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ABSTRACT

As a first step to understand the compressibility effects, interaction of isotropic
quasi-incompressible turbulence with a weak shock wave was studied by three-
dimensional time-dependent direct numerical simulations. In addition, linear anal-
ysis was used to study interaction of isotropic turbulence with shock waves of a
wide range of strengths. The effects of the fluctuation Mach number M; and the
average Mach number M IU of the upstream turbulence on turbulence statistics were

investigated.

Both numerical simulations and linear analyses of the interaction show that tur-
bulence is enhanced during the interaction with a shock wave. Turbulent kinetic
energy (TKE) and transverse vorticity components are amplified, and turbulent
length scales are decreased. The predictions of the linear analyses compare favor-
ably with simulation results for flows with M; < MIU — 1, which suggests that the

amplification mechanism is mainly linear.

Rapid evolution of TKE just downstream of the shock was not, however, repro-
duced by the linear analysi- Investigation of the budget of the TKE transport
equation shows that this beuavior of TKE is manifested in the pressure transport
term (P"_u',!),h which is nonlinear. The budgets of enstrophy components wTi show
that their amplifications through the shock are mainly caused by the distortion due

to the mean flow compression, and that effect of baroclinic torque is not significant.

Shock waves were found to be distorted by the upstream turbulence, but still
have a well-defined shock front for M; < MIU —1. In this regime, the statistics of the
displacement and inclination of the shock front compare favorably with the linear
analysis predictions. For flows with M; > MIU — 1, shock waves no longer have
weil-defined fronts: shock wave thickness and strength vary widely in the transverse
directions. Multiple peaks in pressure are found along the mean streamline where

the local thickness of the shock wave has increased significantly.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A fundamental understanding of compressible turbulence is necessary for the
development of supersonic transport aircraft. Compressibility effects on turbulence
were found significant when the energy associated with the dilatational fluctuations
is large or when the mean flow is significantly distorted— expanded or compressed.
The presence of shock waves is an important feature that distinguishes high-speed
flows from low-speed ones. Understanding the mechanisms of isotropic turbulence
interacting with a shock wave is not only of generic interest, but also of fundamental
importance in understanding the interactions of turbulent boundary layers with
shock waves which occur in many practical engineering applications: the flow inside
a high speed compressor or a gas turbine, the flow over wings in supersonic aircrafts,

and the intake flow to a supersonic ramjet (scramjet).

The numerical simulation using turbulence models is becoming a standard tool
in aerospace technology. Most current models of compressible turbulence are, how-
ever, based on incompressible turbulence models. A better understanding of the
underlying physics could lead to improvements to turbulence models, leading to
more efficient designs. There is, therefore, a need to assess our understanding of

compressible turbulence.

The present work is a fundamental study of the interactions of a shock wave with
turbulence. We investigate the interaction of isotropic turbulence with a shock wave

using direct numerical simulation and linear analyses.

1.2 Survey of Previous Work

Studies of the interaction of turbulence with a shock wave were initiated using
linear theories in the early 1950’s. Twenty years later, there was a resurgence of

research interest in this area through experiments on the interaction of isotropic




turbulence and turbulent boundary layer with a shock wave. However, direct nu-
merical simulation of the interaction of “true” turbulence with a shock wave has

never been attempted.

1.2.1 Linear Analysis

Using his general theory of aerodynamic sound generation, Lighthill {1953] esti-
mated the acoustic energy scattered from the interaction of turbulence with sound
and shock waves. Most of the analytical studies of shock-turbulence interaction
[Ribner 1953, Moore 1953, Kerrebrock 1956, Chang 1957, McKenzie, and Westphal
1968] are based on the linear theories of three-dimensional disturbances interacting
with a shock wave. These disturbances were waves of vorticity, entropy, or sound.
Kovasznay[1953] pointed out that they are linearly independent in weak turbulence.
Any one such wave interacting with the shock wave generates all three kinds of fluc-
tuations downstreamn of the shock wave. The linear theories developed by various
researchers followed procedures that are mathematically different but physically
equivalent and are, therefore, mutually consistent: inviscid linear equations for the
disturbances are solved downstream of the shock, and the boundary conditions at
the downstream side of the shock front are expressed in terms of the upstream
disturbances by the use of Rankine-Hugoniot relations. Ribner [1953] investigated
the passage of a single vorticity wave through a plane shock and the modification
of the vorticity wave with simultaneous generation of an acoustically intense sound
wave in a reference frame fizred on the shock wave. He later extended this analysis
to study turbulence amplification due to a shock wave [1954] and the flux of acous-
tic energy emanating on the downstream side of the shock [1969]. He also used it
to predict the one-dimensional power spectra of various fluctuations downstream
of the shock 11987, Moore {1953] analyzed the flow field produced by the oblique
impingement of weak plane disturbances on a normal shock wave in a reference
frame fired on the mean upstream flow. Chang [1955] investigated the interaction
of a plane shock and oblique plane disturbances with special reference to entropy
waves. McKenzie and Westphal [1968] investigated the effect of a stationary plane
shock on the travelling waves of vorticity, entropy, and sound. Anyiwo and Bushnell

16R2] revisited the analysis of McKenzie and Westphal [1968] to identify primary




mechanisms of turbulence enhancement— amplification of vorticity mode, genera-
tion of vorticity mode from the interaction of acoustic and entropy modes with a

shock wave, and turbulence “pumping” by shock oscillations.

Debieve, Gouin, and Gaviglio [1982a, 1982b] analyzed turbulence evolution through
the shock using the Reynolds stress transport equation. They were able to separate
the effects of the specific turbulent sources from the effects of the mean motion—
convection and production. Their prediction of the longitudinal velocity fluctuation

showed good comparison with the experimental result.

1.2.2 Experiments

There has been a significant accumulation of experimental data on the shock tur-
bulence interaction during the last decade. Debieve, Gouin, and Gaviglio [1982a,
1982b] performed an experiment on the turbulent boundary layer interacting with a
shock wave. They measured the mean and turbulent fields in an adiabatic compres-

sion ramp, where the mean upstream Mach number was MIU = 2.32, with a corner

angle of 6°. They found amplifications of turbulence intensity u'12, the structure

arameter —u’ ), /u" %, and the temperature fluctuation inside the boundary layer.
P 142/ y

Dolling and Or [1985] measured wall pressure fluctuations upstream of the corner
in flows with MlU = 3.0 over compression ramps with corner angles of 8°,12°,16°,
and 20°. They found that the shock wave structure is unsteady in both separated
and attached downstream flows, resulting in a region in which the wall pressure

signal is intermittent.

Andreopoulos and Muck [1987] investigated the wall pressure fluctuations in the
shock-wave/boundary-layer interactions over two-dimensional ramps, and found
that the frequency of the shock-wave unsteadiness is of the same order as the burst-
ing frequency of the upstream boundary layer and independent of the downstream

separated flow.

Smits and Muck {1987] performed experiments to study the effects of different
compression corners with angles of 8°,16°, and 20° on a compressible turbulent
boundary layer with ]\I]U = 2.9. They found that the interaction significantly am-

plifies the turbulent stresses, and that the amplification increases with increasing
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the effective normal Mach number. The structure parameter —u'lu'z/u'lz also in-
creased significantly, which was attributed mainly to the unsteady oscillation of the

shock system.

Kuntz, Amatucci, and Addy [1987] conducted an experimental investigation of
the interaction between a shock wave and a turbulent boundary layer. Compression
corners were used to generate an oblique shock wave in the flow field with MIU =
2.94. Ramp angles of 8°,12°,16°,20°, and 24° were used to produce a range
of possible flow fields, including flows with no separation, incipient separation,
and significant separation. They found that that the boundary layer after the
interactions showed an acceleration of the mean flow near the wall as the boundary
layers began to return to equilibrium, and that the mean streamwise velocity profiles
downstream of the separated compression corner were wavy due to the redeveloping

boundary layer which had a velocity profile with inflection at reattachment.

There are a number of additional experimental studies of the interaction of tur-
bulent boundary layers with an oblique shock [Settles, Fitzpatrick, and Bogdonoff
1979, Dussauge, Muck, and Andreopoulos 1986, Jayaram, Taylor, and Smits 1987,
Selig, Andreopoulos, Muck, Dussauge, and Smits 1989]. A general finding from
these experiments is that Reynolds shear stress and turbulence intensities are am-
plified across the shock wave. The studies of oblique shock wave/turbulent bound-
ary layer interaction included several additional phenomena which complicated the
flow behavior. These phenomena are: (a) oscillation of the shock wave in the lon-
gitudinal direction, (b) flow separation downstream of the shock, (c) streamline
curvature, and (d) wall effects which result in high turbulence intensity and high
flow anisotropy. Because of these complications, it was impossible to identify the

sole effect of a shock wave on turbulence.

In order to isolate the effects of a shock wave on turbulence, several experiments
on the interaction between the shock wave and grid-generated turbulence have
been performed. Debieve and Lacharme [1986] experimentally investigated a shock-
wave/free turbulence interaction at AIIU = 2.3 over a ramp with a corner angle of
6°. They measured velocity and temperature spectra upstream and downstream
of the shock wave and concluded that turbulent fluctuations are amplified and the
Taylor microscales increase during the interaction. An intermittency effect due to

unsteady shock wave distortion on turbulence statistics was also clearly described.
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Keller and Merzkirch [1990] performed an experiment on the interaction of grid
generated turbulence with a shock inside a shock tube. They verified amplification
of the turbulence intensity quantitatively, showing that amplification was restricted
to the lower wave numbers in the spectrum. This was consistent with the conclusion
of length scale increase made by Debieve and Lacherme [1986], but it contradicts the
intuitive reasoning that mean flow compression decreases the relevant turbulence
length scales. Our results (Sec. 2.1 and Subsection 4.1.4) show that the Taylor

microscale actually decreases in passing through the shock.

Honkan and Andreopoulos [1990] examined the interaction of a normal shock
wave with homogeneous grid-generated turbulence. They found that turbulence
is considerably amplified during the interaction, and that the amglification ratio
of turbulence is not the same for different length scales and different turbulence

intensities.

Jacquin, Blin and Geffroy [199]] investigated the interactions of a normal shock
wave with grid-generated turbulence and a turbulent jet, and compared turbulence
amplifications with the predictions by a linear analysis. They observed that turbu-
lence amplification was not significant during the interaction, and that the decay

of turbulent kinetic energy was accelerated downstream of the shock wave.

The aforementioned experiments treated the interaction of a shock with quasi-
incompressible turbulence where fluctuations in pressure and density are not sig-
nificant. A comprehensive experiment on the interaction of weak shocks (MIU =
1.007,1.03, and 1.1) with a random medium of density inhomogeneity was per-
formed by Hesselink and Sturtevant [1988]. They observed that the pressure his-
tories of the distorted shock waves were both peaked and rounded. In the rounded
case, they found the perturbed shock was made up of a succession of weak, slightly
curved fronts, and the total effective shock thickness was significantly greater than
the classical Taylor thickness. They concluded that the observed distortions of the
shock can best be explained in terms of the focusing/defocusing of its front due to

inhomogeneity of the medium.

1.2.3 Numerical Simulation

Zang et al. [1984] simulated the interaction of a shock wave with a single wave

using two-dimensional Euler equations. The interaction of a shock wave with an
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isolated flow inhomogeneity was computed by Hussaini et al. [1986] and Meadows
et al. [1991], and with two-dimensional turbulence by Rotman [1991] and Lee, Lele,
and Moin [1991a).

Rotman [1991] numerically calculated the change in a turbulent flow caused by
the passage of a travelling shock wave. He found that the shock causes an increase in
the turbulent kinetic energy and that the length scale of the turbulent field behind
the shock is smaller than that in front. He also found that increasing the initial
turbulent kinetic energy caused a straight shock wave to evolve into a distorted

front.

Lee, Lele, and Moin [1991a] found that vorticity amplification in the numerical
simulation compared well with the predictions of the linear analyses, but that
turbulent kinetic energy evolution behind the shock showed significant nonlinear
effects. The energy spectrum was found to be enhanced more at small scales,

leading to an overall length scale decrease.

Zang et al. [1984] examined various effects pertinent to the amplification and
generation of turbulence in shock/turbulent boundary layer interaction and placed
limits on the range of validity of linear theory. Hussaini et el. [1986] numerically
investigated the effects of upstream eddy motion and temperature inhomogeneity on
the enhancement and production of turbulence. Meadows et al. [1991] computed
two-dimensional shock-vortex interaction using a shock capturing scheme. They
qualitatively evaluated the effects of upstream vortex strength on both the flow

field and acoustic field generated by the interaction.

1.3 Objectives and Overview

The primary objective of this work is to investigate the physics of the interaction
of isotropic turbulence with shock waves using direct numerical simulations and
linear analyses. The simulations and linear analyses provide statistical information
for testing of turbulence models. Instantaneous flow fields from the simulations

contribute to our understanding of the physical nature of the interaction.

The principal contributions and findings of this work are as follows:




¢ A numerical scheme to generate turbulence at the inflow boundary was devel-
oped and the simulation of spatiallv evolving grid-generated turbulence was con-
ducted.

o The linear mechanisms involved in the shock/turbulence interaction enhance the
amplitude of turbulent fluctuations and decrease the relevant turbulence length

scales.

o Linear analysis predicts the corrugation of the shock front caused by upstream
turbulence fluctuations. The distortion of the shock front is scaled with the

upstream turbulence intensity and length scales.

¢ Isotropic upstream turbulence becomes axisymmetric after the interaction. All
the components of turbulent kinetic energy are amplified across the shock wave.
The streamwise intensity is amplified more than the transverse components.

Fluctuations in pressure, density, and temperature are significantly enhanced.

e Power spectra of turbulent fluctuations are more amplified at small scales than
at large scales. The integral turbulence length scale and Taylor microscales

decrease during the interaction.

o Transverse components of vorticity are enhanced because of the mean flow com-
pression, but the component normal to the shock remains unchanged. Baro-
clinic torque has a negligible contribution to the production of vorticity in the

shock/quasi-incompressible turbulence interaction.

¢ Rapid evolution of turbulent kinetic energy found downstream of the shock wave
is caused by the nonlinear pressure work. Decomposition of the pressure work
term shows that the inhomogeneous pressure transport is the main cause of the

rapid evolution.

e [sentropic relations hold between normalized fluctuations in pressure, density,

and temperature throughout the flow field.

o Shock waves are found to be distorted by the upstream turbulence. Instanta-
neous shock wave structure depends on the upstream fluctuation Mach number

and the mean shock strength. For flows with small fluctuation Mach numbers,
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shock waves have a well-defined front. In this regime, the statistics of the dis-
torted shock front compare favorably with the linear analysis predictions. For
flows with large fluctuation Mach numbers, multiple peaks in pressure are found
along the mean streamline where the local thickness of a shock wave has increased

significantly.

This report is organized as follows. In Chapter 2 linear analyses of shock-isotropic
turbulence interaction are conducted. The governing equations and the numerical
method chosen are discussed in Chapter 3. Chapter 4 describes the numerical
simulations of shock-turbulence interaction and their results. Conclusions and rec-
ommendations for future work are given in Chapter 5. The apperdices include brief
descriptions of the linear analyses (Appendix A and B), a proposal for an alias-free
compressible turbulence simulation (Appendix C), development and validation of
a numerical method for the simulations of spatially evolving turbulence (Appendix
D), the limitations on the physical parameters for direct numerical simulation of
shock-turbulence interaction (Appendix E), the effect of the shock oscillation on
turbulence statistics (Appendix F), the effect of outflow boundary conditions (Ap-

pendix G), and the drift in the mean shock position and the outflow condition

(Appendix H).




CHAPTER 2
LINEAR ANALYSIS

Two different linear approaches are used to investigate the interaction of isotropic
turbulence with a normal shock wave. The first approach is the rapid distortion
theory (RDT). Tl second is the compressible linear interaction analysis (LIA).
Both analyses are for inviscid flows. The assumptions and main features of these
analyses are discussed in Appendices A and B. The main effect of a shock wave on
turbulence is the mean flow compression in the direction normal to the shock wave.
The secondary effects are the vorticity generation due to shock front curvature
and turbulent kinetic energy generation caused by the unsteady movement of the
shock front. RDT accounts for the effect of the mean flow compression, while LIA

includes all three effects.

For proper applications of the linear analyses, upstream Mach number variation
may be considered as a small perturbation from the mean Mach number. Fur-
thermore, time required for turbulence to pass throu h the shock wave may be
considered small compared to a turbulence time scale, so that turbulence has no

time to redistribute energy into different scales through nonlinear processes.

In the following, interaction of isotropic turbulence with a normal shock wave is
discussed. Because LIA is more comprehensive, its results are mentioned in detail,
and those from RDT are introduced for comparison when needed. Turbiulence be-
fore the interaction is considered to be purely vortical, that is, upstream turbulence
has no fluctuations in density and entropy. The fluid is assumed to be ideal gas

with the specific heat ratio v = 1.40.

The coordinate system used in the analysis is Cartesian, as showr in Figure
2.1. The streamwise direction z is aligned with the direction normal to the mean
shock plane. The reference frame is fixed on the mean shock plane. In this system,
upstream flow approaches the shock with a supersonic speed, and downstreain flow

leaves with a subsonic speed.




2.1 Turbulence Statistics

Figure 2.2 presents amplifications of the transverse vorticity components pre-
dicted by LIA and RDT. The streamwise vorticity component is unchanged through
the linear interaction. As the strength of the shock wave increases (higher mean
Mach number), the ratio of downstream to upstream vorticity also increases. We
find that the asymptotic value of the amplification factor for mean square vorticity
for a shock wave with very large Mach number is about 20 in LIA and 36 in RDT.
The ratio of the vorticity amplification by RDT is simply the ratio of downstream
to upstream density, which is explained as an enhancement of vorticity due to the
shrinking of the cross section of a transversely-oriented vortex tube by the mean
flow compression. The predictions by LIA and RDT agree very well for weak shock
waves but do not compare as well for stronger shock waves. This implies that ef-
fects of shock front curvature and shock front unsteadiness are negligible for weak
shock waves, while these secondary effects become more significant for stronger
shock waves. Prediction of lower amplification by LIA suggests that secondary

mechanisms have adverse effects on enhancement of vorticity fluctuations.

Figure 2.3 shows the amplification of solenoidal turbulent kinetic energy by LIA
and RDT. Both approaches predict more enhanced streamwise fluctuations than
spanwise fluctuations for shock waves with the mean upstream Mach number MIU <
2.0. However, this trend is reversed for stronger shock waves in LIA predictions. In
fact, the predictions by LIA and RDT are close only for very weak shocks, differing
significantly for ZWIU == 1.5.

Through interaction of vortical waves with a shock wave, acoustic waves are gen-
~rated downstream of the shock wave. These acoustic waves accompany the purely
dilatational velocity fluctuations, which also contribute to the total turbulent ki-
netic energy. LIA can also predict the acoustic energy generated downstream of
the shock. Figure 2.4 presents the amplification of turbulent kinetic energy, in-
cluding both solenoidal (or vortical, incompressible) and dilatational (or acoustic,
compressible) velocity fluctuations. Since part of the acoustic energy undergoes
an inviscid decay (ref. Appendix B), turbulence behind the shock is not homoge-
neous in the streamwise direction. Figure 2.4 presents velocity fluctuation levels

at both immediate downstream (near-field) and far downstream (far-field) of the
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shock. Streamwise velocity fluctuation is always larger than that of the spanwise
velocity fluctuations in the near-field. The far-field velocity fluctuations are com-
posed mostly of the solenoidal velocity fluctuations: the acoustic waves contribute
less than 2% of the far-field turbulent kinetic energy for MIU =1.2.

According to LIA, the vorticity waves incident at angles beyond a critical angle
Ocr = GCT(MIU) generate acoustic waves which decay exponentially as they prop-
agate downstream. This leads to an inviscid decay of the compressible part of
velocity fluctuations. The decays of velocity fluctuations are shown in Figure 2.5

for upstream turbulence with a spectrum of
k4 2
E(k) ~ (=) exp[-2(1-)7], (2.1)

where k, is the characteristic wave number corresponding to the energy peak. This
is the form of the inflow turbulence spectrum used in the direct numerical simulation
of shock turbulence interaction in Chapter 3. Significant but monotonic decay
occurs just downstream of a shock wave which is caused by the inviscid decay of

acoustic waves.

Decays of velocity fluctuations for different shock strengths are shown in Figure
2.6. The decay in the downstream velocity fluctuation is monotonic for all shock

strengths.

We also investigated the effect of upstream spectrum shape on the decay, as
shown in Figure 2.7. In addition to the spectrum described in (2.1), we used the

von Karman spectrum

(k/ko)*

E(k) ~ .
(k) (1 + (k/ko)2]17/6

(2.2)

This is a good approximation for the high Reynolds number turbulence, where the
slope is k* at small k and k=%/3 for the inertial subrange at large k. Monotonic
decay of turbulent kinetic energy is reproduced. However, the decay rate is faster
compared to that of (2.1) (see Figure 2.5), since the von Karman spectrum has

more small scale content, thus causing faster decay.
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Experimental studies [Debieve et al. 1986, Keller et al. 1990] have reported
that large scale turbulent motions are enhanced more than small scale motions as
turbulence passes through a shock wave, leading to the overall increase of turbulence
length scales. In order to check whether turbulence length scales do indeed increase,
we investigate the amplification of the one-dimensional velocity spectrum E;(k;),

which is defined as

+o0 “+00
Er(ky) = f / Eqy(K)dkzdks, (23)
— o0 — OO0

where k = (ky,ko,k3) is the wave number vector. The velocity spectrum tensor

E;;(k) is defined as

(2.4a)

—

where () denotes the Fourier transform, the superscript * denotes complex conju-

gate, and (-) indicates the ensemble average. For incompressible isotropic turbu-

lence

_E(k) o kik;
B 47rk2( 7T g2
where k = |k|, and E(k) is the energy spectrum function.

Eij(k) ), (2.48)

In the following analysis, we consider only contributions from the vorticity waves
to the upstream and downstream velocity fluctuations. A velocity fluctuation u

associated with a vorticity wave in the homogeneous field can be represented as

u = u(w, kg, k3; Uy)expli(k - x — wt)], (2.5)

where k-1 = 0 for a solenoidal wave. Assuming that vorticity fluctuations are

simply advected by the mean flow, we obtain the following dispersion relation

w ~ Uky = 0. (2.6)

In this approximation, the turbulence fields upstream and downstream of the shock

are considered homogeneous and frozen with respect to the corresponding mean
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flow. From Appendices A and B, the Fourier coefficient of the streamwise veloc-
ity fluctuation after the interaction can be expressed in terms of that before the

interaction. The transfer function Z(w, k3, k3) is defined as

iP(w, k2, k3; UPD)
@Y (w, kg, kg; UY)’

Z(w, ko, k3; M) = (2.7)

where the superscripts U and D refer to upstream and downstream states.

If there is no generation or destruction of waves inside the shock wave, the
frequency w of a vorticity wave remains unchanged by the interaction, while the
associated wave number ky changes to satisfy the dispersion relation (2.6). The

one-dimensional frequency spectrum Ej(w) is defined as

Ey(w) =//Fu(w,kz,ks;Ul)dbdka, (2.8a)

where the limits of the integrations are (—oo, +o0) for both k; and k3. In the above

expression, Fqj is

Fll(w’kz’kil; Ul) = 171(0),]62,1&73; Ul)a’i‘(w,k%kﬁi; Ul)' (286)

Amplification of the one-dimensional frequency spectrum is described by the

ratio of the frequency spectra before and after the interaction S¥(w; AIIU), which is

Sw(w.AIU) _ ffFlDl(wakQ» kB;UlD)dkgdk3
T TP (w, kg, ki U )dkdky

S J1Z(w, kg, kg M) 2Py (w, kg, ks U Vdkgdks
- ffFll(ka‘Z,kB;UlD)dkgdk:; ’

(2.9)

Spectral amplification ratio is dependent on the special form of the upstream spec-
trum shapes. We choose a von Karman spectrum (2.2) for the energy spectrumi in

the following analyses.
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The amplification ratios of the one-dimensional frequency spectra for different
shock strengths are shown in Figures 2.8: the results from RDT and LIA are pre-
sented in Figures 2.8(a) and 2.8(b), respectively. The results from RDT and LIA
are qualitatively the same: the spectrum amplification ratio is larger for a wave
with small w, which is consistent with the results of Ribner [1987]. Some researchers
interpret this fact as evidence of turbulence length scale increase through the inter-
action, but this conclusion does not necessarily follow, for the change in frequency
spectra reflects a change in time scale, not in length scale. More amplification at the
small frequency part of the spectrum implies that turbulence time scale increases

through the interaction.

