o 

(I) 0 • 

I • * I * * * The terms -r M.,- (e .. kM.IIk.) • and e .. kP. Ek of II.(3 1) arP. chosen 
~ p ~J J JO • JO ~J J 

equal to zero, because the gyromagnetic and exchange interaction is 

neglected and the medium is nonpolarizable. 

Basedon the fact that, in the merli um under cons ide ration, polarization, 

e le c tri cal and thermal conduct i on , exchange interaction and a ll therma l 
* effects are absent , the quantities Mia' Ei' 9 and 9a may be lefto ut of 

thesetof consti tutive variables according toiii. ( 7). Heoce, it suffices 

to take 

(2) l: = l: (F. ,H~) • 
~ Ct ~ 

According to III.(l5), III.(I 6), III.(2 1), III.(35) and III.(36) , we 

then have 

(3) s p~ 
~ 
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Moreover, the vector a occurring 1n the entropy inequality is again 

equal to zero. 

Utilizing the above results, we arrive at the follo1~ing entropy inequa

lity (cf. III.( 14)) 

(4) * at: "* at: 
(pH; - p -*-)M; + (T . . - p -- F. )V . . '=: 0 • 

~ aM. ~ LJ aFia JU L, J 
1 

Since the magnetization is no langer saturated, ~ t is not restrained by 

a relation like II. (21). Then, according to the principle of Coleman 

and Noll, the coefficients preceding M~ and V . . in (4) must be taken 
1 L , J 

equal to zero. Thus, we arrive at the following constitutive equati ons 

(5) * at: H. 
1 * aM. L 

and 

(6) T . . 
at: F. 

LJ 
p 
~ JU 1a 

2 
Introducing objective variables a ccording to III.(43) and III.(45), 

these constitutive equations transfarm into 

(7) * at: H. ""äf\" F. 
1 La 

a 

and 

( 8) 
at: at: * T . . p 

3EaB 
F. F .

8 
+ p ""äf\" F. M. 

LJ LU J a JU L 

We note tha t with (7) and (8) the angular momen turn equation (!) i s s a

tisfied identically. Hence, this relation is disposed of. 

For soft-magnetic, linear elastic materials, an expression quadratic in 

EaB and Aa must be taken for t he energy functional t: . Hence, restrict

ing ourselves to isotropi e materials, we must t ake 

(9) c E E + I p xA A 2;l a8y6 aS y6 2 o a a 
0 

Due to the isotropy, the,quadratic , piezomagnetic term bas disappeared, 

and the magnetostrictive term is not retained, as this term is of the 
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third order in EaB and Aa (cf. eq. VI. (1)). Thus, there is no coupling 

between EaB and i\ a. 

For an isotropie material the tensor of the coefficients of elasticity 

has the fo llmving camponen ts 

(JO) 

Substituting (9) into the constitutive equations (7) and (8) yields 

( I I) * H. 
~ 

* P x F . fo. M. 
o ~ a Ja J 

and 

(12) =.e_ ** T.. c B 
6

F. r.
6

E ó + pp xF. fk M . ~l 
~J po a y la J y o Ja a 1 k 

In a linear theory, i.e. neglecting all terros that are quadratic in Ea B 

and M~, 
~ 

( !3) 

and 

( 14) 

(IJ) and (12) reduces to 

T . . 
lJ 

Defining the magnetic permeability ~ by 

( 15) 

it follows from (!3) and I.(36) that 

( 16) 
4n 

x = "'ëii'=ï) 

By use of ( 16) , the re lation ( 13) can be re,vri t ten as 

( 17) 

It is a well known fact that, for ferromagnetic materials, the permea

bility ~is always large (~ = 10
4 à 106). 

Due to the fact that the convective polarization p* is zero, we have, 

according to I. (38), 
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(IS) * I M
1
. a M. and P. =- e .. V.K • 

l. l. c l.Jk J K 

Moreover, as the convective current J* is zero, the relation 

(19) J, = Qv. 
l. l. 

holds. 

Since thermal effects are left out of consideration, the reduced energy 

balance (111.(38)) may be disposed of. 

As concerns the boundary conditions, we will restriet ourselves to the 

problem of a body in a vacuum. We note that of all machanical boundary 

conditions (11.(47)-(49)) only those for the stresses are retained. 

Recapitulating, we have the following general equations with boundary 

conditions for the unknown variables 

Pt U., E., Q, B., H., 11., T .. , 
l. l. l. l. l. l.J 

holding for a soft-magnetic body, placed in a vacuum 

I êBi 
- -:;---t .. -e • 'kEk . • B. . 0 • C a l.J 0 J l. 0 l. 

I êEi 4n 4np 
ë~ + (: QVi = eijk~,j' Ei,i = 4nQ + (~ eijkMjVk) ,i ' 

(20) Q + Qvi,i = O, Bi = Hi + 4npMi , 

where 

and 

p + pV •. = O, 
l.,l. 

pV ... T ... + pF~m) + F~e) 
l. l.JoJ l. l. 

aE ar 
T.. .. p a-E F. F." + p ah F. M. , 

l.J ae l.a J~ a Ja l. 

and on the surface S of the body 
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(21) 

I 4~p 
[e •• kE.n. +- B.V.n.] "'O, [E. +- e. 'kV,M_ ]n. "'0, 

~J J K c ~ J J ~ c ~J J~K ~ 

I 
[e .. kH.n. -- E.V.n.] 

~J J K C ~ J J 
0, [B. ]n. "' 0, 

~ ~ 

2 * T •. n. "'2rr(pM.n.) n. + T. 
~J J J J ~ ~ 

on S • 

From these equations, the electric displacement ~ is eliminated with 

the aid of 1.(37) and (18) 2• 

* We note that the stress vector!. can be due, for instance, to a support. 

In this case 1.* is an unknmm, and the condition (21) 5 on that part of 

the surface that is supported must be replaced by a condition for the 

displacements. 

VIII.3. Linearization with respect to a static intermediate state 

By a metbod similar to that used in Chapter V, we shall linearize the 

general equations of the preceding section with respect to the distur

bances on an intermediate state i· This state is assumed to be static 

but not necessarily uniform. The body is in the I-state only loaded by 

a magnetic field. 

Omitting the standard calculations, we write out at once the ultimate 

equations: 

i) For the I-state (upper index o) 

(22) 
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B. 
~ 

0 
p 

J 

0 

0 
Po where J 

0 0 0 0 
T ••• + p H.H .. 
~J.J J J.~ 

T~. 
~J 

0 

det{t;;. } 
~,a 



with the boundary conditions 

[e .• kH~]Nk
0 

=O,[B~]N~ =0, 
1J J 1 1 

(23) 
0 0 0 0 0 2 0 0* 0 

T •. N. 211 (p M.N.) N. + T. , onS 1 1J J J J 1 1 

and 

ii) for the disturbances (lower case letters) 

(24) 

;rhere 

(25) 

and 

{26) 

(27) 

I ob i I o 
- ~ - - B. . v. = -e. 'kek • , C at C 1,J J 1J 0J 

411 0 0 

e •. = 411q + .- e. 'k(p M.vk) • , 1,1 c 1J J ,1 

b. = h. + 411p 
0

m{ - 411p 
0

M~u •• , 
1 1 ~ 1 J,J 

h*. 2 3 
= ç. 'ku. k + ç .. m. 1 1J Jo 1J J 
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where 

and 

(29) t .• 
~J 

where 

o( a2I: )o 
c~J'k" =p élE élE ~. F;. ~k ~!1. o + 

• N aB yo ~.a J,B .~ • 

(30) 

supplemented by the boundary conditions 

1 0 0 

[e •• ke. +- B.vkDNk = 0 • 
~J J c ~ 

411 0 0 0 

[e. +- e .. kp M. v.]N. = 0 • 
l. c l.J :%. J ~ 

[b.DN~ - [B.)u •. N~ = 0 , 
~ ~ l. Jol. J 

0 0 0 * 
t .. N. = T ••. u. .Nk + Tl.. + t~ • 

l.J J ~J I<. J • on S
0 

• 
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where 

(32) T • l. 

_ 41T(poMo,No){poMo. (poMo No)No}~ NoNo + 
- • • ' k ' - - J - - J .J l. 

VIII.4. Further simplifications 

We wish to apply the foregoing equations in a stability problem, espe

cially in the determination of the buokling values of a plate interact

ed by magnetic fields. In this case, the oonfiguration of the plate just 

befere buokling is chosen as the I-state, while in the ~state the plate 

is buckled, but with still a very small amplitude. 

In this kind of problems the following simplifications will be applied: 

i) We approximate the electromagnetic equations by their quasi-static 
. . -1 1 vers1.on, 1..e. we put c equa to zero. 

ii) We use the expression (9) for the functional E and we relate x to 

\.1 by (14). 

iii) We neglect in the equations for the disturbances the deformations 

in the I-state, except in these terros where they turn up in combi

nation with c. 'kJI.' as for instanee inT~. and ë .. kJI.• This excep-
l.J l.J l.J 

tion is made, motivated by the large numerical values for the 

elasticity coefficients cijkJI. in case of ferramagnetic materials. 

We note that this is in contrast with the method followed in Sec-

tion V.6, where T~. was replaced by , i.e. the purely electro-
l.J 

magnetic stress tensor in a rigid-body. As will appear lateren 

(viz. pag. 176) the stresses T~. have no essential influence on 
l.J 

the buokling values calculated in the forthcoming chapter. The 

same did hold for the example of Chapter VII. 

