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Abstract

In this study, the interaction between two non-radially symmetric camphor particles is theoret-

ically investigated and the equation describing the motion is derived as an ordinary differential

system for the locations and the rotations. In particular, slightly modified non-radially symmetric

cases from radial symmetry are extensively investigated and explicit motions are obtained. For

example, it is theoretically shown that elliptically deformed camphor particles interact so as to

be parallel with major axes. Such predicted motions are also checked by real experiments and

numerical simulations.
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1. Introduction

Spontaneous motions are one of the most attractive behaviors both from phenomenological

and theoretical points of view (e.g. [1, 2, 3] and the references in them). Traveling pulses are

typical examples and extensive research has been conducted in this area (e.g. [4, 1, 5, 6, 7]).

Recently, a camphor particle floating on water was considered and the occurrence of sponta-

neous motions of a camphor particle was reported theoretically and experimentally [8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18]. Among them, radially symmetric camphor particles have been mainly

treated and it was shown that the spontaneous motion can occur due to the symmetry breaking

of the profile of dissolved camphor molecules at the water surface even if the camphor particle

is radially symmetric. In practice, such symmetry breaking of camphor concentration profile

causes an asymmetrical surface tension around the particle and, therefore, spontaneous motions

of a camphor particle appear as the bifurcating branch from a standing solution by a pitchfork

bifurcation. This can be regarded as a typical example of traveling spot in R
2.

On the other hand, an asymmetric camphor particle has been considered as a natural extension

from symmetric particles. It was reported that for an elliptic camphor particle the spontaneous

traveling motion in the minor-axis direction primarily appears both theoretically and numerically

(e.g. [14, 15]). They also investigated various parameter sets numerically and checked what kind

of behaviors, such as a traveling motion, self-rotating motion, and so on, appear in each parameter
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region. In particular, they suggested the existence of an appropriate parameter region in which

an elliptic camphor particle can stand still.

In this study, we focus on the aforementioned fact and investigate the interaction between

two standing asymmetric camphor particles as the first step to analyze multi-camphor particles.

In fact, there has been a lot of research related to multi-camphor particles (e.g. [19, 20, 21, 22,

23, 24, 25, 26, 27, 28]) such as analysis of the jam of camphor particles on a circle (e.g. [28])

although almost all of them are related to the interaction in one-dimensional space.

On the other hand, only few analyses of the interaction between multi-camphor particles in

two-dimensional space have been presented, and even so, only for the case of radially symmetric

particles. In fact, in [13], the interaction between two radially symmetric camphor particles

was shown to be repulsive in a mathematically rigorous way, in which the equation describing

the motion of two interacting traveling camphor particles with sufficiently small velocities was

derived.

Here, we consider the interaction between non-radially symmetric camphor particles, but use

the interaction of standing spot solutions as the first step to deal with multi-camphor particles

with non-radially symmetric shapes.

We only consider two camphor particles. The considered model equation is



τ1 ṗj =

∫

∂Ω j(t)

γ(u)nds,

τ2 Θ̇ j =

∫

∂Ω j(t)

γ(u)(r × n) ds,

∂tu = d∆u − αu + a0

(
χΩ1(t)(x) + χΩ2(t)(x)

)
(1.1)

for j = 1, 2, where all coefficients τ j, d, α, and a0 are all positive constants. γ(u) is a decreasing

function, and χA(x) is the characteristic function for a set A ⊂ R
2. Here, u(t, x) denotes the

surface concentration of the camphor molecular layer on water surface. Camphor particles are

represented by Ω j(t) with ∂Ω j(t) = {x ∈ R2; x = pj(t) + r} as in Fig. 1, where n is the outward

normal unit vector of ∂Ω j(t), pj denote the locations of camphor particles, and Θ j are the char-

acteristic angles of the camphor particles. The vector product in two dimensions is defined as

r × n = r1n2 − r2n1, where r = t(r1, r2) and n = t(n1, n2).

The physical meanings of Eq. (1.1) are as follows. The first and second equations represent

balanced equations for the positions and the characteristic angles of camphor particles, respec-

tively. The left-hand sides of both equations denote the resistance for translation and rotation,

while the right-hand sides are the force and torque originating from the inhomogeneity of sur-

face tension γ(u). The constants τ1 and τ2 are the resistance coefficients for the translation and

the rotation, respectively. The third equation represents the time evolution of concentration of

camphor molecular layer, and the right-hand side is composed of the terms describing diffusion,

sublimation into the air, and supply from the camphor particle. Here, d, α, and a0 are the dif-

fusion constant, the sublimation rate, and supply rate from the camphor particle per unit area,

respectively.

In real systems, the Marangoni convection is induced by the surface tension difference at

water surface [29, 30, 31, 32]. Therefore, we have to consider hydrodynamics to discuss the

actual phenomenon in more detail. In the other place, one of the authors discuss that the effect of

the hydrodynamic effect is regarded as effective diffusion when the camphor particle is moving

with a sufficiently small velocity [33]. In this sense, our model does not precisely describe the

motion of the camphor particle. However, since our model is constructed with simple equations,
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Figure 1: Camphor particle Ω j with the location pj and the characteristic angle Θ j.

and thus we consider our model can be adopted to the other phenomena such as chemotactic

motion in which an object release chemicals from which the object tends to escape [1, 34, 35].

For a single camphor particle with elliptic shape, the model equation was originally proposed

in [15] as follows: 

m p̈+ τ1 ṗ =

∫

∂Ω(t)

γ(u)nds,

I Θ̈ + τ2 Θ̇ =

∫

∂Ω(t)

γ(u)(r × n) ds,

∂tu = d∆u − αu + a0χΩ(t)(x),

(1.2)

where m p̈ and I Θ̈ are inertia terms for translation and rotation, respectively. As mentioned

above, it was shown in [14, 15] that an elliptic camphor particle tends to move in the minor-axis

direction. It was also suggested by numerical simulations that a single elliptic camphor particle

stands still when τ1 and τ2 are large. In this paper, we consider this case but with two identical

elliptic camphors. In that case, each camphor particle does not move if it exists alone and hence,

we can expect that the movements of two interacting camphor particles are rather slow. Thus,

we neglect acceleration terms p̈ and Θ̈ in (1.2) and consider (1.1). It is noted that force-free

and torque free conditions hold in Eq. (1.1), that is the surface tension working on the camphor

particle balances the resistance force and torque.

By analyzing the interaction of them in (1.1), we can show that each camphor particle with

elliptic shape moves and rotates so that their major axes are orthogonal to the center line con-

necting p1 and p2 if each camphor particle is slightly deformed from radial symmetry.

This paper is organized as follows: In Section 2, we present the model equation for a single

particle that we treat in this paper precisely. It is not (1.1) but a slightly modified version. In Sec-

tion 3, the analysis of the interaction between two camphor particles is described. The validation

of theoretical results using real experiments is described in Section 4. The theoretical results are

also checked with numerical calculation and subsequently presented in Section 5.

2. Preliminaries for (1.1) and a single camphor particle

Before we deal with two camphor particles, we first consider a model of a single camphor
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Figure 2: Fixed camphor particle Ω0 with the location at the origin O and the characteristic angle Θ = 0.

particle. The model equation for a single camphor particle corresponding to (1.1) is



τ1 ṗ =

∫

∂Ω(t)

γ(u)nds,

τ2 Θ̇ =

∫

∂Ω(t)

γ(u)(r × n) ds,

∂tu = d∆u − αu + a0χΩ(t)(x).

(2.1)

Dividing the first and the second equations of (2.1) by τ1 and τ2, respectively, we consider



ṗ =

∫

∂Ω(t)

γ1(u)nds,

Θ̇ =

∫

∂Ω(t)

γ2(u)(r × n) ds,

∂tu = d∆u − αu + a0χΩ(t)(x).

(2.2)

Hereafter we assume γ1 and γ2 are certain decreasing functions but make no other assumptions,

that is, γ j(u) are not necessarily equal to γ(u)/τ j of (1.1).

Let R(Θ) :=

(
cosΘ − sinΘ

sinΘ cosΘ

)
and Ω0 be a fixed camphor particle located at the origin O

and the characteristic angle Θ = 0 as in Fig. 2. Then Ω with the location p and the characteristic

angle Θ is expressed by

Ω = {x = p+ R(Θ)z; z ∈ Ω0}.

Then (2.2) is 

ṗ =

∫

∂Ω0

γ1 (u(t, p+ R(Θ)z)) nds,

Θ̇ =

∫

∂Ω0

γ2 (u(t, p+ R(Θ)z)) (r × n) ds,

∂tu = d∆u − αu + a0χΩ0
(z),

(2.3)

for the solution u = u(t, x) and the relation x = p(t) + R(Θ(t))z.

Moreover, we introduce approximating smooth functions to the boundary integrals and the

characteristic function as follows.

Let K0(z) ∈ R2 and k0(z) ∈ R be smooth integral kernels satisfying

∫

R2

g(z)K0(z) dz =

∫

∂Ω0

g(z)nds + O(δ),
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∫

R2

g(z)k0(z) dz =

∫

∂Ω0

g(z)(r × n) ds + O(δ)

for an arbitrary function g(z) and a sufficiently small δ > 0. As a consequence, the model

equation that we deal with is



ṗ =

∫

R2

γ1 (u (t, p+ R(Θ)z)) K0(z) dz,

Θ̇ =

∫

R2

γ2 (u (t, p+ R(Θ)z)) k0(z) dz,

∂tu = d∆u + f0(u) + f1(z),

(2.4)

where z = R(−Θ)(x − p). Here f1(z) is also a smooth approximate function to a0χΩ0
(z) in O(δ)

accuracy. Though f0(u) corresponds to −αu, we do not necessarily make this assumption, but

assume a general function satisfying f (0) = 0 and f ′
0
(u) < 0 for u ≥ 0.

In the following, we consider a stationary solution of (2.4). We first assume the existence of

a stationary solution, say S ∗(x), satisfying



0 =

∫

R2

γ1 (S ∗(z)) K0(z) dz,

0 =

∫

R2

γ2 (S ∗(z)) k0(z) dz,

0 = d∆S ∗ + f0(S ∗) + f1(x).

(2.5)

Then for any p ∈ R2 and Θ ∈ R, S (x; p,Θ) := S ∗(R(−Θ)(x− p)) is a stationary solution of (2.4).

Let L := d∆ + f ′
0
(S ∗(x)) and assume the following:

(H1) |S ∗(x)| ≤ c0e−α0 |x| for positive constants c0 and α0;

(H2) the spectral set σ (L) ⊂ {λ ∈ C; Re(λ) < −c1} for c1 > 0.

Let X := R
2×R×L2(R2) with the inner product

⟨
U,V

⟩
X

:= ⟨ p, q ⟩+Θ ·Ξ+⟨ u, v ⟩L2 for U =

t(p,Θ, u) and V = t(q,Ξ, v) ∈ X. Let S (x; p,Θ) := t(p,Θ, S (x; p,Θ)) ∈ X and L
(
U

)
∈ X be the

right-hand side of (2.4). Then L
(
S (x; p,Θ)

)
= 0 holds. To investigate the stability of S (x; p,Θ),

we consider the linearized operator of (2.4) with respect to S . Let L(p,Θ) := L′
(
S (·; p,Θ)

)
and

L0 := L′
(
S (·; 0, 0)

)
.

Here we put e1 := t(1, 0) and e2 := t(0, 1) and express the angle derivative with respect to Θ

by ∂Rv := ⟨ ∇v,R(π/2)z ⟩ = (−z2∂z1
+ z1∂z2

)v for z = (z1, z2) and v = v(z).

Proposition 2.1. The linearized operator L0 with respect to S (x; 0; 0) is

L0 V =



∫

R2

γ′1 (S ∗(z)) (v + ⟨ ∇S ∗, q ⟩ + Ξ∂RS ∗(z)) K0(z) dz
∫

R2

γ′2 (S ∗(z)) (v + ⟨ ∇S ∗, q ⟩ + Ξ∂RS ∗(z)) k0(z) dz

Lv − ⟨ ∇ f1, q ⟩ − Ξ∂R f1



for V = t(q,Ξ, v) ∈ X and

Φ1 :=


e1

0

−∂z1
S ∗

 , Φ2 :=


e2

0

−∂z2
S ∗

 , Φ3 :=


0

1

−∂RS ∗
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are the eigenfunctions of L0 associated with 0 eigenvalue.

This proposition is easily checked by direct calculations.

Then we have

Lemma 2.1. Suppose that assumptions (H1) and (H2) hold. If γ1 and γ2 are sufficiently small,

then the spectral set σ
(
L0

)
is given by σ

(
L0

)
= {0} ∪ σ1 with σ1 ⊂ {λ ∈ C; Re(λ) < −c2} for

c2 > 0. Moreover, 0 is a semi-simple eigenvalue and KerL0 is just spanned by Φ j ( j = 1, 2, 3).

Proof.

Since γ1 and γ2 are sufficiently small, we introduce a small parameter ϵ > 0 and write

γ1 = ϵγ1 and γ2 = ϵγ2. First, we show ρϵ ⊂ ρ
(
L0

)
, the resolvent set of L0, where ρϵ :={

λ ∈ C; Re(λ) > −c1, |λ| ≥ c′
2
ϵ
}

for c′
2
> 0. For λ ∈ ρϵ , we consider the equation

(
λ − L0

)
V = G (2.6)

for V = t(q,Ξ, v), G = t(a,T, g), and q = t(q1, q2) = q1e1 + q2e2. Defining V0 := q1Φ1 + q2Φ2 +

ΞΦ3, we see V = V0 + V1 with V1 =
t(0, 0, v1). Since L0V0 = 0 holds, by the substitution

V = V0 + V1 into (2.6), we have

λV0 +
(
λ − L0

)
V1 = G. (2.7)

(2.7) supplies the equations

λq − ϵ
∫

R2

γ
′
1(S ∗(z))v1K0(z) dz = a, (2.8)

λΞ − ϵ
∫

R2

γ
′
2(S ∗(z))v1k0(z) dz = T, (2.9)

λv0 + (λ − L)v1 = g, (2.10)

where v0 := −q1∂z1
S ∗ − q2∂z2

S ∗ − Ξ∂RS ∗. Since ρϵ ⊂ ρ(L), equation (2.10) is solvable for v1 as

v1 = (λ−L)−1g−λ(λ−L)−1v0 and the estimate ∥v1∥L2 ≤ c′′
2
{∥g∥L2 + |λ|(|q|+ |Ξ|)} holds for c′′

2
> 0.