To investigate the length scale change, one should evaluate the amplification of
wave number spectrum rather than that of frequency spectrum. Amplifications of
these two spectra are not the same: as a wave passes through the shock, the relation
between wave number and frequency changes due to the mean flow deceleration (see
(2.6)). The one-dimensional wave number spectrum is obtained by replacing w with
Uyk; in (2.8b). Streamwise velocity fluctuations upstream and downstream of the

shock can be represented as

ugﬂzf //FH(UlUkl,kg,kg;Ull])dkgdkg,] dk¥, (2.10a)

uD? :/ //FH(Ulel,kg,k;,;UlD)dkzdk3] dikP. (2.100)

Downstream velocity fluctuation can also be expressed in terms of the upstream

spectrum FIL; and its amplification ratio at the saimne wave number across the shock
wave Sk‘(k];MIU) as

uID?:/.Sk‘(kl;MlU) //FH(UlUkl,kz,k;;;UlU)dk-zdkg k¥

:/Sk‘(kl;MlU) //Fﬁ(UlUkl,kz,k;;;UlU)dk.zdk;, (JdkD),

(2.11a)
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DUDk{ ko, ka: UPVdkodk
Ski(ky; MY) = ffFll}( Tl W L 3’U1U) 223, (2.118)
I J FUUY ky, kg, k3; UV )dkodks

|

Here J is the Jacobian of the transformation from the upstream to the downstream
wave number definea as J = pU/pP < 1. (The upstream wave number interval
dkgl corresponds to the downstream wave number interval dle = J‘ldkij.) Com-
paring the terms in (2.10b) and (2.11a), we have the amplification ratio of the

one-dimensional wave number spectrum JSkl(kl; MIU) as

S JFRWUPk ko, k3; UP)dkadks [ [ FE(IUV Ry, kg, k3; UV )dkodks

JSE(ky; MYy = J % x
S JFE(TUY ky ko, ky; UY Ydkodks — [ [ FY(UY ky ko, k3 UV Ydkadks

EY (w)

J x §¥w; M) x —L22
VBV (w/7)

(2.12)

where w = Ulel = JU%]kl. The wave number spectrum amplification factor is,
therefore, the product of the Jacobian, the frequency spectrum amplification and
the ratio of the upstream frequency spectra at two different frequencies. The resul-
tant wave number spectrum amplifications for different shock strengths predicted
by RDT and LIA are presented in Figures 2.9(a) and (b), respectively. These pre-
dictions are qualitatively consistent: the spectral density increases more at large
wave numbers, even though it increases more at small frequencies (see Figure 2.8).
LIA predicts a suppression of the spectrum at small wave numbers for large up-
stream Mach numbers, while RDT predicts an amplification at all wave numbers
irrespective of the shock strength. Larger amplification at large wave numbers is

more pronounced for stronger shock waves.

It is, therefore, erroneous to infer an increase in the length scale in shock turbu-
lence interaction by appealing to Ribner’s analysis (akin to Figures 2.8) as Keller
et al. [1990] have done. Investigation of the spectrum amplification leads to the
conclusion that turbulence time scale increases through the interaction, while tur-

bulence length scale decreases.
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The experimental results by Debieve et al. [1986] are consistent with the present
predictions. However, they compared the upstream frequency spectrum to that
on the shock and concluded an increase in the length scale. The spectrum on
the shock is contaminated by the intermittency effect due to the unsteady shock
front distortion. The characteristic length scale of the distortion is scaled with the
upstream turbulence length scale (see Section 2.2 for LIA and Section 4.2 for DNS)
to yield an apparent amplification of the spectrum on the shock at an energetic
(or large) scale. This enhancement does not necessarily imply the amplification
of the turbulent motion of that scale. In order to investigate length scale change,
one has to transform frequency spectra into wave number spectra and compare
the upstream spectrum with the downstream spectrum. Proper comparison of
wave number spectra shows more amplification at small scales rather than at large
scales, leading to an overall scale decrease. Direct numerical simulations confirm
that turbulence length scales do decrease through the shock-turbulence interaction
(see Section 4.2).

Since linear analyses predict the change of the Fourier coeflicients of the velocity
components across the shock wave (see (2.7)), the changes in turbulence length

scales can also be calculated. The change in the Taylor microscale A, defined as

A2 == (2.13)

across the shock wave is independent of the shape of the three-dimensional energy
spectrum for isotropic upstream turbulence, since the contributions to the integral
involving the wave number magnitude k (see (A.25)) are cancelled out in the eval-

: . 5 5 . .
uation of the ratios of u3 and uZ , across the shock wave. The denominator in
)

(2.13), u? _, can be evaluated using

a0
ul - ///k?,Emdkldk-zdkg. (2.14)

Figures 2.10(a) and (b) show the change in the Taylor microscales across the shock
wave predicted by LIA and RDT. (In LIA prediction, only the solenoidal velocity

component is included because the contribution from the dilatational component
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becomes negligible after a short distance from the shock wave. See Figures 2.4,
2.5 and 2.6.) All the length scales are found to decrease through the interaction:
the streamwise scale decreases more than the transverse scale. LIA predicts more
reduction in the streamwise scale and less reduction in the transverse scale than
RDT does. For weak shock waves, however, the predictions by LIA and RDT are

in good agreement.

Shock/turbulence interaction leads to noise generation behind the shock wave in
the form of fluctuating pressure, p'. Using (B.55) and (B.56) and from the isotropy
relations (2.4) for upstream velocity fluctuations (see also (B.61) - (B.64)),

_ 1 29m _)2/ 112 VK
pD2 B U12 (y+1ym-(y-1) coszt‘)coszﬂ’ulul

2 o0 27 172 6
_ ! < 2m ) / E(k)dk/ Tocos? 19
4U12 (Yy+1m—(y—-1) 0 0 cos“d

2 2 427 12 cos
_3 e ( 2ym ) / 7 cosb i, (2.15)
8 Ul2 (y+1)ym-(y-1) o cos*d

where pP is the downstream mean pressure and

6 = tan_l(mtan ). (B.5¢)

Figures 2.11(a) and (b) show the pressure fluctuation for various shock strengths
both at the immediate downstream and far downstream of the shock wave normal-
ized by the downstream mean pressure and upstream mean pressure, respectively.
Note that for normalization we have also used the upstream turbulence intensity,
because pressure fluctuations scale with the upstream turbulence intensity inde-
pendent of the shape of the spectrum. Near field noise scaled with the downstream
mean pressure peaks around AIlU = 1.3, and far field noise reaches its asymptoti-
cally maximum strength for very large Mach numbers. Note that acoustic energy

decays by an order of magnitude from the near field to the far field. Even though
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the near- and far-field pressure intensities scaled with the downstream mean pres-
sure tend to asymptotic values for an infinite strength shock wave, their absolute

amplitudes increase indefinitely as the shock strength increases (see Figure 2.11(b)).

2.2 Statistics of the Shock Front

Using LIA, we can estimate the level of fluctuations of the shock front caused
by the action of turbulence. The details for calculating the variances of a local
shock front displacement £, its inclination angle o9, and its curvature k9 are shown
in Appendix B. The nondimensionalized variances of those quantities are kg?,a_g,
and ko_zrc_%, where k, is the wave number corresponding to the energy peak in the

spectrum.

The dimensionless variance of the shock front displacement (see (B.68)) can be

expressed as

2

= 1 [k /2,
kgfz = —/ (—"> E(k)dk/ (a:zg + b?_;)costO
U2Jo \ko 0

3 [ u, 2 OOE(kt)/k-Qdkt /2
: (_b_l> fofoo o / (a% + b%)cosédd,  (2.16)
0

where k* = k/ko, and u, is the rms fluctuation velocity in one direction. (Defini-
tions of ag and bg are given in (B.18) and (B.21).) Likewise, the dimensionless

variance of the shock front curvature (see (B.69)) can be written as

9 (uo\? [TORVPE(KR®dR f7/2
-2.2 o 0 2 2 5
= +b 0dé. 2.17
( ) Jo© E(k*)dke /0 (a5 +bs) cos (217
As seen in (2.16) and (2.17), the statistics of shock front displacement and its
curvature are dependent on the shape of the upstream spectrum, E(k*). The

shock wave displacement has significant contributions from large scale turbulence,
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while its curvature is scaled with the inverse of upstream turbulence microscale
(k3 ~ [ K2E(k)dk/ [ E(k)dk ~ 1/)2).

Statistics of shock front distortion are obtained by numerically integrating ( B.65),
(2.16) and (2.17) using the energy spectrum in (2.1). Figure 2.12 presents the rms

<ﬂ> kok, (ﬂ) o9, and (g—l) '—Cz.
Uo Uo Uo kO

Note that the statistics of the shock front distortions are scaled with the upstream

values of

turbulence intensity. As the mean upstream Mach number increases, the scaled

rms values are found to decrease.

Considering the time dependence of the upstream velocity fluctuations at a fixed
point, LIA can predict the local fluctuating shock front speed, {;. Expression

(B.27) can be rewritten as
du,' = dﬂ‘ exp [i(kl(:tl - Ult) + k2I2 + k3:l:3)] . (2.18)

Since the velocity fluctuations at the shock front (z; = 0) vary not only in the
transverse direction but also in time, the argument of the exponential function
in (2.18) becomes i{(—k Ut + kozg + kgz3) with z; = 0. Therefore, expression

(B.66) for the local shock displacement can be rewritten as

1
{= IECXP [i (kp - xp — k1 Ust + 6], (2.19)
“h

where kj is the magnitude of ky = (ko,k3), and x; = (z9,z3). From (2.19),
one obtains the relation between the local fluctuating shock front speed, £ 4, and
the local shock front inclination angle in the transverse direction (zp direction),
oy = €2, as

kU
1= — 1l

k2 ga. (220)

Using (B.57) and (B.58), (2.20) can be expressed as

k 9 o .
€t — ;k:ﬁx\/a;- v b explitky o xp o kTt + )L (2.21)
15
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Figure 2.13 compares the local upstream velocity fluctuation and the local shock
front speed for upstream waves incident on a shock wave of MIU = 1.2 at different
angles. The magnitude of the shock speed is comparable to the upstream fluctuation
velocity. For waves whose incident angles are smaller than the critical angle of
incidence, 8.; = 36.4°, the local shock front speed lags by a phase angle between 0
to 90° with respect to the upstream velocity fluctuation; for waves whose incident
angles are larger than the critical angle, the shock front speed is in phase with
the velocity fluctuation. The local shock front speed which is in phase with the
upstream fluctuation velocity attenuates the fluctuations in the effective upstream
Mach number, My = (U + u; — €¢)/c.

Figures 2.14(a) and (b) show the dependence of the rms fluctuating shock front
speed on the mean upstream Mach number. The shock front speed exceeds the
upstream fluctuation velocity for JWIU < 1.25. For weak shock waves, the shock
front speed is close to the upstream fluctuation velocity resulting in approximately

uniform effective upstream Mach number.
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CHAPTER 3
NUMERICAL METHOD

The time-dependent Navier-Stokes equations for a compressible fluid were solved
directly. All the relevant turbulence scales are resolved without a turbulence model,
and the shock wave siructure is resolved as a solution of the Navier-Stokes equa-
tions without introducing the techniques of shock-fitting or shock-capturing. The
shock structure is adequately represented by the Navier-Stokes equations for Mach
numbers MlU less than 2.0 [Sherman 1955]. Except for monatomic gases, how-
ever, the thickness of the shock wave as a solution of the Navier-Stokes equations
is underpredicted even for MlU < 2.0, because the rotational energy mode is not
in equilibrium inside the shock wave [Lumpkin 1990]. This chapter describes the
governing equations and the numerical method used to simulate shock/turbulence
interaction, where the flow is assumed to be periodic in transverse directions (z2
and z3). This chapter also includes validations of our numerical schemes. The code
is written in the VECTORAL language [Wray 1988] and implemented on a Cray
Y-MP/832 at NASA-Ames Resea~ch Center.

3.1 Governing Equations

The conservation laws for mass, momentum, and energy are [Anderson, Tannehill

and Pletcher 1984]:

dp* | Apuy)

ot oz 0 .

Bp"u;) | Op'uius +p"dy) 07 (3.2)
ot* oz* oz*
7 ]

0By  OEr+p7)el] 0@ Oy (3.3)

ot* Oz} Oz? 8:; ’

) 1

where superscript * indicates a dimensional quantity, p* is the density, u} the
velocity components, p* the pressure, 7':]- the shear stress tensor, and Q7 is the heat

flux vector. E7. is the total energy, defined by:
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*
u;

U

2

*
:

ET =p*(e® +

), (3.4)

where e” is the internal energy per unit mass.

We assume the fluid to be a perfect gas satisfying

p' =p*R'T*, (3.5)
where R* is the gas constant and T™* the temperature. We assume a Newtonian

fluid and use Stokes hypothesis and Fourier law of heat conduction, so that the

. . . * * .
constitutive equations for T and QY are:

Ou* Oul 9 au,‘c‘

* * 1 J
e - = 6;s 3.6
= s VB T 39ap ) (3.8)
or*
Y= —k* .
Qt ar: ki (3 7)
where u* is the molecular viscosity and k* the thermal conductivity.
The flow variables are non-dimensionalized as follows

u: p# p# T#
u; = _‘ p —_ p — T = e———— 3.8(1
e P phes? (v - 1Ty (3-82)

u* e* t*e} T}

= — e = —5 = T; = -+ 3.8b
P cs? Iy I (3:8)

where subscript , represents the mean upstream value, c* is the speed of sound,
and L} is an arbitrary reference length scale. The value of the specific heat ratio
defined as

v = cpley (3.9)
is taken as 1.40 in this work.

The non-dimensional equations for continuity, momentum, and energy are

9p  Ipuy)

ot Oz;
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B(qu _ ~8(pu,-uj +p5,‘j) + (?T,'j

1
Jt 32:]- 8:cj (3.11)
OBy _ _OlEr+pu] 0Qi  duiry (3.12)
ot Oz; Oz; dz; ' )
with constitutive relations
= O O 20 (3.13)
Y " Re Oz; Oz; 30z i) ’
___m Or
Qi= PrRe Oz; (3.14)
where Re and Pr are defined as
* ‘L‘
Re = pic_o*_o (3.15a)
Ho
c*u*
Pr= ‘I’C“ . (3.15b)

We assume the Prandtl number to be constant equal to 0.70 and assume the vis-

cosity to follow the power law:

(ﬁ—)=(§—) or  p=[(y- 1T, (3.16)

where n = 0.76.
If we assume constant specific heats and set ¢* = 0 at T* = 0, we can write
€* = ¢;T*. The non-dimensional form of the perfect gas law is
-1
p= 0=l ¢ (3.17)
~
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3.2 Numerical Schemes

This section describes the numerical schemes used: time advancement scheme,
approximation of spatial derivatives, special treatment of convective terms for nu-
merical stability, method of generating inflow turbulence, and initial and boundary

conditions.

3.2.1 Time Advancement

An explicit time-advancement method is used. The variables (p, pu;, E7) are ad-
vanced using a three-step compact-storage third-order Runge-Kutta scheme [Wray
1986]. This scheme, when applied to dy/dt = f(y,t), has the following three sub-

steps:

, 8
Yy =y + Bf(y",t")At (3.18a)
. 1 -
v =y A () (3.18b)
y11+1 — yn + :lif(yn,tn)At + Zf(y",t")Ai, (3.18C)

where t = " + TSgAt and 1 = " + %At.

The time step is computed from the following formula:

_(CFL)

- [Alm&X’

At (3.19)

where C' F L is the Courant-Friedrichs-Lewy number. The subscript max refers to the
maximum over all grid points. The maximum C F L number for stability is fixed by
the time-advance method. For linear equations the limit is V'3 for the third-order
Runge-Kutta method described above. For the three-dimensional Navier-Stokes

equations, we have used:

. lus +¢ | fual+c  Juzl+e
Ajmax = (M ; ; -—) , (3.20)
max AII A;t'g A:C:; max
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where |u;| is the absolute velocity in the i*h direction and Az, is the grid spacing.

3.2.2 Evaluation of Spatial Derivatives

A family of high-order modified Padé schemes has been derived by Lele [{1990]
with spectral-like resolution characteristics as well as high-order formal accuracy.

In this work, we used such a scheme for both the first and second derivatives.

The first derivative is given by:

Yj+1 — Yj—1

Yj+2 —Yj;-2
2Az 3 )

4Az

y_'i—l + a1y;- + yf,-H = a3 +a (3.21a)
We can obtain y; by solving a tridiagonal system of equations. A family of fourth

order schemes is obtained if we choose

2+ 4aq e = 4 —a
3 T
For a; = 4, the conventional Padé scheme is recovered, while with aj = 3 and

(3.21b)

a =

(3.21b) we have a sixth-order scheme. Similarly, we can write for the second deriva-

tive:

Yj+1 — 2y; + Y51 Yj+2 — 2y Y2
Vi1 + a1y + Yy = ag 2 z_\.xJ? 1= a3 =2 4A12 ! (3.22a)
4ay — 4 10 —
ay = 13 a3 = — a. (3.22b)

The choice of a; = 10 recovers the usual Padé scheme, and for a; = 11/2 with
(3.22b) it is sixth-order accurate.

In this work, we used the sixth-order schemes both for the first and second
derivatives. The resolution characteristics of the conventional Padé scheme are

improved with negligible increase of operations.

The diffusion terms in the governing equations require evaluation of successive

derivatives, for example

0 6’u1
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When a spectral method is used, there is no loss of accuracy when these are com-
puted by two applications of a first-derivative operator. With finite difference
methods, however, two applications of a first derivative results in a less accurate
representation of the derivative at high wave numbers as compared to one applica-
tion of a second-derivative operator, for the modified wave number goes to zero for
the first derivative at high wave numbers [Lele 1990]. To eliminate this inaccuracy,

we expanded all diffusion terms into two terms (non-conservative formulation):

8uy  Ou Bu,
H 2 + )
61:1 8::1 61:1

(3.24)

and use the formulae (3.21) and (3.22) to approximate the first and the second

derivatives, respectively.

To simulate shock/turbulence interaction, a shock wave is placed near the center
of the computational domain (Figure 3.1) and numerical simulations are performed
in a frame moving with the shock wave. Since the resolution requirements for a
shock wave are far more restrictive than those for turbulence, a non-uniform grid
is used in the streamwise (or z;) direction to resolve the shock wave structure.
The following mapping from the uniform computational grid to the non-uniform
physical grid is used to concentrate points near the region occupied by the shock

wave:

s — —‘{-,E%erf(cls)

1 ’
1 - 7derf(c;/2)

231:

(3.25)

where L is the length of the computational box in the streamwise direction, s is the
coordinate in the computational grid ranging between (—%, %), and b; and c; are
the stretching parameters controlling grid stretching ratio and the grid stretching
rate respectively. The grid stretching ratio, (Azq)max/(AZ1)min =~ 1/(1 — by), was
chosen to be between 5 and 20. Higher grid stretching is required for a larger
separation between the shock wave thickness and turbulence length scales. With
larger ¢, the rate of grid stretching is faster. In this work ¢y is chosen to be 5. If

we define the metric quantities:
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dz, _I l—blexp(—c%sz)

R =2 =1, , (3.26)
ds 1-— %{-ﬁerf(cl/2)
B d%z, _ 2b1c%3 cxp(—c%sz) (3.27)

= 3 ’
ds? 1- g}\/;rerf(c]/2)

the first and second derivatives of a function y can be computed in the computa-

tional space as follows:

dy 1 dy
2 2 ]
Oy 10 h oy (3.29)

6z% B W_a? B Wa

3.2.3 Nonlinear Numerical Stability

Compressible flow simulations with conservative formulation are especially prone
to aliasing errors because evaluations of velocity and temperature from the conser-
vative variables involve the division operation which has no clear interpretation in
the Fourier space. A possible way of conducting alias-free simulation of compress-
ible turbulence is to solve for the specific volume in a mass conservation equation.

We discuss this alternative in Appendix C.

Feiereisen et al. [1981] have noted that the use of a special form of the convection
term with a symmetric differencing in space ensures conservation of total energy
in the inviscid limit. Blaisdell et al. [1990] have explicitly shown that this special
form helps to control aliasing errors. For the numerical stability, we evaluate the

convection term in the momentum equations in the following special form:

dpu;u; 1 [Opu,u, Ou; Opu ;
adalle U p'_]+puj__ui+uip1 .
az]' 2 81:1- 61‘1 01:]-

(3.30)

L
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In a spatially evolving simulation, spurious numerical waves are generated at the
inflow as soon as disturbances encounter the outflow boundary [Buell and Huerre,
1988]. These numerical waves have a wave length of twice the grid size and continue
to grow in time. To remove these spurious waves, localized filtering near the inflow

plane is performed using the following scheme:

y,-f_l + aly,f + y.-fH = ap (¥i-1 + 2y + yi+1) + a3 (yi—2 ~ 2yi + ¥iz2), (3.31)

where y and y/ are the unfiltered and the filtered quantities respectively. We choose

i BT 7s
The unfiltered quantity is recovered for a; = 2. This filtering operation exactly re-

ay + 2 2—ay
ay = .

moves waves of twice the grid size. The filter transfer function in the Fourier space,
defined as the ratio of the Fourier transforms of y/ and Y, is shown in Figure 3.2.
For a; close to 2, filtering operation is more localized at high wave numbers. Since
the spurious numerical waves travel mainly in the streamwise direction, appearing
first at the inflow boundary with wave length of twice the grid size, the filtering
operation is performed only in the streamwise direction near the inflow boundary

over less than a tenth of the computational domain with a; = 2.01.

3.2.4 Inflow/Outflow Boundary Conditions

Many of the existing boundary conditions for the compressible Navier-Stokes
equations are based on the concept of the characteristics along which information
travels. The number of boundary conditions required at a point on a boundary
varies with the flow conditions at that point: in general, the number of boundary
conditions which must be specified at a point on a boundary is equal to the number

of incoming waves (from outside of the domain) at that point [Thompson 1987].

In this work, the inflow is kept supersonic so that we can specify all the flow
variables. This is because supersonic inflow guarantees all the information to be
incoming. Mean values of velocity, pressure, and density are set to be constant over
the inflow plane. The turbulence velocity signal generated at the inflow boundary

is designed to be isotropic with a prescribed spectrum with no fluctuations in
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pressure and density. Appendix D gives a detailed description and validations of

the procedure for generation of inflow turbulen-e.

To generate inflow turbulence, we use the following three-dimensional energy

spectrum function:

B(k) = 161/ = 22(1-) exp [-2(1-)), (3.32)

where u, is the rms turbulence intensity and k, is the most energetic wave number.

This spectrum has the following properties:

q2 fors) 3
= / E(k)dk = Zu? (3.33)
2 0 2
® 2 15 2,2
€e=2u k“E(k)dk = Z/‘uoko (3.34)
0
_ A _pto
Re) = ” -2Vka, (3.35)

where v is the kinematic viscosity, and A is the longitudinal Taylor microscale.

Outflow is subsonic in the mean sense, which requires special attention in ap-
plying boundary conditions, since one of the characteristics is incoming (from out-
side). We can determine what information the outgoing characteristics carry from
the solution inside the computational domain. But difficulty arises in determin-
ing contributions from the incoming characteristics. Since we are limited to the
information inside the computational domain, the information that can be used to
determine the effect of incoming characteristics is incomplete, and we need to make

some assumptions.

Thompson’s boundary condition {1987] is derived from the assumption that the
unknown incoming data have no effect on the flow variables at the boundaries.
Poinsot et al. {1990] extended Thompson’s boundary condition to include viscous

effects at the boundaries. Giles’ [1990] boundary condition is designed in the Fourier
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space so that small amplitude waves may leave the computational domain without

reflection.