Using this approximation, we may replace p
0 

and N° by their ini

tia! values p
0 

and ~· Furt~ermore, we may take for the magnetic 

fields the values according to the rigid-body problem, i.e. 0 ~, 

oB and oM• being the solutions of 
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B .. = O, e. "k Hk . = 0 , 
0 l. ,l. l.J 0 ,J 

(33) B. 
0 l. 

[ e .. k H • D Nk = 0 , [ B • D N. = 0 on S l.J 0 J 0 l. l. 0 

iv) Dwing to the fact that we shall especially consider stability pro

blems, as an extra step we replace ~ijkJI. by cijkJI. in (30)
1

• We are 

aware of the fact that this is inconsistent with regard to the re-

. • f h T0 
• h ff" • Z • ta1.n1.ng o te terms .. 1.n te coe 1.c1.ents T. "k"" However, 1.t 

l.J l.J Tv 

can be established, although this will not be done here, that the 

omitted terms have no appreciable influence on the buckling va

lues. This approximation is a common one in the theory of the sta

bility of elastic bodies. We return to this subject after the de

rivation of the stability equations (viz. pag. 176). 

With the aid of the simplifications listed above, the equations for the 

disturbances reduce to 

(34) 

b .. = B •• u .. , e .. khk . 
l.,l. 0 l.,J J,l. l.J .J 

b. hl.. + 4Tipml.. - 4TIP M.u .. 1 l. 0 l. J .J 

pv. 
l. 

0 

t. . . - T .. ku. . + p M.h. . + p H. . m. + 
l.J 1 J l.Jo k,J OJJ,l. oJ,l.J 

t.. -T~.u. k + T~ku. k + T~ku. k + c .. k.u. n + 
l.J l.J k. l. J • J l.. l.J Tv k. Tv 

+ p H.m. + p H.m. , 
0 J l. 0 l. J 

while the boundary conditions become 

(35) 

and 
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holding on the andeformed surface S
0

• 

The intermediate stresses T~. can be calculated from (22) and (23), 
~J 

adapted to the simplifications stated above, This yields 

(36) 

T~. • + f) M. H. . = 0 , 
~JtJ 0 JO Jt~ 

0 
T •• 
~J 

0 
T .. N. 
~J J 
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IX. BUCKLING OF SOFr -MAGNETOELASTIC PLATES 

IX.l. Introduetion 

The instahility of a thin elastic plate under compression in its plane 

is well known for a long time. A similar phenomenon will he discussed 
' 

in this chapter, where the huckling of thin soft-rnagnetoelastic plates 

caused hy rnagnetic fields is studied. To this end, tve consider a plate 

placed in a uniform magnetic field directed perpendicular to the plate. 

For small magnitudes of the field, the plate only deforms in its plane, 

We may expect this state to he stahle for all values of the field up to 

some critica! one. When this critical value is reached, this state will 

hecome unstable, and the plate will have displacements out of its plane. 

This phenomenon is called magnetoelastic buckling and the critical mag

nitude of the field is the buckling value. 

The first treatment of this kind of problems was due to Hozniker [50] • 

whose paper was discussed in the hook of Panovka and Gubanova [SJ] on 

page 17. They treated the problem of a beam placed midway a series of 

magnetic poles along its length. The magnetic force was assumed trans

verse to the heam and proportional to the deflection, and the field did 

not react to this deflection. Recently, there appeared some articles, 

i.e. [52] to [55], in which, in contrast with the former, the magnetic 

force was supposed to be proportional to the rotation of the nddsur

face of the plate, In these papers the response of the magnetic field 

on the deforrnations is taken into account. In most of these works, a 

stress tensor according to the Amperian-current model is used. Only in 

[52] a stress tensor hased on a magnetic dipole model is employed, but 

Mooa has showed that these stresses differ only by a factor of the order 

~-I from the former. 

To our opinion, in all these articles there lacks a fundamental dèriva

tion of the ultirnate buckling equations. These equations are set up, 

without ,any reference to the pre-buckled state. ~~reover, in none of 
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these papers, a constitutive equation relating the stresses to the de

formations and the magnetic field is used. They merely posit global con

stitutive relations between the bending moments in the plate and the 

curvature of the midsurface of the plate, similar to those of the clas

sical plate theory, Furthermore, the global equations of equilibrium of 

this classical theory are taken over, 

We hold the view, that it is necessary to go out from the pre-buckled 

state for the derivation of the buckling equations. We then consider 

small dynamical disturbances on this state, and we search for the va

lues of the parameters of the problem, for which the disturbances tend, 

for increasing time, to infinity. ~~en this effect occurs, we pose that 

the state under consideration becomes unstable, For this procedure, the 

equations of the preceding chapter will be employed. 

We shall start with solving the problem of a finite rigid plate placed 

transverse in a uniform magnetic field. Next, the equations for the in

termediate, i.e. the pre-buckled state are deduced, and, finally, those 

for the disturbances on this state are inferred. The equations are ap

proximated by neglecting terms that are relatively of the order ~-I 

where ~is the magnetic permeability (~ >> 1). The so-called plate equa

tions will be derived by integrating these general three-dimensional 

equations in the thickness direction of the plate, whereby the Kirch

hoff-Love hypothesis is used. In the plate theory an error of the order 

(h/R)Z is made, 1vhere h is a measure for the thickness and R is a roea

sure for the dimensions of the plate in its plane. The thus obtained 

equations IVill be applied in the determination of the buckling values 

of a circular plate that is either clamped or simply supported at its 

boundary. It will turn out that, for the particular farm of the stres

ses used here, the magnetic stress vector at the upper and the lower 

surface of the plate is dominant compared 1vith the magnetic body force, 

and hence causes the instability. 

If the midsurface of the plate is rectangular with one dimension much 

larger than the other, the plate can be considered as a bean with a rec

tangular cross section. Just as for the plate, beam equations can be de

rived by integration of the general three-dimensional e~uations, but 

now the integration must be performed over the cross section of the 
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beam, These equations are inferred toa and used ~n the final section 

for a comparison with the equations of [52] and [53], In [52] experi

ments are reported, which when compared t.rith our results ar with those 

of [53] give a certain confirmatien of the remark posed in [54], that 

the Amperian-current stress model minimizes the influence of the boun

dary effects. 

In conclusion we note that, s~nce the linear equations used here do nat 

hold at the lateral boundaries of a finite plate, the theory derived ~n 

the present chapter is only completely motivated for clamped plates. 

For simply supported ar free plates, the boundary conditions at the la

teral surfaces are undetermined, as the constitutive equations for the 

bending moments and the shear farces are nat known there, due to the 

fact that the linear magnetic theory does nat hold in the neighbourhood 

of the boundaries. 

IX.2. General three-dimensional equations 

z 

R 

Fig. IX. 1. 

Let us consider a homogeneous, magnetoelastic plate with thickness 2h 

and t;ith an arbitrary boundary R placed in a uniform magnetic field 

~ (viz. Fig. IX. I). The space outs i de the plate is a vacuum. A coordi-
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nate system OXYZ is chosen, with the origin in the centre of mass of 

the plate, the X- and Y-axes in the midsurface of the plate and the z
axis perpendicular to it. The basic field ~ o is directed along the Z

axis, so 

and its magnitude is small enough that the equations for a soft-magne

tic medium, as outlined in the foregoing chapter, may be applied, 

We shall have to deal with three distinct sets of equations, being the 

equations for 

i) the rigid-body problem, 

ii) the intermediate state or i-state, i.e. the pre-buckled state in 

which the plate only deforms in its plane, 

iii) the final or !;State, i.e. the state in which there 1s also a dis

placement in the Z-direction. 

All deformations are assumed to be small. 

The equations for the rigid-body problem follow from VIII. (33). This 

problem can be solved by introducing two scalar potentials, one for the 

region outside the platte: ~( ~) and one inside the plate: ~( ~) defined 

by (an upperindex + stands for values outside the plate and - for va

lues inside the plate) 

(2) 

and 

(3) 

+ 
B. 

0 1 

+ H. 
0 1 

H. = -~ . ' 
0 ~ , 1 

-~ ,i 

B. = ->~~ . ' 
0 1 , 1 

t·!. 
0 1 

where 11 is the magnetic permeability. 

(IJ - I) ~ . 
4 np ,1 

Thes e potentials have to satisfy the following equations 

(4) 

~~ = 0, outside the plate , 

~~ = 0, inside the 

~ - ~ = 0 and 2.!. -
dN 

plate , 

H 
>I dN = o, on the surface S of the plate • 
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In order to solve this system, we first introduce a new potential x (~) 

defined by 

(5) 
~(~) + B

0
Z, ~ outside the plate , 

>~<I>(~)+B 0 Z, Xinside the plate. 

This potenrial has to sarisfy the follmáng equa_tions 

i) fi x = O, in- and outside the plate , 

ii) [ ~~n = o, on s , 
(6) 

iii) x+ - ; x 

The last condition is a consequence of the fact that there .is no free 

magnetic charge., and hence x(~) must vanish as the potenrial of a di

pole or a multipale of higher order. 

Under these conditions, the general solurion for x(~) - reads (cf. [56], 

p. 371, eq. (3)) 

(7) 

where a(I) is a continuous density onS, which can be determined from 

the condition iii) of (6), The remaining three conditions of (6) are 

satisfied identically by (7). 