Therefore, by taking c′
2
> 0 large enough, equations (2.8) and (2.9) are solvable for q and Ξ, that

is, λ ∈ ρ
(
L0

)
.

Next, we show λ , 0 with |λ| ≤ c′
2
ϵ should be λ ∈ ρ(L0). Let λ = ϵλ1 with λ1 , 0 and

|λ1| ≤ c′
2
. We again consider equation (2.6) and get (2.8) – (2.10) and v1, too. Since (ϵλ1 − L)−1

exists, (2.8) and (2.9) give the equation

{
ϵλ1q + ϵ2{q1a11 + q2a12 + Ξa13} = a + ϵa14(g),

ϵλ1Ξ + ϵ
2{q1a21 + q2a22 + Ξa23} = T + ϵa24(g),

(2.11)
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where

a1 j := −λ1

∫

R2

γ
′
1(S ∗(z)){(ϵλ1 − L)−1∂z j

S ∗}(z)K0(z) dz, ( j = 1, 2)

a13 := −λ1

∫

R2

γ
′
1(S ∗(z)){(ϵλ1 − L)−1∂RS ∗}(z)K0(z) dz,

a2 j := −λ1

∫

R2

γ
′
2(S ∗(z)){(ϵλ1 − L)−1∂z j

S ∗}(z)k0(z) dz, ( j = 1, 2)

a23 := −λ1

∫

R2

γ
′
2(S ∗(z)){(ϵλ1 − L)−1∂RS ∗}(z)k0(z) dz,

a14 :=

∫

R2

γ
′
1(S ∗(z)){(ϵλ1 − L)−1g}(z)K0(z) dz,

a24 :=

∫

R2

γ
′
2(S ∗(z)){(ϵλ1 − L)−1g}(z)k0(z) dz.

Since (ϵλ1 − L)−1 is bounded, equation (2.11) is solvable for q and Ξ for sufficiently small ϵ > 0,

which means λ = ϵλ1 ∈ ρ(L0) except 0 in an O(ϵ)- neighborhood of the origin.

Finally, the non-degeneracy (semi-simpleness) of 0 eigenvalue and KerL0 = span
{
Φ1,Φ2,Φ3

}

are shown as follows. Let L0V = 0 with V = t(q,Ξ, v). Similarly to (2.6), L0V1 = 0 holds by

taking V = V0 + V1 with V0 = q1Φ1 + q2Φ2 + ΞΦ3 and V1 =
t(0, 0, v1). Then (2.10) with λ = 0

gives v1 = 0, which means V1 = 0 and therefore V = V0. Thus, KerL0 = span
{
Φ1,Φ2,Φ3

}
was

shown.

Assume −L0V = Φ1, where V = t(q,Ξ, v). Then we can similarly take V = V0 + V1 with

V0 = q1Φ1 + q2Φ2 + ΞΦ3, V1 =
t(0, 0, v1) and similarly to (2.8) – (2.10) also obtain

−ϵ
∫

R2

γ
′
1 (S ∗(z)) v1K0(z) dz = e1, (2.12)

−ϵ
∫

R2

γ
′
2 (S ∗(z)) v1k0(z) dz = 0, (2.13)

−Lv1 = ∂z1
S ∗. (2.14)

Thus, v1 = −L−1∂z1
S ∗ from (2.14) contradicts (2.12) and (2.13). Consequently, it is shown that

there are no V satisfying L0V = Φ j ( j = 1, 2, 3). Thus, the semi-simpleness of the 0 eigenvalue

is proved.

Lemma 2.1 directly leads to the following theorem.

Theorem 2.1. If γ1 and γ2 are sufficiently small, then S (x; p,Θ) is asymptotically stable ex-

cept for translation and rotation. That is, if the initial data (p0,Θ0, u0(x)) is sufficiently close to

(p0,Θ0, S (x; p0,Θ0)), then there exists (p∗,Θ∗) close to (p0,Θ0) such that the solution (p(t),Θ(t), u(t, x))

of (2.4) converges to (p∗,Θ∗, S (x; p∗,Θ∗)) as t → ∞.

Remark 2.1. When the linearized operator L0 satisfies the properties stated in Lemma 2.1, that

is, the spectral set σ(L0) is given by σ(L0) = {0}∪σ1 with σ1 ⊂ {λ ∈ C; Re(λ) < −c2} for c2 > 0

and 0 is a semi-simple eigenvalue, we call S ∗ (also S (x; 0, 0)) linearly stable. Note that if S ∗ is

linearly stable, then S (x; p,Θ) is also linearly stable for any p ∈ R2 and Θ ∈ R.
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Remark 2.2. Here L(p,Θ) is given by

L(p,Θ) V =



∫

R2

γ′1 (S ∗(z)) (v (p+ R(Θ)z) + ⟨ ∇S ∗,R(−Θ)q ⟩ + Ξ∂RS ∗(z)) K0(z) dz
∫

R2

γ′2 (S ∗(z)) (v (p+ R(Θ)z) + ⟨ ∇S ∗,R(−Θ)q ⟩ + Ξ∂RS ∗(z)) k0(z) dz

L(p,Θ)v − ⟨ ∇ f1,R(−Θ)q ⟩ − Ξ∂R f1



for V = t(q,Ξ, v) ∈ X, where L(p,Θ) := d∆ + f ′
0
(S (x; p,Θ)).

Proposition 2.2. We have

Φ1(p,Θ) :=


R(Θ)e1

0

−∂z1
S ∗(z∗)

 , Φ2(p,Θ) :=


R(Θ)e2

0

−∂z2
S ∗(z∗)

 , Φ3(p,Θ) :=


0

1

−∂RS ∗(z∗)



are the eigenfunctions of L(p,Θ) associated with a 0 eigenvalue for z∗ := R(−Θ)(x − p).

Proof. By the relation between L0 and L(p,Θ), this can easily be verified.

Here, we remark about the adjoint operator L
∗
0 of L0 with respect to the inner product in the

space X, which is useful in investigating the interaction between two camphor particles in the

next section.

Proposition 2.3. The adjoint operator L
∗
0 is

L0

∗
V =



∫

R2

[⟨ q, K0(z) ⟩ γ′1(S ∗(z))∇S ∗ + Ξk0(z)γ′2(S ∗(z))∇S ∗ − v∇ f1
]

dz
∫

R2

[⟨ q, K0(z) ⟩ γ′1(S ∗(z))∂RS ∗ + Ξk0(z)γ′2(S ∗(z))∂RS ∗ − v∂R f1
]

dz

Lv + ⟨ q, K0(x) ⟩ γ′
1
(S ∗(x)) + Ξk0(x)γ′

2
(S ∗(x))



for V = t(q,Ξ, v) ∈ X. The eigenfunctions associated with the 0 eigenvalue are given by Φ
∗
j :=

e j

0

Φ∗
j

 ( j = 1, 2) and Φ
∗
3 :=


0

1

Φ∗
3

, where Φ∗
j

are the solutions satisfying

{
LΦ∗

j
+ ⟨ K0(x), e j ⟩ γ′1(S ∗(x)) = 0 ( j = 1, 2),

LΦ∗
3
+ k0(x)γ′

2
(S ∗(x)) = 0.

(2.15)

Proof. Here L
∗
0 is obtained by direct calculation according to the definition of an adjoint oper-

ator. We show that Φ
∗
j satisfies L

∗
0Φ
∗
j = 0 though we show it only for Φ

∗
1.

Substituting Φ
∗
1 into L

∗
0, we have

L
∗
0Φ
∗
1 =



∫

R2

[⟨ e1, K0(z) ⟩ γ′1(S ∗(z))∇S ∗ − Φ∗1∇ f1
]

dz
∫

R2

[⟨ e1, K0(z) ⟩ γ′1(S ∗(z)) − Φ∗1∂R f1
]

dz

LΦ∗
1
+ ⟨ e1, K0(x) ⟩ γ′

1
(S ∗(x))


. (2.16)
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The third component of (2.16) is 0 by the definition of Φ∗
1
. Now, we consider the first component

of (2.16). Since the equation of S ∗ in (2.5) holds, it follows that L∂x j
S ∗+⟨ ∇ f1, e j ⟩ = 0 ( j = 1, 2)

by taking the derivative with respect to x j variable for x = (x1, x2). Then the L2- inner product

with Φ∗
1

leads to

{
⟨ ∂z1

S ∗, ⟨ K0, e1 ⟩ γ′1(S ∗) ⟩L2 − ⟨ ⟨ ∇ f1, e1 ⟩ ,Φ∗1 ⟩L2 = 0,

⟨ ∂z2
S ∗, ⟨ K0, e1 ⟩ γ′1(S ∗) ⟩L2 − ⟨ ⟨ ∇ f1, e2 ⟩ ,Φ∗1 ⟩L2 = 0

by noting

⟨ L∂z j
S ∗,Φ∗1 ⟩L2 = ⟨ ∂z j

S ∗, LΦ∗1 ⟩L2 = − ⟨ ∂z j
S ∗, ⟨ K0, e1 ⟩ γ′1(S ∗) ⟩L2 .

This directly implies that the first component of (2.16) is 0.

The second component of (2.16) is computed as follows: Taking the angle derivative ∂R =

−z2∂z1
+ z1∂z2

in the equation of S ∗ in (2.5), we have L∂RS ∗ = ∂R f1. By taking the L2-inner

product with Φ∗
1

and using the definition of Φ∗
1

again, we evaluate the second component of

(2.16) as 0.

Remark 2.3. The adjoint operator L
∗
(p,Θ) is given by

L
∗
(p,Θ) V =



R(Θ)

∫

R2

[⟨ q, K0 ⟩ γ′1(S ∗)∇S ∗ + Ξk0γ
′
2(S ∗)∇S ∗ − v(p+ R(Θ)z)∇ f1

]
dz

∫

R2

[⟨ q, K0 ⟩ γ′1(S ∗)∂RS ∗ + Ξk0γ
′
2(S ∗)∂RS ∗ − v(p+ R(Θ)z)∂R f1

]
dz

L(p,Θ)v + ⟨ q, K0(z∗) ⟩ γ′
1
(S ∗(z∗)) + Ξk0(z∗)γ′

2
(S ∗(z∗))



for V = t(q,Ξ, v) ∈ X, where z∗ := R(−Θ)(x − p). Here Φ
∗
j(p,Θ)(x) := Φ

∗
j(z∗) ( j = 1, 2, 3) are

the eigenfunctions associated to the 0 eigenvalue of L
∗
(p,Θ).

In the remainder of this section, we consider a stationary solution S ∗(x) in the case when the

camphor particle Ω0 is slightly deformed from a disk to obtain precise information.

Let B0 := {x ∈ R2; |x| < r0} for r0 > 0 and C0 := ∂B0. Introducing a small parameter ε > 0,

we give Ω0 as the inside of the boundary ∂Ω0 = {x = (r0 + εb(θ))e(θ); 0 ≤ θ ≤ 2π}, where b is a

sufficiently smooth function and e(θ) := t(cos θ, sin θ).

To obtain asymptotic expansions of S ∗(x) with respect to ε, we first need to know the ex-

pansions of K0(x), k0(x), and f1(x). Let Γε := ∂Ω0 and introduce the tubular coordinate (s, λ)

in the neighborhood of Γε by x = Γε(s) + λnε(s) for Γε = {Γε(s)} with the arc length parameter

s and the outward normal unit vector nε of Γε. We also define functions Λε(x) and Σε(x) by

s = Σε(x) and λ = Λε(x). Here Λε(x) is the signed distance function between x and Γε for x

in the neighborhood of Γε. The sign is defined by ± for x ∈ Ωc
0

and x ∈ Ω0. Here we give the

precise expressions of K0(x), k0(x), and f1(x). Suppose that δ is a sufficiently small fixed positive

number and that the supports of K0(x) and k0(x) are included in the δ-neighborhood of Γε. Let

ξ(λ) be a smooth nonnegative function approximating the Dirac δ- function of the order of O(δ)

with supp(ξ) ⊂ (−δ, δ) and

∫

R

ξ(λ) dλ = 1. In fact,

∣∣∣∣∣
∫

R

g(λ)ξ(λ) dλ − g(0)

∣∣∣∣∣ ≤ δ∥g∥H1(R) holds

for g ∈ C∞
0

(R). Similarly, we let µ(λ) be a smooth monotone decreasing function approximating

the Heaviside function of the order of O(δ) with the support in (−∞, δ) and connecting 0 and

1, that is, µ(λ) ≡ 0 for λ ≥ δ and µ(λ) ≡ 1 for λ < −δ. We may use ξ(λ) = −µ′(λ) and, for

9



simplicity, we assume it hereafter. Then f1(x) may be defined in the δ-neighborhood of Γε by

f1(x) = a0µ(Λε(x)), further inside of Ω0 by f1(x) ≡ a0, and further outside of Ω0 by f1(x) ≡ 0.

Since the integral

∫

R2

g(x)k0(x)dx =

∫

Γε

∫ δ

−δ
g(x)k0(x)(1 + λκε) ds dλ holds for a function

g with x = Γε(s) + λnε(s) and the curvature κε of Γε, we can approximate the boundary inte-

gral

∫

Γε

g(x)(x × nε) ds by

∫

R2

g(x)k0(x) dx by giving k0(x) = (Γε(Σε(x)) × nε(Σε(x)))ξ(Λε(x)).

Similarly, K0(x) = ξ(Λε(x))nε(Σε(x)) is approximating the boundary integral

∫

Γε

g(x)nε ds by
∫

R2

g(x)K0(x) dx.

Proposition 2.4. For x in the neighborhood of Γε, Λε(x) = |x| − r0 − εb + O
(
ε2

)
holds.