In this work, we tested the boundary conditions by Thompson [1987], Poinsot
et al. (1990}, and Giles [1990]. We found that they were comparable in suppressing
numerical reflections at the boundary, with Giles’ boundary condition being supe-
rior to the other two. However, this improvement had virtually no effect on the
turbulence statistics downstream of the shock wave (for details, see Appendix G).
For simplicity of implementation, we used Thompson’s method in most of this work.
In the remaining part of this subsection, we show the derivation and application of

Thompson’s boundary condition.

The basic idea is to consider the characteristic form of the Euler equations at
the outflow boundary. Outgoing characteristics use information from within the
computational domain, and can be computed with no difficulty. Incoming char-
acteristics are handled by setting the time derivative of their amplitude equal to
zero, thus ensuring that no waves enter the domain during the simulation, giving

the boundary conditions a non-reflecting character.

We begin by writing the Euler equations in terms of the conservative variables

Q= (pvpulvpu27pu3vET)T:
0Q OF .
— + -— =(RH 3.36
5+ g, = (RHS), (3.36)
where
o T
F o= <PUI‘PUT + pypujug, puyug, (E7 + P)ul) - (3.37)

We are concerned here only with the derivatives in the z; direction. Derivatives
in ry and r3, and viscous terms, are evaluated at the boundary using information
from the previous substep, and are included in the right hand side (RHS). The
flux Jacobian of F'is more easily derived if we work with the non-conservative flow
variables I = (p,uj,ug,u3,p)!. Setting A = AF/AQ (i.e. A;; = 0F;/8Q;) and
R = 9Q/d7, we have

o oU
v Al - RTY(RHS) (3.38)
ot Jz,
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and

OF oU

Now A can be diagonalized, A = T~ AT, where the elements of the diagonal

matrix A are (uy — ¢,uy + ¢,uy,uy,uy). Equation (3.39) can now be written as

oF 18U
== =RT ). :
5a; = T (AT5) (3.40)

This is the relation that is imposed at the boundary to calculate dF/0z; in (3.36).

The quantity in the parenthesis in (3.40) is a vector. The sign of each eigenvalue
in A is used to determine the course of action for each element in the vector. If
the characteristic velocity is directed out of the computational domain (positive
eigenvalue at the outflow boundary), then the quantity is calculated as it stands
using a one-sided difference. On the other hand, if the characteristic is directed
inwards then the element is set to zero. This gives the non-reflecting character of
the boundary condition for waves at close to normal incidence. The final step is to
premultiply the vector by the matrices T~! and R. The various matrices required

in the computation are:

0 —pc 0 0 1
0 pc 0 0 1
T=1c2 0 00 -1, (3.41)
0 0 10 0
0 0 01 0
o 00 3o
1 1
- 0 0 0 -
-1 2pc 2pc
T"=1 0 o010 0 | (3.42)
0 0 01 0
10 00 5
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and
1 0 ¢ 0 0
u] P 0 0 0
R=| w2 0 » 0 0 (3.43)
ug 0 0 p 0
B puy puy puz iy

3.2.5 Initial Conditions

To simulate shock turbulence interaction, we initialize the field by superposing
isotropic homogeneous turbulence on the corresponding stationary laminar shock
wave profile. This presumably reduces the time required for the shock wave and
turbulence to reach statistically stationary state. The turbulence field used in
the initial condition has the same energy spectrum as turbulence generated at
the inflow boundary during the computation. Rogallo’s scheme [1981] is used for
turbulence initialization, and attention is given to ensure smoothness of turbulence
signal at inflow boundary. We solved the Navier-Stokes equations to get a laminar
shock wave, and used this solution to initialize a planar laminar shock wave in the

computational domain.

3.2.8 Statistical Averages

Two different statistical averages are used: the conventional ensemble average
and the Favre (or density-weighted) ensemble average. The ensemble average of
a quantity y(zy,zg,r3,t), y(zy), is defined as the average over time and over the
(homogeneous) transverse directions. The ensemble-averaged equations in com-
pressible turbulence are usually too complex. The averaged equations are simpler
using density-weighted averages suggested by Favre [1965a, 1965b}. The density-

weighted average y(z1) is defined as

ylry) = —. (3.44)

The fluctuations from the ensemble average and from the Favre average are defined

as
! S !
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The ensemble average of y" is not zero; instead,

y=y-2
P
_ Pty
=y-
P
)
:-?y. (3.45)

3.3 Validations

In this section, we provide a validation of the computer code by separate com-
putations of some of the components of the shock/turbulence interaction problem.
For a direct numerical simulation of spatially evolving turbulence interacting with a
shock wave, the shock wave needs to be well resolved, spatially evolving turbulence
must be properly simulated, and the interaction of turbulence with a shock wave
must be accurately predicted. For this purpose there are at least three independent
categories to be validated: (1) simulation of spatially evolving turbulence (without
a shock wave), (2) resolution of shock wave structure, and (3) interaction of flow

inhomogeneity with a shock wave.

The validation of the first category is given in Appendix D by comparing the

simulation results of spatially evolving turbulence with the experimental data.

Validations of the other two categories are performed in the present section.
The capability of resolving the shock wave structure is validated by solving the
one-dimensional Navier-Stokes equations, investigating the shock wave profile qual-
itatively and comparing the shock wave thickness with a theoretical prediction.
Subsequently, interaction of a flow inhomogeneity with a shock wave is checked by
investigating vorticity production through the baroclinic torque and comparing the

resulting circulation with a theoretical prediction.
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3.3.1 Laminar Shock Wave

The shock wave structure was resolved by solving the Navier-Stokes equations.
Prediction of profiles across the shock wave was found reliable up to an upstream
Mach number of 2.0 [Sherman 1955]. Beyond this Mach number, the thermal equi-
librium assumption is no longer valid, preventing use of the Navier-Stokes equations
to resolve the shock wave structure. Except for monatomic gases, however, the
thickness of the shock wave as a solution of the Navier-Stokes equations is found
to be underpredicted even for MIU < 2.0 [Lumpkin 1990].

In the following, we test the ability of our numerical scheme to resolve a normal
shock wave in steady flow and estimate the number of grid points required across
a shock wave to properly resolve its structure. We computed the normal shock
wave for the upstream Mach number, J\IIU = 1.2, where superscript U denotes an
upstream value. Calculations are performed in a frame fixed on the shock wave
where the inflow is supersonic and the outflow subsonic with uniformly distributed
201 gnid points.

The initial conditions of density, pressure, and velocity are given by the following

expression, which satisfies the Rankine-Hugoniot relations across the shock wave:

U D

— ¥y tanh (2221, (3.36)

+(y X

y(z1) =y
where superscript D represents a downstream value, y is one of the flow variables,
and z] and b° represent the shock center position and the initial shock thickness
parameter, respectively. The flow variables are fixed at the supersonic inflow and
Thompson’s non-reflecting boundary conditions are applied at the subsonic outflow
boundary. As the Navier-Stokes equations are advanced, initial profiles relax or

steepen into equilibrium profiles.

The profiles of velocity, pressure, temperature, dilatation, and entropy across the
shock wave are shown in Figures 3.3(a-e). All the Rankine-Hugoniot conditions are
satisfied without any spurious oscillations across the shock wave. The dilatation
profile shows that the shock wave is well resolved without any numerical problems.
The entropy profile shows a local peak inside the compression zone as well as a net

increase across the zone. As flow passes through a shock wave, flow kinetic energy
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is converted into internal energy by viscous dissipation, which leads to entropy
production; the resulting temperature gradient leads to further irreversible entropy
production and reversible entropy flux. Irreversibility from viscous dissipation and
temperature gradient are responsible for the overall increase of entropy, while the
reversible entropy flux leads to the peak inside the shock [Lagerstrom 1964]. Figure
3.3(f) shows the budget of terms in the entropy transport equation,

o L (R i LAY
P ldzl " dzy \Tdzx; 3T \dz; T2 \ dz;
e VL ~ O\

s o~

(1) (1) (111 (1v)

[Thompson 1984}, where the convection (I) is balanced by the sum of the reversible
entropy flux (II) and the entropy production by viscous dissipation (III) and irre-
versible heat transfer (IV). The figure verifies that the entropy decrease inside the
shock wave is due to the reversible entropy flux (II). The primary source of the net
entropy increase across the shock wave is found to be the viscous dissipation of the

flow kinetic energy (III).
The shock wave thickness, é,, defined as

U D
-U
8y = iu (3.37)
|dU1/dzllmax
is estimated to be
4 4 ~ -1 1
by —— | = 3.38
: 7+1(3+ Pr)Re(M‘—l) (3.38)

for very weak shocks [Shapiro 1953], where Re is defined as (3.15a) and

y+1i MU2
At 2
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The shock wave thickness in the simulation is within 7 percent of the estimate in
(3.38) when the grid spacing in the shock zone is less than a third of the shock
wave thickness, that is, Az; < %6,.

3.3.2 Thermal Inhomogeneity Interacting with a Shock Wave

A second validation study was performed to check the accuracy of the scheme
in the prediction of the interaction of time-dependent disturbances with a shock
wave. This study also provided an evaluation of Thompson’s boundary conditions

at the unsteady subsonic outflow boundary.

The interaction of a thermal inhomogeneity with a shock wave with MIU =1.20
was simulated. Inhomogeneity at the inflow boundary had a circular shape in the

(t-z9) plane as

U nT
T(z2,t) = L (1 + ag exp [— ((U1 (t = t))* +2§) D : (3.39)

— 2
v-1 bt

where at is the relative amplitude of the disturbance, ¢ the time at which the cen-
ter of the disturbance passes through the inflow plane, by the length scaie of the
disturbance, and np the parameter controlling the sharpness of the disturbance’s
edge. The simulation used 201 x 101 uniform meshes. The values used in the simu-
lation are ar = 1/10,bp = Lo/4, and np = 10. (L9 is the size of the computational
box in the z3 direction.) Pressure at the inflow plane is kept uniform and constant.
Thompson’s non-reflecting boundary condition is used at the outflow boundary and

periodic boundary conditions are used in the transverse direction.

Figures 3.4(a-c) show a time sequence of the temperature field. Upstream of the
shock wave the shape of the inhomogeneity is circular, and after the interaction
the shape is changed into an ellipse. The predicted aspect ratio of this ellipse
is within one percent of the exact value, equal to the density ratio across the
shock wave, pD/pU. In Figures 3.5(a-c), a t'me sequence of the vorticity field is
shown. Through the interaction of the thermal inhomogeneity with the shock wave,
vorticity is produced by the baroclinic torque. Figure 3.5 clearly shows counter-

rotating vortices generated during the interaction.
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Picone et al. [1985] have derived an expression for the circulation of the vor-
tices generated by the baroclinic torque, assuming the shock wave to be a planar
discontinuity and the thermal inhomogeneity to be a circular discontinuity. Their

expression for the circulation in the upper half plane is

vV +ub
r~ @/ - UID)—lUTIbT In(1 + a7). (3.40)
1

In Figure 3.6, the history of circulation in the upper half plane is shown. We see
that circulation peaks near the end of the interaction and decays through viscous
diffusion as vortices flow downstream. This peak strength compares favorably with
the estimation of (3.40) to within 5%, thus confirming the ability of the scheme
to predict the shock/disturbance interaction correctly. More rapid decrease in
circulation after t = 20 is due to the primary vortices leaving the domain. There are
trailing vortices with circulations of opposite signs to the main vortices generated
through the interaction (see Figure 3.7). The trailing vortices are prodrc d by the
relaxation of the curvature in the shock wave, and their strengths are an order of

magnitude weaker than the main vortices.

To check the accuracy of Thompson’s non-reflecting boundary condition in un-
steady flows, we examined the pressure field at times of entrance, interaction, and
exit of thermal inhomogeneity in Figures 3.8(a-c). The disturbance pressure at the
outflow boundary is not noticed in these plots. The level of disturbance pressure af-
ter the exit of the inhomogeneity from the computational domain is about O(1073)

compared to the mean pressure.
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CHAPTER 4

DIRECT NUMERICAL SIMULATION

In this chapter we discuss the results from direct numerical simulations of the

interaction between isotropic turbulence and a normal shock wave.

The simulations are conducted in a reference frame fixed with respect to the
mean shock position so that long-time statistical averages of turbulence quantities
could be obtained. In this frame of reference, the mean flow approaches the shock
wave with a supersonic speed and leaves with a subsonic speed. Inflow turbulence is
generated using the method described in Appendix D, and the pressure and density
are kept constant and uniform in the inflow plane. Fluctuations in pressure and
density naturally evolve as the flow approaches the shock wave. The parameters of
the simulations are the mean Mach number MIU, fluctuation Mach number M; =
g/c, and turbulent Reynolds number Re). As described in Appendix t, resolution

requirements limit the range of the parameters in the simulation.

Resolution of the shock wave structure limits the range of shock wave strengths;

mean upstream Mach number in this work was in the range 1.05 < MlU < 1.20.

Upstream of the shock wave, turbulence is weakly compressible and isotropic
with My < 0.2, where compressibility effects are negligible [Lee et al. 1991b]. The
range of My studied in this work is 0.057 < M; < 0.110.

The resolution requirement of turbulence length scales limits the range of tur-

bulent Reynolds numbers. Here we define two turbulent Reynolds numbers,

1. 2
(puju;)

e

and Rey = pu_ L (4.1)
[T

Rer =

where u' = (u;u;/B)l/z and the rate of dissipation of turbulent kinetic energy per

unit volume, ¢, and the longitudinal Taylor microscale A\, are defined as

aul_l u, i

— 2 _ Ta_
€= Tija and AL = e (4.2)

] Uy a
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respectively. In incompressible isotropic turbulence. the two Reynolds numbers
are related as Rep - %R(‘i. The range of the turbulent Reynolds number in the
simulation was 12 <. Rey <« 25, corresponding to 80 << Re < 300.

Thus, we have investigated interactions between weak shock waves and weakly
compressible isotropic turbulence at low Reynolds numbers. Table 4.1 lists the
simulation parameters. (The values of Al;, Rep, and Re) are taken at the location
just before the shock.) In this chapter. we discuss modification of turbulence by the

shock wave (Section 4.1) and modification of the shock wave by turbulence (Section
4.2).

Table 1.1 Parameters for the simulations of shock-turbulence interaction

Tase A 7T B T C 1D E F ]
(Grid 1129 - 647 1129 - 647 [193 - 647 1129 « 647 129 ~ 647 [129 - 647 |
M Do12e0 o120 | 120 120 1.10 1.05
3 T oa0 T0q02 095 0567 T 0762 T 0.100
"Rep 23R T 133 ST | 170 TR 179
[ Rey 1199 9 T TI0 T] 168 216 | 113
Tt 000 T, 010 0.10 050 067 0.10
RSN I 6 1 4 6
“Re T H00 500 | 500 ik 750 TH0
L] 035 0.35 0.80 0.925 0.90 0.85

* defined in equation (3.32)

1 defined in equation (3.25)

4.1 Modification of Turbulence

4.1.1 Preliminary Considerations

Figures 4.1(a-c) show the evolutions of mean flow quantities across the shock
wave, The mean flow quantities undergo rapid jumps through the shock wave.
The average downstreamn values of pressure and temperature are slightly higher
than the values for the corresponding laminar shock wave. These higher mean
values are cansed by the irreversible energy transfer from turbulent kinetic energy

to the internal energy by viscous dissipation. Mean pressure and temperature
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undergo slight overshoots just behind the shock wave followed by relaxations due
to nonequipartition of energy between fluctuations in pressure and velocity, as ow
passes through the shock wave |Sarkar ¢t al. 1991]. Suppose the total enthalpy of
the flow il = ;T ¢ uru? '2is constant behind the shock wave, then its fluctuation
vanishes, so that

'
hfr' - (‘;T* + Ul*“*l‘, = 0.

The effec: of temperature overshoot T' on the velocity fluctuation uy can bhe rep-

resented as

ut!
llll = -%"
(‘l)
B ™
(y-DT5 5
~ -1/ (4.3)

Even though the magnitude of the overshoot is small (about 5%) compared to the
jump across the shock wave with ‘”l(’ = 1.20, it contributes substantially to the

level of the velocity fluctuations (about 20% for a flow with Al — 0.15).

Velocity derivative skewness factor S, is defined as

Sa = ==t (4.1)

which has a value of about 0.4 to 0.6 1n isotropic turbulence. This value varies
with compressibility as well as with the turbulent Revnolds number iTavoularis «f
al. 1978, Erlebacher «f al. 1990, Figure 1.2 shows the evolution of the velocity
derivative skewnesses for case (. Turbulence at h,r; - 12 may be regarded as
reabistic. Since the mean position of the shock wave is at k,r;  IXX turbulence

interacting with the shock wave is considered to be realistic.

One-dimensional power spectrum E(hpirp) of a fluctuation ey ro e ) from

the average f(ry)is defined by

Efthyiry) j:(.rl,lx'g..r;;.f)fﬁ'i.m.kg.lrg.f]. (Y

(8




where (-) denotes averaging over the ryg direction as well as in tune, fis the Fourier
transform of f"in the ry direction, and f' 15 its complex conjugate. Figure 4.3 shows
the one-dimensional power spectra of velocity components and density upstream
of the shock wave for case (', where h,/ke is the largest (ke is the cutoff, or the
largest wave number represented in the simulation). The Kolmogorov wave number
kp - (e/p1*) 1Y of the simulation was kg /ko = 4.63, or kg /ke = 0.869. So, the
Rolmogorov scale is actually captured. The spectra decay at least three orders of
magnitude, which shows that the flow field is well resolved. The spectra of £y and
I3 are in rood agreement as expected of isotropic turbulence. The relation between

the spectra Ey(k9) and Fo(rs) for isotropic turbulence,

1 O (ks
Iy (k) Foylhy) ey T2k2)) (4.6)
2 Ok»

Hinze 1975 is also satisfied.

Figures 4.4(a-¢) show the evolution of the one-dimensional power spectra of
' uly and density, respectively, throughout the computational domain. Across the
shock wave, enhancement of the spectra can be noticed with more amplification
at large wave numbers. As the flow evolves further downstream of the shock, the
spectra drop over the entire range of the wave numbers. More amplification at
large wave nusbers across the shock wave leads to the decrease of the turbulence
length scales, especially the Taylor microscale.

Two-point correlation Qg and the corresponding integral scale, Agy , are

defined as

SV fl(x + rey)
Qrfalr) R
I £ (x)

Affa /0 Qffalr)dr, (4.7)

respectively, where the direction of separation is indicated by @ 2,3, In order to
check the adequacy of the computational box size in the transverse directions where

perindic hosndary conditions are used, we examine the two-point correlations of
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three velocity components, density and pressure in the z9 direction upstream of
the shock for case A, where k,/k. is the smallest (Figure 4.5). The longitudinal
velocity correlation Q22 2 decays monotonically to zero as expected. Even with some
problems in the sample size, the lateral velocity correlations, Q1 2 and Q33 2, show
approximate isotropy especially for small separations. (Correlations are calculated
by averaging over 65 saved fields which are separated in time by Atu'/A| = 0.064.)
The correlations of pressure and density fluctuations are found to be identical. The

size of the computational box in the transverse directions appears to be adequate.

4.1.2 Evolution of Turbulent Kinetic Energy

Figure 4.6 shows the evolution of the normal components of the Reynolds stress

tensor R;; defined by [Favre 1965a, 1965b]

", n

— (4.8)

The off-diagonal components of R;; stay close to zero over the entire flow field
due to symmetry (isotropy upstream and axisymmetry downstream) in the velocity
fluctuations. The statistics of the streamwise component in the shock zone contains
the intermittency effects due to the oscillations of the shock. (The boundaries of
the shock oscillations are defined as the locations where %;; = 0.) The effect of
kinematic oscillation of the plane shock wave on the statistics is investigated in
Appendix F. All the velocity fluctuations are enhanced during the interaction as
predicted by the linear analyses (RDT and LIA). Turbulent velocity fluctuations are
anisotropic behind the shock wave. The return to isotropy is found to be negligible
compared to the decay rate. The amplification in the variance of transverse velocity
fluctuations, which is defined as the ratio of the downstream maximum value to
the upstream minimum value, lies between the near-field and far-field predictions
of LIA due to the osci’iatory movement of the distorted shock front: for AllU =1.2
(case C), the simulated amplification is 1.19, while the near-field LIA prediction
is 1.45 and the far-field LIA prediction is 1.15. The streamwise component Ry
undergoes rapid increase behind the shock wave: the linear analysis (LIA) predicts

monotonic decay for all the velocity fluctuations (Figures 2.5-2.7). (Discussions
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on the anomalous behavior of the statistics r.ear the outflow boundary in Figures
4.6-4.9, 4.11, and 4.23 are given at the end of this section.)

In order to identify the mechanisms of amplification and rapid evolution of tur-
bulent kinetic energy, the terms in the transport equation of the Reynolds stress
tensor R;; were computed. The transport equation for R;; [Dussauge et al. 1987]

1s

. ORy; du; A — O —; 0P
pu Oz ——p<le8—l'k+Rjk61:k) —(u-————+u-———j)

(1) (I1) (I11)

i i SR P v v B v
e o) o (k) e
7 1l

(1v) (V) (V1)

The convection (1) of the Reynolds stress tensor balances with the production by
the mean .‘'rain field (II) and the production by the mass fluctuation (III), the
pressure work (IV), the turbulent transport (V), and the viscous dissipation and
transport (VI).

Figure 4.7 shows the TKE budget. The statistics of the flow variables inside the
shock wave are contaminated by the intermittency effect caused by the unsteady
distortion of the shock wave (Appendix F). Turbulence amplification mechanisms
in shock-turbulence interaction cannot, therefore, be unambiguously identified by
investigating the statistics of the numerical simulations inside the shock zone. Out-
side the shock wave, the viscous dissipation is the dominant term and the pressure
work term just downstream of the shock is the only other term which has a compa-
rable magnitude. The rapid evolution of TKE just downstream of the shock wave

is due to pressure work.

The pressure work term which causes the rapid evolution of TKE downstream

of the shock can be decomposed into two terms, the pressure dilatation plu’i’i and
'

the pressure transport term (p'ui’)’,’ as

"p’zu’zl — p’u'i"i ~ (p'u'i')_v,'. (4.10)




Positive pressure dilatation leads to reversible energy transfer from the mean inter-
nal energy to the turbulent kinetic energy, while the pressure transport is respon-
sible for redistribution of TKE in the inhomogeneous direction. These decomposed
terms are shown in Figures 4.8(a) and (b). The decomposition inside the shock
wave is very similar to that in the kinematic oscillation of a plane shock wave (Ap-
pendix F), which suggests that the behavior of the profiles inside the shock wave
are mainly due to its unsteady motion. The decomposition downstream of the
shock wave, Figure 4.8(b), shows that the rapid evolution of TKE is caused by the
pressure transport term and that the pressure dilatation acts mainly to convert the

mean internal energy into turbulent kinetic energy.

Figures 4.9(a) and (b) show the budgets of Rj; and Rg; outside the shock wave.
The effect of the pressure work term is quite pronounced in the R;; equation. The
R,5 equation has no pressure transport, since the flow is homogeneous (periodic
numerically) in the z, direction. Therefore, the rapid evolution of TKE is mainly

from the streamwise fluctuations.

In numerical simulations of two-dimensional inviscid turbulence interacting with
a shock, Rotman [1991] found that turbulence is less amplified for the higher up-
stream turbulence level for the same mean shock strength. Here, comparison is
made for the amplification ratios of transverse velocity fluctuations of cases B and
D, both with the same shock strength, MIU = 1.20. Turbulent kinetic energy in
case B is three times higher than that in case D, while turbulent Reynolds numbers
are comparable. The amplification ratio is higher for the weaker upstream turbu-
lence by about 8%: the amplification ratio is 1.19 for case B and 1.28 for case D.
Even though Rotman’s simulation had a stronger shock wave with M]U = 2.07, the
reduction in amplification was about the same for the same change in the upstream

turbulence intensity.

Application of Thompson’s [1987] bourdary condition at the outflow generated
anomalous statistics of the streamwise velocity fluctuations in a region near the
outflow (Figure 4.6), pressure work (Figures 4.7-4.9) and dilatation (Figure 4.11).
These anomalies are due to an incomplete suppression of the acoustic wave reflec-
tions. In order to investigate whether these anomalous behaviors affect the overall
evilution of the flow downstream of the shock wave, the more refined boundary
conditions of Giles [1990] was implemented in the code. These numerical experi-

ments verified that these undesirable behaviors were confined to only a small region
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near the boundary. (The Giles boundary condition implemented is a first-order ap-
proximation for the free propagation of a wave through the boundary, whereas the
Thompson boundary condition is a zeroth-order approximation.) A brief descrip-
tion of the Giles’ boundary condition and a comparison of statistics are found in

Appendix G.