By use of the relations (cf. [56], p. 360 , eq. (I)) 

(8) lim 

where x(~) is the direct value of the potential at the point ~ o ' 1ve 

find from the condition iii) of (6) the following integra l equation for 

a (~) 

(9) a (~) J ( ) a ( I ) dS 
a I aNç ~~o - I i ç 

s 
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Replacing 0(~ 0 ) by a density ~ s (~ 0 ) defined by 

we obtain from t he equations (5), (7) and (9) 

~s ( X ) 
- o 

(I I) 

'I' (X) 

B Z 
0 

\.l 

2B Z 
0 0 (ll - I) 

2n (lJ + I) 

(\.l - I) 
4ll)J 

-B z - (\.l- I) 1 
0 --4-ll- r 

s 

This system of equations ~s equi val ent t o the one used by van Bladel 

([5 7], pp. 73-77) for the determination of the electric potential in a 

cubic dielectri c . 

By taking the limits for X±-+ ~oE Sof (11) 2 or (1 1) 3
, it turns out 

that ~ s( X) represents the distribution of t he potential on the surface 
- o 

S. The saluti on of t he sys tem (4) can now be obt ained by first solvi ng 

for ~s (X) the integral equation (11) 1 and then determining ~(~) and 

'I'(~ ) fr:; (11)
2 

and (11) 3 , respectively. 

0 0 

For the de termination of the displ acements U. and the st resses T. . in 
~ ~ J 

the _i-state, the equations VIII. (36) 1áll be used . Af ter substitution 

of (3) they read 

0 0 ( ll - I ) 
T .. = cij H uk,.e. 

+ _ _ 4_ll_ ~ . ~ 
,j ~J .~ 

(12) 
0 (\.l- I) 

~ . ~ T .. __ 4_ll_ 
, ij ~J ,j • J 

0 (\.l - I) 2 
(~) 2Ni 

0* 
on S T .. N. Sn 

+ T. 
~J J ~ 

As noti ce d before, the permeabi l ity \.l for ferr om <~g ne tic mate · i. ,-, L; , i s 

always large cornpared ~1 ith unity (\.l 104 à 106) . Therefore, the te !n 

with ~i n the boundary condition ( 12) 3 , that is of the order 11
2

, is do

minan t with respect t o those in the constituti ve equations (12) 
1 

and 
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2 the momenturn equation (8) , that both are of the order ~. Retaining on-
2 ly terros with ~ , the system (12) reduces to 

( 13) 
0 

T ... 
l.J 'J 

'T~. N. 
l.J J 

0 ' 

From (12) and (13) we conclude that the magnetic part in the constitu

tive equations for the stresses and the magnetic body force are negli

gib!e compared with the magnetic stress vector at the surface. 

Finally, we need the equations for the disturbances. From VIII. (34) -

(35), we obtain, with (2) and (3): 

outside the plate 

b: 
+ + 

0 = hi' m. 
' l. l. 

( 14) 
+ o, b: 0 e. 'kbk . = • l.J 'J J.,i 

b: => 0 for r => oo 
l. ' 

(r : = 1~1) ' 

inside the plate, where, f0r convenience, p is written for P
0

, 

( 15) 

164 

b .. = -~<l> .. u .. , e .. khk- . 
l.,l. ,l.J J ,l. l.J ,] 

b . 
l. 

h. 
l. 

pv. 
l. 

h-:- + 4npm-:- + (~- l)<l> . u .. , 
l. l. 'l. J 'J 

0 ( ~ -1) -
t .. . - T .. ku. • - ~ <l> .h •• - pel> . • m. + 
l.J.J l.J, l<,J 4 11' .J J,l. ,l.J J 

- p el> . m. 
,l. J 



and on the sux>face of the plate 

+ -
e .. k(h. - h.)Nk = -e. 'k('!' . - <P .)u. kN• 
lJ J J lJ ,] ,J .. • "' 

(16} + -
(b. - b.)N. = -('!' . - 1.1<P .)u •• N. , 

l l l ,l ,l J,l J 

t .. N. = T~.a .Nk- T. + t~ onS 
lJ J lJ k,J l l 

where T. is given by VIII.(34) 6• From this formula it follows that T· 
• l • 2 l 
lS proport1onal to 1.1 • 

The systems (15) and (16) can be simplified by eliminating h~ and m~ 
l l 

with the aid of (15)
3 and (15) 4 , and by retaining only the terms with 

the highest power of 1.1. Still one simplification is applied, based on 

the following considerations: 

When a plate is interacted by a uniform magnetic field perpendicular to 

that plate, the field inside the plate is almast eve~•here uniform. On

ly in. a vecy small region in the neighbourhood of the boundacy R, this 

field is nonuniform. Consequently, in the equations (15), holding in 

the inner of the plate, the fields 0 ~, oH and o~ may assumed to be uni

form. This means thá.t we may put the potential <P, occurring in ( 15.), 

equal to 

(17) 
Bz --

where B is a constant. It should be beared in mind, that, due to the fi

niteness of the plate, the constant B is unequal to B
0

, the magnitude 

of the basic field. However, in the example for a circular plate, that 

we shall consider in one of the next sections, the difference between B 

and B
0 

is negligible. 

Under these approximations, (15} reduces to 

- I - B h. =- b. +- (u •. 6. 3 +u. 3 + u3 .) , 
l 1.1 l 1.1 J.J l l, ,l 

(IS) b:. = 0, e •• kb-k. = -B(e •• 3u ••• + e •• ka • 3) , 
l,l lJ ,] lJ "'•"'] lJ k,J 
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0 

t ... - T •• ku. . 
lJ,J lJ, K,J 

The boundary conditions (16) can be decomposed into two parts, being 

the condi ti ons on the upper and lower surfaces z = ± h, and those on the 

lateral surface R. 
Into the boundary conditions on z = ± h, we may again substitute ~ ac

cording to (17). Neglecting all terms that are relatively of the order 
-1 

~ , these boundary conditions become 

+ - + -e .. 3 (~b.- b.) =-~Be .. 3u
3 

., b 3 - b3 = 0 , 
l.J J J l.J • J 

(19) 

where the upper and lower surfaces of the plate are assumed to be free 

of mechanica! stresses, i.e. t~ = 0. 
J. 

Let us note that in the equations for the disturbances also the magne-

tic part in the constitutive equations for the stresses and the magne

tic body force are negligible compared with the magnetic stress vector 

at the surface. Hence, we conclude that instability must be caused by 

the magnetic surface stresses. Notice, that this only holds for the par

ticular form of the stresses that are used here (i.e. Maxwell-model I, 

cf. Section III.6). 

As follows from (14), we can introduce for the fields outside the plate 

a scalar potential ~(~), such that 

(20) b; .. h; = -~·' . • 
J. J. • J. 

and 

a~ = 0, outside the plate , 
(21) 

~ ~ 0, for r • oo • 

1 . 
Substituting (20) into the boundary condition (19) yields 

(22) e .. 3b: • ~Be .. 3u
3 

• - ~e .• 3 ~ . on z = ± h • 
lJ J l.J .J l.J .J 
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We note that the right-hand side of (22) is of the order ~. The right 

hand side of (18) 4 is of the order ~ 0 • and hence negligible compared 

with the farmer. Thus, the equations for b7 become 
]. 

(23) b:. = 0, e .. kh~ . = 0, 
J.,J. l.J ~.J 

from which we conclude that the displacement ~ effects only the bounda

ry conditions for ~-. We now can also introduce a scalar potential for 

b-. This will be done by 

(24) b ~ = -~cp • • 
]. ,J. 

which leads to 

(25) 6cp • 0, inside the plate • 

Finally, wedefine the tensor'·· by 
l.J 

(26) 

By utilizing the foregoing results, we obtain the following system of 

equations for the unknowns ~. cp and ui: 

outside the plate 

A~ • 0 , 
(27) 

w • 0, for r •~, 

insiàe the plate~ with the aid of (13) 2 

Acp = 0 , 
(28) 

pii. = '.. • + T~ku. 'k , ]. l.J.J J l.,J 

and on the sur>faae z =_.± h 

~ - ~cp = 0, e .. 3 (~.- cp .) =Be .. 
3
u

3
• 

,3 ,3 l.J .J ,J l.J ,J 
(29) 

B
2 ~B 

<. 3 = '= (u., • ö. 3 - u. 
3 

- u
3 

• ) - -4 ö. 3cp 3 on z = ± h , 
]. 01T J.tJ ]. J., ,J. 1T ]. t 

where in the latter equation, use has been made of (13) 3, which with 

(17) and with T~* = 0 yields 
]. 
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(30) 

We reeall that the equätions listed above only hold on that part of the 

plate that is outside a close neighbourhood of the boundary R. At R, the 

boundary conditions in the form (16) must be retained, 

When the boundary R of the plate is either clamped or simply supported, 

the following relations hold for the displacements of the midsurface in 

the ,i-state 

(31) u; = u; = o on R 

. o* . R In thls case Ti 1s not equal to zero on , but an unknown support re-

action. Therefore, we must replace the boundary condition forT~. on R 
lJ 

by (31). The system (13) then transforms into 

(32) 

u; = u; = 0 on R • 

The solution of (32) reads 

(33) 
0 0 

= 0' 
o B2 

UI = u2 U "'~Z 3 '!TC}) ' 

and 
c12 B2 

o B2 
0 0 

T 11 T22 -~~ T33 "' 1rif 
(34) 

0 0 0 

- 0 • T12 "' T23 "' T31 

IX.3. Plate equations 

In this section, we shall specialize the equations of motion (28) 2 to

gether with the boundary conditions (29) 3 to the case of a thin plate. 