Proof. Since Γε is parametrized by

Γε(θ) = (r0 + εb(θ))e(θ), (2.17)

∂θΓε(θ) = (r0 + εb(θ))e⊥(θ) + εb′(θ)e(θ)

holds, where e⊥(θ) := t(− sin θ, cos θ) ⊥ e(θ). Then the unit normal vector nε of Γε is given by

nε = −
εb′√

(r0 + εb)2 + ε2(b′)2
e⊥ +

r0 + εb√
(r0 + εb)2 + ε2(b′)2

e. (2.18)

Here x = Γε(θ) + λnε(θ) and (2.17) imply

|x|2 =

r0 + εb +
λ(r0 + εb)√

(r0 + εb)2 + ε2(b′)2


2

+


ελb′√

(r0 + εb)2 + ε2(b′)2


2

= (λ + r0 + εb)2 + O
(
ε2

)
,

which leads the result.

By Proposition 2.4, we have

Proposition 2.5. For x = re(θ),

f1(x) = a0µ(r − r0) − εa0b(θ)µ′(r − r0) + O
(
ε2

)
,

K0(x) = ξ(r − r0)e(θ) − ε
{

b(θ)ξ′(r − r0)e(θ) +
b′(θ)ξ(r − r0)

r0

e⊥(θ)

}
+ O

(
ε2

)
,

k0(x) = −εb′(θ)ξ(r − r0) + O
(
ε2

)

hold.

Proof. Substituting the result of Proposition 2.4 into the definition of f1, we obtain the result.

For K0, nε = e − εb′e⊥ + O
(
ε2

)
by (2.18) and Proposition 2.1 leads to the result.

Finally, the direct calculation by (2.17) and (2.18) gives Γε × nε = −εb′ + O
(
ε3

)
. Then by

Proposition 2.1, we have k0(x) =
(
−εb′(θ) + O

(
ε3

))
ξ(r − r0 +O(ε)) = −εb′(θ)ξ(r − r0) +O

(
ε2

)
.
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Now, we show an asymptotic expansion of the stationary solution S ∗ satisfying (2.5) on

slightly deformed domain Ω0 from a disk. Let S ∗ = S ∗
0
+ εS ∗

1
+ · · · . Then the third equation of

(2.5) gives the equation of S ∗
0

0 = d∆S ∗0 + f0(S ∗0) + a0µ(r − r0) (2.19)

for r = |x|. In the typical case of f0(u) = −αu, this is solved. Hence, we make the following

assumption:

(H3) Equation (2.19) is uniquely solved by S ∗
0
(x) = U0(r) > 0 as a radially symmetric function

and the linearized operator L0 := d∆+ f ′
0
(U0(r)) has the property σ(L0) ⊂ {λ ∈ C; Re(λ) < −c1}.

Then by the implicit function theorem, the existence of the solution S ∗ = S ∗ε satisfying the third

equation of (2.5) is shown for sufficiently small ε > 0.

Remark 2.4. The stationary solution of (2.4) exists when the disk shape has D2n symmetry (2n-

fold rotational symmetry and chiral symmetry), where n ∈ N. When γ1(u) = γ(u)/τ1 ≡ 0, i.e., the

translation is prohibited due to the infinitely large resistance (τ1 → ∞), the stationary solution

exists when the disk shape has Dn symmetry.

In actual systems, slight asymmetry is inevitable in the process of constructing experimental

apparatuses. Even though such asymmetry exists, the torque arising from it can balance static

friction, e.g., the friction between the particles and shafts in our experimental system.

Hence, we restrict our investigation only on the case of b(θ) = cos m0θ hereafter. Let A j :=

d

(
∂2

r +
1
r
∂r − j2

r2

)
+ f ′

0
(U0(r)) ( j = 0, 1, 2, . . .) and XR :=

{
u;

∫ ∞

0

ru2(r) dr < +∞
}

, the function

space consisting of radially symmetric functions belonging to L2(R2). Note that Am0
is invertible

in XR by the invertibility of L0 in L2(R2). Then the equation of S ∗
1

is

0 = L0S ∗1 − a0b(θ)µ′(r − r0) = L0S ∗1 + a0b(θ)ξ(r − r0), (2.20)

and S ∗
1

is given by S ∗
1
(r, θ) = b(θ)U1(r), where U1(r) ∈ XR is the unique solution of

Am0
U1 = −a0ξ(r − r0).

Thus, we have S ∗(re(θ)) = U0(r) + εb(θ)U1(r) + O
(
ε2

)
. By this expression of S ∗, we easily

obtain the following proposition.

Proposition 2.6. We have thatΦ1 =


e1

0

−U′
0

cos θ

+O(ε), Φ2 =


e2

0

−U′
0

sin θ

+O(ε), andΦ3 =


0

1

εm0U1(r) sin m0θ

+O
(
ε2

)
hold. In addition, Φ

∗
1 =


e1

0

U∗
0

cos θ

+O(ε), Φ
∗
2 =


e2

0

U∗
0

sin θ

+

O(ε), and Φ
∗
3 =


0

1

εV∗
1

sin m0θ

 + O
(
ε2

)
hold, where U∗

0
= U∗

0
(r) and V∗

1
= V∗

1
(r) are functions

satisfying A1U∗
0
+ ξ(r − r0)γ′

1
(U0(r)) = 0 and Am0

V∗
1
+ m0ξ(r − r0)γ′

2
(U0(r)) = 0, respectively.
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Figure 3: Two camphor particles.

Proof. Equation (2.15) and Proposition 2.5 directly give the proof.

In this section, we considered a camphor particle in an isolated situation, and discussed the

stability of the rest state of a camphor particle at arbitrary position p and with arbitrary angle

Θ. We proved that for sufficiently small γ1 and γ2, the rest state is linearly stable except for

translation and rotation, which correspond to neutral modes. Here, the condition with small γ1

and γ2 are realized for large resistance on translation and rotation.

As shown in Proposition 2.3, we explicitly obtained adjoint operator of the time evolution

operator. By considering three neutral modes (two for translation and one for rotation), we

obtained also adjoint vectors.

3. Interaction of two camphor particles

In this section, we consider two camphor particles with the same shapes as in Fig. 3, which

is described by the equation



ṗ1 =

∫

R2

γ1(u(p1 + R1(Θ1) z))K0(z) dz,

Θ̇1 =

∫

R2

γ2(u(p1 + R1(Θ1)z))k0(z) dz,

ṗ2 =

∫

R2

γ1(u(p2 + R2(Θ2)z))K0(z) dz,

Θ̇2 =

∫

R2

γ2(u(p2 + R2(Θ2)z))k0(z) dz,

∂tu = d∆u + f0(u) + f1(R1(−Θ1)(x − p1)) + f1(R2(−Θ2)(x − p2)),

(3.1)

where R1(Θ) := R(Θ) and R2(Θ) := R(π − Θ).

First, we give the equation of motion describing two stable camphor particles in general

situations. Suppose that there exists linearly stable stationary solution S ∗(z) satisfying (2.5) and

use the same notions as in Section 2. That is, we make the following assumption:

(H4) The results of Lemma 2.1 hold for S ∗ without the assumption on the smallness of γ1 and

γ2.
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Define z∗
1

:= R1(−Θ1)(x − p1) and z∗
2

:= R2(−Θ2)(x − p2). Since R′
1
(Θ) = R(π/2)R1(Θ)

and ∂tg = − ⟨ R1(−Θ) ṗ + Θ̇R(π/2)z∗
1
,∇g ⟩ = − ⟨ R1(−Θ) ṗ,∇g ⟩ − Θ̇∂R1

g = −B1g hold for

g = g(z∗
1
) in which ∇g means ∇zg and ∂R1

:= ∂R, we define B1 = B1(p,Θ) := ⟨ R1(−Θ) ṗ,∇ ·
⟩+Θ̇∂R1

. Similarly, R′
2
(Θ) = R(−π/2)R2(Θ) and ∂tg = − ⟨ R2(−Θ) ṗ + Θ̇R(−π/2)z∗

2
,∇g ⟩ =

− ⟨ R2(−Θ) ṗ,∇g ⟩ − Θ̇∂R2
g = −B2(p,Θ)g hold for g = g(z∗

2
), where ∂R2

g := ⟨ R(−π/2)z,∇g ⟩ =
−∂R1

g and B2 = B2(p,Θ) := ⟨ R2(−Θ) ṗ,∇ · ⟩ + Θ̇∂R2
. Then, we have

∂tv = L(S 1 + S 2)v + B1S 1 + B2S 2 (3.2)

+ f0(S 1 + S 2) − f0(S 1) − f0(S 2) + g0(v)

by putting u(t, x) = S ∗(z∗
1
) + S ∗(z∗

2
) + v(t, x) with |p2 − p1| ≫ 1, where we use the notation

L(g) := d∆ + f ′
0
(g) for a function g, S 1 := S ∗(z∗

1
), S 2 := S ∗(z∗

2
), and g0(v) := f0(S 1 + S 2 + v) −

f0(S 1 + S 2) − f ′
0
(S 1 + S 2)v = O(v2).

Let X̃ := (R2 × R) × (R2 × R) × L2(R2), Ũ := t(p1,Θ1, p2,Θ2, u) ∈ X̃, and the right-hand

side of (3.1) be L̃
(
Ũ

)
. We also put S̃ 1(x; p1,Θ1) := t(p1,Θ1, 0, 0, S

∗(z∗
1
)), S̃ 2(x; p2,Θ2) :=

t(0, 0, p2,Θ2, S
∗(z∗

2
)), and use the notation L̃

(
Ũ

)
:= L̃′

(
Ũ

)
. Then by taking Ũ = S̃ 1 + S̃ 2 + Ṽ

with Ṽ = t(q1,Ξ1, q2,Ξ2, v(t, x)), we see from the equation (3.1) that ∂tŨ = L̃
(
Ũ

)
is

∂tṼ = L̃
(
S̃ 1 + S̃ 2

)
Ṽ − ˙̃y + B̃1S̃ 1 + B̃2S̃ 2 + L̃

(
S̃ 1 + S̃ 2

)
+ G̃1, (3.3)

where ỹ = t(p1,Θ1, p2,Θ2, 0), B̃1S̃ 1 := t(0, 0, 0, 0, B1S 1), and B̃2S̃ 2 := t(0, 0, 0, 0, B2S 2). In

addition, G̃1 := t(g1, g1, g2, g2, g3) with g j = g j(q j,Ξ j, v) = O
(
|q j|2 + |Ξ j|2 + |v|2

)
( j = 1, 2) and

g j = g j(q j,Ξ j, v) = O
(
|q j|2 + |Ξ j|2 + |v|2

)
( j = 1, 2, 3).

Let h := |p2 − p1|, δ(h) := e−α0h and define projections from X̃ to X by P1Ũ := t(p1,Θ1, u),

P2Ũ := t(p2,Θ2, u) for Ũ := t(p1,Θ1, p2,Θ2, u) ∈ X̃. Define L1(p,Θ) := L(p,Θ), L2(p,Θ) :=

L(p, π − Θ), and Ỹ :=
{
ỹ = (p1,Θ1, p2,Θ2) ∈ R6; 0 ≤ Θ j < 2π, |p2 − p1| > h∗

}
for sufficiently

large fixed h∗ > 0. Hereafter, we identify ỹ = (p1,Θ1, p2,Θ2) ∈ R6 and ỹ = (p1,Θ1, p2,Θ2, 0) ∈
R

6 × L2(R2) with the same notation and also put ỹ1 := (p1,Θ1, 0, 0) and ỹ2 := (0, 0, p2,Θ2) for

ỹ = (p1,Θ1, p2,Θ2). Assumptions (H1) and (H2) lead to the following proposition:

Proposition 3.1. For h > h∗, the spectral setσ
(
L̃S (̃y)

)
= σ0 (̃y)∪σ1 (̃y) withσ0 (̃y) ⊂

{
λ ∈ C; |λ| < O

(
δ1/4(h)

)}

and σ1 (̃y) ⊂ {λ ∈ C; Re(λ) < −c3} for c3 > 0, where ỹ = (p1,Θ1, p2,Θ2) ∈ Ỹ and L̃S (̃y) :=

L̃
(
S̃ 1 + S̃ 2

)
.

Proof. Let Ω1 := {x ∈ R2; |x − p1| < |x − p2|} and Ω2 := {x ∈ R2; |x − p1| > |x − p2|}. Since

P1L̃S (̃y)W̃ − L1(p1,Θ1)P1W̃ = t(0, 0,− ⟨ ∇ f1(z∗2), q2 ⟩ − Ξ2∂R f1(z∗2)) + O(δ(h))

and

P2L̃S (̃y)W̃ − L2(p2,Θ2)P2W̃ = t(0, 0,− ⟨ ∇ f1(z∗1), q1 ⟩ − Ξ1∂R f1(z∗1)) + O(δ(h))

hold for W̃ = t(q1,Ξ1, q2,Ξ2,w) ∈ X̃, it follows that
∥∥∥P jL̃S (̃y)W̃ − L j(pj,Θ j)P jW̃

∥∥∥
L∞(Ω j)

≤ O(δ(h))
∥∥∥W̃

∥∥∥∞ ( j = 1, 2)

by the property of f1, that is, f1(z∗
j
) = 0 onΩi for i , j. Then we can show the results by applying

the methods in [36] and [37] together with assumption (H3).
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.

Let Ẽ0 (̃y) and Ẽ1 (̃y) be the corresponding eigenspaces to the spectral sets σ0 (̃y) and σ1 (̃y),

respectively, together with projections Q̃ j(̃y) : X̃ → Ẽ j (̃y) for j = 0, 1 for ỹ = (p1,Θ1, p2,Θ2) ∈
Ỹ . Then in the similar manner to [36], we have

Proposition 3.2. Ẽ0 (̃y) is spanned by
{
Φ̃ j (̃y)

}
( j = 1, . . . , 6) satisfying P1Φ̃ j (̃y) = Φ j(p1,Θ1) +

O(δ(h)), P2Φ̃ j (̃y) = O(δ(h)) ( j = 1, 2, 3) and P1Φ̃ j (̃y) = O(δ(h)), P2Φ̃ j (̃y) = Φ j(p2, π − Θ2) +

O(δ(h)) ( j = 4, 5, 6).