4.1.3 Dilatation and Vorticity

Up to the turbulence Mach number M; of about 0.5, the dissipation rate of
turbulent kinetic energy € can be approximated by neglecting the effect of viscosity
variations, as {Lee, Lele, and Moin 1991b)|

:ﬁ:;;;(l i -Xﬁ), (4.11)

where, § = u; ; is the dilatation and x? is the ratio of the dilatation and vorticity

variances defined by

X = (4.12)

~

1

-~

Therefore, the ratio x? is a relative magnitude of the compressible dissipation rate

to the tncompressible dissipation rate.

The viscous term in the TKE transport equation, ;77'_&,_1:, reduces to the ex-
pression (4.11) in homogeneous turbulence if property variations are neglected.
This approximation is tested in Figure 4.10. The contributions of turbulence inho-
mogeneity and property variations to the viscous issipation are found negligible

outside the shock zone.

As noted in (4.11), variances of dilatation and vorticity contribute to the dissi-

pation rate of turbulent kinetic energy. In the following, we investigate the effect of
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a shock wave on the variances of dilatation and vorticity. The evolutions of dilata-
tion variance and enstrophy are shown in Figure 4.11. The variance of fluctuating
dilatation is enhanced by three orders of magnitude across the shock wave, and
decays very rapidly behind the shock wave. Enstrohphy is also amplified is passage
through the shock.

Figure 4.12 shows the evolution of the components of vorticity across the shock
wave for case C. Linear analyses predict that transverse components of vorticity are
amplified whereas the streamwise component is unchanged. The simulation results
shown in Figure 4.12 (and all other simulations) are consistent with the linear
analysis prediction. Turbulence behind the shock wave becomes axisymmetric in

vorticity fluctuations as well as in velocity fluctuations.

Figure 4.13 compares the amplifications of the transverse vorticity for different
shock wave strengths. The amplification is smaller for the weaker shock. The am-
plifications of the transverse vorticity across the shock wave computed from the
simulations compare favorably with the predictions of linear analyses: the max-
imum difference is 5% for case F with IWIU = 1.05 and M; = 0.10, where the
local shock wave structure is significantly modified (see Sec. 4.2.2). The effect of

turbulent Reynolds number on the vorticity amplification is found to be negligible.

Figures 4.14 (a) and (b) show the evolutions of vorticity for flows with different
turbulent Reynolds numbers interacting with a shock wave of the same strength.
Vorticity stays fairly constant upstream of the shock, and after the interaction
transverse components decay whereas the streamwise component increases near the
shock wave. In order to check if the increase of the streamwise vorticity component
behind the shock (Figure 4.14 (a)) is caused by poor resolution of the simulation,
a coarse grid simulation with 97 x 48 x 48 points was performed. Figure 4.14
(c) compares the statistics of vorticity fluctuations with those from the original
simulation with 129 « 64 x 64 grid points. The variance of the streamwise vorticity
fluctuation predicted by the coarse grid simulation is slightly less than that of
the oniginal simulation, thus, confirming that the increase of the variance of the

streamwise vorticity behind the shock wave 1s not from a numerical artifact.

In order to identify the dominant mechanisms for the vorticity amplification and
the Reynolds number effects on the evolution of vorticity, the transport equations
for vorticity variances were examined. The fluctuating vorticity equation, which is

obtained by taking the curl of p T <(3.11) is:
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where s;; = %(u,-,j + uj,;) is the strain rate. Multiplying (4.13) by 2w}, and taking

the average over the homogeneous transverse directions and over time gives:

U Jwowg = 2w W3+ 2w ws 20 W F —w! Wl s
) Bz a™vaj a1 a) a*a”]] a*aj;
J —_—
""'—’(I) (1) (111) (IV) (V)
¢ 1
+ 2¢45kwhp ;P k/ P2 j(wéwfxuk),k + &a (4.14)

(V1) (V1) (VIII)

‘Blaisdell ¢t al. 1990}, where the repeated Greek indices are not summed. Here ®,

is the viscous dissipation and transport, given by

1
bo = 2¢440h (;‘r‘kq‘q) . (4.15)
lJ

The term on the left hand side of (4.14) represents the advection by the mean flow.
The first and second terms on the right hand side represent vortex stretching by
the mean and turbulent strain fields, respectively. The next two terms represent
production (removal) by dilatation. The fifth is the vorticity production by the
baroclinic torque, the sixth is the transport by the turbulent velocity field, and the

last term is the viscous dissipation and transport.

The balance of the terms in (4.14) for the transverse vorticity, w,'22 i1s shown
in Figure 4.15. The averages are taken over the homogeneous directions, r9 and
r3, and over the 65 saved spatial fields for case A which are separated in time by
Atu'/A - 0.064. All the terms in (4.14) were evaluated independently, and the

maximum imbalance, the difference between the LHS and the RHS, occurs outside
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the shock zone and is about 10% of the largest terms, the viscous dissipation and
turbulent vortex stretching. Inside the shock wave, the vorticity-dilatation (IV+V)
is the dominant source for vorticity amplification. The viscous term (VIII) is bal-
anced with the vortex stretching (II+III) beyond the shocked region. Baroclinic
torque (VI) is less than 1% of the leading terms throughout the domain in all the
simulations, including case F where the shock wave is strongly distorted. The effect

of turbulent transport (VII) is also found to be negligible.

Figure 4.16 shows the vortex stretching and vorticity-compression by the mean
and turbulent velocity fields, as they appear in (4.14). Even with the overestima-
tion of turbulent strain rate in the shock wave due to intermittency, the vorticity-
mean compression (IV) is much larger than the other terms inside the shock. The
dominance of the vorticity-mean compression explains the good comparison of the

simulation results with the predictions of the linear analyses.

Even though amplifications of the transverse components of vorticity obtained
in the simulations are very close to the predictions of linear analyses, they are
systematically lower than the linear predictions. The difference becomes larger
for the higher upstream turbulence levels, or for the larger values of the ratio,
AI;/(AIIU — 1). Figures 4.17 {a) and (b) show the balance between the nonlinear

2 . . . .
terms in the w'z“ equation and their net effect on the w'22 amplification. The net

effect of the nonlinear terms inside the shock wave acts against the amplification
of vorticity. However, this nonlinear effects are negligible compared to the linear

effects (Figure 4.15).

Figure 4.18 shows the balance of the terms in (4.14) for the streamwise vorticity

w'lz. Inside the shock wave, eflects of vortex stretching (II+1II) and vorticity-

dilatation (IV+V) tend to cancel each other, resulting in no appreciable change in

the streamwise vorticity.

As shown in Figures 4.12, 4.14(a) and (b), there are differences in the evolution of
the streamwise vorticity for flows with different Reynolds numbers. To identify the
effect of the turbulent Reynolds number on the evolution of vorticity, the vorticity
budgets for flows with different Reynolds number are shown in Figures 4.19 (a-d).
Outside the interaction zone, the dominating terms in (4.14) are the viscous dissi-
pation (VIII) and the vortex stretching (II+11l)  mainly by the turbulent strain

rate. Both the stretching and dissipation increase by about the same amount with
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the increase of the Reynolds number in the budget of the transverse vorticity com-
ponent, resulting in no significant Reynolds-number dependence in the evolution
of the trausverse component. However, some Reynolds-number dependence was
found in the budget of the streamwise vorticity evolution: the turbulent stretching
overtakes the viscous dissipation behind the shock wave for the higher Reynolds
number flow, resulting in = higher increase in the streamwise vorticity component
behind the shock wave (Figure 4.14(a)).

For homogeneous turbuience with uriform density, the viscous dissipation and

transport term ®, reduces to the homogeneous viscous dissipation d>{,1

" T :
@, = ~21/u.)0v]u)a‘j. (4.16)

- . 14 . . .
Fhe evolutions of ®, and < are provided in Figure 4.20. The effects of turbulence
inhomogeneity and density variation on the viscous term are found to be negligible

except for ¢, in the shock zone.

4.1.4 Turbulence Length Scales

Figure 4.21 shows the evolution of the integral scales defined in (4.7) — Ayy 2, A, 2,

and App 2. Across the shock wave, the decrease in the transverse velocity integral
scale A22 9 is quite proncunced. The length scales of density and pressure fluctua-
tions stay very close to each other throughout the domain. They grow upstream of
the shock wave, decrease signiticantly across the shock, and recover to the upstream

levels in a short distance downstream of the shock wave.

Fignre 4.22 shows the evolntion of the turbulence length scale | defined as

o (4.17)

€
As the flow approachesthe shack wave, thislength scale decreases, probably because
the energy spectrinm becomes fuller at high wave numbers. (The inflow spectrum
given in {3.32) has virtually o energy bevond k/ky > 2.) The length scale decreases
further across the shock wave ansd rizes rather rapidly over a short distance behind
the shock wave he length coaie - <timation instde the shock wave is significantly

. . . R . .
contarpinated byt cvere tinaton of @7y due to the oscillaiion of the shock wave.
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Another length scale of interest is the longitudinal Taylor microscale Ao defined
in (4.2). Figure 4.23 shows the evolution of the Taylor microscales thrcughout the
computational domain. The evaluation of the streamwise microscale Aj inside the
shock wave is also significantly contaminated due to the shock wave oscillation.

Noticeable reductions of all the microscales are found across the shock wave.

Figure 4.24 compares the Taylor microscale reductions in a transverse direction
from different cases with predictions by LIA and RDT. For the range of upstream
Mach numbers simulated (A'I]U = 1.05,1.10,1.20), the predictions by LIA and RDT
are virtually the same. Except for cases with strong upstream turbulence intensity,
the simulation results compare favorably with the predictions by the linear theories.
As the upstream turbulence intensity increases, the transverse Taylor microscales
decrease more across the shock wave with the same JWIU (compare cases A, B, and
C). The streamwise Taylor microscale evolves rapidly downstream of the shock and

it 1s difficult to identify its “downstream value.”

4.1.5 Thermodynamic Properties

In Figure 4.25(a), we present evolutions of rms pressure, density, and tempera-
ture fluctuations (pr, pr, and T;). As the flow passes through the shock wave, all
the fluctuations are amplified, followed by a rapid decay. These fluctuations are

virtually isentropic. The polytropic exponent nj(z;) is defined as
ny(zy) = (4.18)
which is equal to 4 (1.40 here) for isentropic fluctuations. Figure 4.25(b) shows

evolutions of the polytropic exponent. The polytropic exponent stays close to the

isentropic value throughout the domain, varying between 1.35 and 1.40.

In order to identify the mechanisms of amplification and decay of the density
fluctuation variance p'z, the budget for the density fluctuation variance [Taulbee et

al. 1991] is investigated:

_ 9p" 50— Op du oul Bpu
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The convection (I} is balanced by the productions by the mean compression (I1)
and the mean density gradient (I11), density-dilatation correlations (IV+V), and
turbulence transport (VI). Figures 4.26 (a) and (b) show the balance of the terms
in (4.19) for the density fluctuation variance, /;'E The averages are taken over the
homogeneous directions, ry and r3, and over the 65 saved spatial fields which are
separated in time by Atu'/A; -~ 0.064 for case A. Across the shock wave, density
fluctuations are enhanced mainly by the production due to the mean compression
(IT) and the mean density gradient (1II). Density-fluctuating dilatation correlations
(IV+V) are significantly overestimated inside the shock wave due to the shock front
oscillation, but their net effect is the suppression of the density fluctuation during
the interaction. Behind the shock wave, however, the evolution of ;)ﬁ is dominated

by the density-fluctuating dilatation correlation (I1V).

Figure 4.27 shows the jeint probability density function of the instantaneous
pressure versus instantaneous density scaled with their local mean values, p(z)
and p(ry). It 1s clear that the isentropic relations is satisfied for the instantaneous

flow, even inside the shock wave. The local polytropic exponent ny(x) is defined as

The average polytropic exponent 7y is obtained by averaging ny(x) over the flow
field. {The states with [p'(x)/p(z1)l < 10" ? were excluded in the averaging process
to avoid large scatter.) The average polytropic exponent was found to be very close
to the isentropic value (1,/9 = 1.01).

Examining a limited experimental data sets. Morkovin [1962] (see also Bradshaw
1977 ) pointed out that in non-hivpersonic boundary layers the acoustic mode is
negligible and the entropy mode is very small for normal rates of heat transfer. He

then deduced that

plip <1, 7 T, << 1
so that
i i "
I o U
r o h o MDY (4.20)
I [ ) 1
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where the total temperature is Ty = T + u;u;/2cp. This is known as Morkovin’s
Strong Reynolds Analogy (the assumption of negligible total temperature fluctu-
ations) and is widely used to correlate thermodynamic property fluctuations with
velocity fluctuations in compressible turbulence closures. A more general correla-

tion through the polytropic coefficient n is suggested by Rubesin [1976] as

~

! 1
_p__n T
=nS =1 (4.21)

)~

3| |

Morkovin’s relation is a special case of (4.21) with n = 0.

Figure 4.28 shows the correlation between density and temperature fluctuations,

¢c,T, defined by

ITII

Lo} = ==

T 2
o

A~

)

=l

which would be n — 1 if (4.21) were correct. Since the polytropic coefficient n
was found to be close to the isentropic exponent (y = 1.40), the validity of the
Morkovin’s analogy appears to be questionable (with wrong signs). The same
conclusion was reached by Blaisdell et al. [1990] in their numerical simulation of
homogeneous shear flow. Using Gibbs’ equation and the equation of state of an

ideal gas, the pressure fluctuations can be represented in terms of the fluctuations

(3P (gg) ,
p_<ap>sp+ 3s ps, (4.22)

where s is the dimensionless entropy defined as s = s*/c;,. When the temperature

in density and entropy as

(or entropy) inhomogeneity in the flow is not significant, or

(AR CIR

’
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then (4.22) reduces to the polytropic relations (4.21) with n = 4. This inequality

can be translated into terms which can be estimated [Thompson 1984, p.144]| as

luiil >> ‘(77;1) [e + rcVzT] ' . (4.23)

The RHS of (4.23) was found to be less than 5% of the dilatation in the present
simulations, which verifies that the relations between thermodynamic property fluc-

tuations are nearly isentropic.

Expression (4.21) reduces to the Strong Reynolds Analogy (4.20) if there exists
an appreciable mean temperature gradient in the flow and the pressure fluctuations
are negligible. The Strong Reynolds Analogy is, therefore, a good approximation
in turbulent boundary layers where mean gradients of temperature and density

normal to the wall are large.

4.1.86 Modeling Issues

In the k-€¢ formulation for compressible turbulence, the transport equation for
turbulent kinetic energy (equation (4.9) with 1 = ) has more modeled terms than
its incompressible counterpart. The additional terms are the compressible dissipa-

“ A

tion € (included in u}'7 1), the pressure-dilatation correlation p’u;’,i (included in

—u'l-'p'i) and the average turbulent mass flux ;'7 Zeman [1990] and Sarkar et al.

[1991] proposed models which parametrize compressible dissipation in terms of in-
compressible dissipation ¢/, and the fluctuation Mach number M as ¢ = el f(My).
Both models were successful in predicting the suppression of the spreading rate of
compressible mixing layers at high convective Mach numbers. Coleman and Man-
sour [1991] proposed a modified turbulence model for the incompressible dissipation

T . - -
«* when turbulence is subject to mean compression.

Zeman [1991a] has identified the pressure-dilatation correlation with the rate
of change of compressible potential energy, represented by the pressure fluctuation

: 2
variance p'“, as

e 2
PU.i= "% o
' 2;562 01!1

Q

uj

(4.24q)
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Zeman assumed that the rate of change of p'?is governed by a nonlinear relaxation

mechanism which drives p7 to an equipartition value [Sarkar et al. 1991]:

2 2
- 0p% _ p* -t
161:1 Ta ’

(4.24b)

where the acoustic time scale 75 is

M;r
Ta =
\/54(1 + M2/3)

(4.25a)

(r = pq?/e! denotes the turbulence time scale), and the equilibrium value p? is

pr  aM?+ /M
piq%e? 1+ aM? + M}

(1.25b)

a = 1 and 8 = 2 were chosen to best match the DNS results for highiy com-
pressible turbulence [Blaisdell et al. 1990]. The expression (4.25b) combines two
assumptions: (1) the equilibrium ratio of compressible to solenoidal turbulent ki-

netic energy is

g% /q} = aM? + BM},

and (2) in equilibrium, the compressible potential and kinetic energies are in

equipartition,

Pe = Pape’.
Zeman [1991b] and Durbin and Zeman [1991] proposed modifications for (4.24a)

and (4.24b) to account for the effect of the mean strain rate as

e (4.26a)




and

_op?  p?-pl ~3 01
=P P _, 2% .
n = TP g e P70, (4.260)

where ¢y = (5 — 3v)/12.
As shown in Figures 4.29(a) and (b), the model in (4.26a) appears to be very

accurate.

Figure 4.30 shows an evaluation of (4.26b) using DNS data. The closure equa-
tion for ;? was found to be inadequate throughout the domain. The equilibrium
pressure variance pg which best matches the upstream and downstream evolution
of p'?, was found to be 0.3 times the expression given in (4.24b), and the result
is also shown in the ficure. Zeman assumed that the pressure variance ;)'_2 is the
compressible potential energy, and relaxes to the equilibrium compressible pres-
sure variance p?. Investigation of the simulation database of decaying compressible
turbulence [Lee et al. 1991b] showed that the contribution of the incompressible
pressure is appreciable even in fairly compressible turbulence with M; ~ 0.5. For a
flow with lower M;, the incompressible pressure comprises the major portion of the
pressure fluctuations. Therefore, the assumption behind the expression for pg given
in (4.25b) is invalid except for highly compressible turbulence. For the range of pa-
rameters studied in this work, compressibility effects are not significant anywhere

except in the shock zone.

Sarkar {1991] has also proposed a model for the pressure-dilatation correlation
using the DNS database of isotropic turbulence and sheared homogeneous turbu-
lence. He developed his model using the statistics in the fully developed stage
where turbulent kinetic energy decays (isotropic turbulence) or grows (sheared tur-
bulence) in time. Taulbee and Van Osdol [1991] proposed a single expression for the
sum of the pressure-dilatation correlation and compressible dissipation, p’T’t’t +¢C,
and tuned model parameters to match the experimental data in a boundary layer
and a mixing layer. Both models were unable to predict the present observation of
reversible energy transfer from mean thermal energy into turbulent kinetic energy

in the absence of mean strain rate behind a shock.
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The pressure transport term, "(P’"’l'),l, was identified to be the driving mecha-
nism for the rapid evolution of the velocity fluctuations downstream of the shock
wave. Assuming the isentropic relation between thermodynamic fluctuations, the

pressure velocity correlation can be expressed as

—p’u'l' = —‘%pp'u'l' = —E2p'u'1'. (4.27a)

The accuracy of this assumption is checked in Figure 4.31(a), which shows that he
use of isentropic thermodynamic relations in (4.27a) is satisfactory throughout the
domain. Therefore, modeling of the pressure transport can be reduced to that of

the turbulent mass flux, p'u{. Taulbee et al. [1991] developed a model transport

equation for p’u'l' using Morkovin’s hypothesis. However, as was shown in section
4.1.4 applicability of the Morkovin’s hypothesis in the absence of mean temperature
gradient is questionable. Zeman [1991b] proposed a model rate equation for p'uf

as

dp'ul plulf 9p —0u
i =- ~ Ry = plu L 4.27b
uj 613] Ta Rllazl P u] 611 ’ ( )

which drives the mass flux fluctuation to zero except near the shock, on the fast
acoustic time scale 7. The accuracy of the model in (4.27b) is checked in Figure
4.31(b) which shows that it qualitatively represents the behavior downstream of the

shock wave. However, there are differences in the peak position and its magnitude.

To gain further insight into the physics of the turbulent mass flux p'uf down-
stream of the shock, several different scalings were examined. The best scaling
is based on the assumption that the correlation between the density and velocity
fluctuations is composed mainly from acoustic waves. The streamwise distance and
the turbulent mass flux are scaled as

z1/u; pluj
— and T a2
)\2/0 P EMt

(4.28)

respectively. Figure 4.32(a) and (b) show the unscaled and the scaled turbulent

mass flux terms for different upstream conditions and shock strengths (JWIU =
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1.10,1.20), respectively. The match in amplitudes and length scales of the turbulent
mass fluxes from different simulations is significantly improved by the scaling (4.28),
which suggests that the rapid evolution of TKE may have been caused by the

propagation of acoustic waves which are generated during the interaction.

4.2 Modification of a Shock Wave

4.2.1 Statistics of a Shock Wave

The characteristics of the shock wave— shock wave thickness and shock front
distortion— vary with time due to the effect of upstream turbulence. The peak
compression 8y;n(z2,73,t) inside the shock wave along the mean streamlines is
used as a measure of the shock wave strength. (The ,;, is taken along the z;-
direction for each x5 and z3. 6,;, is not necessarily confined to a plane, however
for clarity its “stretched” version on a plane will be presented.) Figure 4.33 shows a
typical contour plot of 8,;n(z2,23,t). (Dashed contours denote values with larger
than the corresponding laminar value at the same upstream Mach number.) The
average peak compression is found to decrease from the peak compression of the
laminar shock wave by about 10%. The peak compression varies widely across the
transverse plane, which is reflected in the large value of the ratio between the rms

and the mean values of the peak compression, (014in )ims/ |Omin| = 0.42.

Figures 4.34(a) and (b) show the probability density function (PDF) of the peak
compression inside the shock wave. The flow tends to have frequent events of large
compression. This trend is clearly shown in Fig. 4.34(b), where the probability of
large compression zones is higher than the Gaussian distribution by several orders
of magnitudes. This is confirmed by the skewness and flatness values of the PDF,

—0.81 and 11.0, respectively.

The statistics of the shock front distortion were estimated by LIA in Section 2.2.
The shock wave front in the simulated field, however, is not clearly defined, because

in the numerical simulations the shock wave spans over several grid points. The
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pressure half-rise point was chosen to be the shock front position, é(zg,z3,t). In

other words,

U D
6(32’23)0 = {é 1 p(6v22133’t) = pL—_;pL‘} ’ (429)

where p; denotes the pressure in the laminar shock wave which was shown in Figure
4.1 to be near the mean turbulent value. This designator is very well-defined and
remains relatively noise-free for the cases with weak upstream turbulence. In order
to check the sensitivity of the shock front statistics to the special choice of the
designator, the contour plot of the shock wave position based on the pressure half-
rise point was compared with that based on the density half-rise point in Figures
4.35(a) and (b). The difference between the rms shock distortions obtained by the
two methods is always less than 1% of the predicted rms values.

Figure 4.36 shows the scaled rms displacement of the shock front from different
simulations. The scaling suggested by LIA was found to collapse the simulation data
reasonably well. The LIA prediction of the shock front displacement is dependent
on the shape of the spectrum, especially on the low wave number part. The rms
displacements of the shock front from the simulation are systematically lower than
the LIA prediction based on the energy spectrum (2.1) and higher than that based
on the von Karman energy spectrum (2.2). This can be attributed to the shape of
the upstream spectrum in the simulation: As the spectrum develops from the inflow
spectra (3.32) or (2.1), it loses energy at small wave numbers and gains energy at
large wave numbers. The scaled shock front displacement is smaller for the higher

upstream turbulence level.

Figure 4.37 shows the scaled rms shock front inclination angle in the zo-direction,
o9 = 06/0z9. LIA predicts the rms shock front inclination angle to be independent
of the upstream energy spectrum shape. The statistics from the simulation are in
fair agreement with the LIA predictions. As the fluctuation Mach number of the
simulation increases, the simulation result deviates further from the linear predic-
tion (Note that an infinitesimal fluctuation Mach number is one of the assumptions

for valid application of the linear analysis).

Shock front curvature profiles obtained from the simulation was too noisy to
permit any decisive conclusion except for case C where the shock wave is resolved

best. The rms values of the scaled shock front curvature
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range from 1.86 to 2.03, while the LIA prediction with spectrum (2.1) is 1.41 for
MY =1.20.