A plate is said to be thin, if one dimension, i.e. the thickness 2h, is 

small compared with the other two dimensions. Let R be a characteristic 

measure for the plate in the x-y-plane, then 
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(35) e: :=,!: << I 
R ' 

for a thin plate. For an excellent treatise of the classical theory of 

thin plates, we refer to [58]. 

In order to derive the plate equations, the equations of motion will he 

integrated, eventually after multiplication by z, in the thickness di

rection, 

Before doing so, we first introduce the integral quantities 

(36) M := 
XX 

M := 
xy 

-h 

-h 

-h 

-h 

h 

I ZTxxdz, Myy := 

I 
h 

T dz yz 

-h 

Furthermore, we shall use the Kirchhoff-Love hypothesis, which states 

the following: 

Let ~(x,t) describe the motion of the plate out of its plane, and let w 

be the displacement of the midsurface in the z-direction, thus 

(37) w(x,y,t) = uz(x,y,O,t) , 

then, according to the Kirchhoff-Love hypothesis the following rela

tions hold 

(38) 
ux(x,y,z,t) 

uy(x,y,z,t) 

-zw ,x 

-zw ,y 

Based on the approximation, common to the classical theory of plates, 

inwhich the normal stress in the z-direction is neglected, i.e. Tzz<=:::O, 

we deduce from (22) the following relation (viz. Note after eq. (43)) 

(39) u z,z 
\} 

- (I - v) (u + u ) ' x,x y,y 
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where 

(40) 
\) 

(I - v) 

is used, 

By means of (37) and (38) it follows from (39) that 

( ) ( 
\) 2 

41 uz x,y,z,t) = w + 20 _ v) z (w,xx + w,yy) • 

Substitution of (26), (38) and (41) into (36) yields the following set 

of constitutive equations for the moments in the plate 

M -D(w + vw ), M = -D(w + vw ) 
(42) XX ,xx ,yy yy ,yy ,xx 

M -D(I - v)w xy ,xy • 

where D is the plate constant, which for a plate with thickn~ss 2h is 

equal to 

(43) 2Eh3 
D = ----,2:- • 

3( I - v ) 

These constitutive equations are the common ones in the classical theo

ry of thin plates (cf. [54], p. 39)~ The errors made in this theory are 

of the order ~;: 2 • 

Note. !.Je are aware of the fact that, in the classical theory of thin 

plates, the assumption 'zz = 0 is based on the condition that this 

stress component must be zero at the upper and lower surfaces of the 

plate. However, as can beseen from (29), in our problem 'zz is not 

equal to zero at z = ±h, so by using the expression (41) for uz the 

dition (29) is violated, This can be corrected by adding to (41) an 

tra term, such that (29) does be satisfied. However, this results in 

the ultimata equations only in a correction that is 0(~;: 2 ) and hence 

con-

ex-

ne-

gleetabla in the theory of thin plates. This approach is equivalent to 

the way in which, in the classical plate theory, the problem of a pure

ly elastic plate, loaded by surface loads perpendicular to the surface 

is treated. In this case, also < is taken equal to zero and the sur-zz 
face loads are distributed over the thickness and considered as global 

volume forces. 
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In the sequel, we shall assume that the plate is either clamped or sim

ply supported, Hence, for the intermediate stresses T~. the formulae 
l.J 

(34) hold. 

First we integrate the equation of motion (28) 2 for i : 3 in the thick

ness direction, yielding 

(44) 

h 

I (T + T + T )dz + xz,x yz,y zz,z 
-h 

h 

+ B2 " I 
81T 

-h 

[ v (u + u ) + u ] dz , 
(I - v) z,xx z,yy z,zz 

where (34) and (40) are used. 

Uti lizing the de fini ti ons (36) 1•
2

, the expressions for the displacements 

(38) and (41) and the boundary condition (29) 3 for i= 3, equation (44) 

can be elaborated, after partial integration and under neglection of 

terms of O(e: 2 ), to give 

(45) phw 

where 

(46) 8- S(x y t) ·-- uB ~ lh and Aw.= w + w - • • '- "4i' , z z=-h ,xx ,yy 

Next, we integrate, over the thickness, after multiplication by z, equa

tion (28) 2 for i= 1, yielding 

h 

(47) I Z(T + T + T )dz + xx,x xy,y xz,z 
-h -h 

h 

B2 I + z[ v (u + u ) + u ]dz , 
-81r (I - v) x,xx ~.yy x,zz 

-h 

After partial integration, this relation becomes 

(48) 
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In an analogous way, we obtain from (28) 2 for i a 2. the equation in 

the· y-direction 

(49) 2h 3 •• 
- -- pw = M + M - Q 3 ,y xy,x yy,y y • 

Differentiating (48) with respect to x and (49) with respect to y and 

adding the thus obtained equations and (43), we find after neglection 

of terros of O(e 2), the equation 

2 
(50) h •. M 2u u 0 (I - 2v)B h • 

p W = XX,XX + Mxy,xy + Myy,yy + ~ - 4~(1 - \1) uW • 

Substitution of the constitutive equations (42) into (50) results in 

the following equation for w(x,y,t) 

(51) (1 - 2v)B
2

h 2 2-
Dh88w - Bh + 4 ~(! _ v) 8w = -ph w , 

For a plate that is clamped at R, (51) must be supplemented by the boun

dary conditions 

(52) w=~=OonR, dN 

In case of a simply supported plate, only the first condition of (52) 

holds. A second condition is in fact undetermined, We shall return to 

this subject in the following section. 

4 Note. Regarding (51), we see that the first term of (51) is O(e ).w, 

hence of the same order as the terros that are omitted in the derivation 

of (51}, However, the coefficients of the omitted terros were always pro

portionalto B
2, while the first term of (51) is proportional to Young's 

modulus E. Since E » B2, the negleedon of the other terros that a1:e 

O(e4),w, with respect to the first term. of (51}, is justified, 
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IX.4. Circular plate 

t t t 
z 

y 

2h 

Fig. IX.2. 

In this section, we shall apply the plate equations derived in the pre

ceding section, in the example of a circular plate with radius R and 

thickness 2h (Fig. IX.2). We take -the houndary of the plate clamped. 

The quantity B, occurring in (51), can he determined from the integral 

equations (11). However, it turns out that the difference hebieen Band 

B is O(e:) (e: = h/R « 1), and therefore we may take 

(53) - B = B 
0 

We assume the deflection of the plate to he rotationally symmetrie. Ex

pressed in the polar coordinates rand 8 (viz. Fig. IX.2), wethen oh

tain from (27), (28) 1 and (SI) the following set of equations for the 

unknowns ~. ~ and w, holding in the region r < R 

(54) 

ll~ = o, 1 z 1 > h , 

~ .. a, l:tl .. ""-' 
fliP = o, 1 z 1 < h , 

8 
Mw- i5 + 

ph .• 
- Dw' I zl < h 
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where 

(55) 
a2 1 a a2 

w w(r,t) and ll = -::-z +- 3r + -::-z 
ar r r az 

together with the boundary conditions on the upper and lower surface of 

the plate, coming from (29)
2

•
3 

(56) 
~ - ~~ = 0, on lzl = h. 
'z • z 

We try as a solution of this system 

w'(r,t) = AJ
1
(ar)eiwt, 

(57) 

The coefficient a is todetermine from the boundary condition (52) 2 , 

that here becomes 

(58) w' (R, t) 0 • 

and that gives 

(59) J I (aR) 0 • 

The lowest root of (59) is 

(60) 

The frequency w will be calculated from the equation for w(r,t). For 

small magnitudes B
0 

this will yield a real value for w. The intermedia

te state is then stable. With increasing B
0

, the point will be reached 

where w becomes complex. At this point the intermediate state becomes 

unstable. The relevant magnitude of B
0 

is the buckling value, 

Substitution of (57) 2 •3 into (54) 1•3 yields 

(61) 

iwt 
ll 1/1 = B 

0 
J 

0 
(ar) e [ C" ( z) 

iwt " ll~ = B
0
J

0
(ar)e [D (z) 
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-aC(z)] 

- a2D(z)] 

.. 0 

= 0 



By means of (54) 2 and the symmetry condition ~(z) = ~(-z), following 

from the particular forrn of the boundary conditions at z = ± h, we infer 

frorn (61) that 

(62) C(z) ce-alzl and D(z) = d cosh(az), (a> 0) • 

The coefficients c and d can be calculated by substituting (62) into 

the boundary conditions (56). This gives 

(63) c =- + eahsinh(ah) and d = +, 
a hA ua hA 

where 

u sinh(ah) + cosh(ah) 
u ah 

(64) 

Using these results, the function S(r,t) defined by (46)
1 becornes 

(65) 
2B2 • 

o • lWt 
B(r,t) =- 4 ~Aah slnh(ah)AJ

0
(ar)e 

Since 

(66) ah • 0(8) << I , 

the following approxirnations rnay be applied 

(67) sinh(ah) "" ah and cosh(ah) ." l • 

By using these approximations (61) reduces to 

(68) 
B2 . 

o lWt 
S(r,t) =- 2 ~A AJ

0
(ar)e • 

By first differentiating (54) 4 with respect to r, then substituting 

(57) 1 and (68) into this equation and, finally, dividing by AJ 1(ar)eiwt, 

we have deduced the following forrnula for w 

(69) ph 2 
-w 
a 

2E 

3(1 -

[I + (I- 2v)a.h] 
2(1 - v) 

As rnentioned before, buckling occurs when w becomes complex. As can be 

seen frorn (69), the transition frorn real values of w to complex values 

takes place at w2 = 0. Hence, the critical value for B- follows frorn 
0 

175 



the relation 

(70) 
(B:)buc, [I + (I - 2v) ah] 2E (ah) 3 • 

21Tfl 2(1 - v) 3(1 - }, 

Based on (66), the second term in the left-hand side of (70) may be ne-

glected with respect to the first one, Since this second term represents 

the influence of the intermediate stress T~ •• we can conclude that this 
1J 

stress has no essential influence on the buckling value, Horeover, it 

follows from the fact that the point of buckling is reached for w = a, 
that the buckling value also can be calculated by means of a,static me

thod. 