For the adjoint operator L̃∗
S

(̃y) := L̃∗(S̃ 1 + S̃ 2), quite similar properties to L̃S (̃y) hold. That is,

we have the following result.

Proposition 3.3. For h > h∗, the spectral setσ
(
L̃∗

S
(̃y)

)
= σ∗

0
(̃y)∪σ∗

1
(̃y) withσ∗

0
(̃y) ⊂

{
λ ∈ C; |λ| < O

(
δ1/4(h)

)}

and σ∗
1
(̃y) ⊂ {λ ∈ C; Re(λ) < −c3} for c3 > 0. The corresponding eigenspace Ẽ∗

0
(̃y) to the spec-

tral set σ∗
0
(̃y) is spanned by {Φ̃∗

j
(̃y)} ( j = 1, . . . , 6) satisfying P1Φ̃

∗
j
(̃y)(x) = Φ

∗
j(z∗

1
) + O(δ(h)),

P2Φ̃
∗
j
(̃y)(x) = O(δ(h)) ( j = 1, 2, 3) and P1Φ̃

∗
j
(̃y)(x) = O(δ(h)), P2Φ̃

∗
j
(̃y)(x) = Φ

∗
j(z∗

2
) + O(δ(h))

( j = 4, 5, 6).

Remark 3.1. Note that Ẽ1 (̃y) is given by Ẽ1 (̃y) =
{
Ũ ∈ X̃;

⟨
Ũ, Φ̃∗

j
(̃y)

⟩
X̃
= 0 ( j = 1, . . . , 6)

}
.

Now we decompose Ũ ∈ X̃ in the neighborhood of the set M̃ :=
{
S̃ 1(p1,Θ1) + S̃ 2(p2,Θ2); ỹ = (p1,Θ1, p2,Θ2) ∈ Ỹ

}
⊂

X̃.

Proposition 3.4. For any Ũ ∈ X̃ sufficiently close to M̃, there uniquely exist ỹ = (p1,Θ1, p2,Θ2) ∈
Ỹ such that

Ũ = S̃ 1(p1,Θ1) + S̃ 2(p2,Θ2) + Ṽ

with Ṽ ∈ Ẽ1 (̃y).

We apply this decomposition to (3.2) and (3.3). Operating Q̃0 (̃y) and Q̃1 (̃y) on the both sides

of (3.3), we have

Q̃0 (̃y)∂tṼ = −Q̃0 (̃y) ˙̃y + Q̃0 (̃y)B̃1S̃ 1 + Q̃0 (̃y)B̃2S̃ 2 + Q̃0 (̃y)L̃(S̃ 1 + S̃ 2) + Q̃0 (̃y)G̃1, (3.4)

Q̃1 (̃y)∂tṼ = L̃S (̃y)Ṽ − Q̃1 (̃y) ˙̃y + Q̃1 (̃y)B̃1S̃ 1 + Q̃1 (̃y)B̃2S̃ 2 + Q̃1 (̃y)L̃(S̃ 1 + S̃ 2) + Q̃1 (̃y)G̃1. (3.5)

Proposition 3.5. We have

t
(
ṗ1, Θ̇1,−B1(p1,Θ1)S 1

)
= β1Φ1(p1,Θ1) + β2Φ2(p1,Θ1) + Θ̇1Φ3(p1,Θ1)

and

t
(
ṗ2, Θ̇2,−B2(p2,Θ2)S 2

)
= β′1Φ1(p2, π − Θ2) + β′2Φ2(p2, π − Θ2) + Θ̇2Φ3(p2, π − Θ2)

hold, where β1 = (ṗ1 cosΘ1 + q̇1 sinΘ1), β2 = (− ṗ1 sinΘ1 + q̇1 cosΘ1) and β′
1
= (− ṗ2 cosΘ2 +

q̇2 sinΘ2), β′
2
= −( ṗ2 sinΘ2 + q̇2 cosΘ2).
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Proof. The facts B1S 1 = β1∂z1
S 1 + β2∂z2

S 1 + Θ̇1∂RS 1 and β1R1(Θ1)e1 + β2R1(Θ1)e2 = ṗ1

lead to the proof. Similarly, The facts B2S 2 = β′
1
∂z1

S 2 + β′
2
∂z2

S 2 + Θ̇2∂RS 2 and β′
1
R2(Θ2)e1 +

β′
2
R2(Θ1)e2 = ṗ2 lead to the proof.

By Propositions 3.2 and 3.5, Q̃0

(
˙̃y1 − B̃1S̃ 1

)
= β1Φ̃1 (̃y) + β2Φ̃2 (̃y) + Θ̇1Φ̃3 (̃y) + O(δ(h)) and

Q̃0

(
˙̃y2 − B̃2S̃ 2

)
= β′

1
Φ̃4 (̃y) + β′

2
Φ̃5 (̃y) + Θ̇2Φ̃6 (̃y) + O(δ(h)), Q̃1

(
˙̃y1 − B̃1S̃ 1

)
= O(δ(h)) and

Q̃1

(
˙̃y2 − B̃2S̃ 2

)
= O(δ(h)) hold. The direct calculation also leads to L̃

(
S̃ 1 + S̃ 2

)
= O(δ(h))

and therefore for (3.4) and (3.5),

Q̃0 (̃y)∂tṼ = −
{
β1Φ̃1 (̃y) + β2Φ̃2 (̃y) + Θ̇1Φ̃3 (̃y)

+β′1Φ̃4 (̃y) + β′2Φ̃5 (̃y) + Θ̇2Φ̃6 (̃y)
}
+ Q̃0 (̃y)G̃1 + O(δ(h)), (3.6)

and

Q̃1 (̃y)∂tṼ = L̃S (̃y)Ṽ + H̃1

(
S̃ 1, S̃ 2, Ṽ

)
(3.7)

hold with Ṽ ∈ Ẽ1 (̃y) and
∣∣∣H̃1

∣∣∣ ≤ O

(
δ(h) +

∣∣∣Ṽ
∣∣∣2
)
. Fixing ỹ0 ∈ Ỹ arbitrarily, we define the map

Π(̃y) : Ẽ1 (̃y0) → Ẽ1 (̃y) as follows. Let ỹ
∗
(η) := (1 − η)̃y0 + η̃y for 0 ≤ η ≤ 1, ãi j(η) :=⟨

Φ̃∗
i
(̃y
∗
(η)), Φ̃ j (̃y

∗
(η))

⟩
2

and M̃(η) := {̃ai j(η)}1≤i, j≤6. Note that ỹ
∗
(η) ∈ Ỹ for 0 ≤ η ≤ 1 and M̃(η)

is invertible for 0 ≤ η ≤ 1 by assumption (H4). We define the map Π(̃y)W̃0 for W̃0 ∈ Ẽ1 (̃y0) by

Π(̃y)W̃0 := W̃(1), where W̃(η) is the solution of



dW̃

dη
=

6∑

j=1

c j

(
η, W̃

)
Φ̃ j (̃y

∗
(η)),

W̃(0) = W̃0

with t(c1, . . . , c6)
(
η, W̃

)
:= −M̃−1(η)t

(⟨
W̃, ∂ηΦ̃

∗
1
(̃y
∗
(η))

⟩
2
, . . . ,

⟨
W̃, ∂ηΦ̃

∗
6
(̃y
∗
(η))

⟩
2

)
. Then Π(̃y) is

a homeomorphism from Ẽ1 (̃y0) to Ẽ1 (̃y) (see [36]). Transforming Ṽ(t) = Π(̃y(t))W̃(t), we see

∂tṼ =
(
∂ỹΠ(̃y(t)) ˙̃y(t)

)
W̃ + Π(̃y(t))∂tW̃,

and, hence,

Q̃0 (̃y)∂tṼ = Q̃0 (̃y)
(
∂ỹΠ(̃y(t)) ˙̃y(t)

)
W̃ = O

(∣∣∣ ˙̃y(t)
∣∣∣ ·

∥∥∥W̃
∥∥∥∞

)
,

Q̃1 (̃y)∂tṼ = Q̃1 (̃y)
(
∂ỹΠ(̃y(t)) ˙̃y(t)

)
W̃ + Q̃1 (̃y)Π(̃y(t))∂tW̃ = Π(̃y(t))∂tW̃ + O

(∣∣∣ ˙̃y(t)
∣∣∣ ·

∥∥∥W̃
∥∥∥∞

)

hold. Therefore (3.6) and (3.7) become



β1Φ̃1 (̃y) + β2Φ̃2 (̃y) + Θ̇1Φ̃3 (̃y) + β′
1
Φ̃4 (̃y) + β′

2
Φ̃5 (̃y) + Θ̇2Φ̃6 (̃y)

= O

(
δ(h) +

∥∥∥W̃
∥∥∥2

∞ +
∣∣∣ ˙̃y(t)

∣∣∣ ·
∥∥∥W̃

∥∥∥∞
)
,

∂tW̃ = Ã(̃y)W̃ + O

(
δ(h) +

∥∥∥W̃
∥∥∥2

∞ +
∣∣∣ ˙̃y(t)

∣∣∣ ·
∥∥∥W̃

∥∥∥∞
)
,

(3.8)

where Ã(̃y) := Π−1 (̃y)L̃S (̃y)Π(̃y). Let X̃ω for 0 < ω < 1 be the fractional powered space with

respect to Ã(̃y) embedded into L∞
(
R

2
)

and X̃(D1) :=
{
W̃ ∈ Ẽ1 (̃y0);

∥∥∥W̃
∥∥∥
ω
≤ D1δ(h)

}
.

Propositions 3.1 and 3.2 and [36] give the following result.
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Proposition 3.6. There exists D1 > 0 such that the solution
(
ỹ(t), W̃(t)

)
of (3.8) satisfies ˙̃y =

O(δ(h(t))) and
∥∥∥W̃(t)

∥∥∥
ω
≤ D1δ(h(t)) uniformly for t ≥ 0 as long as ỹ = t(p1,Θ1, p2,Θ2) ∈ Ỹ.

Let L1

(
U

)
be the right-hand side of (2.4) replaced R(Θ) by R1(Θ) and L2

(
U

)
be the one

replaced by R2(Θ) for U = t(p,Θ, u). Then we have the following theorem.

Theorem 3.1. If the initial data Ũ0 is sufficiently close to S̃ 1(p0
1
,Θ0

1
)+S̃ 2(p0

2
,Θ0

2
) for t(p0

1
,Θ0

1
, p0

2
,Θ0

2
) ∈

Ỹ, then the solution Ũ(t, x) of (3.1) ∂tŨ = L̃
(
Ũ

)
satisfies

∥∥∥∥
{
Ũ(t) −

{
S̃ 1(p1(t),Θ1(t)) + S̃ 2(p2(t),Θ2(t))

}}∥∥∥∥∞ ≤ O(δ(h(t)))

as long as t(p1(t),Θ1(t), p2(t),Θ2(t)) ∈ Ỹ, where h(t) = |p2(t) − p1(t)|. t(p1(t),Θ1(t), p2(t),Θ2(t))

satisfies

M j(Θ j)

(
R j(−Θ j) ṗj

Θ̇ j

)
= b j (̃y) + O

(
δ2(h(t))

)
( j = 1, 2),

where M1(Θ1) =
{
m1

i j
(Θ1)

}
and M2(Θ2) =

{
m2

i j
(Θ2)

}
are the third-order square matrices with

m1
i j

(Θ1) :=
⟨
Φ
∗
i (p1,Θ1),Φ j(p1,Θ1)

⟩
2
, m2

i j
(Θ2) :=

⟨
Φ
∗
i (p2,Θ2),Φ j(p2,Θ2)

⟩
2

independent of pj

( j = 1, 2) and also b j (̃y) = t
(
b

j

1
(̃y), b

j

2
(̃y), b

j

3
(̃y)

)
∈ R3 with



b1
i
(̃y) :=

⟨
⟨ K0, ei ⟩ γ′1

(
S 1

)
, S 2

⟩
2
+

⟨
g4

(
S 1, S 2

)
,Φ∗

i
(z∗

1
)
⟩

2
(i = 1, 2),

b1
3
(̃y) :=

⟨
k0γ
′
2

(
S 1

)
, S 2

⟩
2
+

⟨
g4

(
S 1, S 2

)
,Φ∗

3
(z∗

1
)
⟩

2
,

b2
i
(̃y) :=

⟨
⟨ K0, ei ⟩ γ′1

(
S 2

)
, S 1

⟩
2
+

⟨
g4

(
S 1, S 2

)
,Φ∗

i
(z∗

2
)
⟩

2
(i = 1, 2),

b2
3
(̃y) :=

⟨
k0γ
′
2

(
S 2

)
, S 1

⟩
2
+

⟨
g4

(
S 1, S 2

)
,Φ∗

3
(z∗

2
)
⟩

2
,

(3.9)

where g4

(
S 1, S 2

)
:= f0

(
S 1 + S 2

)
− f0

(
S 1

)
− f0

(
S 2

)
.