4.2.2 Instantaneous Fields

Instantaneous density fields at a typical £; — z9 plane from the cases D and
F, are given in Figures 4.38(a) and (b): Figure 4.38(a) is for a weak upstream
turbulence (JWIU = 1.20, My = 0.057) and Figure 4.38(b) is for a rclatively intense
turbulence (MIU = 1.05, M; = 0.10). The overlaid contour lines near the center
of the figures are iso-compression (same u; ;) lines. Figure 4.38(a) shows a clear
shock front across which significant increase in density is noticed. For the more
intense upstream turbulence (Figure 4.38(L)), the shape of the shock front is more
distorted. The variation of peak compressions inside the shock wave in transverse
directions becomes stronger for the more intense upstream turbulence. The varia-
tion in the visual thickness of the shock wave is also larger for the stronger upstream

turbulence. Low density regions are often found behind the mean shock position
for flows with M; > MU 1.

By comparing Figures 4.33 and 4.35(a), we found a moderate correlation between
the peak compression and the shock front distortion: the peak compression is larger
for the shock wave pushed downstream relative to the mean position by upstream
turbulence and weaker for the one pulled upstream. Figures 4.39(a) and (b) show
the profiles of Jilatation along the zj-direction for the cases D and F, respectively.
The strength of the shock wave (or the peak compression in the shock) varies widely
from one streamline to another. For the case of strong upstream turbulence (Figure
4.39(b)), the structure of the shock wave is significantly modified: multiple peaks
in compression along streamlines (e.g., ¢) are noticeable. Each compression peak
has a strength comparable to that of the laminar shock wave. Sometimes, a shock

wave is replaced by a series of compression waves (e.g., x).

Figures 4.40(a) and (b) show the pressure profiles along the z-direction. For rel-

atively weak upstream turbulence, pressure rises monotonically from the upstream
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to the downstream value. On the other hand, for stron- upstream turbulence, pat-
terns of the pressure rise are varied: rapid monotonic rise, slow monotonic rise and

multiple-staged rise.

Figure 4.41 shows the streammwise Mach number in a zjz2-plane near the shock
wave for case A. The streamwise Mach number is a good representative of the up-
stream shock normal Mach number in cases where o9 < 10°. The drops in the
streamwise Mach number across the shock wave along the z;-direction are more or
less uniform: the higher upstream Mach numbers correspond to the higher down-
stream Mach numbers, and vice versa. For a shock wave fixed in space, however,
higher upstream Mach number MlU would correspond to lower downstream Mach

number MID , s

-1
1+ L= (M7)?
__1'
y(M{)? - 1=

(MP)? = (4.30)

The uniform Mach number drop for different upstream Mach numbers implies that
the local fluctuating shock wave speed tends to be in phase with the upstream Mach
number— positive for higher Mach numbers and negative for lower Mach numbers,
so that the effective shock-normal Mach numbers are more or less uniform across
the transverse plane. The nonuniformity in the upstream Mach number is smoothed
out by the fact that the local shock wave speed (£ ;) tends to be in phase with that
of the fluctuating velocity (Section 2.2).
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FIGURE 4.1. Evolution of mean quantities across the shock wave for case A:
(a)streamwise velocity, (b)pressure, (¢)temperature. (Dashed lines denote the lam-
inar downstream values.)
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FIGURE 4.7. Budget of terms (scaled with pocougko) in the turbulent kinetic
energy transport equation for case C. (a) near the shock wave and (b) in the entire
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duction by mass flux fluctuation(III), -------- pressure work(IV), turbulent

transport(V), —-— viscous dissipation and transport(VI). (Vertical dashed lines
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FIGURE 4.25.

b) the polytropic exponent ny for case A. For (a):
poty I

— — Tr /Ty,

Evolutions of (a) rms values of therodynamic properties and
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FIGURE 4.26. Budget of terms (scaled with (poﬂvlt)zcoko) in the transport equa-

tion of p’2 for case A: (a) in the shock zone, (b) in the entire domain. ~=— convec-

tion(I), - - - - production by the mean dilatation(Il), — — production by the mean

density gradient(II[), - turbulent density-dilatation correlation(IV), tur-

bulent density squared-dilatation correlation(V), —-— turbulent transport(VI).
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Evaluation of the models (4.27) for —(p’u’ll)’l for case C: (a)

approxmation in terms of p’u'll (—— LHS of (4.27a), ---- RHS of (4.27a)); (b)

transport of p'ull’

(—— LHS of (4.27b), ---- RHS of (4.27b)).

120




TN N W e

20

*310°

1.0

0.0

02

i gy

-2 -1.5 -1 -0.5 0 0.5

01 |

0.0 freemerr e

T |
) :
la -0.1 L \ -
\ f
:r—# d v
3 L
-~ " : }
ez} H .
; ’:
I
-03 | :\ '} .
—0.4 i 3 N el A \ .:ll L ‘ N i L 1
-5 -4 -3 -2 -1 0 1 a3 4 5

((z1 = 2s)/u1)/(A2/7)

FIGURE 4.32. Unscaled (a) and scaled (b) turbulent mass fluxes (zs is the position

for peak negative turbulent mass flux):

-------- case D, —-— case E.

121

case A, ---- case B, — — case C,




07 = UMWy ‘sour] Uaamiaq JUdWAIdY] "['§— = § ‘OAem YOOYS JeuTture|
ay) 10} jeyj} weyjy uoissaiduiod I93u01)s 2JeIIPUL SIUI| PIYsep pue UOISsaIdUIOd I eIMm 30U3P SIUI| prjos i) Ised 10}
soutqurealys ueaw ayy Suore (™) aaem yooys oYy apisur uorjeye[lp 2a1peSou yead ay3 10 jo[d anojuo) gg’y IYNDI]

T, v

hat
e’ TS

00

122

87/91




an

06 M 1 hd L) L v Ll T T ¥ v 1 M L] v

PDF

02

01 | .

10"

dadadadadil o1

10"

Ladaiaattial

10°

PDF

.
Ladadaainl

FOSINPINEI |

Lk el il

1 1 1 1 1 .

-5 -3.75 -2.50 -1.25 0 1.25 2.50 3.75 5

(omin - m)/(omin )rms

FIGURE 4.34. Probability density function for the peak negative dilatation in

(a)linear-linear and (b)linear-logarithmic coordinates for case C: PDF of
Omin> ———- PDF of a Gaussian distribution.
123




€1/€2

124

Contour plot for the shock front distortion based on (a)the pressure half-rise and (b)the density
int for case C. Solid lines denote the shock front pushed downstream and dashed lines denote the shock

FIGURE 4.35.
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FIGURE 4.39. Profiles of dilatation along the mean streamlines for (a) case D and
(b) case F.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

This work has been concerned with a numerical study of the interaction of tur-
bulence with a shock wave. The methods used were linear analyses (RDT and LIA)
and direct numerical simulation of the compressible Nav:»r Stokes equations. Lin-
ear analyses were used to predict modifications in turbulence statistics in passage
through the shock and shock front statistics. In direct numerical simulation, the
full equations were solved by an explicit code, with the spatial derivative evaluated
by a modified Padé scheme. A summary of conclusions is provided below, followed
by recommendations for future work. Conclusions are divided into three main ar-
eas: spatially decaying turbulence, turbulence modification by shock turbulence

interaction, and shock wave modification by the interaction.

Spatially Decaying Turbulence

A method of generating stochastic inflow boundary conditions with prescribed
spectrum was developed. Turbulence intensity, rms vorticity, and velocity deriva-
tive skewness factor compare favorably with those fromn the temporal simulation.
However, the statistics of dilatation show significant departure from those obtained
in the temporal simulation. Because of this difference, caution must be exercised
in using periodic (or temporal) simulation databases to examine compressibility-
driven quantities such as dilatation dissipation and pressure dilatation correlation.
Turbulence statistics from spatially evolving simulations with low compressibility

effects are also found to be in agreement with the experimental data.

Turbulence Modification by Shock Turbulence Interaction

The simulations and linear analyses of shock turbulence interaction show that the
normal components of the Reynolds stresses, Rqaqo, are enhanced across the shock
wave. The stress amplifications are larger for the stronger shock waves within the

range of Mach numbers in the simulation, 1.05 < J\'IIU < 1.20. LIA, however,
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predicts less amplification of the streamwise turbulence intensity for the stronger

shock waves when MIU > 2.0, a range beyond that of the present simulations.

The simulations show a rapid evolution of Raq immediately behind the shock
wave, including an increase in value just downstream. LIA, on the other hand,
predicts that Roq monotonically decays from its post-shock value to the far-field

value. The budget of the TKE transport equation revealed that the pressure work
term — ;'p:i is responsible for this rapid evolution. By decomposing the pressure

work term into the pressure-dilatation correlation p’ui’i and the pressure transport

—(p’ui’),i term, 1t was found that the pressure transport is the main contributor to

the pressure work term. Therefore, rapid evolution of TKE is caused mainly by the
redistribution of turbulent kinetic energy in the streamwise direction at the early

stages of relaxation from compression.

The simulations and linear analyses show that the rms of the transverse vortic-
ity components are amplified and that the streamwise vorticity is not influenced
by the interaction. The amplifications are larger for stronger shock waves. The
amplification of the transverse vorticity components predicted by the simulations
are in excellent agreement with those of linear analyses for M; < A'IIU — 1. For
M; > MIU - 1, the vorticity amplification obtained from the siiulation is signif-

icantly less than the estimates of the linear analyses. Examination of the budget

of w’?l revealed that the vorticity-compression, w’g{sii, is the main contributor to
the transverse vorticity amplification during the interaction. In most cases, the
baroclinic torque is at least two orders of magnitude smaller than the vorticity-

compression term in the interaction zone.

Turbulent length scales decrease through the interaction. Linear analyses predict
the amplification of one-dimensional energy spectra during the interaction, both in
frequenicy and wave number space. In the frequency spectrum, amplification is
larger for the smaller frequencies. In the wave number spectrum, however, amplifi-
cation is larger at the larger wave numbers. More enhancement at the smaller scales
leads to a decrease in turbulence length scales. Numerical simulations confirmed
that the energy spectrum is amplified more at the larger wave numbers, whereas

turbulence length scales are decreased through the interaction.
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We investigated the relations between the fluctuations in pressure, density, and
temperature by the use of the simulation results. Morkovin’s hypothesis was tested
and found inaccurate. Instead, the relations between properly scaled rms property
fluctuations are very close to isentropic at least for turbulence passing through
a weak shock wave, MIU < 1.20. Isentropic relations are satisfied even for the

instantaneous fluctuations throughout the flow field including the shock wave.

Shock Wave Modification by Shock Turbulence Interaction

Due to the nonuniformity of upstream turbulence, the shock wave has a time-
dependent distorted front and nonuniform thickness in the transverse directions.
For the simulations with M; < MIU — 1, shock waves have well-defined fronts with

single compression peaks in the streamwise direction.

Through LIA, it was found that the shock front distortion scales with the up-
stream integral length scale and turbulence intensity. We also found that the local
shock front inclination angle scales only with upstream turbulence intensity, and
the shock front curvature is scaled with turbulence intensity and the inverse of the
Taylor microscale. All scaling factors depend only on the shock strength. The
statistics of the shock front obtained by the simulations are in fair agreement with
the LIA predictions.

Through LIA, local shock wave speed was found to scale with the upstream
fluctuating velocity. Instantaneous flow fields from the simulations showed that the
velocity jump across the shock wave, or the shock wave strength, is more or less
uniform in the transverse directions: The shock wave moves upstream for lower
velocity, and moves downstream for higher velocity of the approaching flow, thus

reducing the vanation in the effective shock-normal Mach number.

For a simulation with AM; > IUIU — 1, shock waves no longer have well-defined
fronts in the transverse directions. Low density regions are often found behind the
mean shock position, and shock wave thickness varies quite widely in transverse
directions. Along the streamwise direction, multiple peaks in dilatation and pres-

sure are found, which are similar to those observed in the experiments of a very
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weak shock wave interacting with a highly inhomogeneous medium [Hesselink et al.

1988].

A comprehensive quantitative data base has been generated which may be used
to develop and test turbulence models and to further study the physics of shock/tur-

bulence interaction.

Recommendations for Future Research

Direct numerical simulation of shock/turbulence interaction is a new area of re-
search, and many questions remain to be answered. From our work, we recommend

the following directions for future research.

Interactions with Significant Acoustic or Entropy Fluctuations

In this work, upstream turbulence conditions in the simulations were restricted
to quasi-incompressible states. It is also important to study the interaction of a
shock wave both with highly compressible turbulence and with flows of large density

variations.

Towards Turbulent Boundary Layer Interaction with a Shock Wave

The logical next step towards understanding of shock/turbulent boundary layer
interaction is to study interaction of homogeneous turbulence under a mean shear
with a shock wave. Through this study, one can investigate the effect of a shock

wave on turbulence anisotropy and Reynolds shear stress.

Large-Eddy Simulation of Shock Turbulence Interaction

Direct numerical simulation of shock turbulence interaction is restricted to low
Reynolds numbers and weak shock waves by the resolution requirements of the
shock wave structure. Subgrid-scale models have been actively under development
[Erlebacher et al. 1990, Moin et al. 1991] for the large-eddy simulation of com-
pressible turbulence. For shock turbulence interaction, the ratio of the turbulence

length scale | = pg3/e to the shock wave thickness &, is
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typically O(10%)-0(10%) or larger in practical flows where Rep > 1000. Since the
cost of resolving the shock wave structure in large-eddy simulation is prohibitive,
one needs a subgrid-scale model for the shock wave effect on turbulence [Zeman
1991b}, as well as for the effect of small scale turbulence on the large scales. Another
possible option is to use a shock capturing technique [Yee 1987, Harten al. 1987]
without any subgrid-scale model of the shock wave effect. Careful tests of these
ideas can be made by using the data obtained in the present work via linear analyses

and direct numerical simulations.

137




138




APPENDIX A
RAPID DISTORTION THEORY

Rapid Distortion Theory (hereafter RDT) is applied to study the response of
turbulence quantities to one-dimensional compression due to a shock wave. The
state of homogeneous turbulence changes significantly when it is subjected to mean
strain, but the nonlinearity of the goverr ng equations makes it impossible to de-
velop a rigorous theory of turbulence under straining process. For cases where
nonlinear effects are not significant, however, one can solve the exact linearized
equations.

When the time scale of turbulence, ¢?/e, is long compared to that of the mean
deformation (|S|q%/e >> 1), the turbulence has no time to interact with itself.
Thus, we need not consider the nonlinear terms in the governing equations involving
products of fluctuation quantities, and we can obtain the linear RDT equations.
The viscous terms are linear and can be included in the analysis, but are often
neglected and will be here for simplicity. RDT for one-dimensional compression is
applied to study the response of turbulence during its passage through a shock wave.
In the following, a brief review of the RDT procedure is given for one-dimensional
compression [Lee and Reynolds 1985, Lee 1989].

We consider turbulence subject to a rapid irrotational strain, where density is
uniform throughout the field but allowed to vary in time. Since the mean flow is
assumed to be irrotational, we use the principal axes of strain rate tensor as axes

of reference so that the mean velocity field is

Ua,ﬁ(t) = Saﬂ(t) = Fa(t)‘ga[j' (41)

Using the equation of continuity, we can then express the evolution of density p(t)

in the form

t
p(t) = poexp [_/(; Su(t,)dtl] ) (4.2)
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where po = p(0) and the trace of mean strain rate tensor S;; signifies the expansion

rate (or the compression rate) of the mean flow field.

The turbulent momentum equation in the RDT is given by

Ou,
ot

Ou; 1 dp
+Ujb?; :-—Sijuj—;a—xi, (A.3)

and the equation of continuity is unchanged. The dynamical equation for the

fluctuating vorticity w becomes

Ow; Ow; . 2
E! + Ujg; = “)jsij - 55,']'&),', (A.4)
where )
S:] = S,')‘ - gskkéij (A.S)

is the deviatoric component of the mean strain rate tensor. The first term on the
right hand side of (A4.4) represents the production of vorticity due to stretching by
the incompressible mean strain rate Si‘j. The second term indicates reduction of

vorticity by isotropic expansion (or increase by compression).

We impose periodic boundary conditions and represent homogeneous turbulence
in terms of Fourier series. The dependence of U; on the position x in (4.3) and
(A.4), however, poses problems with this approach. To remove this, we use a

deforming coordinate system {Rogallo 1981] which follows the mean flow:

60 = I_aa T =1t (A6)

€a

where the factor e, is the total strain in the a-direction defined as

t
ea(t) = exp U Fc.(t')dt'] . (A7)
0
In the deforming coordinates, the vorticity equation becomes

Kl (4.8)




where

Fo=Tq—-To, To=8;=Ty+T2+T3 (A.9)

are the reduced strain rate and the dilatation rate, respectively. The solution of

(A.8) is

walf:7) _ wal£,0)

o) o walbT) = Eawal0). o (410)

Here, wq(€,0) is the initial value of wq (&, 7), and

- e

€a = —, eo = ejesez = Po (A.11)
€o P

are the reduccd total strain in the a-direction and the dilatational total strain,

respectively. Note that e, = 1 for an incompressible mean flow field.

Since we have the solution (A.10) for the vorticity evolution in an explicit form,
it is easy to obtain the history of turbulence statistics in terms of the initial values
and total strains. Thus, the evolution of the vorticity correlation tensor at time 7

is

Vaﬁ(‘r) = gagﬁvaﬁ(())v (A.12)

where

Vap(0) = wa(€,0)wg(€,0). (A.13)

The velocity field can be deduced from the vorticity field. In the transformed

coordinates, the Poisson equation for the velocity is

ezu 1 auig 1 Owg
/ 1= — = —_

- — A.14
e3 03 ex 062 ( )

where the transformed Laplace operator is

~, 10> 108 1 6° ,
Ve = YY) + W) -+ ) 7)772 . \ A 15)
2o T 2ol 2og
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The equations for uy and u3 can be obtained by permuting the indices. The

solution is obtained using Fourier expansions,

v = 3 Byl 7)ol
Kn

u; = zai(nn,r)e—i”“£", (A.16)

Kn

where ko is the Fourier wave number vector in the deforming reference frame,

ka = eqka (ka is the wave number vector in the undeformed reference frame).

The solution for u; is

~ 1 [ K3y Kolg
up = -5 ( —————), (A.17)
X €3 €2
where

2 2 2

2 _ Ky Ky K3
X == + 5t wE

€7 € €3

The other components can be found by permutation of the indices.

Using (A.17), we find the velocity spectrum in x-space to be

1 K3
Ell(K‘vT): _)

K [ K
% Hyp(r,7) + (=2)2 Hyz(x,7) — 2(=2) ;‘E)Hza(mf) :

€3 €2 €2

(A.18)
where H;,(x,7) is the vorticity spectrum in x-space, and the relation Hoz = H3g
is used. The vorticity spectrum at a later time is obtained in terms of its initial

spectrum as

Hoa(k,7) = Hyp(k,0)eaeg. (A4.19)
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The initial vorticity can be expressed in terms of initial velocities in the Fourier

space as

(.T)I('{,O) - _ielmnnman(ﬂ,o)- (A.20)

Therefore, we can represent the initial vorticity spectrum H;;(x,0) in terms of the

initial velocity spectrum E;;(k,0), for example,

Hy1(%,0) = k3 E33(x,0) + £ Eg(x,0) — 2x3x3E93(,0), (A.21)
where the relation E93 = F39 was used.

Using the relations (A.17),(A.19), and (A.20), we can obtain the evolution of

the velocity spectrum during a rapid irrotational strain.

As a special case of irrotational strain, we consider one-dimensional compression

in the z-direction, where
e = —, ey = e3 =1, (A.22)

and
fi=1, @&=¢=¢ (A.23)

r4

Vorticity components in the z9 and z3 directions are amplified by a factor of
density increase during the rapid compression, while vorticity in the z;-direction
stays the same. These relations hold regardless of the specific form of the initial
spectrum. In general, amplifications of Reynolds stresses do depend on the shape
of the spectrum. However, for an isotropic initial turbulence, amplifications of
Reynolds stresses are again independent of the initial spectrum: for example, to
compute u'lz, triple integration of (A.18) in x space, using (A.20) and a general

form of the vorticity spectrum for an isotropic turbulence,

E(N,Q_)

Hyy(5,0) = =2 (k26,5 — Kyxj), (A.24)

47K

gives
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_~2_ o0 o0 o0
ul” = / / / Fi(k,7)dr1drodKs
—~00 vV —-00 v —00

1 2n 1 — 1 — IR2r2
= (x,0)ds / / ) 4 Ry )+2 "2 sin 8dodd,
m nl/e1)2 + ®2 + &3

(4.25)

where

- K - K . - K . .
n1:~l:c058, K,2:—2:sm9cos¢, N32-—§=Sln051n¢.
K K K

The result is independent of x. Note that [ E(x,0)ds = g2/2, where E(x,0) is

the initial energy spectrum function and qg = uiui at t = 0.

The same result can be obtained by properly scaling the RDT result for tur-
bulence under incompressible axisymmetric expansion. The one-dimensional com-
pression can be decomposed into isotropic compression Si6;;/3 (or density change)

and incompressible axisymmetric expansion S'l-“j as

Sij = Skrbiy/3 + S;j

ry/3 0 0 ary/3 0 0
:( 0 TI4y/3 0 )+( 0 -TI;/3 0 ) (A.26)
0 0 TIy/3 0 0 ~Ty/3

The total strain can be accordingly decomposed:

/

e = eyl e" = (po/p)!/3e, (A.27)
where
e’ = (e],€5,€3) (A.28)

is the incompressible total strain vector (i.e., ejele3 = 1) and

€o = €1€2€3 = Po/p (A.29)
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is the total dilatation.

Using (A.10) and (A.20), the Fourier amplitude of velocity fluctuations under

one-dimensional compression (A.17) can be expressed as

~ 1 €3 €2 2 €3 2)
uy(x,e) = e [( K3+ 3”3 Ujo — '5"-1"2“20 - gﬂws‘%o ,  (A.30)
o

where x? = rcl/e1 + rr:2/¢32 + ns/e3, and U, is the initial Fourier amplitude. Expres-

sions for the other two components are obtained by cyclic interchange of indices.

By using the decomposiiion (A.26), the Fourier amplitude of turbulent velocity in
(A.30) can be expressed as a product of the isotropic dilatation and incompressible

contributions:

t(x, ) = (p/po)/38*(x,e*), (A.31)

where from (A4.30), the incompressible part u* is given by,

P L [(e3,2 22\ &, - €& -
aj(r,e") = —5 || x5+ 2xF ) @10 — 2r1k2l20 — —2k1K3U3.[,  (A.32)
2 €3 €2 €3

with x*? = fc%/e'l'2 + fc%/e§2 + n%/e:‘,z. The appearance of the total dilatation
as a common factor in all components of the velocity amplitude implies *hat the
anisotropy in a turbulent flow is not affected by isotropic compression of the mean

flow.

The energy spectrum tensor after one-dimensional compression is expressed as

2/3
Eyj(r.e) = (p/po)*/* Efj(n ), (4.33)
where E:j is the energy spectrum tensor of turbulence subject to incompressible
axisymmetric compression.

The RDT result for turbulence under one-dimensional compression can be ob-
tained by scaling the RDT result of turbulence under incompressible axisymmetric

expansion (see { 4.33)).
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APPENDIX B
LINEAR INTERACTION THEORY

Some aspects of the interaction of turbulence with a shock wave are amenable to
linear analysis. A fluctuating quantity in a compressible flow can be decomposed
into acoustic, entropy, and vorticity waves [Kovasznay 1953]. Linear interaction
analysis (hereafter LIA) of a shock wave with various linear plane waves were per-
formed by Ribner[1953}], Moore[1953], Kerrebrock[1956], Chang[1957], and McKen-
zie and Westphal[1968]. In general, whenever any one of these waves passes through
a shock, it generates the other two waves downstream. In this work, we follow the
methodology of Ribner, where the main interest is confined to the interaction of
vorticity waves with a shock. In the following, a brief description of Ribner’s anal-
ysis is given first, followed by its application to the analysis of shock-turbulence

interaction.