Equation (70) yields, after neglection of the term of O(E) and by taking 

for a the lowest value according to (60) 

(7 I) 

It appears from (7 I) that the buckling value depends on A, which accord

ing to (64) and with the approximations (67) is equal to 

(72) 

Wh en 

A "' pah + 
J.ICI.h 

(73) v >> ah 

the expression (72) may be approximated by 

(74) A = I • 

Hence, in this case the buckling value is independent of the magnetic 

permeability. 

In order to get an impression of the magnitude of B
0

, we assume (74) to 

hold and we use the numerical values 

(75) E = 2.1 x 10 12 dyne/cm2 and v 0.3 • 

This gives 

(76) 2.33 x I07(h/R) 312 Gauss , 
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or 

(77) 

-3 
736 Gauss. for h/R = JO 

-4 
(B )b = 23.3 Gauss, for h/R = JO • 

0 uc. 

So far, we have obtained the buckling value for a clamped, circular 

plate. We wish to regard also the problem of a circular plate that is 

simply supported at the boundary. However, in this case the condition 

(58) no longer holds. It must be replaced by a condition for the bend

ing moment at the boundary of the plate. However, as we do not know at 

all the values of the fièlds at the boundary r = R, it is not possible 

to give the exact value of this moment. The only possibility that re

mains, is to make a, physically reasonable, assumption about the value 

of this mo:ment, such that the problem can be solved, and to compare the 

thus obtained results with experimental values. 

For the circular plate that is simply supported at its boundary, we 

will assume that the bending moment M at r = R is equal to zero, i.e. rr 

(78) M = -D(w + ~ w ) 
rr ,rr r ,r 0 at r R ' 

in accordance with (42). 

For a purely elastic, simply supported plate. the relation (78) holds 

exactly. However, for a plate that is magnetically loaded, this is no 

longer true, due to the occurrance of magnetic moments at the boundary. 

We, nevertheless, shall use the condition (78), basedon the conjecture 

that these magnetic moments most likely are of the order (B2/E) compar

ed with the purely elastic part of these moments, and therefore can be 

neglected (see also the remark made after eq. (81)). 

Under the condition (78), the simply supported plate can be treated in 

an analogous way as the clamped plate. We merely have to replace the 

condition (59) by (78). This results in the following relation fora 

(7'9) 

When we take v = 0.3, the first root of (79) is 

(80) aR 2.27 ' 
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which gives, analogously to (71), 

(81) (2.27)
3
A (.!!)3 

3(1 - ,h R 

3.90A 
2 (1-v) 

Fora further motivation of the assumption (78), we refer to the final 

section of this chapter, in which i t will be shown that the constituti

ve equations forthe bending moments defined on an alternative stress 

tensor (i.e. the Amperian-current model) do only differ in a negligible 

amount from those according to (42). Furthermore, the results obtained 

there for a cantilever do reasonably correspond with experimental re

sults. 

The statement, concerning the neglection of the magnetic part of the 

bending moment, does not hold in a similar form for the shear forces 

Qx and ~· As a consequence, the consideration of the free plate, based 

on the assumption that the tangential bending moment and the shear 

force, as defined in (36), are equal to zero, will not give the correct 

results. We may conclude that the magnetic shear forces at the bounda

ry are not negligible in our formulation. 

IX.5. Beam equations 

We have derived inSection IX.3 the equations of motionfora thin 

plate, which we have specialized inSection IX.4 to the case; of the cir

cular plate. In this section, we shall regard a rectangular plate, with 

dimensions 2a and 2b in the x- and y•direction, respectively. If the 

restrietion b << a holds, this plate may be considered as a beam. We 

shall derive global equations of motion for a beam, by integrating the 

local equations over the cross section of the beam. In the sequel, it 

will always be assumed that the beam bends in the x-z-plane (viz. Fig. 

IX.3) 

t t t t t 80 t t tB: 

r r 2hrl I x I I 'I .. .. 
I .. 21 .I I. 2b 

I I 
Fig. IX.3. 

178 



We shall derive the buckling equations for a beam loaded by a magnetic 

field, and we ahall compare our results with those of the raferences 

[52] and [53]. We introduce the shear force Qz and the bending moment 

My by 

(82) Qz := I Txzds and My := I ZTxxdS , 
A A 

where A is the area of the cross section. 

Underlying the derivation of the global equations for the bending of 

the beam, is the Bernouilli-hypothesis. According to this hypothesis, 

the bending in the x-z-plane is described by the displacement field 

ux(x,y,z,t) -zw' (x, t), (w' - w ) ,x • 

(83) uy (x,y,z,t) = 0 

uz(x,y,z,t) = w(x, t) • 

and the following constitutive equation for.• the bending moment M holds 
y 

(84) M = -Eiw" , y 

where, for the rectangular cross section under consideration, 

(85) 4 3 
I = 3 bh • 

The errors made in this theory are of the order (b2/a2). We note that 

the relation (84) can be derived in a similar way as (42). 

In this theory, the dependenee on the y-coordinate is neglected. This 

will also be done for the potentials ~ and ~. 

Just like in the preceding section, it can here be shown that the inter

mediate stresses T~. do nothave any essential influence on the buckling 
l.] 

values. 

By omitting T~. and by taking all quantities independent of y, the fol
l.J 

lowing system for ~. ~ and w can be derived from the equations (27) to 

(29) and with the aid of (83) 
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(86) 

pÜ = -pzW 1 = T + T , I zl < h , x xx,x xz,z 

pÜ = pw = T + Tzz,z' 1~1 < h • z xz,x 

Moreover, we also find the boundary conditions on the upper and lower 

surfaces of the beam 

(87) 

Ijl x - !p = Bw·' , Ijl - J.l!p = 0 , • ,x ,z ,z 

T 
XZ 

0 and T = - J.!B ~p on I z I = h • zz 41T ,z 

By integrating the equations (86) 5 and (86) 4 , the latter multiplicated 

by z, over the cross section, with 

(SS) I dS = 2b 

A 

and after partial integration whereby (S7) 3•4 are used, we obtain the 

global equations of motion 

(89) 

4pbhw = Q + a • z,x 

where, now 

bJ.lB lh (90) a= a(x,t) =- ~ !p,z z=-h • 

Differentiating (S9)
2 

with respect to x and adding to (89) 1 and then 

substituting the constitutive equation (84) yields the followinR equa

tion for the deflection w(x,t) 

(9 1) - j Ebh 3w"'' + a = 4p bhw , 
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where terms of O(b 2/a2) are neglected. 

For a beam that is clamped at x = ± a, the boundary con di ti ons are 

(92) w == w' = 0 for x = ± a • 

If the beam is simply supported at x =±a, we, just as in the preceding 

section, assume that the bending moment is equal to zero in the end 

points. With (84), we then have 

(93) w = w" = 0 for x =±a • 

Both boundary conditions can be satisfied by taking a displacement field 

in the form 

(94) 

Substituting (94) successively into (92) and (93), yields the following 

values far.a, belonging to the lowest buckling values 

(95) 
1f 

a=-a • 

for the clamped beam, and 

(96) 
'11 

Cl=-2a 

for the simply supported beam. 

In the same way as in the preceding section, we can solve the equations 

for ~ and ~ and thus obtain an expression for the function S(x,t) de

fined in (90), This results in 

(97) 
BAl iwt 

~(x,z,t) •- ~ahA cosh(az)cos(ax)e 

and 

(98) 

2 
bB A1 . t 

S(x,t) • ~ sinh(ah)cos(ax)e1
w , 

where A is given in (64). 

By differentiating (91) with respect to x, in order to eliminate the 

coefficient A2 occurring in (94), and then substituting (98) and (94) 

into the thus obtained equation, we find the following formula for w 
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Again, instability is reached for w o. iVi th 

(100) a.h << I , 

we find the buckling value 

(10 l) 

In (101), Bis the value of the magnetic field at the upper 0r lower 

surface of the plate. According to Wallerstein & Peach [53], who solved 

the integral equation {11), by means of a discretization of this equa

tion, the following relation between B and the magnitude of the basic 

field B
0 

holds for a large range of values for {a/h) 

(102) B = I. 86B 
0 

We note that the coefficient B/B
0 

is a function of the beam dimensions. 

However, a variation of as much as 60 percent in a/h produces a varia

tion in B/B
0 

of less than 3.5 percent (cf. [53]). 