Proof. The first half of the statement is clear by Proposition 3.6. We will show the latter half on

the motion of t(p1(t),Θ1(t), p2(t),Θ2(t)). From equations (3.6), (3.7), (3.8), and Proposition 3.6,

we have

β1Φ̃1 (̃y) + β2Φ̃2 (̃y) + Θ̇1Φ̃3 (̃y) + β′1Φ̃4 (̃y) + β′2Φ̃5 (̃y) + Θ̇2Φ̃6 (̃y) (3.10)

= Q̃0 (̃y)L̃
(
S̃ 1 + S̃ 2

)
+ O

(
δ2(h)

)
,

which is equivalent to

⟨
β1Φ̃1 (̃y) + β2Φ̃2 (̃y) + Θ̇1Φ̃3 (̃y) + β′1Φ̃4 (̃y) + β′2Φ̃5 (̃y) + Θ̇2Φ̃6 (̃y), Φ̃∗i (̃y)

⟩
2

=
⟨
L̃

(
S̃ 1 + S̃ 2

)
, Φ̃∗i (̃y)

⟩
2
+ O

(
δ2(h)

)
(i = 1, . . . , 6),

and is written as

M̃(̃y)β̃ = b̃(̃y), (3.11)

where M̃(̃y) := {m̃i j (̃y)}1≤i, j≤6, m̃i j (̃y) :=
⟨
Φ̃∗

i
(̃y), Φ̃ j (̃y)

⟩
2
, β̃ := t

(
β1, β2, Θ̇1, β

′
1
, β′

2
, Θ̇2

)
, b̃(̃y) =

b̃0 (̃y) + O
(
δ2(h)

)
, b̃0 (̃y) = t

(̃
b0

1
(̃y), · · · , b̃0

6
(̃y)

)
with b̃0

i
(̃y) :=

⟨
L̃

(
S̃ 1 + S̃ 2

)
, Φ̃∗

i
(̃y)

⟩
2
.
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By Propositions 3.2 and 3.3, it follows that

m̃i j (̃y) =



⟨
Φ
∗
i (p1,Θ1),Φ j(p1,Θ1)

⟩
2
+ O(δ(h)) (1 ≤ i, j ≤ 3),

O(δ(h)) (1 ≤ i ≤ 3, 4 ≤ j ≤ 6), (4 ≤ i ≤ 6, 1 ≤ j ≤ 3),⟨
Φ
∗
i−3(p2, π − Θ2),Φ j−3(p2, π − Θ2)

⟩
2
+ O(δ(h)) (4 ≤ i, j ≤ 6).

Note that Proposition 2.2 and Remark 2.3 give

⟨
Φ
∗
i (p1,Θ1),Φ j(p1,Θ1)

⟩
2
= ⟨ ei,R1(Θ1)e j ⟩ − ⟨ Φ∗i , ∂z j

S ∗ ⟩2 =: m0
i j(Θ1)

for i, j = 1, 2,
⟨
Φ
∗
3(p1,Θ1),Φ j(p1,Θ1)

⟩
2
= − ⟨ Φ∗

3
, ∂z j

S ∗ ⟩2 =: m0
3 j

and
⟨
Φ
∗
i (p1,Θ1),Φ3(p1,Θ1)

⟩
2
=

− ⟨ Φ∗
i
, ∂RS ∗ ⟩2 =: m0

i3
for i, j = 1, 2, and

⟨
Φ
∗
3(p1,Θ1),Φ3(p1,Θ1)

⟩
2
= 1 − ⟨ Φ∗

3
, ∂RS ∗ ⟩2 =: m0

33
.

Similarly, we have

⟨
Φ
∗
i−3(p2, π − Θ2),Φ j−3(p2, π − Θ2)

⟩
2
= ⟨ ei−3,R2(Θ2)e j−3 ⟩ − ⟨ Φ∗i−3, ∂z j−3

S ∗ ⟩2 =: m0
i j(Θ2)

for i, j = 4, 5, m0
6 j

:=
⟨
Φ
∗
3(p2, π − Θ2),Φ j−3(p2, π − Θ2)

⟩
2
= − ⟨ Φ∗

3
, ∂z j−3

S ∗ ⟩2 = m0
3( j−3)

and

m0
i6

:=
⟨
Φ
∗
i−3(p2, π − Θ2),Φ3(p2, π − Θ2)

⟩
2
= − ⟨ Φ∗

i−3
, ∂RS ∗ ⟩2 = m0

(i−3)3
for i, j = 4, 5, and

m0
66

:=
⟨
Φ
∗
3(p2, π − Θ2),Φ3(p2, π − Θ2)

⟩
2
= 1 − ⟨ Φ∗

3
, ∂RS ∗ ⟩2 = m0

33
. Thus, M̃(̃y) = M̃0 (̃y) +

O(δ(h)) and M̃0 (̃y) =

(
M1(Θ1) O

O M2(Θ2)

)
,where M1(Θ1) =

{
m0

i j

}
1≤i, j≤3

, M2(Θ2) =
{
m0

i j

}
4≤i, j≤6

,

and O denotes the zero matrix. Then from (3.11) we have

M̃0 (̃y)β̃ = b̃0 + O
(
δ2(h)

)
. (3.12)

Since t(β1, β2) = R1(−Θ1) ṗ1 and t(β′
1
, β′

2
) = R2(−Θ2) ṗ2 hold, we have

M̃0 (̃y)β̃ = t

(
M1(Θ1)

(
R1(−Θ1) ṗ1

Θ̇1

)
,M2(Θ2)

(
R2(−Θ2) ṗ2

Θ̇2

) )
. (3.13)

Next, we consider b̃0. Now, P1L̃
(
S̃ 1 + S̃ 2

)
= L1

(
S 1 +

t
(
0, 0, S 2

))
+ t

(
0, 0, f1

(
z∗

2

))
and

P2L̃
(
S̃ 1 + S̃ 2

)
= L2

(
t(0, 0, S 1) + S 2

)
+ t

(
0, 0, f1

(
z∗

1

))
hold. Then combining with Proposi-

tion 3.3, we see

b̃0
i (̃y) =



⟨
L1

(
S 1 +

t
(
0, 0, S 2

))
,Φ
∗
i (z∗

1
)
⟩

2
+

⟨
f1(z∗

2
),Φ∗

i
(z∗

1
)
⟩

2
+ O

(
δ2(h)

)
(1 ≤ i ≤ 3),⟨

L2

(
t
(
0, 0, S 1

)
+ S 2

)
,Φ
∗
i−3(z∗

2
)
⟩

2
+

⟨
f1(z∗

1
),Φ∗

i−3
(z∗

2
)
⟩

2
+ O

(
δ2(h)

)
(4 ≤ i ≤ 6).

Since γ j

(
S 1 + S 2

)
= γ j

(
S 1

)
+ γ′

j

(
S 1

)
S 2 + O

(
δ2(h)

)
holds on Ω1, equation (2.15) gives

⟨
L1

(
S 1 +

t
(
0, 0, S 2

))
,Φ
∗
i (z∗1)

⟩
2
+

⟨
f1(z∗2),Φ∗i (z∗1)

⟩
2

=
⟨
⟨ K0, ei ⟩ γ′1

(
S 1

)
, S 2

⟩
2

+
⟨
d∆

(
S 1 + S 2

)
+ f0

(
S 1 + S 2

)
+ f1(z∗1) + f1(z∗2),Φ∗i (z∗1)

⟩
2
+ O

(
δ2(h)

)

=
⟨
⟨ K0, ei ⟩ γ′1

(
S 1

)
, S 2

⟩
2
+

⟨
f0

(
S 1 + S 2

)
− f0

(
S 1

)
− f0

(
S 2

)
,Φ∗i (z∗1)

⟩
2
+ O

(
δ2(h)

)
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for i = 1, 2 and
⟨
L1

(
S 1 +

t
(
0, 0, S 2

))
,Φ
∗
3(z∗1)

⟩
2
+ ⟨ f1(z∗2),Φ∗3(z∗1) ⟩2

=
⟨
k0γ
′
2

(
S 1

)
, S 2

⟩
2
+

⟨
f0

(
S 1 + S 2

)
− f0

(
S 1

)
− f0

(
S 2

)
,Φ∗3(z∗1)

⟩
2
+ O

(
δ2(h)

)
.

Similarly,

⟨
L2

(
t
(
0, 0, S 1

)
+ S 2

)
,Φ
∗
i−3(z∗2)

⟩
2
+ ⟨ f1(z∗1),Φ∗i−3(z∗2) ⟩2

=
⟨
⟨ K0, ei−3 ⟩ γ′1

(
S 2

)
, S 1

⟩
2
+

⟨
f0

(
S 1 + S 2

)
− f0

(
S 1

)
− f0

(
S 2

)
,Φ∗i−3(z∗2)

⟩
2
+ O

(
δ2(h)

)

for i = 4, 5 and
⟨
L2

(
t
(
0, 0, S 1

)
+ S 2

)
,Φ
∗
3(z∗2)

⟩
2
+ ⟨ f1(z∗1),Φ∗3(z∗2) ⟩2

=
⟨
k0γ
′
2

(
S 2

)
, S 1

⟩
2
+

⟨
f0

(
S 1 + S 2

)
− f0

(
S 1

)
− f0

(
S 2

)
,Φ∗3(z∗2)

⟩
2
+ O

(
δ2(h)

)

hold.

Thus, the proof is complete.

To derive an explicit motion of interaction, we assume the shape of the camphor particle is

almost radially symmetric. Let e(θ) :=

(
cos θ

sin θ

)
and assume

∂Ω0 = {(r0 + εb(θ))e(θ)} (3.14)

for r0 > 0, 0 < ε ≪ 1, and b(θ) := cos m0θ with 2 ≤ m0 ∈ N. Then, the stationary solution

S ∗(x) = S ∗ε(x) is given by

S ∗ε(re(θ)) = U0(r) + εb(θ)U1(r) + ε2U2(r, θ)

from (2.19) and (2.20). Here U0(r), U1(r), and U2(r, θ) have the asymptotic profiles as r → ∞
and the estimate

U j(r)→
c′

j√
r

e−α0r ( j = 0, 1), |U2(r, θ)| ≤
c′

2√
1 + r

e−α0r (3.15)

for positive constants c′
j

and α0. In fact, (3.15) generally holds by the assumption f ′
0
(u) < 0,

which is shown by using the properties of modified Bessel function of second kind. In addition,

Φ∗
j

have similar expressions as Φ∗
1
(re(θ)) = U∗

0
(r) cos θ + εU∗

1
(r, θ), Φ∗

2
(re(θ)) = U∗

0
(r) sin θ +

εU∗
2
(r, θ), and Φ∗

3
(re(θ)) = εV∗

1
(r) sin m0θ + ε

2V∗
2
(r, θ) with

U∗0(r)→
c∗

0√
r

e−α0r, V∗1 (r)→
c∗

1√
r

e−α0r, |U∗1(r, θ)|, |V∗2 (r, θ)| ≤
c∗

2√
1 + r

e−α0r (3.16)

as r → ∞ for positive constants c∗
j
. Hence, we add these properties to assumptions:

(H5) The solutions S ∗(x) of (2.19), (2.20), and Φ∗
j
(x) in Proposition 2.6 have the asymptotic

profiles (3.15) and (3.16).

Define the directional angle of the vector p2 − p1 with the horizontal axis by ΘH as in Fig. 3 and

set Ξ j := Θ j ∓ ΘH for j = 1, 2. Then we have the following result.
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Figure 4: Two camphor particles.

Theorem 3.2. Under assumptions (H3) and (H5) for radially symmetric solutions of (2.19),

Ξ̇ j =
ε√
h
e−α0hNm0

sin m0Ξ j

(
1 + O

(
1
h
+ ε + e−α1h

))
holds for a positive constant α1 as long as

h = |p2 − p1| is sufficiently large, where Nm is the constant defined by Nm0
:= N′m0

+ N′′m0
and

N′m0
:= −m0c′0

∫ ∞

0

∫ 2π

0

rξ(r − r0)γ′2(U0(r)) cos m0θe
α0r cos θ dθ dr,

N′′m0
:= −

∫ ∞

0

∫ 2π

0

r
{
f ′0(U0(r)) − f ′0(0)

}
V∗1 (r) cos m0θe

α0r cos θ dθ dr.

Proof. We apply Theorem 3.1 to this case together with results of Propositions 2.2 – 2.6. First,

we can easily find

⟨
Φ
∗
i (p,Θ),Φ j(p,Θ)

⟩
2
=



cosΘ − 1
2
c4 + O(ε) (i = j = 1, 2),

1 + O
(
ε2

)
(i = j = 3),

− sinΘ + O(ε) (i = 1, j = 2),

sinΘ + O(ε) (i = 2, j = 1),

O(ε) (i , j = 3, 3 = i , j),

where c4 :=
⟨
U′

0
,U∗

0

⟩
2
= 2π

∫ ∞

0

rU′0(r)U∗0(r) dr. Thus, we have

M1(Θ1) =


cosΘ1 − 1

2
c4 − sinΘ1 0

sinΘ1 cosΘ1 − 1
2
c4 0

0 0 1

 + O(ε),

and

M2(Θ2) =


− cosΘ2 − 1

2
c4 − sinΘ2 0

sinΘ2 − cosΘ2 − 1
2
c4 0

0 0 1

 + O(ε).

Next, we consider b j (̃y) in Theorem 3.1 and first b1
3
(̃y) in (3.9). Putting H = he(ΘH) := p2−p1

and Ξ := π − (Θ1 + Θ2), we see for z∗
1
= re(θ)

z∗2 = R2(−Θ2)(x − p2)

= R1(−Ξ)R1(−Θ1)(x − p1 − H)

= R1(−Ξ)(z∗1 − R1(−Θ1)H)

= h

(
r

h
e(θ − Ξ) − e(−Ξ − Θ1 + ΘH)

)
,
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|z∗2|2 = h2

(
r2

h2
− 2r

h
cos(θ + Θ1 − ΘH) + 1

)
,

and, therefore,

|z∗2| = h

(
1 − r

h
cos(θ + Θ1 − ΘH) + O

(
r2

h2

))
(3.17)

as h→ ∞. Hence, we can obtain

z∗2 = |z∗2|e (β(θ)) , (3.18)

where β(θ) := π − Ξ − Θ1 + ΘH +
r
h
β1(θ) + O

(
r2

h2

)
with β1(θ) :=

√
1 − cos2(π − Θ1 + ΘH − θ).