B.1 Description of LIA— Ribner’s Analysis

Ribner formulated the interaction of a plane vorticity wave with a shock wave
as a boundary-value problem for the flow in the region downstream of the shock.
The governing partial differential equation for small-perturbation rotational flow
was derived as an extension of Sears’ work [1950], boundary conditions on the
velocity components just behind the shock were obtained from the oblique-shock
relations, and finally the rotation term in the governing equation was evaluated in
terms of gradients of entropy and total enthalpy with the use of the entropy change
across the shock. The initially unknown distortion of the shock wave was taken
into account in the boundary conditions and the rotation term by assuming it to

be sinusoidal with initially undetermined amplitude and phase.

B.1.1 Formulation of the Boundary-Value Problem

The inclined plane sinusoidal shear wave is schematically shown in Figure B.1.
The flow is viewed in a plane perpendicular to the shock and to the wave fronts.
The wave is supposed to be convected downstream by the mean flow with velocity
U 4 (most variables in this Appendix are used exclusively, and those commonly used

are listed in the Nomenclature section). The passage through the shock is evidently
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an unsteady process, since the intercepts of the inclined shear wave with the shock

wave move downward along the shock front.

A plane oblique sinusoidal shear wave may accompany a perturbation velocity
component normal to the plane of the figure. This velocity component, however, is
parallel everywhere to the shock and is unaffected as the shear wave passes through;
this component also has no effect on the shock wave and, therefore, is excluded in
the following analysis without any loss of generality. In the following analysis, the

plane shear wave is assumed to propagate in the z;z,-plane.

If an observer moves downward along the shock with a speed V, the flow has an
apparent upward velocity component V. The observer speed V is to be chosen such
that the resultant mean velocity (in the observer’s frame of reference) is aligned
with the velocity in the disturbance wave, that is, V = Uj4tan§. The process
appears to the observer as an interaction of a steady sinusoidal shear flow with an
oblique shock wave. Thus, by properly choosing the frame of reference, the original

unsteady flow problem has been reduced to an equivalent steady flow problem.

The analysis is aimed at calculating the flow field downstream of the shock pro-
duced by the passage of a sinusoidal shear flow through ithe equivalent oblique
shock. Because of the nonuniform upstream velocity field, the shock wave is cor-
rugated and introduces vorticity downstream of the shock wave. If the upstream
disturbance wave is weak, the downstream velocity perturbations are also weak
compared to the mean velocity, so that a linearized treatment of the flow field is

feasible,

Ribner derived the governing partial differential equation for small-perturbation
compressible rotational flow with gradients in entropy and stagnation enthalpy. In
the transformed coordinates, or in the observer’s frame of reference shown in Figure

B.2, the governing equation is expressed as

(1 . AI‘Z)I}['CQ - ll‘""] = -§) (B].)

(¥ = 02 /0¢? and oy = 0%y /09?%). Using Crocco theorem [Thompson 1984],

we have
o LUy,
W\ On an
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where ( is the distance in the streamwise direction, 7 is the distance in the per-
pendicular direction, W is the streamwise velocity, M is the corresponding Mach
number, H is the stagnation enthalpy, s is the entropy, T is the temperature, Q is

the vorticity, and v is a perturbation stream function defined as:

8%/0n=we,  —(1-M?*)3y/0¢ = wn, (B.2)

where w¢ and wy are the perturbation velocities in ¢ and 5 direction, respectively.
The final flow pattern depends crucially on whether W is subsonic or supersonic,
which depends on the Mach number corresponding to U4 and on the wave inclina-

tion, 4.

The boundary conditions just downstream of the shock are obtained by applying
the Rankine-Hugoniot relations across the perturbed shock wave. By geometry
shown in Figure B.3, the mean velocity components normal and tangential to the

undisturbed shocks are, respectively,

Ug = Wycosé, V =Wusiné.

The shear wave provides a perturbation w4 to W4, and causes indirectly a pertur-

bation o(z3) to the shock wave inclination which is defined as

9¢

tanog = —
Ozy’

whose magnitude i1s yet to be determined. The effect of o is equivalent to an

increment in §. The associated perturbations to U4 and V are

dUg = (Wa+wy)cos(@+0)~ W, cosb, dV = (W +wy)sin(6+0)~ Wy siné.

Assuming that o and w,4/W 4 are small, we can express the perturbations as

dUy = wycosf — olV 45106, dV = wysin8 + oW 4 cosb. (B.3)

The change in shock-normal velocity across the shock wave is given by Rankine-

Hugoniot relations as
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Ua _ 5 (Us/an)?
U 1453 (Us/aa)?

Assuming the upstream sound speed, a4 = constant, the change in the downstream
shock-normal velocity due to the change in the upstream shock-normal velocity is

given by
d d -1
av - _4Uy (1 — 2Z~—m) , (B.4)

where m = U, /U.

On the downstream side of the shock, the perturbation of the velocity in the (
direction, W = U cos ' + Vsin €', is

we = (U + dU)cos(8' + o)+ (V +dV)sin(6' + o) — W, (B.5a)

and the perturbation velocity in the n direction is

wy = —(U + dU)sin(8' + o) + (V + dV)cos(8' + o), (B.5b)

where,

¢' = tan"!(mtan4). (B.5¢)

Dividing both sides of ( B.5a) and (B.5b) by U, expanding trigonometric identi-
ties using the assumption of small perturbations, and relating dU/U and dV/U to
w4 /W4 by the use of (B.3) and (B.4), one gets

w -1
—C*w(iui —gtane') (1—27 m | cos @ + 1U—“—‘—tan@'%—rrw’ sin 8
U Wyqs m y+1

W,

Y+ va

(B.6)

] -1
Y = <—U—A _ e tan 0’) (I — 27_—_1m) sin§' + <‘7~UTA tan 8’ + mcr) cosf — gsecd.




This is the general form of the boundary conditions for the governing equation

(B.1) downstream of the shock wave.

In the present analysis, the perturbation w4 is a sinusoidal disturbance velocity

(associated with the incident shear wave) parallel to Wy,

w4y k
—— — €COS K
W MA

where k is the wave number and 74 is perpendicular to W4. The corresponding
argument for the refracted shear wave involves 7 and an altered wave number k'.
The wave length of the disturbance should match along the shock front, that is,
ko = k'2. But ks = kcos8 and k'2 = k'cos @', and along the shock cos§ = n4/z9

and cos# = 7n/zy. Therefore,

kng = k'n

and
w
W—A = ecosk'n (B.7)
along the shock. By geometry (Figure B.1), kcosf = k'cosé’. Since the dis-
turbance is sinusoidai. the shock inclination o is expected to be sinusoidal. For

generality, a phase shift is allowed for, so that o can be assumed to have the form

o = e(ag cosk'n + bgsink'n). (B.8)

Substitution of ( B.8) into the general form of the boundary conditions ( B.6), yields
the final form of the boundary conditions. The boundary conditions imposed by
the shock wave on the perturbation velocity components parallel to ¢ and 7, ‘m-

mediately behind the shock wave are

w - —1 -1 ’ B 29!
—€- = %8 (1 D R + m?'\ sin§' - <1 - 27m> cosf' 4 o 1 cos k'
el m v+ 1 / v+ 1

m v 4

L

bg 1
+ {“’ (1 — 217—'«[771 + m2) sin 0'] sin k'
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el/ m +1 cos ¢ v+
b 3 - in? ¢'
+-=(1+ ‘7m) - +bg(m —1)cos 8| sink'y, (B.9)
™m y+1 ) cosé

respectively. In (B.8), the parameters ag and bg governing the shock inclination o

are undetermined.

For the solution of the governing equation (B.1), the vorticity term € on the
right-hand side must be evaluated for the region behind the shock wave. Down-
stream of the shock, the stagnation enthalpy H and the entropy s (and hence the
vorticity) are constant along streamlines, and in the linear theory the streamlines
are approximated by lines of constant 7. Thus, 0H/0n and 9s/0n may be evaluated

at the shock and the result also holds downstream for the same 7.

The total enthalpy upstream and at the shock is

H = cpTq+ (W4 +wy)?

SR o

1 2w
~ epTy + éwj (1 + %) :

Hence, along the shock

(91{ 2 8 w4
— = W ) B.1
an A (WA> (B.10)

The entropy upstream of the shock is constant by virtue of the assumption of
constant pressure and density there. The entropy change across the shock is given

in terms of the upstream velocity by

B C1VAL2 e g
log { | - 2y 12l T 1 (74J)§Ii?f,i),+£]
1 (v + 1)M2cos?8 |

» 3 - sin” ¢/ -1
n _ {_EQ (1 + 77n> i +ag(m —1)cos8 +2 (1 - ’7—1m> sin 9’} cos k'7
~ ,




[Thompson 1984]. Differentiating and expanding the above expression under the

assumption of small perturbations gives
63 U2 2 9 6 A
aT) —'—( -*1) (W—A—atanﬂ) (Bll)

along the shock.
Substitution of (B.10) and (B.11) into the governing equation (B.1) yields

_ 2 _ 2C050’£ W4
(1= M%)ee + Y = Um cos? 8 9y (WA>

—UcosO'(m—l)zan (——atan&) , (B.12)

where the right-hand side is evaluated along the shock (z; = 0) and expressed as

function of 1 alone.

Substitution of (B.7) and (B.8) for w4 /W, and o for the sinusoidal form of the

upstream disturbances converts (B.12) into

- Mz)'/)cc + ¥

(m — 1)

2
:Ue{—k' [secB'-}-2(m—1)coso'+as_~___ : (m—1)
m

m

sinf'| sink'n + k'bg

(B.13)

where the relation tan 8’ = mtan 6 is used to eliminate §. Equation (B.13) is the
partial differential equation governing the flow downstream of the shock subject to

the boundary conditions ( B.9), which are
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B.1.2 Solutions to the Problem

The nature of the governing equation (B.13) depends on the sign of (1 — M?):
for flows with M < 1 the partial differential equation is elliptic, and for flows with
M > 1it is hyperbolic. In the following, therefore, two different sets of solutions
to (B.13) are presented.

Solution when Flow Downstream of the Shock is Subsonic, M < 1

The governing differential equation (B.13) can be written in abbreviated form

as

/33'11’(( + Ygn = ~k'Ue(Ag sink'n — Bs cos k'n), (B.14)

where

B2 =1- M2 (B.15)

A particular solution to (B.14) is

A
Yp =Ue (k—;g sink'n — %cosk'q) : (B.16)

A homogeneous solution is
x .
- 252 ((cosh —nsin§')ros b’
pe = Uee e nsin6')

k' cos @'

kl . 0[
x {c' cos [-—;025 (¢sind + ﬂ,zur] cos 0')] +d'sin [—732~-(C siné' + ﬂ;“:,n cos 0')} } ,

(B.17)
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where ¢’ and &' are the constants of integration, and 2 = 1 — U2/q2.

The complete solution for the perturbation stream function ¥ = ¥p + ¥¢ con-
tains four undetermined parameters, ag,bs,c’, and d' whick are to be determined
by matching velocity components, w, = 0%/0n and wy = —B2,8¢ /8¢ at the shock
wave (¢ = 0) using boundary conditions (B.9).

_ CsEs + DsFg be — CsFs - DgEg
S$EmTerypr 0 ST Ci+ D%
S ) S S
=——— (2D¢c - Fg), d=—————2Dg, B.18
¢ k'B2cos b (m § 5) k'B2 cos @ m S ( )

where

- - 2(m -1
Cs = (1—1 +3——7m) tan g’ — [(m— 1)2 + (m—l) sin 8’ cos §'

y+1 y+1 v+
_ﬂw 2 g
Dg—ﬁ(m—l)[1+(m—l)cos o]

2 2 9

v -1 o cos® @

Ec=2[1- —- 2 - 1)——
S ( 7+1m)+(m ) RE

Fs =—; [Q(m ~1)siné’ cos@'] . (B.19)

Solution when Flow Downstream of the Shock 1s Supersonic, M > 1

The particular solution to (B.13) is the same as that for Al < 1, which is

/ (](AS . k,
vp = “*‘i:"—‘_ Sin n,

where the fact that the final solution yields bg = 0 (and hence HBg = 0) is used to

delete Bg term at the outset.

The complementary solution satisfying (B.13) has the general form of
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Ye = f(¢ + Buwn) + 9(¢ ~ Bun),

where ﬂ?‘, = M?-1. The function f represent Mach waves inclined downward by the
Mach angle ujs from the ¢-axis and the function g represents Mach waves inclined
upward by the same angle. For upstream shear waves with inclination 0 < 8§ < 7/2,
the g-family of Mach waves represent disturbances overtaking the shock wave from
behind (propagating upstream). However, its propagation toward upstream bevond
the shock wave is unphysical, since the Mach waves can only propagate with the
speed of sound of the medium relative to the mean flow speed while the upstream
mean flow speed is always supersonic, Wy/a 4 > 1: Therefore, g-function must be
zero for upstream shear waves with inclination 0 < < /2. For the same reason,
f-function must be zero for upstream shear waves with inclination n/2 < 6 < =.
In the following, the discussion is limited to the specified range 0 < 8§ < 7/2 due to

the symmetry.

From (B.9) with bg = 0, the function f reduces to

f ~ sinfa(¢ + Bwn)]-

Along the shock front, where ( = ntané’,

a((,' + ﬂwn) = k'r).

A suitable complementary function is therefore

Uec" o k'(¢ + Bun)

ve = T Bw + tan @'’

where ¢” is a constant of integration.

The complete solution for the perturbation stream function is

U
Y =yYp+yPc = _k_’e Agsink'n + ¢ sin

k' (¢ + Bun)

Bw +tand' |’ (B-20)




where the two arbitrary parameters ag (occurring in Ag of (B.15)) and ¢" remain
to be determined. These two parameters are determined by matching velocity
components derived from (B.20) with the boundary conditions given in (B.9). The

resulting expressions for the parameters are

Cs + GsFs " ! (%2 - F3) (B.21)

asszngGsD'S’ ¢ :,chosﬂ’
where
C. :27—_1m—‘2[1+(m—1)c0520'}
S y+1

Ds =(m - 1)1+ (m - 1) cos® ¢

E'S =(m — l)2 sin8' cos§' — (1 + B;Vm) tan ¢’
v+1

ng = 2(m — 1)sin 8 cos ¢’

1 - Bytané
Gs =75 +wtan01 = tan(uy — ¢) (B-22)
w

with the Mach angle ppr = cot™1 3,

B.1.3 Summary and Discussion

The interaction of a plane shear wave and a shock wave is schematically shown in
Figure 2.1. The method of predicting the flow field downstream of the shock wave,
produced by convection of an oblique sinusoidal shear wave through the shock, has
been briefly described. In this section, the main results are summarized in more

compact form, and are simplified to help the geometrical interpretation.

Criterion on M

Although the streamwise velocity [7 downstream of the specified normal shock

1s always subsonic, the nature of the flow depends primarily on the streamwise

157




velocity in the transformed frame of reference (Figures B.2 and 2.1), which may
be subsonic or supersonic. Two forms of the solution for all flow quantities thus
appear: one for the subsonic range M < 1 and the other for the supersonic range
M > 1. Since M depends on the initial Mach number U4/a 4 and the inclination
angle 8, the equation for the dividing line M = 1 gives a relation between the

critical value of # and the upstream Mach number Ug/ay as

(y+1)(m —1)

-1
Ocr = T tan o2 )

(B.23)

where m = U 4/U is determined by U4/a,.

For waves incident at angles less than the critical angle, a pressure wave generated
at time t catches up with that generated at time t + ét, because the upstream
shear wave travels along the shock wave slower than the pressure wave generated:
Ui tan® @ < a® — UZ%. Note that the upstream shear wave travels with the velocity
U 4 tan 8 along the shock wave, and the generated pressure wave propagates radially
outward with the speed of sound a relative to the mean flow speed, U. In this case,
pressure waves are superposed onto each other, and disable each pressure wave
from propagating independently, resulting in an exponential attenuation in the
shock-normal direction. For waves incident at angles larger than the critical angle,
the pressure waves generated at different times propagate independently from the

others, because Ui tan® 8 > a® — U2.

Downstream Velocity Field

By using (B.2), for M < 1,

w
—2— = Scoslky(zq — z; tan 8') + 8] + N(z1) cos[ky(zg — z; tan 8"y + bp)

w4l
w .
T‘Bi = Bull(z))sinjkh(zy ~ ztan ") + &), (B.24)
w4
where i 4| = €W 4 is the amplitude of the upstream sinusoidal velocity and
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kézk'cosﬂ'zkcosO
cos b
_ 2 2
S = — ,/AS+BS
/.2 d2
H(zl):COSG cs+ Se—hkéﬁw/ﬁz

m s

by = tan™! (;BS>
As

-1 U%tand
an  ————

52

0”:—t

_1¢8Pw —dgtand’
dsBy + cgtand’

ép = tan

with cg = c'k'Bycos §',ds = d'k'By cos§'. The functions Ag and Bg are given by
(B.15), and ag,bs,c', and d' are the constants of integration given in (B.18).
For M > 1,

we ! ! ! 1"
ol " Scosky(zg —zytan') + Il cosky(zg — x tand’)
wy
o Byl cos k'z(:cg —zjtand"), (B.25)
lwal
where,
5= 0y,

k) = k'cos @ = kcosé

cos 8 SHNTY;
II=——cg — -
m " cos(8 — uar)

159




0" =8 —ppy

UM = cot™1 By

with c¢g = "By cos §'. The function Ag is still given by (B.15), and ag and ¢" are
evaluated in (B.21).

The cosine in the first terms of (B.24) and (B.25) are constant along lines z9 —
ztan#' = constant, which are inclined at an angle § with the horizontal and are
thus parallel to the {-axis. Since w¢ is parallel to { and wy) is parallel to 7, the first

terms represent contribution to the vorticity wave.

The remaining terms in ( B.24) and (B.25) involving the factor Il correspond to
an irrotational velocity field, or potential flow. If derivation is traced backward,
the II-terms are found to originate from the complementary solution, which is a
solution with zero vorticity, = 0. These remaining terms in (B.24) and (B.25)
represent contributions from pressure waves. For the case M > 1, this pressure
wave propagates in the form of Mach waves with the speed of sound relative to
the stream velocity. For the case M < 1, the resultart pressure pattern does not
propagate with the speed of sound, but it can be represented as a superposition
of cylindrical sound waves which individually propugaie with sonic speed. The

resultant perturbation velocity attenuates exponentially with the dist..rice from the

shock wave, r; (see (B.24)).

Shock Wave Perturbation

From (B.8), the local perturbation in the shock inclination angle can be repre-
sented as
o = €(ag cos khzy + bg sin kjyzsy),
where ag and bg are evaluated in (B.18) for M <1 and (B.21) for M > 1 (bg =0
for #f > 1).

At any point along the shock, z9, the local shock deflection ¢ from the plane
z1 = 0 is obtained by integration of the slope ¢ ~ 0¢/0z5:
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S cos(khzg + by ) (B.26)

where &g, = tan"1(ag/bg) is the phase shift.

For a given wave length, the amplitude of this sinusoidal corrugation in the shock
wave is proportional to the factor ,/a% + bg and also to the upstream turbulence

intensity.

B.2 Application of LIA to Shock-Turbulence Interaction

Homogeneous turbulence can be represented as a spectrum of waves with random
orientations and wave lengths. In a solenoidal (or incompressible) velocity field, a
velocity vector in Fourier space is perpendicular to its corresponding wave number
vector due to the continuity constraint. (Any incompressible velocity field can be
decomposed only into vorticity waves.) The velocity vector corresponding to a
vorticity wave in the Fourier space meets this constraint, as is schematically shown
in Figure 2.1. When turbulence is convected into a shock, the individual vorticity
waves are abruptly altered producing acoustic and entropy waves downstream of
the shock. This process is schematically sh wn in Figure 2.1. The aruplitude and
wave length of downstream waves can be related to those of the upstream vorticity
wave through linear theory. Therefore, given the upstream statistics of a solenoidal

turbulence field, we can obtain its downstream turbulence statistics.

B.2.1 Turbulence Modification

An upstream vorticity wave is associaied with a velocity field which can be
decomposed into three velocity components in cylindrical coordinates as shown
in Figure 2.1. Each velocity component can be represented in terms of Fourier

coefhicients as

du, = da, exp(ik - x), (B.27)
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where the wave number vector k lies in the zy, r-plane, making an angle 8 with the

r-axis. The velocity of the refracted vorticity wave can also be expressed as

r/u’l (ll?ll exp(ik’ - x), (13.2%)

where k' is the new wave number vector, making an angle 8’ with the r-axis. The
radial components of k' and k are equal, and the dependence of k' on k is expressed

through the dependence of 8 on 6:

¢ = tan !(mtan 8), (B.29)

1

where m = J ' > 1 15 the density ratio across the shock wave.

Amplitudes of downstream velocity components associated with the vorticity

wave can be related to those of upstream velocity components as

({{I’l = ‘\’ (1{1\],

~f g~
diu, = Yduy,

‘ ﬁ’é = diig, (B.30)
where
. 6. cos B . s sint )
X ¢ e Y = S o (B.31)
cos ¥ sin 6
Here, we have used (13.21) with
U g 1 uq
wy oo and  wp e
4 S cosd

cos

Interaction of a vorticity wave with a shock also generates an acoustic wave
downstream of the shock. For a small inclination angle 8 of the upstream vorticity
wave, this acoustic wave attenuates exponentially with the distance from the shock.
On the other hana, for inclinations greater than a certain critica! value 8., the
acoustic wave propagates without attennation.

The acoustic velocity field can be expressed in the form

Al di exp(ik" - x), (B.32)
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where k" is the wave number vector, making an angle 6" with the r-axis. Again
the radial component matches that of k. The amplitude of downstream velocity
components associated with the acoustic wave can be related to those of upstream

velocity components as

di| = E duy,
duy =T diy,,

dity =0, (B.33)

where

i, €OS ' — /23, sin 6’
e

cousf

(1l

=11

ILeibs sin 6’ + €**/28,, cos ¢’
= Ile

sin 8

r

(B.34)

withn = 1for 0 < § < b and n = 0 ior 6 < 6 < 7/2. That is, the transfer
functions in (B.31) and (B.34) are valid for both subsonic and supersonic cases

with the appropriate choices of 8, and ép.

Turbulence components in the Cartesian coordinates are obtained using the re-

lations

duy = duy cosg ~ dugysing, duz = dursing + dug cosg, (B.35)

and conversely

duy = dug cosd + duysing, dug - —duysing + dugcosd. (B.36)

The same relations apply to the downstream velocity components du' and du”.
Using (B.30) and (B.33) - (B.36), we can represent downstream waves in terms of
the amplitude and wave number of the corresponding upstream wave. Upstream
and downstream vorticity waves represented in (B.27' and (B.28) can be related

as
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du} = Xdu,,
dih = Ydi, cos¢ — dirg sin¢,
diy = Ydi, sing + diig cosg. (B.37)

The velocity fields of the corresponding acoustic wave downstream of the shock is

expressed in (B.32), where

duy = =diy,
duy = I'di, cosd,

diy = I'di, sing. (B.38)

The quantity u;(x) can be obtained from the Fourier transform as
wix) = [ duifhx)
= /exp(ik -x)du;(k), (B.39)

where the triple integration is extended over (—o00,00) in each component of k =

(ky, kg, k3). By defining

di;(k) = ;(k)dk, (B.40)

we can rewrite ( B.39) as
u;(x) = /ﬂi(k)exp(ik-x)dk. (B.41)

If the field is homogeneous, the two-point correlation, u;(%ju;(x') can be repre-

sented as

(%) (x7) = // expli(k-x + 1-x')] &,(K)&, (1) dkdl, (B.42)
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where the triple integrations are extended over (—o00,00) in each component of k

and 1, and the overline (-) means the average over an ensemble. By the use of the

orthogonality of the Fourier modes, (B.42) can be rewritten as
ui(x)uj(x') = /exp(ik-r) a(k)a;(k)dk, (B.43)

where r = x' — x, ﬁ;(k) is the complex conjugate of %;(k). The energy spectrum

tensor E;j(k), the spectral density of u;uj, is defined as

Eyj(k) = Ti(k)a (k) (B.44)

so that

uu; = /E,‘j(k)dk. (B.45)

In order to predict the changes in the second-order turbulence statistics through
the interaction, we multiply both sides of (B.37) by their complex conjugates and

add the last two, resulting in

da\da|" = |X|* di,du},

diydiy” + diyday” = |Y|? di,diy + digdi. (B.46)

From geometry (see Figure 2.1),

du, = duy tand,

du; = duj tané, (B.47)

and also from the coordinate transformation (B.35) we have,

dit,diis + digdil, = diyday + disda;. (B.48)

Thus, using relations (13.40),(5.45), and (B.48), the ensemble average of ( B.46)

can be expressed as
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@@ tdk' = 1X|
(@hah* + dhuyt)dk' = (JY|2 - 1) tan®0 Tyaidk + (Zaus + uzuy)dk. (B.49)

If operations similar to those performed on (B.37) are applied to (B.38), we get

i~ " =12 5 =
uiui*dk” = |Z|° uyuidk,

(@hap* + ahyant)dk” = |I'|? tan®0 Ty dk. (B.50)

The mean-square velority components associated with vorticity waves follow
directly from integration of the spectral density. Integration of both sides of ( B.49)
yields

_ /[XI‘ZEH(k) dk,

~1)tan?d Eq;(k) dk. (B.51)

Similarly, integration of (B.50) yields the mean-square fluctuating velocity compo-

nents in acoustic waves:

i = [P B dx

ut? poul? /!F"‘tan 8 Eyy(k) dk. (B.52)

Thus, the mean-square velocity fluctuations behind the shock are given in terms
of those ahead of the shock, the single-wave transfer functions X,Y,=, and T,
and the longitudinal spectral density, Ej;(k). Note that the single-wave transfer

functions are functions of k and 8, where k ~ |k|.
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Due to the interaction of turbulence with a shock wave, aerodynamic noise is
produced behind the shock wave in the form of fluctuating pressure, p'. The fluc-

tuating acoustic pressure is related to the velocity fluctuation as

!

p =—-pWuwp
or
!
P 2Wp
= gy ML B.

where wp is the (-component of the perturbation velocity associated with the
pressure fluctuation, and p? is the mean downstream pressure. (B.53) can be rec-
ognized as the linearized Bernoulli equation applied to the velocity in the acoustic

wave.