By use of {95) and (96), we then find the following buckling values. for 

B : 
0 

For a cJ.amped beam 

(103) 

and for a simply supported beam 

(104) 

In the next section a cantilever, i,e. a beam that is clamped at one 

side and free at the other, is studied. 
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IX.6. Discussion 

Recently, there have appeared a number of articles dealing with the 

buckling of a cantilever in a transverse magnetic field. Moon & Yih

Hsing Pao, [52], used a stress tensorbasedon a magnetic dipale model, 

according to Brmm [ I I]. They a ss umed that the beam is in fini te l y 1vide 

and in fini te ly long. Furthermore, seve ral expe rimen ts are reported. The 

correlation between their experimental and theoretica! results was not 

very good, (their theoretica! results show a percent excess in field 

above the experimental results of more then 100%) , but this was improv

ed by Wallerstein & Peach [53], who considered plates of finite dimen

sions. They found about a 20 percent excess of the theoretica! buckling 

values over the experimental values. In [53], just like in the paper of 

Popelar [54], for the stresses t he Amperian-current model was chosen 

(cf. Section III.5). Popelar used the principle of virtual work and he 

showed, by developing a postbuckl ing theory, that the buckling value 

for a cantilever is very sensible to a misalignment of the field IYith 

the normal of the beam. This may explain the discrepancies between theo

retica! and experimental results. 

In none of these papers, there is given a constitutive equation relat

ing the stresses to the deformations and the magnetic field. They only 

give global constitutive equations, relating the bending moments to the 

curvature of the plate or beam, that are identical to those of the clas

sica! theory of plates and beams. In this section, we shall derive the 

constitutive equations for the moments and shear farces belonging to an 

Amperian-current stress model analogically as we have done in a forego

ing section for the stresses according to the MaXIYe ll-modeL By campar

ing the equations belonging to t he Amperian-stresses IYith those of the 

MaXIYell-stresses, it will turn out that there are no essential differen

ces in the examples of the clamped or the simply supported beam, but 

for the problem of the cantilever only the Amperian-model gives results 

that are in correspondance with the experiments. This is a corrobora

tion of the remark stated in [54] , that says that the Amperian-mode l 

tends to minimize the influences of end effects. 

Let us denote the stresses according to the Amperian-current model by 

T~~). Wethen have, according to III.(57) under the absence of polari-
1J 
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zation, 

( 105) T~~) = T .. - pM.B. + !ó 1 .J.p~l (Bk- + H_-) , 
l J l J l J l< -1<. 

-1 
and this equation reduces, after the negleetien of terros of 0(~ ), to 

( 106) T ~ ~) = T . . - pH. B-:- + ! ó .. p ~l Bk-
lJ l.J 1. J l.J l< 

This relation, applied in the intermediate state~. yields, meeting the 

usual restrictions, the following expression for the intermediate stres-

ses 

( 107) 
(3) 0 

T.. 
l.J 

c .. k"Uk
0

" -p M. B. + !ó .. p K 
0

Bk 
l.J "' • "' 0 1. 0 J l.J 0 k 

In the inner part of the plate, at some distance from the boundary, this 

gives with (3) and (17) 

( 108) 
B2 
-4 (ó. 36.3 - !ó .. ) • 

1T 1. J l.J 

As is evident from (108), the magnetic part of the constitutive equa

tion for the stresses may not be neglected in the Amper~an-current fo~ 

mulation. 

Substituting the displacement field according to (33) into (108), and 

using the relation 

(109) 

yie lds 

(3) 0 ( 3) 0 B2 (3) 0 B2 
Til T22 Sn (I - v) • T33 T6iT • 

( 11 0) 
(3) 0 

T12 
(3) 0 

T23 = 
(3) 0 

T31 = 0 . 

These stresses are of the same order of magnitude as those according to 

(34), and therefore, just like 1.n (70), have no influence on the buck

ling equations. l"e note that this result only holds in the inner part 

of the plate. At the boundary, the stresses T~. and T~~)o can still 
l.J lJ 

differ considerably. 
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Expanding (97) about the f-state, utilizing the results of the preced

ing sections and neglecting the intermediate stresses, we arrive at the 

following expression. for the stresses t~r, holding inside the plate or 

beam 

(I I I) 
(3) llB 

t . . = ' . . + -4 ( ó . 3q> • + ó . 3q> • - ó . . q> ) • 
~J ~J 7f ~ .J J .~ ~J ,z 

Again, the magnetic part in this equation is not negligible. 

By means of (28) and (29), the following equation of motion 1vith boun

dary condition can be derived from (lil) 

( 112) t ~~) . 
~J .J 

and 

(I 13) 

' ... 
l.J 'J 

pu. 
~ 

0 

where terms that are of the order T .. are neglected. 
~J 

We define the shear force and the bending moment belonging to the stress 
(3) 

tensor t.. by 
~J 

(I 14) 

Camparing these 

A 

quantities 

(82), we find that 

(liS) Q (3) 
Qz 

IJbB 
+ --z 2n 

and 

(116) M(3) M IJbB 
y y 21ï 

A 

with the moment and the force defined in 

h 

f q> ,x dz 

-h 

h 

f Zq> dz 
,z 

-h 

By substituting for q>(x,z,t) the expression (98) into (IJS) and (116), 

and using the approximation ah<< I, these equations transfarm into 

(I 17) 
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and 

( 1 18) iwt 
e 

As weshall show, the second term J.n the right-hand side of (118), when 

substituted into the global equation of motion, gives only rise to a 

-term that is O((ah) 2) with respect to the other terms. Therefore, this 

term may be neglected, and we rnay put 

(I 19) M( 3) = M 
y y 

-Eiw" • 

This statement can be proved as follows: 

In the usual way, we infer from (112) and (113) the global equations of 
motion 

( 120) M(3) _ Q(3) 11bB ( ) lh _ 4 bh3 .. , 
y, x z + 2iï zq>, x z=-h - - 3 P w ' 

and 

( 12 I) Q (3) = 4pbhw • 
z,x 

Differentiating (111) with respect to x and adding this equation to 

(I 12), yields, after neglection of terros of O((ah)
2

) 

( 122) M< 3) + 8< 3) = 4pbhw 
y,xx ' 

where 

( 123) 8 (3) = 11bB (z )lh 
2rr q>,xx z=-h • 

By use of (97) and the usual approximations, (123) can be elaborated, 

to show that 

( 124) 8 

with 8 according to (98). 

It follows frorn (109) that 

( 125) M(3) abB 2 2 iwt 
y,xx a My,xx + 3rrA (ah) A1cos(ax)e • 
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The second term in the right-hand side of (125) is O((cxh)2) with resp

ect to B(J), and hence may be neglected in the equation of motion (112), 

Thus, the relation (119) is justified. 0 

As the second term in the right-hand side of (117) is of the sameorder 

as the other terms occurring in (120), this one may not be neglected, 

Hence, there is an essen ti al difference between the shear force belong

ing tot .. (orT .. ) and the one halonging tot~~). 
~J ~~ ~J 

According to (89) , in which the left-hand side may be neglected, we 

have the constitutive equation for Qz 

(126) Q = M = -Eiw"' z y,x 

holding in the inner part of the beam. 

Substituting this relation into (115) yields 

h 

( 127) .. -Eiw"' + ~ f q> dz • 
. ..:::11 • x 

-h 

This expression is in correspondance with (120), 

Based on the foregoing results, we may conclude that, as concerns the 

bending moment, it does not matter whether the stresses according to 

the Maxwell- or the Amperian-model are used, but for the shear force 

these two roodels give essential different expressions, The ultimate 

equations of motion are, of course, in both cases identical, 

We shall apply the foregoing results in the special example of a canti

lever, i.e. a beam that is clamped at one end (x = 0) and free at the 

other (x= a), For convenience, we shall restriet ourselves from the be

ginning to the static problem, 

According to (91) we then have 

(128) -Eiw""(x) + B(x) = 0 , 

At the clamped end x = 0, the displacement w(x) must satisfy 

( 129) w(O) = w' (O) "' 0 • 
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As concerns the boundary conditions at the free end x = a, we shall 

make two assumptions: 

i) We assume that in the cross section x 

the shear force are zero. 

a the bending moment and 

ii) We suppose the relations (119), (126) and (127), which in principle 

only hold in the inner part of the beam, also to be valid in the 

end section x = a. 

In the Maxwell-formulation, as used tbraughout this thesis, this gives 

the boundary conditions 

(130) w" (a) = w"' (a) = 0 , 

while in the Amperian-formulation we get 

(131) w"(a) = 0, Eiw"'(a) = y(a) , 

where 

h 

(132) y(x) = ~ J Ql dz 
<;'lf ,x 

-h 

Hence, these two formulations lead to different boundary conditións at 

the free end of the beam. 

We will first solve the problem in the Amperian~formulation. 

Let us repreaent the displacement field by 

(133) 

From the boundary conditions (129) and (131) and from the equations for 

Ql(x,z) of the preceding section, we obtain in the usual way 

( 134) ~= -Al' A3 = A4 • 0 , 

(135) S (x) abB2 
• -;r A1 cos (ax) , 

(136) y(x) bB2 
= -;x A1sin(ax) , 

while the coefficient a must satisfy 
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(137) 

If 

(138) 3 bB2 
Eia - TrA = 0 , 

the differential equation (128) is satisfied identically. 

From (137), we conclude that a nontrivial salution is only possible if 

(139) 

what, with (138) results in the following critical value for B 

(140) 

We note that this value is identical to the buckling value of a beam of 

length 2a, that is simply supported in its end points, ~~reover, this 

value is in agreement with the results of the papers [52] and [53], in 

which A is taken equal to one. However, it should be noted that eq. (40) 

of [53] contains a misp~int, i,e, the coefficient <i>l must be replaced 

Tr
3 i by (24) • 

Next, going out from the Maxwell-formulation, the displacement field 

(133) has to satisfy the conditions (129) and (130), which yields 

(141) 
A1 + A2 = O, aA3 + A4 = Ö 

For no value of a, this system is to satisfy othenvise than by 

(142) 

Hence, in the Maxwell-formulation, we do not find a static buckling va

lue. 