Here, we compute b1
3
(̃y) =

⟨
k0γ
′
2

(
S 1

)
, S 2

⟩
2
+

⟨
g4

(
S 1, S 2

)
,Φ∗

3
(z∗

1
)
⟩

2
. Since

g4

(
S 1, S 2

)
=

{
f ′0

(
S 1

)
− f ′0(0)

}
S 2 +

∫ 1

0

∫ 1

0

{
f ′′0

(
S 1 + η1η2S 2

)
− f ′′0

(
η1η2S 2

)}
dη1 dη2

(
S 2

)2

=
{
f ′0(S 1) − f ′0(0)

}
S 2 + g5

(
S 1, S 2

)
S 1

(
S 2

)2

for a function g5

(
S 1, S 2

)
and the estimates of |S ∗(re(θ))| ≤ c′

3√
1+r

e−α0r, |Φ∗
3
(re(θ))| ≤ c∗

3√
1+r

e−α0r

from (3.15) and (3.16) for positive constants c′
3

and c∗
3
, we can estimate

∣∣∣⟨ g5(S 1, S 2)S 1(S 2)2,Φ∗3(z∗1) ⟩2
∣∣∣ ≤ c5

∫ ∞

0

r

1 + r
e−2α0r 1

1 + |z∗
2
(r, θ)|e

−2α0 |z∗2(r,θ)| dr,

where z∗
2
(r, θ) := R1(−Ξ)(re(θ) − R1(−Θ1)H). The estimate (3.17) for |z∗

2
(r, θ)| gives

∣∣∣⟨ g5(S 1, S 2)S 1(S 2)2,Φ∗3(z∗1) ⟩2
∣∣∣ ≤ O

(
e−2α0h

)
= O

(
δ2(h)

)
. (3.19)

Thus, we see

b1
3 (̃y) =

⟨
k0γ
′
2

(
S 1

)
, S 2

⟩
2
+

⟨{
f ′0(S 1) − f ′0(0)

}
S 2,Φ∗3(z∗1)

⟩
2
+ O

(
δ2(h)

)
. (3.20)

Each term in (3.20) is computed as follows: Since |z∗
2
(r, θ)| = h− r cos(θ −Θ1 −ΘH)+O

(
1
h

)
and
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S 2 = S ∗(z∗
2
) =

c′
0√
|z∗

2
|
e−α0 |z∗2 |(1 + O(ε)) hold in the neighborhood of Ω1, Proposition 2.5 gives

⟨
k0γ
′
2(S 1), S 2

⟩
2

= −ε
∫ 2π

0

∫ ∞

0

b′(θ)rξ(r − r0)γ′2(U0(r))
c′

0√
|z∗

2
(r, θ)|

e−α0 |z∗2(r,θ)| dr dθ + O
(
ε2δ(h)

)

= −ε
c′

0
e−α0h

√
h

∫ 2π

0

∫ ∞

0

1√
1 + O( 1

h
)

b′(θ)rξ(r − r0)γ′2(U0(r))

×eα0r cos(θ+Θ1−ΘH )

(
1 + O

(
1

h

))
dr dθ + O

(
ε2δ(h)

)

= ε
m0c′

0
e−α0h

√
h

∫ ∞

0

rξ(r − r0)γ′2(U0(r))

(∫ 2π

0

sin m0θe
α0r cos(θ+Θ1−ΘH )dθ

)
dr

×
(
1 + O

(
1

h

))
+ O

(
ε2δ(h)

)

= ε
m0c′

0
e−α0h

√
h

∫ ∞

0

rξ(r − r0)γ′2(U0(r))

(∫ 2π

0

sin m0(θ − Θ1 + ΘH)θeα0r cos θ dθ

)
dr

×
(
1 + O

(
1

h

))
+ O

(
ε2δ(h)

)

= −ε
m0c′

0
e−α0h

√
h

sin m0(Θ1 − ΘH)

∫ ∞

0

rξ(r − r0)γ′2(U0(r))

(∫ 2π

0

cos m0θe
α0r cos θ dθ

)
dr

×
(
1 + O

(
1

h

))
+ O

(
ε2δ(h)

)
,

that is, we have

⟨
k0γ
′
2

(
S 1

)
, S 2

⟩
2
=
ε
√

h
e−α0hN′m0

sin m0(Θ1 − ΘH)

(
1 + O

(
1

h
+ ε

))
, (3.21)

where N′m0
:= −m0c′

0

∫ ∞

0

rξ(r − r0)γ′2(U0(r))

(∫ 2π

0

cos m0θe
α0r cos θ dθ

)
dr.
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On the other hand, it follows that
⟨{

f ′0(S 1) − f ′0(0)
}

S 2,Φ∗3(z∗1)
⟩

2

= ε

∫ ∞

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}U0(|z∗2(r, θ)|)V∗1 (r) sin m0θ dθ dr + O
(
ε2δ(h)

)

= ε

∫ 3
4

h

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}U0(|z∗2(r, θ)|)V∗1 (r) sin m0θ dθ dr

+ε

∫ ∞

3
4

h

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}U0(|z∗2(r, θ)|)V∗1 (r) sin m0θ dθ dr + O
(
ε2δ(h)

)

= ε

∫ 3
4

h

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}
c′

0√
|z∗

2
|
e−α0 |z∗2 |V∗1 (r) sin m0θ dθ dr

+ε

∫ ∞

3
4

h

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}U0(|z∗2(r, θ)|)V∗1 (r) sin m0θ dθ dr + O
(
ε2δ(h)

)

= ε

∫ 3
4

h

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}
c′

0√
|z∗

2
|
e−α0 |z∗2 |V∗1 (r) sin m0θ dθ dr

+ε

∫ ∞

3
4

h

O
(
e−2α0r

)
dr + O

(
ε2δ(h)

)

= ε
c′

0√
h

e−α0h

∫ 3
4

h

0

∫ 2π

0

r{ f ′
0
(U0(r)) − f ′

0
(0)}V∗

1
(r) sin m0θ√

1 − r
h

cos(θ + Θ1 − ΘH) + O( r2

h2 )

e
α0r cos(θ+Θ1−ΘH )+O

(
r2

h

)

dθ dr

+O
(
εe−

3
2
α0h + ε2δ(h)

)

= ε
c′

0√
h

e−α0h

∫ 3
4

h

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}V∗1 (r) sin m0θe
α0r cos(θ+Θ1−ΘH )

(
1 + O

(
r2

h

))
dθ dr

+O
(
εe−

3
2
α0h + ε2δ(h)

)

= ε
c′

0√
h

e−α0h


∫ 3

4
h

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}V∗1 (r) sin m0(θ − Θ1 + ΘH)eα0r cos θ dθ dr

+
1

h

∫ 3
4

h

0

O(r2e−2α0r) dr

 + O
(
εe−

3
2
α0h + ε2δ(h)

)

= −ε
c′

0√
h

e−α0h

∫ ∞

0

∫ 2π

0

r{ f ′0(U0(r)) − f ′0(0)}V∗1 (r) cos m0θe
α0r cos θdθdr sin m0(Θ1 − ΘH)

+O

(
ε

h
δ(h) + εe−

3
2
α0h + ε2δ(h)

)
.

That is, we have

⟨{
f ′0(S 1) − f ′0(0)

}
S 2,Φ∗3(z∗1)

⟩
2
=
ε
√

h
e−α0hN′′m0

sin m0(Θ1 − ΘH)

(
1 + O

(
1

h
+ ε + e−α1h

))
(3.22)

for α1 > 0, where

N′′m0
:= −

∫ ∞

0

∫ 2π

0

r
{
f ′0(U0(r)) − f ′0(0)

}
V∗1 (r) cos m0θe

α0r cos θ dθ dr.
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Thus, we see from (3.21) and (3.22)

b1
3 (̃y) =

ε
√

h
e−α0hNm0

sin m0(Θ1 − ΘH)

(
1 + O

(
1

h
+ ε + e−α1h

))
.

For Θ2, we have quite similar results as

b2
3 (̃y) =

ε
√

h
e−α0hNm0

sin m0(Θ2 + ΘH)

(
1 + O

(
1

h
+ ε + e−α1h

))
.

Noting Θ̇ j = Ξ̇ j, we complete the proof.

To check the theoretical results in Theorem 3.2 using real experiments in the following sec-

tion, we consider the explicit motions of camphor particles by using the reduced equation

Ξ̇ j =
ε
√

h
e−α0hNm0

sin m0Ξ j. (3.23)

Proposition 3.7. If f0(u) is linear, then the constant Nm0
is positive.

Proof. For Nm0
= N′m0

+ N′′m0
, N′′m0

= 0 holds by the definition of N′′m0
and the linearity of f0(u).

We will show the positivity of N′m0
. Since ξ(r − r0) is close to the Dirac δ-function δ(r − r0) with∣∣∣∣∣

∫

R

g(r)ξ(r − r0) dr − g(r0)

∣∣∣∣∣ ≤ δ∥g∥H1(R) for sufficiently small δ > 0 as stated in Section 2, we see

N′m0
= −m0c′0r0γ

′
2(U0(r0))

∫ 2π

0

cos m0θe
α0r0 cos θ dθ + O(δ)

= −m0c′0r0γ
′
2(U0(r0)) · 2πIm0

(α0r0) + O(δ)

> 0,

because γ′
2
(U0(r0)) < 0 and Im0

(α0r0) > 0 hold, where Iν(z) is a modified Bessel function of the

first kind with index ν.

Thus, we can assume Nm0
> 0 in natural situations as in f0(u) = −αu. Then (3.23) em-

phasizes that the angle Ξ j of the camphor particle for the center line p2 − p1 converges to π/m0.

Using the perturbation method under the assumption of sufficient distance between two particles,

the consistent results were obtained, whose details are shown in Appendix A. In the following

section, this result is checked in real experiments and numerical calculations for m0 = 2 and 3

by fixing the barycenters of particles, which correspond to the case that γ1(u) = 0 in (3.1).

In this section, we focused on the dynamics of an angle of a non-radially symmetric cam-

phor particle located sufficient far from the other particle. The dynamics of the translational

motion was neglected by considering large τ1. The adjoint vectors with perturbative term were

constructed using the adjoint vectors in the case of an isolated camphor particle. Then the time

evolution equation for the angle of the camphor particle and its steady-state solution were derived

as shown in Theorem 3.2, Eq. (3.23), and Proposition 3.7.
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Figure 5: (a) Setup of the experiments. (b) Shape of the elliptic camphor particles. (c) Definition of the angles, Θ1 and

Θ2, of the orientation of major axes of the elliptic camphor particles. (d) Time series of the mass of the elliptic filter paper

after it was soaked in 0.3 mol/L camphor methanol solution. The slope of the time series of the mass changed around

600 s. The red broken line (∼0.05 g) shows the mass of the elliptic filter paper without soaking in camphor methanol

solution.

4. Experiments

To confirm the analytical results, we performed experiments using a camphor-water system as

shown in Fig. 5(a). The elliptic camphor particles were floated on pure water and made to interact

with each other. The centers of mass of the elliptic camphor particles were fixed by the shafts

made with a 3D printer (UP! Plus2, OPT Technologies, Japan), so that elliptic camphor particles

could rotate freely. To prepare the elliptic camphor particles, first the filter paper (Whatman

1440-240, GE Healthcare Life Science, UK) was cut into an elliptic shape with a hole for the

shaft at the center using a laser cutter (VLS 6.60, Universal Laser Systems, USA) as shown

in Fig. 5(b). Then elliptic-shaped filter paper was soaked into a camphor methanol solution,

which was prepared to be 0.3 mol/L by putting camphor (Wako, Japan) into methanol (Wako,

Japan) [25]. Then the elliptic filter paper was dried in air. The mass of the elliptic filter paper

decreased because methanol and camphor evaporated into the air. The time series of the mass is

shown in Fig. 5(d). The decreasing slope changed around 600 s after it had begun to be dried.

The reason for the change in slope was that methanol in the filter paper had almost dried out,

but camphor experiments, we thus remained since methanol evaporated faster than camphor. For

the experiments, thus, we used the elliptic filter paper that had been dried for 600 s. Pure water

was prepared with a Millipore system (Elix UV3, Merck, Germany). The images were taken in

the experiment using a digital video camera (IVIS HV30, Canon, Japan). All the experiments

were performed at room temperature (∼ 20 ◦C). The obtained images were analyzed with image

processing software (ImageJ, National Institutes of Health, USA). The orientations of the elliptic

camphor particles in each frame of the movie were detected based on the following theoretical

consideration.

The region corresponding to the elliptic camphor particle is denoted by Ω̂Θ whose center

of mass is (x0, y0). Here Θ represents the orientation of the major axis of the ellipse. Then

the second-order moments are defined by ⟨(x − x0)2⟩Ω̂Θ , ⟨(y − y0)2⟩Ω̂Θ , and ⟨(x − x0)(y − y0)⟩Ω̂Θ ,

where

⟨ f (x, y)⟩Ω̂Θ =
∫

f (x, y)χΩ̂Θ (x, y) dx dy, (4.24)

24



10

0

Time t (s)

A
n
g
u
la

r 
v
el

o
ci

ty
(r

ad
/s

)

−10

10

0

120 180

Time t (s)

A
n
g
u
la

r 
v
el

o
ci

ty
(r

ad
/s

)

−10

(b)(a)

150

30 mm

2
2
.5

 m
m30 mm

2
5
 m

m
11060

Figure 6: Time series of the angular velocity of the elliptic camphor particles floating on pure water. The centers of

mass of the elliptic camphor particles were fixed by the shaft and its angular velocity was measured. The major axis

of the ellipse was 30 mm and the minor axis of the ellipse was (a) 25 mm and (b) 22.5 mm. The elliptic camphor

particle exhibited (a) the rest state and (b) uniform rotation. To confirm the stability of the angular velocity, we added

perturbations by poking the particle with tweezers. The time when the elliptic camphor particle was put onto the water

surface was set as t = 0 s. The periods while the elliptic camphor particles were perturbated are shown by shading with

light gray in the plots. The angular velocity around t = 125 s in (a) was fluctuated due to the image of the apparatus

for the perturbation, and the large absolute values of the angular velocities during the period of the perturbation were cut

off to emphasize the difference in stationary angular velocity between the two conditions. Illustrations of the shape of

elliptic camphor particles are shown in each plot as insets. Movies (fig6a.mpg for (a) and fig6b.mpg for (b)) are available

in the Supplementary material (Appendix E).

and

χΩ̂Θ (x, y) =

{
1, if (x, y) ∈ Ω̂Θ,
0, if (x, y) < Ω̂Θ.