Substituting for M and W, and using (B.24) and (B.25) for wp without vorticity

wave contribution, (B.53) results in

P |wal 2ym I
pP Uy (v+1)ym—(y—1) cos¥

coslky(zy — zq tan8") + &p],  (B.54)

where downstream pressure wave is expressed in terms of the shock strength for
the corresponding upstream vorticity wave (U4 = U;). (B.54) can be interpreted
as the relation between the Fourier coeflicients of the downstream pressure wave
and upstream velocity fluctuations:

p  uy/cosb 2ym

I ,
- " 6 B.
PP U (v 4 m—(3-1) cos g P (B.55)

where p and u are the Fourier coeflicients of the pressure and streamwise velocity

fluctuations, respectively. Pressure fluctuations can be calculated using the relation:

]

p? = [ AkiF e, (B.56)

where p* is the complex conjugate of p.
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Following a similar procedure, we can relate the downstream power spectra to
the upstream power spectra, and all their derived quantities of interest (such as two-
point correlations, turbulence length scales, and dissipation rate) to their upstream

counterparts.

B.2.2 Shock Front Distortion

The local perturbation in the shock front inclination angle o in (B.8) can be
considered as the shock inclination when r-axis in Figure 2.1 coincides with z,-
axis. In general, the shock wave inclinations in zjz9 and zz3-planes, o9 and o3

respectively, can be expressed as

oy = ocos¢ and o3 = oa3ino.

By the use of (B.8), ¢ = (#2,03) can be written as

= 17| ~h expli(ky - xp + &1), (B.57)

where

-~

~ Y1 /2 g2
!0" = ﬁ; O,S +- bs, (358)

VUy = (0/0r9,0/0x3), ky = (ka,k3), x5 = (z2,73), € is the local shock front

displacement from the mean shock position; I71(= U4) is the mean upstream flow

speed.

For 1sotropic turbulenee variznces of the local inclination angles are related by:

3
t
Sl
e
+
e}
W

I
t
3

[ o) X3

(B.59)

. . - . _ . D) . .
Using (B.57),(1B.58) and (#.59), we can express the variance o35 for an isotropic

upstream turbulence as
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—_ 1_
0% = 50’2
=1 / 757 dk
2
- L [55 @ bd) dk B.60
1
where #1u] = Ej1(k) and triple integration is extended over the wave number
space. We can evaluate this integral numerically in the spherical coordinate system
defined as
ki = ksinf, kg = kcosfcos¢p, k3 = kcosfsing, (B.61)
and
dk = k® cost dpdbdk. (B.62)
In this coordinate system, Ey1(k) can be expressed as
E(k) o
Eq11(k,0,¢) = Tni2 ¢ 8, (B.63)
where
2
q 3
/E(k)dk =5 = ng, (B.64)
and u, is the rms of the velocity fluctuations in one direction.
Now (B.60) can be rewritten as
— 1 [T fPEMk) a2, 2 2,2
2 _ - < 1 b2 b* cos 8
o5 = ﬁ/{) /0 /(; k2 cos“f (ag + bg) k” cosfdpdfdk
1 o x/2 5 " 3
_ éﬁ/{) E(k)dk/o (% + b2) cos’6d6
i
3 2 pex/2 R
- = (y—o) / (azS + b%) cos38do, (B.65)
4 I[l 0 . -
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where symmetry in 6 is used in the evaluation of the integral. Note that the
result of the integration is independent of the specific form of the upstream energy
spectrum, E(k). Since the remaining integral is only a function of the upstream
Mach number, the variance of the shock inclination angle is dependent only on

turbulence intensity and the Mach number upstream of the shock wave.

Usiug (B.57), the local shock displacement £ in (B.26) can be expressed as:

1
£ = mlﬂ expli(kp - xp + 6gh)]. (B.66)

The local shock front curvature in the z9 direction, k9 = 325/623, can be ob-
tained by differentiation of (B.57) as

Wi

-

k
Ky = izlm expli(kp - xp + bgp))- (B.67)
*h

Using (B.58) and (B.66), and following the same procedure which was used
to determine the variance of the local shock inclination angle, we can obtain the

variance of the local shock displacement:

— 1 [® [T LTEGk) 1 2 42, .2
€2 = m A A Ay cos aﬁcosgg (a5 + b5) k° cos8dpdfdk
1
1 [®E(k "/2
- fﬁ/o %)dk/o (a% + b%) cosbdd. (B.68)
i

Using (£.58) and (B.67), we find the variance of the shock front curvature in

the z5 direction to be

= L [T PTER) o0 a2 4,222
k2= - / / / fffffff cos“8 (k“cos“fcos” @) (ag + bS) k” cosbdpdfdk
Jo Jo Jo

27 ou 4rk?
3 Sl v/2 2 92 5
A E(k)dk/o (a% + b%)cos8de. (B.69)
1
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Note that variances of shock front displacement and shock front curvature are
dependent on the shape of the upstream turbulence spectrum as well as on the

mean flow Mach number and turbulence intensity upstream of the shock wave.
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FIGURE B.1. Convection of plane oblique sinusoidal shear wave through the shock
wave.
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Shock

FIGURE B.2. Symbols and coordinate systems used in LIA.
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FIGURE B.3. Geometrical relations across the shock, with and without perturba-

tion o in the shock inclination angle.
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APPENDIX C

REMOVAL OF ALIASING ERRORS
IN SIMULATION OF COMPRESSIBLE FLOWS

In computational fluid mechanics aliasing errors arise from the non-linear terms.
The product of two quantities resolved on a mesh of size N results in a function
with higher frequency components that can not be resolved on the mesh. These
components are then “aliased” back in the computational mesh and contaminate

the soiution. Aliasing errors have been reported to lead to inaccurate simulations

[Kim et al. 1987, Spalart 1988].

In a simulation of incompressible Navier-Stokes equations, aliasing errors are pro-
duced from the product of two velocity components in the convective term. (For
simplicity, we only consider the one-dimensional problem and choose the Fourier
collocation method as the numerical differentiation scheme.) A real function de-
fined on N grid points can be represented with N/2 complex Fourier coefficients.
The multiplication of two variables generates contributions up to the wave num-
ber N which is beyond the resolution limit. These contributions lead to aliasing
errors. Since we know the exact origin and destination of aliasing errors we can
remove them. First, we expand the wave number domain from (-N/2 + 1,N/2)
to (—3N/4 + 1,3N/4) with zero Fourier coefficients for the expanded modes. Mul-
tiplication is then performed in the physical space with the expanded grid. The

result is then Fourier transformed and the additional modes are eliminated.

In a simulation of compressible Navier-Stokes equations using conservative vari-
ables, aliasing errors arise from both multiplication and division operations. Divi-
sion is necessary to get the velocity components and temperature from the conserva-
tive variables. Removal of aliasing errors stemmuing from multiplication is possible
in an analogous manner as in the incompressible case. However, we can not remove
all aliasing errors explicitly, since division distributes the aliasing error throughout

the wave number domain.

Good spatial resolution is helpful to minimize the effect of aliasing, since the
aliasing errors are not significant for a well-resolved flow [Canuto et al. 1988].

Jsing a numerical scheme which conserves physically important guantities, such
U p i i ,
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as mass, kinetic energy, and total energy, helps to control the instability resulting
from aliasing error [Feiereisen et al. 1981, Blaisdell et al. 1990].

In the following, we propose a procedure for alias-free simulations of compress-
ible turbulence. The main difficulty in controlling aliasing errors stems from the
division by density to yield velocity components and temperature from conservative
variables. If the equation for the specific volume is solved instead of the density
equation for mass conservation, we can multiply by the specific volume wherever

division by density is needed. The equation for the specific volume, v = 1/p, is:

v 20(pu;)
5 =v _—Bz;i . (C.1)

The remaining equations are the momentum ana energy equations in conservative

forms. The velocities and temperature are obtained from the conservative variables

using
u; = v (pu;) T=~v |Ep— v(p—uk-)z(—py—ﬂ . (C.2)
The equation of state, (3.17), can be recast as
po="Yp (C.3)

¥

Another possible source of aliasing errors is the non-integer power law depen-
dence of viscosity on temperature. The effect of this error on the solution remains

to be investigated.




APPENDIX D

DIRECT NUMERICAL SIMULATIONS
OF SPATIALLY EVOLVING TURBULENCE

Most direct or large eddy simulations of turbulent flows have been performed
with periodic boundary conditions [Rogallo and Moin 1984]. Direct or large eddy
simulations of flows in complex geometries require “turbulent” conditions at the

inflow boundary.

This Appendix presents a method of generating inflow turbulence with a pre-
scribed power spectrum. The results from simulations of spatially decaying turbu-
lence are then compared with those from the corresponding temporal simulation
to validate the method. The method is also validated by comparison with the ex-
perimental data for decaying isotropic turbulence in the regime where the energy

spectrum undergoes a self-similar decay [Ling and Huang 1970].

D.1 Method of Generating Inflow Turbulence

For simplicity, we consider a turbulent flow evolving in the z; direction, the mean
flow direction, homogeneous in coordinates z2,z3, and statistically stationary in
time. At the entrance (z; = 0) of the computational domain, the energy spectrum
of a flow variable, Eyyg, is prescribed in terms of frequency and two transverse wave

numbers. The Fourier coeflicients, f(kg,k;;,w,t), are prescribed by the equation

f(k21k3awat) = Eff(k2,k3’w)exp[i¢r(k2’k3aw7t)]’ (Dl)
where ¢y is the phase factor and i = /—1. The functional dependence of ¢, on time,

as well as on frequency and wave numbers, is necessary so that the signal generated
is not periodic in time. The variable ¢ in fdenotes an element of the ensemble of
realizations. In our scheme, ¢, is changed only once in a given time interval, T;, at a
random instance by a random amount, A¢,, where [A¢;| is bounded by a prescribed
value, Admax. The randomized temporal dependence of each phase, ¢,(kq, k3,w,1),
is shown schematically in Figure D.1. Because the phases are time-dependent, the
generated signal is not continuous and the frequency spectrum of the turbulence
signal generated only approximates the target spectrum, E¢f(k2,k3,w). The fre-

quency and amplitudes of the random phase shifts determine the smoothness of

177




the generated signal. If this temporal dependence is weakened, the approximation
of the target spectrum improves, but the generated signal also approaches a tem-
porally periodic signal. The fluctuation signal, f(z2,z3,t), is obtained by Fourier
transforms in the homogeneous directions (i.e., z9 and z3) followed by a sum over
all frequencies. The turbulence signal at the inflow plane is prescribed by adding
the fluctuation signal, f(xg,z3,t), to the mean flow profile, F(z3,73). One can

easily generalize this method to create inhomogeneous “turbulence” as well.

The approximation of the target spectrum depends on the choices Ty = woTy /27
and Adlax = Admax/2m, where w, is the frequency of the peak energy. The sen-
sitivity of the approximation to T} and A¢j,ay is shown in Figure D.2. The target
spectrum, E¢f(w), is of the form w* exp[—2(w/wo)?]. As the temporal dependence
of the random phase increases (small T and large A¢}, ), the approximation of
the target spectrum worsens. The region of disagreement is localized in the non-
energetic frequencies. In the high w range, the spectrum has a w™? tail. Figure

D.3 shows typical turbulence signals generated at the inflow.

D.2 Simulation of Spatially Decaying Turbulence

The first part of s section demonstrates the performance of the spatial sim-
ulation and compares it with a corresponding temporal simulation. In the second

part, direct numerical simulation results are compared with the experimental data.

D.2.1 Comparison with Temporal Simulation Results

The method of generating inflow turbulence described in Section II is used to
conduct simulations of spatially decaying compressible isotropic turbulence. The
governing equations are the continuity equation, three momentum equations, and
the energy equation, along with the equation of state. We assume the fluid to be
an ideal gas (v = 1.4) with zero bulk viscosity. Viscosity is assumed to have power-
law dependence on temperature, ;‘“: = (%)0'76, while the Prandtl number, Pr, is
kept constant at 0.70. Special attention is given to ensure numerical conservation of
mass, kinetic energy, and total energy in the inviscid limit. We approximate spatial
derivatives by a compact finite-difference scheme [Lele 1990}, which has spectral-
like resolution as well as sixth-order formal accuracy. Time advancement is done

explicitly by a third-order Runge-Kutta method. Periodic boundary conditions
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are used in the zg and z3 directions. The mean streamwise velocity, Uy, is kept
supersonic and uniform for the most rigorous application of the outflow boundary
conditions. In the example presented, the mean inflow Mach number, M; = U;/c,
is 2.0 (c is the speed of sound). Simulations conducted for subsonic inflow yield
essentially the same results. Inflow turbulence is generated with zero density and

temperature fluctuations, with a three-dimensional energy spectrum given by
E(k) ~ k* exp[—2(k/ko)?]. (D.2)

The inflow fluctuation Mach number M; = g¢/c (¢ = \/’zﬁ, where u is a
fluctuation from the ensemble averaged velocity) and the turbulence Reynolds
number based on the Taylor microscale, Rey = uo)A;/v, constitute two indepen-
dent parameters of the simulation, where u, is the rms fluctuation in a velocity
component. We consider several cases with the inflow fluctuation Mach numbers
M; = 0.519, 0.346, 0.173 and Re, = 25.0. The size of the computational domain
is 27 in each direction with 64 grid points. Thus, the computational wave numbers
are integers, and we use the energy peak wave number, k, = 4, in prescribing the
inflow spectrum. For comparison, a corresponding computation of temporally de-
caying turbulence [Lee et al. 1991b] is conducted with the initial fluctuation Mach
number and Reynolds number M; = 0.346 and Re) = 25.0, respectively. Taylor’s
hypothesis is used to convert the downstream distance from the inflow boundary

in the spatial simulation into the evolution time, i.e., t = z{/U].

Figure D.4 shows evolution of velocity derivative skewness, which is a measure of
inertial nonlinearity of turbulence. Skewness varies with compressibility as well as
turbulence Reynolds number [Tavoularis et al. 1978, Erlebacher et al. 1990], having
a value of about —0.4 to —0.6 for isotropic turbulence at Rey, ~ 25. Turbulence
may therefore be considered realistic beyond time ¢/7; = 0.4, where the turbulence
time scale is defined as 7y = A/uo. The development of the velocity derivative
skewness for the spatially decaying turbulence compares favorably with that for

the temporally decaying turbulence.

Figures D.5(a) and D.5(b) present comparisons between spatial and temporal
simulations for one-dimensional spectra of vorticity and dilatation as a function
of the transverse wave number ky. The vorticity spectra agree closely, while the

dilatation spectra show some differences.
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The evolution of turbulent kinetic energy is shown in Figure D.6. The turbu-
lent kinetic energy in the spatial simulation compares favorably with that in the
temporal simulation. The same kind of agreement is obtained in the evolution of
rms vorticity and turbulence Reynolds number. These agreements contrast with a
systematic difference in the statistics of dilatation. Close comparisons are generally
found for the statistics dominated by the incompressible part of turbulence [Moyal
1952], whereas the statistics dominated by the flow compressibility tend to differ.
The level of rms dilatation of the spatial simulation when M; = 0.346 is lower than

the corresponding temporal simulation by 15 percent.

The deviation in the dilatation statistics may be attributed to two causes. Firstly,
disturbances in incompressible turbulence are generally advected at the mean flow
speed, U;, while fluctuations in compressible turbulence are convected at different
speeds, Uy,U; + ¢, and Uy — c. Hence, for statistics dominated by compressibil-
ity the use of Taylor’s hypothesis may be inaccurate. Secondly, as Figure D.5(b)
illustrates, the level of the dilatation spectrum for low wave numbers is higher in
the temporally decaying flow than in the spatially decaying flow. This higher level
of compressibility in the temporal simulation may be attributed to the inability of
the periodic boundary conditions to freely radiate the acoustic waves generated by
turbulence. The existence of one freely radiating boundary (outflow boundary) in
the spatial simulation lowers the overall intensity of acoustic waves trapped in the
domain. Because of this difference, caution must be exercised in using periodic (or
temporal) simulation databases to examine compressibility-driven quantities such

as dilatation dissipation and pressure dilatation correlation.

D.2.2 Comparison with Experimental Data

Ling and Huang [1970] found the isotropic turbulence decay between microscale
Reynolds numbers 3 and 30 to be self-similar. At low Reynolds numbers the en-
ergy and dissipation scales overlap so that there is only a single characteristic leng*a
scale. Domaradzki and Rogallo [1990] confirmed this finding through direct nunier-
ical simulation of temporally decaying incompressible turbulence by showing that
the three-dimensional energy spectra, F(k), at different times can be ccllapsed us-

ing the Taylor microscale as the characteristic length scale. We initi Jized a direct
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numerical simulation of spatially decaying isotropic turbulence with the normalized

inflow energy spectrum given by Ling and Huang [1970] as

E*(k*) = ak*(1 + k*) exp(—k*), (D.3)

where k* is the magnitude of the normalized wave number, k* = (k], k3, k3), with

k= kiay/o{l — 1o), o = 3.162, E* = E(k)y/u(t — to)/u}2, and t = z,/U; and t,

are the decay time and the virtual origin of the decay time, respectively.

The corresponding one-dimensional energy spectrum is

Ej(k}) = aexp(—k}). (D.4)

The self-similarity of normalized spectra in (D.3) and (D.4) is based on the as-
sumption that turbulent kinetic energy and all the relevant turbulence length scales
evolve like t~2 and tl/z, respectively.

In the simulation of the experimental conditions, we follow the same numerical
procedures as in Section D.2.1. The mean streamwise Mach number, fluctuation
Mach number, and Reynolds number at the inflow are M;=1.20, My = 0.173, and
Rey = 15.0, respectively. The size of the computational domain is 27 in each
direction with 64 grid points, and the energy spectrum peaks at k = 4. An incoming
fluid particle passes through the computational domain in time, ¢t = 2.57y, where
Tt = A uo.

Normalized one-dimensional spectra at different downstream positions are shown
in Figure D.7. Spectra collapse onto the experimental results with some deviation

at small wave numbers because of the limited sample size. It was experimentally?

observed that turbulent kinetic energy decays like (2 — z,)~2, i.e.,
2
q -z 2
- = ( 2y, (D.5)
9 ] — To

where ¢2/2 is the turbulent kinetic energy at inflow (i.e., z; = 0) and z,/U;7 =
—4.2 in the simulation. Figure D.8 compares the turbulent kinetic energy decay

in the simulation with that expressed by (D.5). The evolution of turbulent kinetic
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energy in the numerical simulation is in excellent agreement with the experimental

data.

We have developed a method of generating inflow turbulence fluctuations for
spatially developing turbulence computations. Using this method we performed
direct numerical simulation of spatially evolving isotropic turbulence. The com-
puted incompressible turbulence statistics are in excellent agreement with those
from the corresponding temporal simulation and the experimental data. The al-
gorithm for generating inflow turbulence is by no means unique. The significant
result is that one apparently can compute spatially developing turbulence with the

accuracy typical of present temporally evolving simulations.

182




"$310Uanbaly pue siaquInu AM JUIYIP
ye 1070e} aseyd ayy juasaidarz saur] ‘saseyd jo aouspuadsp [elodway pazrwopues jo joid diyewaydg [ J¥NDI]

4r/3

oy ge oe g2 02 gl o1 90 00
I N h il ; o
! o

T 1---3 e |
po=====r=" ' I b e e e e cmceeeaa | P | .
| [

I D K
._l.lnl — 4L _

o
] FS

J
xg/4¢

ol

| mm mm mm mm S EE EE BN B IS S S BN SR SN BE NN NN NR



10* 10* 10 10" 10

10°

. . . ~
3 \\ AP
- R
. A
N \"

»
i,

10

107

10°°*

| 1 ] LI 1 Ll LR L

10" 10 10

W/wo

FIGURE D.2. Approximation of the spectrum by signals with time-dependent
random phases: target spectrum, -~-- Ty = 2, Adfax = 1/20, — — T} =

2,A¢kax = 1/10, - TF =1,A¢% 5 = 1/20.

184




03/1= XUV 1= ;L o ‘O1/1=XNPv g = JL — —0/1=""5¢v e = ;L ----
‘Teuldts stpouad (g = Um/om) moyur oyy je sfeudts oudnqIny reotd£y jo Aioysty swiry, ¢ d¥NOI]
ug /34 Wm

14 cLE 05'e gzt £ GLe 06¢ gee 2

r a T T T T T T ¥
B s
- . 4 2-
ﬁ v.
i \ -
= — _ 0 =
J ] i

1z

o ’ 4 €

J N | d . L A e L don L o ¥

185




L0 =W — —‘opgo =W ‘6150="tw suolje[nuils
renveds ‘ope'0 = v yiwm uonenuurs Jerodwiay :[oquifs ‘SSIUMINS IAIJRALIDP L3D0[3A Jo suoumnjoal ' I¥NOIY

u.h\w

€1 F 3 'y 01 6’0 8’0 L0 90 S0 o £0 20 1o 00

186




‘Tesodwdy - -~ -

‘Teryeds —— :)9°0 = *+/7 ye uotjeyeip(q) pue £3p11304(D) Jo BI0ads [eucIsUaWIp-auo Jo uosuedwo) 'G'Q IUNDIY
0y /Ty 0y /Ty
! ! 01 1 1 01
-Of-l—l»»—- L . b....k% L 1 mv_ b-[-r. . L b—..-. T A - m.
~ L)
- '
L :
Fo =
. f -
-
g s
< <
- E —
: 1
e -
= 3 - g
- 0 - m
- ) o €
o ~ S —
E E : -
E S
L e -
i oy.l/u i SLS
o S [ &
3 :
E.— " E
0. \ = )
“ -
- -
- o
- .
- -
o o
o *
.
r - -
" (®) -
-
s o
.HuI ﬂI
L Q

187




el

‘Teiodwa) - - - - ‘etyeds

:uorjnjoas A319us d1j2uUly JUI[NQIN) jJo uosueduwo)) -9 (q FUNDIJ

w.h\n

90 S0 yo £0 S0 0 00

¥o

0
0
%/ b

o'l

188




i
.
©d
—t 5
-
T -
o
i 3
3
-
-
°|' -4
)
v—l§
—_— —
¥* =i -
- -
~—
A3
O
=it
7 -
Oo_
—
=
-
-
-
-
? -
Q]
v={
=
-
-4
©

10

10™

FIGURE D.7. Comparison of the normalized energy spectrum of Ling and Huang
[1970] given by (D.4) (solid line) and the energy spectra obtained in the simulation
at five different positions (symbols): o, 21 =0; A, z1 = 7/2; + , 27 = m; X,

z1 =3n/2,and o, 2y = 2m.