We confine ourselves to merely stating that a dynamical treatment based 

on the Maxwell-formulation ;..rould give a much higher buckling value than 

the one according to (140), 

189 



As stated before. the result (140) is in a good agreement with the ex

perimental values of [52]. This holds certainly when the results of [54] 

are taken into account. In this paper. Popelar established that a small 

misalignment of the basic field 0 consistent with the experiments, can 

produce errors up to 50 percent. 

We conclude, by noting that the result found above is positively a con

firmatien of the remark posed in [54] 0 that says that the Amperian-fo~ 

mulation minimizes the influences of the end effects. However 0 a comple~ 

te proof of this statement can only be given by bringing into account 

all boundary effects, by which one must be aware of the fact that in 

the neighbourhood of the boundaries the magnetization is no longer line

ar dependent on the magnetic field intensity. Since, acco~ding to (119), 

the bending moments do not differ in the two stress-formulations dis

cussed here, the results of the sections IX.4 and IX.5 are independent 

of the choice of the stress tensor. 
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APPENDIX I 

Units 

Throughout this thesis Gaussian units are used. This system mostly 

occurs in theoretica! literature. In the technica! literature the 

Giorgi-system is preferred. In the following table the conversion from 

the Giorgi-system to the Gaussian system is given. 

Quantity 

Ma ss 

Length 

Time 

Force 

Energy 

Charge density 

Electric current 
density 

Electric field 
intensity 

Electric 
displacement 

Polarization per 
unit of volume 

Resistivity 

Conductivity 

Magnetic field 
intensity 

Magnetic 
induction 

Magnetization per 
unit of volume 

Symbol Giorgi Unit multiply by Gaussian Unit 

m kilogram (kg) 103 gram (g) 

L meter (m) 102 centimeter (cm) 

t 

F 

E 

J 

E 

D 

r 

H 

B 

second (sec) 

newton 

joule 

coulomb/m3 

~ I 2 ampere m 

volt/m 

coulomb/m2 

2 coulomb/m 

ohm-m 

mho/m 

ampère,!turn/m 

weber/m2 

2 weber/m 

I 

105 

107 

3 x !03 

3 x 105 

1 10-4 3x 

3 x w5 

I 10-9 9x 
9 x !09 

4'11 x 10-3 

second (sec) 

dyne 

erg 
3 statcoulomb/cm 

~ I 2 statampere cm 

statvolt/cm 

dyne/statcoulomb 

statcoulomb/cm2 

statohm-cm 

statmho/cm 

oersted 

gauss 

gauss 

Moreover, in Giorgi-units the reiations I.(36) and I.(37) become 

where 
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-7 
~o = 4n x JO henry/m and e = --1- x 10-9 farad/m , 

o 36n 

are the permeability and the permitdvity of free space, respectively. 
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APPENDIX II 

Proof of equation ll;(37} 

We first show with the aid of !.(35) 1•3 that 

I + - + -•- -
8 

{2[H.B. +E.D.]W - (B. +B.)[H.]W - (D. +D.)(E.]W}"' 
~ 1 1 1 1 n 1 1 1 n 1 1 1 n 

I I • - -
4 

[H.B. + E.D.]W + -
8 

[H.H.+ E.E. ]W + 
TI 1 1 1 1 n ~ 1 1 1 1 n 

With (I) and with !.(38) we obtain fortheleft-hand side of !!.(37) 

(2) 

= -
2
1 {(pM.)+ + (p~f.)-}[H.]W + -

2
1 {(pP.)+ + (pP

1
.) }[E.]W + 

1 1 ln 1 1n 

41Tp 2 I 
- [-- e.k"PkM0 V.V.]n. - [{-8 (E.E. +H.H.) + 

Cl.._ "'Jll TI ll ll 

I - -
4 

(E.D.+ H.B. )} (V .n.- W )] • 
TI 1 1 1 1 J J n 

It fellows from !.(35) 3•4 and !.(36) that 
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(3) [H.] = [H.]n.n. + e .. kek" [H0 ]n n. = 
1 J J 1 lJ ~m ~ m J 

I - 41T[pM.]n.n. +- e .. k[Dk]\\1 n. 
J J 1 c lJ n J 

"' - 41r(pM.]n.n. + 
411 

e .. k[pPk]W n. , 
J J 1 c lJ n J 

and, analogously, from 1.(35) 1•
2 and 1.(37) that 

(4) [E.] =- 411[pP.]n.n. - 411 e .. k[pH. ]W n .• 
1 J J 1 c lJ K n J 

By using (3) and (4) we find that 

(5) -
2
1 {(pM.)+ + (pM.)-}[H.]W + -

2
1 {(pP.)+ + (pP.)-}[E.]W "' 

1 1 1 n 1 1 1 n 

2 2 41! 2 _2 
21l[(pM.n.) + (pP.n.) ]W +-- e .. k[p P.K ]w-n. = 

1 1 1 1 n c 1J J-K n 1 

4TT 2 4TT 2 ,2 
+-- e. 'k[p V.(PkM" -PnH. )n 0 ]n.W +-- e. 'k[p P.K ]VJ n. 

C lJ J ;<, ;<, l< ~ 1 0 C 1J J-K n 1 

* 2 * 2 =- 2TT[(pM.n.) + (pP.n.) ]W + 
1 1 1 1 n 

411 2 411 2 2 +- e .. k[p p,M_ (V. -v.n.n.)]W +- e .. k[p P.M. ]W n. c 1J J-K 1 ~ ~ 1 n c 1J J-K n 1 

After substitution of (5) into (2), the proof of 11.(37) is completed. 
0 
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APPENDIX III 

Conversion from Ghu-formulation to l'linkowski-formulation 

In this thesis, the electromagnetic equations are written in the 

Minkowski-formulation. This implies that the fundamental electro

magnetic quantities are Q, !• ! and ~. and that for the Maxwell-equa

tions the form as given in Section I.3 holds (cf. also [25], p. 196). 

An alternative notation is the Chu-formulation, used in [25]. Here, the 

basic concepts are !• !• ! and ~. and the Maxwell-equations read, in 

Gaussian units (cf. [25], p. 190) 

(I) 
e •. kEk . lJ ,J 

I êHi 
+--= c at 

E. . - 41T (pP.) • + 41TQ 
l,l l ,l 

H. . 41T (pM.) . l,l l ,l 

In this notation, the electromagnetic volume force takes the form (cf. 

[25], p. 99) 

(2) F~e) = QE. +.!. e •. kJ .H. + pP.E .• + pM.H .• + 
1 1 c lJ J-K J l,J J l,J 

P 1 a +- e .. kV.H. .P. +- e .. kR [;:;-t (pP.) + (pP.V.) .J + c lJ J-K,~ ~ c lJ -K a J J k ,~ 

The Minkowski variables and the Chu variables are related by (in the 

following equations, the Uinkowski variables have an upper index M and 

the Chu variables have an upper index C) (cf. [25], p. 197) 

E~ = E~ + .!. e .• kV. (BMk - H.M) 
1 l c lJ J -K 

C _M 1 M M 
H. = lf.- - - e .. kV. (Dk - Ek) , l l c lJ J 

(3) 
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C M M I M ~ 4rrpp. = D. - E. - -c e .. kV.(~·- ) , L L L LJ J -k 

In the foregoing relations, terms that are of the order (V2/c2) are 

neglected, 

After eliminstion of Q and ~ by means of (1), the expression (2) can be 

transformed into (still in Chu-notation) 

(4) F~e) "'-4
1 E.[E .. + (4rrpP.) .] + pP.E .. + -4

1 (E .. - E .. )E. + 
L V 1 J 1 J J ,J J L1 J V L1 J J 1 L J 

I I + -4 H.[H .. +.(41rpM.) .] + pM.H •. + -4 (H .. -H .. )H. + 
V L JoJ J ,J J L,J 'IT L1 J J,1 J 

With the aid of (3) this formula can be rewritten in Minkowski-notation, 

yielding 

(5) F~e) I 
L = - 4rrc 

I + -4 [E.D.+ H.B.- j6 •. (EkEk + H_R )] . + 
'IT L J L J LJ -tCk , J 

+ [e.k.Vk(- E.B. + E.H. + H.D.- H.E.)] .. + 
J • J • J • J • J • iL 

By using the relations 

(6) 
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[eikR.Vk(DjBR.- BjD1)J,j • [eikR.~BR.VjJ,j- [ejkR.DkBR.VjJ,i , 

[ejkR.Vk(EjHR.- HjEt)J,i + [eijkVj(EkHt- ~Et)J,t = 

•- [e., .• V.EkH.] . - [e.k.EkH.V.] • , 
J.._. J • 1 L 1 "' "' J 0J 



and the equations 1.(36), 1.(37) and I. (38), (5) can be elaborated to 

the form 

I ** ** ** ** + --4 [E.D.+ H.B.- iö .. {EkEk + RR )) . + 
1T l. J l. J l.J -l<.--1<. .J 

an expression that is identical to the one according to 11.(18). 