(4.25)

We can derive the relation between the second-order moments for the regions Ω̂Theta and Ω̂0 as

(
⟨(x − x0)2⟩Ω̂Θ ⟨(x − x0)(y − y0)⟩Ω̂Θ

⟨(x − x0)(y − y0)⟩Ω̂Θ ⟨(y − y0)2⟩Ω̂Θ

) (
cosΘ − sinΘ

sinΘ cosΘ

)

=

(
cosΘ − sinΘ

sinΘ cosΘ

) (
⟨(x − x0)2⟩Ω̂0

0

0 ⟨(y − y0)2⟩Ω̂0

)
, (4.26)

where Ω̂0 is the region of a camphor particle located at (x0, y0) with the characteristic angle

Θ = 0. Here ⟨(x − x0)2⟩Ω̂Θ , ⟨(y − y0)2⟩Ω̂Θ , and ⟨(x − x0)(y − y0)⟩Ω̂Θ were obtained for each frame

in the movies. By solving equation (4.26) as an eigenvalue problem, we obtained the orientations

of the particles for each frame [38].

Before we observed the interaction of two elliptic camphor particles, we checked whether a

single elliptic camphor particle rotates spontaneously. We prepared two kinds of elliptic camphor

particles with different shapes and measured the angular velocity of the elliptic camphor particles.

The elliptic camphor particle with aspect ratio much greater than one (elongated shape) exhibited

uniform rotation but the particle with the aspect ratio around 1 (almost circular shape) exhibited

rest at an arbitrary orientation as shown in Fig. 6.

Then, we performed the experiment for interacting elliptic camphor particles. Hereafter we

used camphor particles whose major and minor axes are 30 mm and 25 mm, which did not rotate
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Figure 7: Experimental results for two interacting camphor particles. (a) Time series of the orientation of the elliptic

camphor particles when ℓ = 30 mm. The time when the elliptic camphor particles were put onto the water surface was set

as t = 0 s. (b) Probability density of (b-1) Θ1 and (b-2) Θ2 corresponding to the time series shown in (a). (c) Probability

density of (c-1) Θ1 and (c-2) Θ2 for each distance between the centers of mass, ℓ. The histograms in (c) are obtained by

summarizing the data of more than three trials for each ℓ.

in an isolated condition. Time was set to be zero when the elliptic camphor particles were put

onto pure water. We used the data from 60 s to 180 s to avoid the effect of the initial fluctuation.

The time series of the orientations are shown in Fig. 7(a). Here, the orientations of the two

elliptic camphor particles are denoted as Θ1 and Θ2 (Θ1, Θ2 ∈ [0, π)) as shown in Fig. 5(c). The

probability density for Θ1 and Θ2 is shown in Fig. 7(b-1) and (b-2), respectively. It can be seen

that both of the probability densities had peaks around Θ1 = π/2 and Θ2 = π/2. These results

mean that the major axes of the elliptic camphor particles were perpendicular to the line that

connected the centers of mass, and were consistent with the analytical results. We also observed

the effects of the distance between the center of mass, ℓ. We performed the experiments for

ℓ = 30, 35, 40, 45, and 50 mm. The results are shown in Fig. 7(c). The orientations tended to

align for smaller ℓ. To confirm the stability of the rest state, Θ1 = Θ2 = π/2, we measured the

orientations of the elliptic camphor particles after perturbation. We added the perturbation in two

ways: (a) the fixed elliptic camphor particles in arbitrary orientations were released at the same

time and (b) one of the elliptic camphor particles was poked by tweezers. The time series of the

orientations and the snapshots are shown in Fig. 8. In both cases, the orientation of the elliptic

camphor particles converged to Θ1 = Θ2 = π/2 around 20 s after the perturbation had ceased.

Thus, it was concluded that the rest state was stable.

5. Numerical calculation

To confirm the validity of the analytical results, we also performed numerical calculation. In

the numerical calculation, we consider a two-dimensional concentration field, u, of size Lx × Ly.

The field size was taken large enough so that boundaries did not significantly affect the motion

of the camphor particle. The time evolution equation for u is written as

∂tu = d∆u − αu + f (x, y,Θc), (5.27)

where f (x, y,Θc) is a0 (> 0) inside the camphor particle and 0 outside of it. In the numerical

calculation, equation (5.27) was discretized with the mesh size, ∆x = 1, and time step, ∆t = 0.01,
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fixed in arbitrary orientations were released at the same time (t = 97 s). (b) The case when one of the elliptic camphor

particles was poked by tweezers (t = 103 s). (a-1,b-1) Time series of the orientation. (a-2,b-2) Snapshots of the elliptic

camphor particles (upper) and their binarized images (lower). The distance between the centers of mass was ℓ = 30 mm

in both cases. Movies (fig8a.mpg for (a) and fig8b.mpg for (b)) are available in the Supplementary material (Appendix

E).
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and was solved with the explicit Euler method. We took the Neumann boundary condition at the

boundary of the calculation field. The time evolution equation for the characteristic angle Θc is

written down as

I Θ̈ c = −ηΘ̇ c + T, (5.28)

where I is the moment of inertia of the camphor particle and η is the coefficient of the friction

force originating from the viscosity. Here, T is the torque working on the camphor particle, which

is calculated by the summation of the torque originating from the surface tension at discrete

points R(Θ)r̃i (i = 1, 2, . . . ,N). In addition, R(Θ) denotes the rotation matrix in two dimensions,

R(Θ) =

(
cosΘ − sinΘ

sinΘ cosΘ

)
, (5.29)

and the vectors r̃i correspond to the positions of the points along the periphery of the camphor

particles. We set r̃i so that the arc lengths between the neighboring points are equal to each

other. To obtain these points, we first calculated the total peripheral length, Λ, of the camphor

particles by numerical integration, and then numerically obtained the positions of the point on

the periphery so that the arc length from the neighboring point was equal to Λ/N. Here, we set

N = 200. The time evolution equation forΘc, (5.28), was also solved with the Euler method with

the same time step ∆t = 0.01. In this calculation, we do not consider the motion of the center

of mass of the camphor particle, and the center of mass of the particle is always located at the

center of the calculation field.

The torque was calculated as

T =

N∑

i=1

γ (u(rc + R(Θ)r̃i))
(
xiny(xi, yi) − yinx(xi, yi)

)
, (5.30)

where r̃i = (xi, yi) and n(x, y) = (nx(x, y), ny(x, y)) is the normal vector at the periphery of the

ellipse (x, y). Here γ(u) should be a decreasing function of u and we assumed that

γ(u) = γ0 − ku, (5.31)

where k and γ0 are positive constants. It should be noted that γ0 corresponds to the surface

tension of pure water and that it does not affect the results.

As for the shape of the camphor particle, we considered an elliptic camphor particle. The

shape of the camphor particle when Θc = 0 is described as

x2

x0
2
+

y2

y0
2
= 1, (5.32)

where x0 and y0 are the lengths of the major and minor axes, where x0 > y0 > 0. In this

calculation, we set x0 = 42 and y0 = 35, so that the aspect ratio corresponds to the condition

in the experiments. The calculation was started with small angular velocity, and then small

perturbation was added at t = 200 to avoid remaining at unstable states. The angular velocity at

t = 2000 was adopted to the saturated value of it. The parameters were set as d = 10, α = 0.1,

k = 0.00001, a0 = 1, I = 0.01, and Lx = Ly = 512.

In Fig. 9, the behavior of a single camphor particle is shown. In Fig. 9(a) and (b), time series

of the angular velocity are shown. The angular velocity converged to zero when η was larger

as in Fig. 9(a) and it converged to a constant nonzero value when η was smaller as in Fig. 9(b).
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Figure 9: Results of the numerical calculation for a single elliptic camphor particle. (a) Time series of the angular velocity

ωwhen η = 0.08. The camphor particle kept rotating with a constant angular velocity even after a long duration. (b) Time

series of the angular velocity ω when η = 0.12. The camphor particle stopped after a long time. (c) Bifurcation diagram

for the angular velocity |ω| when η was changed. The camphor particle stopped after a long time for η > ηth ≃ 0.1, while

it exhibited rotational motion at a constant angular velocity for η < ηth. Illustration of the shape of an elliptic camphor

particle is shown as an inset. Movies (fig9a.mpg for (a) and fig9b.mpg for (b)) are available in the Supplementary material

(Appendix E).

By scanning η, we obtained the bifurcation diagram for the angular velocity as in Fig. 9(c).

The converged angular velocity was zero when η was larger than the threshold value ηth, while

it converged to a nonzero value when η was smaller than ηth. It can be said that supercritical

pitchfork bifurcation occurs at η = ηth.

Hereafter, we adopted η = 0.12, which is larger than ηth. This means that a single camphor

particle could not move spontaneously in this condition. Then, we investigated the interaction

between two elliptic camphor particles. The distance between the centers of mass of the camphor

particles were set as ℓ. In this case, we adopted the same parameters as in the single particle case,

except for Lx and Ly. We set Lx = 1024 and Ly = 512 for this calculation, and the center of the

two camphor particles was set at the center of the calculation field. Just like the single-particle

case, the calculation was started with small angular velocities and small perturbation was added

at t = 1000. Then, we performed calculations until t = 2000. The angles Θ1 and Θ2 are defined

as in Fig. 5.

The results of the time series of Θ1 and Θ2 are shown in Fig. 10. When ℓ was smaller,

both Θ1 and Θ2 converged to π/2 as in Fig. 10(a). The results well correspond to the analytical

and experimental results. When ℓ was larger, there was little correlation between Θ1 and Θ2.

From the analytical results, for any ℓ, the major axes should be aligned perpendicular to the line

connecting the particle centers if there is no noise. We performed the numerical calculation with

different mesh size ∆x, and exemplified that this discrepancy comes from the discretization in

the numerical calculation. The details are in Appendix B.

To examine the robustness against noise, we also performed numerical calculation by explic-
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Figure 10: Results of numerical calculation for the two interacting elliptic camphor particles. The parameter for friction

constant η was set as η = 0.12, so that a single particle did not keep moving but stopped. (a) Time series of the angles

Θ1 and Θ2 for ℓ = 100. Θ1 and Θ2 converged to π/2, which means that two elliptic camphor particles were aligned by

the interaction. (b) Time series of the angles Θ1 and Θ2 for ℓ = 160. There was no correlation between Θ1 and Θ2. Blue

(dark gray) and magenta (light gray) curves show Θ1 and Θ2, respectively. (c) Snapshots of the motion of two elliptic

camphor particles for ℓ = 100, corresponding to (a). The time t corresponds to the time t in (a). A movie (fig10a.mpg for

(a)) is available in the Supplementary material (Appendix E).

itly adding the noise to equation. (5.28) as

I Θ̈ c = −ηΘ̇ c + T + ζ(t), (5.33)

where ζ(t) is white Gaussian noise obeying

⟨ζ(t)⟩ = 0, (5.34)

and

⟨ζ(t)ζ(s)⟩ = 2σ2δ(t − s), (5.35)

where σ = 1 and δ(·) is the Dirac’s delta function.

We changed ℓ and ran the numerical calculations from 64 different initial conditions (Θ1 =

mπ/4, Θ2 = nπ/4, m, n ∈ Z, 0 ≤ m ≤ 7, 0 ≤ n ≤ 7) for each ℓ. Using Θ1 and Θ2 from t = 200

to 700 with time interval of 1, we obtained histograms as shown in Fig. 11. For small ℓ, the

probability density on Θ has a peak around Θ = π/2, which corresponds to the parallel alignment

of the major axes of the two camphor particles. The peak became broader as ℓ increases. For

ℓ > 140, the probability density was almost uniform though there is fluctuation originating from

the noise. From these results, the features of the histogram observed in experiments shown in

Fig. 7 is considered to originate from the competition between the interaction and fluctuation.

We also performed numerical calculations on the motion of three-mode shaped camphor

particles to evaluate the validity of the analytical results. Here, we consider a camphor particle

whose shape is described as

r(θ) = r0 + r3 cos 3θ, (5.36)
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Figure 11: Probability density of Θ by the numerical calculation with noise. The distance between two elliptic camphor

particles ℓ was varied: (a) ℓ = 90, (b) ℓ = 100, (c) ℓ = 110, (d) ℓ = 120, (e) ℓ = 130, (f) ℓ = 140, (g) ℓ = 150, and (f)

ℓ = 160. For small ℓ, the probability density has a peak around π/2.
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Figure 12: Results of numerical calculation for a single three-mode shaped camphor particle. (a) Time series of the

angular velocity ω when η = 0.15. The camphor particle kept rotating with a constant angular velocity ω after a long

time. (b) Time series of the angular velocity when η = 0.25. The camphor particle stopped after a long time. (c)

Bifurcation diagram for the angular velocity |ω| when η was varied. The camphor particle stopped after a long time for

η > η′
th
≃ 0.225, while it exhibited rotational motion at a constant angular velocity for η < η′

th
. Illustration of the shape

of a three-mode shaped camphor particle is shown as an inset. Movies (fig12a.mpg for (a) and fig12b.mpg for (b)) is

available in the Supplementary material (Appendix E).

in the polar coordinates. Here, we adopted r0 = 40 and r3 = 4. The parameters except for those

on the shape of the camphor particles were the same as those for the elliptic camphor particles.

For the calculation of a single particle, we set Lx = Ly = 512, and the center of mass of the

particle was set at the field center. First, we examined the behavior of a single camphor particle.

The results are shown in Fig. 12. In Fig. 12(a) and (b), time series of the angular velocity

are shown. The angular velocity converged to zero when η was larger as in Fig. 12(a) and it

converged to a constant nonzero value when η was smaller as in Fig. 12(b). By scanning η, we

obtained the bifurcation diagram for the angular velocity as in Fig. 12. The converged angular

velocity was zero when η was larger than the threshold value η′
th

, while it converged to a nonzero

value when η was smaller than η′
th

. These behaviors are similar to those of an elliptic camphor

particle, and it can be said that supercritical pitchfork bifurcation occurs at η = η′
th

.