189




‘(aury pros) (g'@) ysw (joquifs) £edop £310ua d1j2ury jua[nqing jo uosuedwo) -g'( FUNDIJ

whﬂb\ﬁs

SL2 092 ON“N co2 9Ll 09t ge'tl 00’1 SL'0 09’0 ow_.o 000

Il L 1 Il 1 1 Il i

o
w
Lo
FS
- ©
¢ (o]
o &
—
. O
- S
LN X
~
]
(oY )
Lo
-~
- O
-
- ©
©

ot




APPENDIX E

PARAMETER LIMITATIONS FOR DIRECT NUMERICAL SIMULATION
OF SHOCK TURBULENCE INTERACTION

In our direct numerical simulations of shock turbulence interaction, we have re-
quired the resolution of all the relevant scales of turbulence and the shock wave. The
resolution requirement for incompressible turbulence is far better established than
that of compressible turbulence. For weakly compressible turbulence with M; < 0.2
where there are no significant compressibility effects on turbulence, resolution re-
quirements for compressible turbulence is comparable to that of incompressible
turbulence. Some simulations of compressible turbulence at very high M; [Kida et
al. 1990, Blaisdell et al. 1990, Sarkar et al. 1991] were not successful in resolving
changes of the flow variables across the eddy shocklets. Since their main interests
were to study the effect of compressibility on turbulence evolution, resolving the
eddy shocklets may not have been a critical factor. In this study we investigated
the effect of turbulence on the shock wave structure as well as the effect of a shock
wave on turbulence. Therefore, proper resolution of the shock wave is necessary
for accurate results. Limitations on the availability of computer resources leads to

limitations on the choice of physical parameters in the simulation, Re,\,AllU and

M;.

E.1 Requirements for Resolution and Sample Size

As shown in Section 3.3.1, proper resolution of the shock wave structure requires

a grid distribution which places at least three points inside the shock wave whose

thickness 84 is defined by

AU
(dU,y/dzy)

6,:|

min I

Thus, 8, > 3(Az{)min, Where (Az)nin is the typical streamwise grid spacing near

the shock wave. For weak shock waves, the shock thickness &4 is estimated as

T -
* T 3c(M 1)
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[Thompson 1984], where v and c are the upstream kinematic viscosity and speed
of sound, and M is the maximum instantaneous upstream Mach number, M ~
MU + M,, where M; is the fluctuation Mach number at the inflow.

1

In the numerical simulation, artificial turbulence generated at the inflow evolves
into “realistic” turbulence as it approaches the shock wave. In Appendix D, evolu-
tion of artificial inflow turbulence into realistic turbulence was found to take place
in a distance which determines the minimum streamwise computational box size
upstream of the shock wave. Using the results of Appendix D and applying Taylor’s
hypothesis, we get the following relation:

t_=/U

e VR (E.2)

where ) is the longitudinal Taylor microscale, and 7, = A/u, is a turbulence time
scale. Therefore, the minimum streamwise computational box size upstream of the

shock wave Lllj is

0.4
V- E.3
1 uo/Ul ( )

where u,/U] is the streamwise turbulence intensity at the inflow. The streamwise
distance downstream of the shock wave, LlD was chosen to be the same as Lij. The

streamwise computational box size L; can now be expressed as

0.8\
Ly=LV + 1P = .
1 1 1 UO/UI
This relation can be rewritten as
0.46)
= A0 (E.4)
using the definitions of M; and MIU
UU
M = 9 _ \/3&, MIU I
c c
192




In order to eliminate the contamination of long-time-averaged statistics across
the shock, the mean shock front should not drift in space. As the upstream fluc-
tuation Mach number, M;, becomes comparable to MIU — 1, the mean shock drift
speed increases. Therefore, the fluctuation Mach number should be bounded by
MY —1.

Compressible turbulence of M; < 0.2 does not contain eddy shocklets [Lee at al.
1991b] and can be resolved by a grid similar to that in incompressible turbulence at
the same Reynolds number. In our simulations turbulence Mach number is always

lower than 0.2 except possibly just behind the shock wave.

The size of the computational domain and the number of grid points in transverse
directions are determined to satisfy the requirements of sample size and resolution
of turbulence. Based on the form of inflow turbulence spectrum given in (3.32),
the integral scale Ay 2 defined in (4.7), the longitudinal Taylor microscale A, and

the Kolmogorov length scale ng are, respectively,

koAgg’g =2
ko) = 2 (E.5)

16\ /4 _1)2
konK:(B) Re, 7,

where Re) is Taylor microscale Reynolds number defined in (4.1).

To have a sufficient sample of large scale structures, the computational box in

the transverse directions were chosen to be larger than about ten integral scales,

Ly = L3> 10A32 9. (E.6)

To resolve the smallest scale of turbulence which is comparable to g, we chose

the mesh size in the transverse direction as

Azy = Azy < 2ng

(Lee an Reynolds 1985], or using ( E.5)
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koAzy = 0.508Re; /. (E.T)

Using the expression for ng in (E.5), the ratio of the cutoff wave number k. to the

energy peak wave number k, can be expressed as

ke T 1/2
— > ~R .
w22 ey ", (E.8)
where the relation
T
ke = Z;Nz (E.9)

is used (N5 is the number of grid points in the z direction). Combining this with
(E.5),(F.6),(E.8) and (E£.9), the number of grid points in the transverse directions

can be expressed as

1/2

Nz = N3 > 12Re)/*. (E.10)

The number of grid points in the transverse directions according to (E.10) satisfies
the requirements of sample size and fine scale resolution.

A non-uniform mesh is used in the streamwise direction. The minimum mesh

size to resolve the shock wave is obtained from (E.1) as

16 M; 1

ko(AZ1)min = .
0( l)mm 9\/§R€,\M1U+M¢-1

The maximum streamwise mesh spacing is equal to the mesh spacing in the trans-

verse directions.

Turbulence statistics are obtained with averaging over a time t such that

Uol
— >4
A p— b

and the maximum time step of the simulation is determined by the numerical
stability condition of

(Uy + o)At

(Azl)min ’
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where C FL is the Courant-Friedrichs-Lewy number. Since the smallest grid spacing
is in the z)-direction, the total number of time steps required in each simulation

Ny is estimated to be

t _ 4v3 » MU+

N, = > EFal
t= A1 2 CFL (Bev)min M (£.11)

At

By using 65 > 3(AZ)min, (£.1),(E.5),(E.8) and (E.9), one can rewrite (E.11) as

13.5 Re)

N2 oo 2 (MY + My - 1y (MY +1). (E.12)

In the present study with the choice of parameters given in Table 4.1, the number
of time steps ranges from 10,000 to 30,000.

The separation between the typical turbulence length scale and the shock wave
thickness requires a large grid stretching in the streamwise direction. Furthermore,
acoustic waves should be accurately resolved in the region occupied by the shock
wave, which excludes the possibility of using an implicit time advancement to take
a large time increment. Explicit time advancement with a small time increment is
the main reason for the large CPU time required for direct numerical simulation of
realistic shock/turbulence interaction.

In a three-dimensional direct numerical simulation, storage of all the flow vari-
ables in the core requires a large memory. On the Cray Y-MP/832, this problem is
alleviated by using the Solid State Device (SSD) I/O. In the present computations,
the SSD 1/0 takes about 15% of the total CPU time used.

The code performance is about 130 megaflops with 129 x 64 x 64 grid points, and
uses about 45 CPU seconds of Cray Y-MP /832 for each time step. It takes about
100 to 200 CPU hours of Cray Y-MP/832 to obtain adequate turbulence statistics

for one case.

E.2 Limitations of the Physical Parameters: Rc,\,MlU, M,

To discuss the limitations of the physical parameters. we use as a reference the

simulated case: Rey, = 25.0,1\1? = 1.20, and My = 0.173. In realistic problems
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with shock/turbulence interaction, the turbulence Reynolds number is higher, and

the shock strength is usually stronger with a wider range of M;.

Increase in the Reynolds number, Re), results in an increase in the number of
grid points (ref. (£.10)) in all directions which leads to an increase in the CPU time
per time step. Increasing the upstieam Mach number, AIIU, requires a larger grid
stretching ratio in the streamwise direction due to the increased scale separation
between turbulence and the shock wave (ref. (E.1)) and more CPU time per time
step. Increasing the Mach number to Mf’ = 1.40 requires at least twice the CPU

time required for the reference case.

Lowering the upstream fluctuation Mach number, M;, with fixed upstream tur-
bulence length scale requires a longer computational box size in the streamwise
direction (ref. (FE.4)), which leads to the increase of the number of grid points.
Higher Aly requires more grid points in the streamwise direction to resolve the in-
stantaneous shock wave structure (ref. (F.1)). The upper limit of M; is usually set

by the condition of shock stationarity, M; < JWlU - 1.

As shown in Table 4.1, the ranges of inflow parameters used in the simulations

were

16 <Re) < 25,
1.05 <MY < 1.20,
0.087 <M, < 0.173.
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APPENDIX F

TURBULENCE STATISTICS IN KINEMATIC OSCILLATION
OF A PLANE SHOCK WAVE

In the interaction of turbulence with a shock wave, the shock front is distorted
and undergoes an oscillatory movement. The oscillation of the shock front produces
an intermittent time history of the flow variables at a fixed point in a reference
frame fixed at the mean shock position, and it leads to overprediction of turbulence
statistics (see Section 4.1 and [Debieve et al. 1986]). This large fluctuation (which is
not turbulence) is driven by the upstream turbulence, and undergoes rapid viscous

decay since its time and length scales are small.

In order to identify the effects of the shock oscillation on turbulence statistics, a
plane shock wave was moved back and pro in a sinusoidal fashion in the streamwise
direction, and the budget of terms in the R;; equation in (4.9) was computed. The
profiles of the flow variables across the shock wave were obtained as the laminar
solution of the one-dimensional Navier-Stokes equations for MIU = 1.20 (see Section
3.2.2 for more details on the solution procedure). And the solution U = (p, u; ,p)T 1s
expressed in terms of the relative position with respect to the shock center position
Ty as (z] — z4)/8s, where 8, is the shock thickness. The oscillatory movement of
the shock wave is emulated by externally driving the shock wave to move back and

forth in time as

zs(t) = z5(0) + asbs f(1), (F.1)

where a8, is the spatial amplitude of the oscillation, and f(?) is a periodic function
with f(t) = 0. Statistical samples were taken at fixed points z‘lg, which were apart
by about a tenth of the shock thickness. The flow variables at a sampling point near
the shock wave vary in time due to changes in the relative positions with respect to
the shock wave. The sampling points far away from the shock wave are not affected
by the shock wave oscillation. The sampling time interval was chosen so that 100
samples were taken per oscillation period of the shock wave. The statistics were
not found to be sensitive to the choice of the parameter, ay, and the function, f(t).

In the following, a sinusoidal function is used for f(t) with ay = 0.25.

197




Figure F.1 shows the statistics of the streamwise velocity, dilatation, pressure,
density, and temperature. As found in Section 4.2, all the statistics peak inside the
zone of shock oscillation. The peak values were also comparable to those from the

direct numerical simulation (see Figures 4.4 and 4.24).

Figure F.2 shows the budget of terms in the R;; equation. The behaviors of all

the terms in the equation were found to be consistent with those computed from the

direct numerical simulations (see Figure 4.8(a)). The pressure work term, —u'l'ptl,

was found to be the dominant term inside the shock wave.

Figure F.3 shows the decomposition of the pressure work term into the pressure
transport term, _(W)J’ and the pressure-dilatation correlation, IT'I',I Again,
behaviors of the two decomposed terms are in agreement with the results from the
simulations (see Figure 4.7(a)).

It can be concluded that the large levels of fluctuations in the shock zone in
the direct numerical simulations were mainly due to the oscillatory movement of a

plane shock wave.
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APPENDIX G

EFFECT OF A REFINED OUTFLOW BOUNDARY CONDITION

As described in Section 3.2.4, Thompson’s non-reflecting boundary condition
[1687] was used in the present work. This boundary condition was successful in
suppressing the reflection of nonphysical acoustic waves in test problems, where
the vortical and entropy waves were passed through the outflow boundary (see Sec-
tion 3.3.2). However, in the simulations of shock wave turbulence interaction, the
statistics which are associated with acoustic waves, such as pressure work (Figure
4.6(b)) and dilatation (Figure 4.10), show anomalous behavicrs near the outflow
boundary. In order to assess the extent of influence of downstream boundary con-
ditions on turbulence evolution, the more refined boundary conditions of Giles
[19906] were implemented and turbulence statistics from these computations were
compared with those using Thompson’s boundary conditions. In this Appendix, a
brief description of Giles’ boundary condition is given first, followed by a compari-
son of the statistics using Giles’ boundary condition with those using Thompson’s

boundary condition.

G.1 Description of Giles’ Boundary Condition

The original derivation of Giles’ boundary condition is based on the analysis of
the linearized Euler equations; here the viscous terms were added. We begin with
Giles’ analysis on the three-dimensional Euler equations which can be written in

terms of the primitive variables as

ou ou ov ou
Bt—+Aa—zl+B5;£+ a—;——o, (G.1)

where U = (5p,6u1,6u2,5u3,5p)T,

uy p 0 O 0
0 u»; 0 0 1/p
A=10 0 u; 0 0 (G.2)
0 0 0 Uy 0
0 yp 0 0 u
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ug 0 p O 0
0 u9 0 0 0
B=|0 0 wuw 0 1/p (G.3)
0 0 0 wup O
0 0 TP 0 u9

and

us 0 0 P 0
u 0

0 3 0 O

C=10 0 3 0 0 }|. (G.4)
0 0 0 wuz 1/p
0 0 0 ~vp wug

The elements of the vector U represent perturbations from uniform flow condi-
tions, and the matrices A, B, and C are evaluated using uniform flow conditions.

We consider wave-like solutions of the form

U(zy,22,23,t) = expli(k12z) + kazg + k3zz — wt)u’, (G.5)

R

where u™* is a constant column vector. Substituting this into the differential equa-

tion (G.1), we obtain

(—wl + kyA + koB + k3C)u® =0, (G.6)

which has a nontrivial solution, provided that

det(—wI + k1A + kyB + k3C) = 0. (G.7)

The vector u® is also an eigenvector of the matrix

H =AY ~wl+ kA + koB + k3C) (G.8)
corresponding to the eigenvalue k;.

Suppose that the differential equation is to be solved in the domain z; < Ly,
and one wants to construct boundary conditions at £; = L to minimize or ideally
prevent the reflection of outgoing waves. At the boundary z; = L;, U can be
decomposed into a sum of Fourier modes with different values of k9, k3, and w.
Consider a single wave with particular choice of k9,k3, and w. In this case, the

most general form for U is

204




U(Ly,3028,1) = [Z a,,u,fze«mnh] dbmtbsl)  (gg)

n

where (k1)n is one of the roots of the dispersion relation for the given values of

ko, k3, and w, and u® is the corresponding right eigenvector.

The ideal nonreflecting boundary condition would specify a, = 0 for each n that
corresponds to an incoming wave. The construction of such a boundary condition
requires the vector vZ, which is an eigenvector of H7. It is well known from linear
algebra that the eigenvectors of H and HT corresponding to different eigenvalues

are orthogonal, that is,

(vm) T ugl =0, (G.10)
where vk and u® are the left and right eigenvectors corresponding to different
solutions (k1)m and (k})n of the dispersion relation, (G.7).

At the boundary, 1 = L1, orthogonality leads to

('U,ll;)TU — (vrIl/)T [E amuﬁei(kx)le} ei(k212+k333—wt)
m

— a, [(v’[;)Tuf] ik )n Ly i(kaza+kaza—wt) (G.11)

Therefore, an equivalent specification of nonreflecting boundary condition is

wHTu =0 (G.12)

for each n corresponding to an incoming mode.
In principle, these exact boundary conditions can be implemented in a numerical
method. The problem is that, in general, v,I; depends on Iy = ky/w and I3 = k3/w,
and the implementation would involve Fourier transforms in 3 and z3 and Laplace

transform in ¢. Computationally, this is both difficult and expensive to implement.

In the following, an approximation used for general situations is described.
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A sequence of approximate, nonreflecting boundary conditions can be obtained

by expanding v,I{ in a Taylor series as a function of I3 and I3 as

L v L
Iz 1s) = vE(0,0) + L2 (0,0) + b5 (0,0)+ O bla, ). (G13)

The first-order approximation, obtained by keeping only the leading term, gives

Thompson’s boundary condition. The second-order approximation is,

T

k k 6

vE(0,0) + k2 Ouy (0,0)+ = 23 n (0 0] U=o. (G.14)
w 0ly

Multiplying by —iw and replacing ikq,tk3, and iw by 3/0z2,0/0z3, and — J/0¢,

respectively, gives

U d(wk)T U (k)T oU

o o, 9%, —a, (005, =0 (G-15)

(v2)7(0,0)) =

This is a local boundary condition of the same differential order as the governing
equations. These boundary conditions are only approximately nonreflecting and
may produce nonphysical reflections of outgoing waves for which [y and/or I3 are

far from zero.

Using (G.2)-(G.4), the dispersion relation (G.7) for the system of equations,
(G.1), can be written as

(urky + ugky + ugks - w)?* [(ulkl + ugky + ugky — w)? — Ak} + kF + k§)] =0.
(G.16)

Three of the five roots are identical, i.e.,

(ki)pgg = 2 t2k2 Zusks (6.17)

uj
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For u; > 0, these correspond to right-travelling waves.

The other two roots are

(w - ugkz — u3k3)(—u1 + CD)

(k1)s = (G.18)
C2 — u%
and (& — ugky — ugks)(=u1 — D)
w —Uu -~ Uu ~—tuU1 — C
(k1)s = e : (G.19)
S |
where
D = /1 - (c? — ud)(kE + k2)/(w — uzky — ugks)2. (G.20)

For 0 < u; < ¢, which corresponds to subsonic flow normal to the boundary, the
fifth root is a left-travelling wave, provided the correct branch of the complex square
root function is used in defining D. (D is defined as the positive root for D? > 0
and as the one with negative imaginary part otherwise, so that it represents a
left-traveling wave with finite amplitude.) This wave is of interest in implementing
Giles’ boundary condition at the subsonic outflow boundary. The left null-vector
defined in (G.9) for (ky)s, which correspond to an upstream travelling pressure

wave, is

()T = (0, pe(—w +ugks +ugks), —pcu ks, —peutks, (w — ugks —uzks)N). (G.21)

The second-order approximation of (G.21) in the form of (G.15) is

ou ou ou
(0y,~pc,0,0,1)— Y — (0, pcus, pcul,O,—ug)a—z— —(O,pcu;;,O,—pcul,—u;;)a—xs— = 0.
(G.22)

For convenience of implementation and for comparison with Thompson's bound-

ary condition, we define one-dimensional characteristic variables,

T
¢ = (01‘62,63&1,05) ’
as
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-2 0 0 0 1
0 0 pc 0 O
0 pc 0 0 1
0 —pc 0 0 1
and
-1/¢* 0 0 1/(2¢%)  1/(22)
0 0 0 1/§2pc; —1}(2pc)
U= 0 1/(pc) 0 0 0 c. (G.24)
0 0 1/(pc) 0 0
0 0 0 1/2 1/2

We can express the boundary condition (G.22) using a characteristic variable as

Oe & +(0,u1,0,0, uz)a— +(0,0,u,,0, u3)— = 0. (G.25)
ot O0zq T3

The corresponding expression for Thompson’s boundary condition is

665 dc
B +(0,¢,0,0, ug)——— +(0,0,¢,0, u3)5;; =0, (G.26)

which simply replaces the velocity u; in (G.25) with c.

The actual boundary conditions used in the present code were those given by
(G.22) with viscous terms added. The implementation of Thompson’s boundary

conditions also included the viscous terms.

G.2 Comparison of Turbulence Statistics

The code used in the present study was modified to include the more accurate
Giles’ boundary condition instead of Thompson’s boundary condition. One of the
saved fields for the case A which used Thompson’s boundary condition was used
as the initial field. Except for the outflow boundary condition, the same algorithm
was used. After a transient period, statistical samples of flow variables were ac-
cumulated. Turbulence statistics are compared with those from case A which are

computed from samples taken for exactly the same time interval.
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Figure G.1 compares the evolution of mean square vorticity for the two different
outflow boundary conditions. The difference is negligible throughout the domain
which indicates that the improved boundary conditions for removing acoustic wave

reflections have virtually no effect on the evolution of vortical waves.

Figure G.2 compares the evolution of the streamwise velocity fluctuations. The
anomalous increase towards the outflow boundary is reduced by applying Giles’
boundary condition. This improved behavior is, however, localized near the outflow

boundary and does not affect the evolution of turbulence downstream of the shock.

Apparently, the anomalous behavior of the streamwise velocity fluctuations near
the outflow boundary is caused by the pressure work term (see Figure 4.8(a)). Fig-
ure G.3 compares the statistics of pressure work term, ~m in the TKE trans-
port equation. The sudden increase in the pressure work term towards the outflow
boundary is reduced by half by using Giles’ boundary condition instead of Thomp-
son’s boundary condition. This improvement is also localized near the outflow

boundary.

As shown in Figure 4.10, the variance of the fluctuating dilatation increases by
a factor of 10 near the outflow boundary due to nonphysical reflection of acoustic
waves. Figure G.4 shows the improvement resulting from removing the acoustic

wave reflection by the use of Giles’ boundary condition.

In conclusion, Thompson’s boundary ccndition used in the present study is found
to be acceptable because reflections of acousrtic waves at the outflow boundary do

not appear to affect turbulence statistics downstream of the shock.
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APPENDIX H

DRIFT IN THE SHOCK POSITION AND THE OUTFLOW CONDITION

In our numerical setup, there is no external mechanism to fix the position of
the shock wave. From numerical experiments with a one dimensional shock wave
interacting with a sinusoidal en’ropy wave, we found that poor resolution of the
shock and a high amplitude flu~tuation lead to the shock movement. If the shock
wave drifts in the streamwise direction, the inflow mean Mach number is not the
true upstream Mach number of the system. Moreover, the statistics obtained at
a fixed point in space become contaminated because the relative distance to the
shock wave is changing in time. The drift of the shock wave position in time is
represented as the mismatch of the upstream and downstream mass fluxes in the
chosen reference frame of the simulation, which reflects the fact that the mean
turbulent shock propagation speed is different from the specified laminar shock
propagation speed. The shock drift speed can be related to the the mass flow rate

difference by integrating the continuity equation in time and sgace, as

///[p p(to)] dz1dzodry = — /// pu1 pul)/ dzodzidt.
L

(H.1)
The left side of (H.1) can be expressed in terms of the mean shock drift speed U,
[ [ [ et - stto) derdezdzs = - — 5" \0uaLaft ~ 1), (i)

which represents the mass decrease in the computational domain due to the mean
drift of the shock wave (The shock wave drift in the +z; direction leads to a decrease
of the total mass in the computational domain). The statistically averaged quantity

p is defined as

p:

Jo I I pdzadaydt
L2L3(t - to) .
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The right side of (H.1) can be rewritten in terms of the statistically averaged

quantities as

- /t‘t /_/ [(PUI)D - (Pul)U] dzodzradt = —(WD - P_UYU)LZLC*U —t0). (H.3)

Using (H.1) - (H.3), the mean shock drift speed can be obtained as

. _ PED —pur”
8 — — _—
pD—-pU

(H.4)

Figure H.1 shows the mismatch in the mass fluxes across the shock wave for the
worst case among the simulations. The shock drift speed in this case is about 0.7%

of the average upstream speed.

Since the flow variables at the outflow boundary are not explicitly specified, they
may drift in time. For the simulations of subsonic inflow-outflow condition, Poinsot
et al. {1990] proposed to add an extra term to Thompson’s boundary condition in
order to force the exit pressure to relax to an equilibrium pressure. Figure H.2
shows the time history of the mean exit pressure over three eddy turnover times.
The drift in the mean exit pressure is about 0.2% of the mean exit pressure, which
is not significant. Therefore, no modifications were introduced to the Thompson

boundary condition at the outflow.
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