Thus, we have showed that the expression for the electromagnetic 

volume force derived in Chapter II is in a one to one correspondence 

to that found by Penfield and Haus [25]. 
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SAMENVATTING 

In het eerste deel van dit proefschrift worden de algemene, niet-line

aire vergelijkingen afgeleid, die de interacties tussen electramagneti

sche en elastische velden in een thermoelastisch lichaam beschrijven, 

Deze afleiding is gebaseerd op een stelsel postulaten, zoals de eerste 

en tweede hoofdwet van de thermodynamica en een invariantieprincipe. 

Het aldus verkregen systeem bestaat uit een stelsel electramagnetische 

vergelijkingen, locale mechanische balansvergelijkingen voor de dicht

heid, de impuls, het impulsmoment en de energie, met de bijbehorende 

discontinuiteits- of randvoorwaarden, plus een set constitutieve verge

lijkingen voor de entropie, de polarisatie, de sp.anningen, de koppel

spanningen, de entropieflux, de warmteflux en de electrische stroom

dichtheid. Dit werk houdt zich speciaal bezig met magnetisch verzadigde, 

ferromagnetische media en fysische verschijnselen zoals o.a. magneto

strictie, gyromagnetische actie, exchange interactie, thermoelectrische 

effecten, etc. worden besproken. 

Hetzelfde stelsel vergelijkingen als hierboven genoemd, zal ook worden 

afgeleid' op een alternatieve manier, namelijk met behulp van het prin

cipe van Hamilton. 

De algemene, niet-lineaire vergelijkingen zullen worden gelineariseerd 

naar de storingen op een, bekend veronderstelde, tussentoestand. Deze 

gelineariseerde vergelijkingen worden nog verder vereenvoudigd door ge

bruik te maken van het feit dat de deformaties in een ferromagnetisch 

lichaam ten gevolge van electramagnetische velden klein zijn. Vervol

gens wordt een expliciete uitdrukking voor de energiefunctionaal geko

zen en worden de coëfficiënten die in deze uitdrukking voorkomen gern

terpreteerd in termen van bekende verschijnselen zoals magneto-anisotro

pie, magnetostrictie, thermo-electrische effecten, etc. Verder wordt 

een tabel gegeven met de numerieke waarden van verschillende van deze 

coëfficiënten voor de materialen ijzer, nikkel en YIG. Aan de hand van 

deze numerieke waarden zien we dat verschillende coëfficiënten in de ge-
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lineariseerde vergelijkingen te verwaarlozen zijn ten opzichte van en~ 

kele die overheersen. Door het toepassen van deze verwaarlozingen wor

. den de gelineariseerde vergelijkingen nog verder vereenvoudigd. 

De uiteindelijke vergelijkingen worden toegepast op een tweetal voor

beelden, te weten: 

i) De trillingen van een magnetisch verzadigde cirkelcylinder belast 

door een groot, statisch magnetisch veld in axiale richting plus 

een klein dynamisch veld loodrecht op de as van de cylinder. 

ii) De knik van magneto-elastische platen. Voor dit laatste voorbeeld 

worden de vergelijkingen aangepast voor het geval van een zogenaamd 

soft-magnetisch lichaam, dit is een lichaam met lineaire magnetisa

tie. 
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STELLINGEN 

I 

Voor een lichaam, met elastische en electramagnetische wisselwerkingen, 

dat zich in een toestand bevindt waarin het alleen belast wordt door 

electramagnetische velden, waarbij de deformaties klein zijn, kan men 

de storingen ten opzichte van deze toestand, welke worden veroorzaakt 

door een kleine verandering van de belasting, bepalen met behulp van de 

oplossing van het starre-lichaams-probleem voor de ongestoorde belas

ting, dus zonder expliciet de ongestoorde toestand te kennen, indien 

tweede-orde termen in de deformaties worden verwaarloosd. 

Literatuur: Dit proefschrift, pag. 89. 

II 

De knikwaarde van een lineair-magnetische, elastische, dunne plaat, be

last door een magnetisch veld loodrecht op de plaat, is onafhankelijk 

van de voorspanningen, d.w.z. de spanningen in de niet-uitgeknikte toe

stand. 

Literatuur: Dit proefschrift, pag. 176. 

III 

De uitdrukking voor de electromagnetische volumekracht volgens Vlasov 

en Ishmukhametov is incorrect: er ontbreekt een term. 

Literatuur: K.B. Vlasov and B.Kh. Ishmukhametov, Equations of Motion and 
State for Magnetoelastic Media, Sovjet Physics JETP, 19 
(I 964), 142-148 (formule (30)). 

IV 

De uitdrukking voor de grootheid Q(~,~), zoals die gegeven is door 

Hutter en Pao, is incorrect. De uitdrukking kan worden gecorrigeerd 

door in rekening te brengen dat de partiële afgeleide naar de tijd in 

de algemene, niet-lineaire vergelijkingen, betrokken is, op de eindtoe

stand en niet op de referentietoestand. Daarmee wordt de, volgens deze 



auteurs inconsistente, betrekking staande onder formule (5.6) een iden

titeit. 

Literatuur: K. Hutter and Yih-Hsing Pao, A Dynamic Theory for Magneti
zable Elastic Solids with Thermal and Electrical Conduction, 
J. of Elasticity, _± (1974), 89-114 (formule (5,6)). 

V 

Een lineaire differentiaalvergelijking van de tweede orde met homogene 

beginvoorwaarden, waarin de demping en het rechterlid een stochastisch 

karakter van het type witte ruis bezitten en waarbij de verwachtings

waarde van het rechterlid gelijk aan nul is, heeft een oplossing waar

van de verwachtingswaarde naar een stationaire waarde ongelijk aan nul 

gaat, mits de spectraaldichtheid van het stochastische deel van de dem

pingscoëfficiënt kleiner is dan de halve waarde van het deterministische 

deel van deze coëfficiënt. Deze stationaire waarde is evenredig met de 

amplitude van de correlatie-functie tussen de dempingscoëfficiënt en 

het rechterlid. 

Literatuur: A.A.F. v.d. Ven, Random-trillingen met behulp van Markov
processen, WSK-notitie, nr. 1, januari 1967, Technische 
Hogeschool Eindhoven. 

VI 

De oplossing van een systeem eerste-orde, lineaire, stochastische dif

ferentiaalvergelijkingen, waarin de stochastische termen stationaire 

Gauss-processen met verwachtingswaarden nul en met correlatie-functies, 

welke begrensd kunnen worden door een negatieve e-macht, zijn, terwijl 

het deterministische deel van het systeem asymptotisch stabiel is, is 

begrensd in de eerste- en tweede-orde momenten (d.w.z. in het gemiddel

de en in de spreiding) indien het maximum van de spectraaldichtheid van 

de stochastische coëfficiënten kleiner is dan een constante welke vol

ledigbepaald is door het deterministische deel van het systeem. 

Literatuur: A.A.F. v.d. Ven, On the Boundedness in the Mean Square of 
the Forced Oscillations of Linear Systems with Stochastic 
Coefficients, Appl. Sci. Res. 20 (1969), 233-245. 



VII 

Voor slanke balken is de, in de stabiliteitstheorie voor elastische li

chamen gebruikelijke, benadering om de uitbuigingavergelijking en de 

elasticiteitsconstanten te betrekken op de ongedeformeerde toestand (in 

plaats van op de niet-uitgeknikte voorspanningstoestand) consistent met 

de klassieke theorie van slanke balken. 

Literatuur: A.A.F. v,d. Ven, Knik van Rechte Balken, WSK-notitie, Werk
bespreking Sectie Mechanica, november 197.3, Technische 
Hogeschool Eindhoven. 

VIII 

Terwijl in een enkelvoudige magnetoelastische stof, voor een omkeerbaar 

proces, de entropie flux wordt verkregen door de warmte flux te delen 

door de absolute temperatuur, geldt deze eenvoudige betrekking niet 

meer voor een mengsel van twee magnetoelastische materialen. Indien bei

de componenten gelijke temperaturen hebben en indien er geen chemische 

reacties optreden, moet de uitdrukking voor de entropie flux worden aan

gevuld met een bijdrage, welke afhankelijk is van het snelheidsverschil 

der individuele componenten. 

Literatuur: A.A.F. v.d. Ven, Magneta-elastische Mengsels, WSK-notitie, 
Werkbespreking Sectie Mechanica, oktober 1970, Technische 
Hogeschool Eindhoven. 

IX 

De zinvolheid van een steeds meer gedetailleerde beschrijving, vanuit 

de continuumsmechanica, van homogene materialen, welke is te verkrijgen 

door het in rekening brengen van hogere afgeleiden van de deformatie

tensor, is begrensd als gevolg van het optreden van spanningsfluctua

ties in de macroscopisch spanningsvrije toestand. 



x 

Als 

dan geldt voor x € [0,1] en voor o ~ 0 de ongelijkheid 

Literatuur: R.K.S. Rathore, Approximation of Unbounded Functions with 
Linear Positive Operators, Proefschrift, Delftse Universi
taire Pers, Delft, 1974 (pp. 122-123). 

XI 

In woongebieden, waarvan de vormgeving dusdanig is dat het gebruik van 

de auto wordt teruggedrongen ten gunste van voetgangers en fietsers, 

dient de verkeerswetgeving te worden aangepast. 

XII 

De correlatie tussen de termen bier en gerstenat is een strikt mono

toon dalende functie van de tijd over de laatste twee decennia. 

Eindhoven, 20 mei 1975 A.A.F. v.d. Ven 