Therefore, we adopted η = 0.25, which is larger than η′
th

, i.e., a single camphor particle cannot

move spontaneously in this condition. We investigated the interaction between two three-mode

shaped camphor particles. The distance between the centers of mass of the camphor particles

were set as ℓ. In this case, we adopted the same parameters as in the single-particle case, except

for Lx and Ly. We set Lx = 1024 and Ly = 512 for this calculation, and the center of the two

camphor particles was set at the center of the calculation field. Just like the single-particle case,

the calculation was started with small angular velocities and small perturbation was added at

t = 1000. Then, we performed calculations until t = 2000. The results of the time series of Θ1

and Θ2 are shown in Fig. 13, where the characteristic angles Θ1 and Θ2 (Θ1,Θ2 ∈ [0, 2π/3)) are

defined as in Fig. 13(c). When ℓ was smaller, both Θ1 and Θ2 converged to π/3 as in Fig. 13(a).

In other words, the three-mode shaped particles tended to align with their flat sides facing each

32



(a)

0 20001000500 1500
0

2π/3

t

Θ
  
Θ

1
, 
  

2

π/3

0 20001000500 1500
t

(b)

(c)

t = 0

t = 500

(d)

Θ 
1

Θ 
2

0

2π/3

Θ
  
Θ

1
, 
  

2

π/3

Figure 13: Results of numerical calculation for the two interacting three-mode shaped camphor particles. The parameter

for friction constant η was set as η = 0.25, so that a single particle did not keep moving but stopped. (a) Time series of

the angles Θ1 and Θ2 for ℓ = 100. Here Θ1 and Θ2 converged to π/3, which means that two elliptic camphor particles

were aligned by the interaction. (b) Time series of the angles Θ1 and Θ2 for ℓ = 160. There was no correlation between

Θ1 and Θ2. Blue (dark gray) and magenta (light gray) curves show Θ1 and Θ2, respectively. (c) Definition of Θ1 and Θ2.

(d) Snapshots of the motion of two elliptic camphor particles for ℓ = 100, corresponding to (a). The time t corresponds

to the time t in (a). A movie (fig13a.mpg for (a)) is available in the Supplementary material (Appendix E).

other. The results well correspond to the analytical results. When ℓ was larger, there was little

correlation between Θ1 and Θ2, which did not well correspond to the analytical prediction. This

discrepancy can be explained in the same way as that for the two elliptic camphor particles.

In addition, we performed numerical calculation to confirm whether some hypotheses in

theoretical part are satisfied. The details are shown in Appendix C. The theory suggests that the

two interacting elliptic particles are aligned perpendicular to the line connecting their centers

even when f0(u) includes the nonlinear decay term. This was also confirmed in the numerical

calculation, whose results are shown in Appendix D.

6. Conclusion

In the present paper, the interaction between two non-radially symmetric camphor particles

was discussed theoretically. Based on the model composed of the partial differential equation for

the camphor concentration field together with the ordinary differential equations for the position

and characteristic angle of the camphor particles, we obtained the ordinary differential equation

describing the time evolution of the positions and characteristic angles by the center manifold

reduction. It was shown theoretically that two interacting elliptic camphor particles should be

aligned such that the major axes are parallel and perpendicular to the lines interconnecting the

two particle centers. Such a prediction was confirmed by real experiments and numerical sim-

ulations. The main result (Theorem 3.1) can be applied not only for the camphor particles but

for self-propelled particles interacting through a reaction-diffusion field. In fact, we only assume

(H2) for S ∗(x) in the model equation (2.4) together with the monotone decrease of functions γ1
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and γ2. That is, all necessary assumptions are only the very natural properties for γ j and the

stability of the stationary spatial distribution of the surface concentration of the camphor molec-

ular layer u when a single camphor particle is spatially fixed, which is easily checked in the real

experiment. Moreover, the equation of u in (2.4) can be extended to the vector valued variable

u ∈ R
N for an arbitrary natural number N and the same results as Theorems 3.1 and 3.2 can

be obtained. Thus, the interacting motions of two camphor particles mentioned in this paper

are expected to be universal. We hope the present approach will be extended to more complex

systems.
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Appendix A. Calculation using the perturbation theorem

Here, the dynamics of the two interacting camphor particles is discussed using the perturba-

tion theorem. Here we assume the distance between two camphor particles is sufficiently large.

Now, we assume that one particle is located at R. The stationary concentration field at r

sufficiently far from the particle is described as

u(r) = u0

exp

(
−

√
α
d
|r − R|

)

√
|r − R|

, (A.1)

This description is obtained as follows; General solution of

0 = d∇2u − αu, (A.2)

is written as

u(r) =

∞∑

k=0

(Ak cos kθ + Bk sin kθ)Ik

(√
α

d
r

)
+

∞∑

k=0

(Ck cos kθ + Dk sin kθ)Kk

(√
α

d
r

)
, (A.3)
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where r and θ are the polar coordinates in a two dimensional system. In Eq. (A.3), only Kk(r)

does not diverge at r → ∞. Considering the asymptotic form of the modified Bessel functions of

the second kind, we obtain Eq. (A.1). Assuming that the distance between two particles is much

greater than the radius of the particle, the concentration field near the particle originating from

the other particle located at R = Rex (R > 0) is described as

u(r) = u0

exp

(
−

√
α
d

(R − x)

)

√
R − x

. (A.4)

Then we consider a camphor particle whose center of mass is located at the origin. The shape

of the particle is described in two-dimensional polar coordinates as

r(θ) = r0 + ϵ cos n(θ − Ξ). (A.5)

and we can calculate the arc-length unit dℓ and normal vector en from the first order of ϵ as

dℓ =
[
r0 + ϵ cos n(θ − Ξ) + O

(
ϵ2

)]
dθ, (A.6)

en = er + ϵn sin n(θ − Ξ)eθ + O
(
ϵ2

)
, (A.7)

where er and eθ are the unit vectors in two-dimensional polar coordinates.

Using these, we calculate the torque T (Ξ) working on the camphor particle whose character-

istic angle is Ξ as

T (Ξ) =

∫ 2π

0

γ (u(r)) (r × en)
dℓ

dθ
dθ, (A.8)

where r = r(θ)er.

For n = 2, 3, 4, the torque is calculated in the approximation of R ≫ r0 as

T (Ξ) =
u0kϵπ

8

(
r0

R

)4

e−RR
3
2

(
3 + 4R + 4R2

)
sin 2Ξ, (A.9)

T (Ξ) =
u0kϵπ

64

(
r0

R

)5

e−RR
3
2

(
15 + 18R + 12R2 + 8R3

)
sin 3Ξ, (A.10)

T (Ξ) =
u0kϵπ

768

(
r0

R

)6

e−RR
3
2

(
105 + 120R + 72R2 + 32R3 + 16R4

)
sin 4Ξ, (A.11)

respectively. These results meet the theoretical results in Eq. (3.23) and Proposition 3.7 with

regard to the stable alignment of two interacting camphor particles.

Appendix B. Numerical results with different spatial mesh size

In Fig. 10, the alignment of two interacting camphor particles was perpendicular to the line

connecting the centers of two particles for ℓ = 100, but not for ℓ = 160, where ℓ is the distance

between two centers of camphor particles. In the theory, on the other hand, it should for any ℓ.

We assume that this discrepancy is due to the discretization in the numerical calculation. The

concentration field decays exponentially depending on the distance, and thus interaction also

decays exponentially. Therefore, it is natural that the numerical error exceeds the interaction

for large ℓ. Here, we performed the numerical calculation only by changing ∆x as ∆x = 1 and
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Figure B.14: Results of numerical calculation for the two interacting elliptic camphor particles by changing ∆x and ℓ.

The parameters are the same as those used in Fig. 10 except for ℓ and ∆x. Time series of the angles Θ1 and Θ2 are shown.

(a) ℓ = 100 and ∆x = 1. (b) ℓ = 100 and ∆x = 2. (c) ℓ = 120 and ∆x = 1. (d) ℓ = 120 and ∆x = 2.

∆x = 2. The results are shown in Fig. B.14. As seen in Fig. B.14(a) and (b), the time evolution of

Θ1 andΘ2 were almost the same for ∆x = 1 and ∆x = 2, and converged to π/2 in both cases when

ℓ = 100. On the contrary, when ℓ = 120, they converged to π/2 for ∆x = 1 (see Fig. B.14(c)),

while they did not converge to π/2 for ∆x = 2 (see Fig. B.14(d)). This implies that the error

originating from the discretization exceeded the interaction for ∆x = 2, but not for ∆x = 1, when

ℓ = 120. This results support our suggestion on the origin of discrepancy.

Appendix C. Confirmation of Hypotheses by numerical calculation

In this section, we confirmed some of the hypotheses in theoretical part using numerical

calculation. Hypotheses (H2), (H3) and (H4) are indirectly satisfied considering the results in

Fig. 9. That is to say, there is a bifurcation point between the rest state and moving state as shown

in Fig. 9, which means the rest state of the camphor particle can be realized for the finite value

of η, i.e., the finite values of γ1 and γ2. We used η = 0.12 for the numerical results shown in

Figs. 10 to 11. This means the condition used in our calculation satisfied (H2), (H3) and (H4).

Then, we show the radial profile of the stationary profile of the camphor concentration for

a single camphor particle in Fig. C.15. As seen in Fig. C.15, the profiles decay exponentially,

which satisfies the Hypothesis (H1) and the part of Hypothesis (H5).

Appendix D. Results in the case that f0(u) is nonlinear

In this section, we show the numerical results in the case that f0(u) is nonlinear, i.e., f0(u) =

−α(1 + βu)u. We consider the time evolution equation for the concentration of camphor u as

∂tu = d∆u − α(1 + βu)u + f (x, y,Θc), (D.1)
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Figure C.15: Results of the numerical calculation for the radial profile of camphor concentration, u, for a single elliptic

camphor particle. (a,b) The stationary profile for the system with the linear decay term in Eq. 5.27. (c,d) The stationary

profile for the system with the nonlinear decay term in Eq. D.1. (a,c) Normal plot and (b,d) logarithmic plot are shown.

The profiles in major-axis and minor-axis directions are shown with blue solid and magenta dashed curves, respectively.

The parameters are the same as those in Fig. 9.

instead of Eq. (5.27). For the dynamics of a single elliptic particle used in Fig. 9, the bifurcation

point shifted. It was around η ≃ 0.017 for β = 1. The parameters are the same as those in Fig. 9.

The theory implies the two interacting elliptic camphor particles aligns in the same way as in

the case that f0(u) = −αu. We performed numerical calculation for the interacting two elliptic

camphor particles. The result is shown in Fig. D.16. The major axes were aligned perpendicular

to the line connecting the particle centers, even when f0(u) includes nonlinear decay term.

Appendix E. Supplementary material

Movies corresponding to Figs. 6, 8, 9, 10, 12, and 13.

Movie captions:

fig6a.mpg Movie corresponding to Fig. 6(a). The major and minor axes of the elliptic camphor

particle were 30 mm and 25 mm, respectively. To confirm the stability of the angular

velocity, we added perturbations by poking the camphor particle with tweezers. The time

when the elliptic camphor particle was put onto the water surface was set as t = 0 s.

fig6b.mpg Movie corresponding to Fig. 6(b). The major and minor axes of the elliptic camphor

particle were 30 mm and 22.5 mm, respectively. To confirm the stability of the angular

velocity, we added perturbations by poking the camphor particle with tweezers. The time

when the elliptic camphor particle was put onto the water surface was set as t = 0 s.

fig8a.mpg Movie corresponding to Fig. 8(a). The elliptic camphor particles fixed in arbitrary

orientations were released at the same time (t = 97 s). The distance between the centers of
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Figure D.16: Results of numerical calculation for the two interacting elliptic camphor particles in the case that f0(u)

includes nonlinear decay term in Eq. (D.1). The parameter for friction constant η was set as η = 0.02, so that a single

particle did not keep moving but stopped. Time series of the angles Θ1 and Θ2 for ℓ = 90 are shown. Θ1 and Θ2

converged to π/2, which means that two elliptic camphor particles were aligned by the interaction.

mass was ℓ = 30 mm. The time when the elliptic camphor particle was put onto the water

surface was set as t = 0 s.

fig8b.mpg Movie corresponding to Fig. 8(b). The case when one of the elliptic camphor par-

ticles was poked by tweezers (t = 103 s). The distance between the centers of mass was

ℓ = 30 mm. The time when the elliptic camphor particle was put onto the water surface

was set as t = 0 s.

fig9a.mpg Movie corresponding to Fig. 9(a). The friction constant was set as η = 0.08. The

major and minor axes of the elliptic camphor particle were 42 and 35, respectively. To

confirm the stability of the angular velocity, we added perturbations at t = 200.

fig9b.mpg Movie corresponding to Fig. 9(b). The friction constant was set as η = 0.12. The

major and minor axes of the elliptic camphor particle were 42 and 35, respectively. To

confirm the stability of the angular velocity, we added perturbations at t = 200.

fig10a.mpg Movie corresponding to Fig. 10(a). The distance between the centers of mass was

ℓ = 100. The friction constant was set as η = 0.12. The major and minor axes of the elliptic

camphor particle were 42 and 35, respectively. To confirm the stability of the conformation

of the elliptic camphor particles, we added perturbations at t = 1000.

fig12a.mpg Movie corresponding to Fig. 12(a). The friction constant was set as η = 0.15. The

shape of the three-mode shaped camphor particle was r = 40+4 cos 3θ in polar coordinates.

To confirm the stability of the angular velocity, we added perturbations at t = 200.

fig12b.mpg Movie corresponding to Fig. 12(b). The friction constant was set as η = 0.25. The

shape of the three-mode shaped camphor particle was r = 40+4 cos 3θ in polar coordinates.

To confirm the stability of the angular velocity, we added perturbations at t = 200.

fig13a.mpg Movie corresponding to Fig. 13(a). The distance between the centers of mass was

ℓ = 100. The friction constant was set as η = 0.25. The shape of the three-mode shaped

camphor particle was r = 40+ 4 cos 3θ in polar coordinates. To confirm the stability of the

conformation of the elliptic camphor particles, we added perturbations at t = 1000.
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