
Interaction of Nonhomogeneous Shear, 

Nonlinear Viscoelasticity, and Yield 

of a Solid Polymer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS .  WINEMAN and W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. WALDRON, JR. 

Department of Mechanical Engineering 
and Applied Mechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Michigan 
Ann Arbor, Michigan 481 09 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A constitutive equation for small strain viscoelastic response is considered in 
which stress relaxation occurs faster as strain increases. The constitutive equa- 
tion is of single integral type and has a psuedo- or material time function which is 
calculated from a strain dependent shift function. First, it is shown that such a 
consti tutive equation can account for yield as observed in polymers for a number 
of different stress and strain histories. Next, the constitutive equation is used in 
the analysis of the problem in which a hollow cylinder is flxed at its inner surface 
and a moment history is applied to its outer surface. This causes the cylindrical 
surfaces to rotate about the central zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxis, thereby inducing a radial shear strain 
distribution. It is shown that there is a time when the material near the inner 
support begins to yield and a layer of large shear strain gradient begins to grow 
rapidly. I t  is also shown that the stress or strain history at a material element will 
generally not be one of the standard histories used to study yield. 

INTRODUCTION 

here appear to be two distinct directions in the T development of a constitutive equation which can 
model yield in polymers. In the first. the constitutive 
theory which has been developed for metal plasticity 
is applied directly to polymers. The second is to use 
the constitutive framework for nonlinear viscoelastie 
ity. This approach has been the subject of a number 
of articles by Shay and Carruthers ( 1-4). They used a 
constitutive equation with certain mathematical fea- 
tures in carrying out a numerical simulation of con- 
stant extension rate experiments on polymer rods. 
Their results show the occurrence of the yield phe- 
nomenon. While their calculations are only in quali- 
tative agreement with experimental results, it is clear 
that the constitutive equation, with appropriate mod- 
ifications. is capable of an accurate simulation of 
yield. Knauss and Emri (5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6). have discussed a con- 
stitutive equation for nonlinear viscoelasticity with 

similar features. Their calculations also indicate that 
yield occurs, although this was not the main purpose 
of their work. 

There are additional reasons why a constitutive 
equation for nonlinear viscoelasticity is used to model 
yield in polymers. First, polymers exhibit creep and 
stress relaxation, and models of metal plasticity do 
not include this effect. Secondly, yield has been o h  
served to occur under several different stress and 

strain histories (cf. Refs. 7-9). Since constitutive 
equations for viscoelasticity relate stress and strain 
histories, they are an appropriate framework for stud- 
ies on yield. Thirdly, yield has been associated with a 
reduction of relaxation times with increasingly large 
deformation, an intrinsically viscoelastic effect (cf. 
Robertson (10)). 

In this study, a constitutive equation for nonlinear 
viscoelasticity of the form used by Shay and 
Caruthers ( 1-41. and Knauss and Emri (5.6). is given 
additional consideration. In their work, it is shown 
that yield can be simulated under constant strain 
rate conditions. One purpose here is to show that the 
constitutive equation can also account for yield un- 
der the stress and strain histories considered in (8)  
and (9). 

The above mentioned work involves only homoge- 
neous deformations and speciflc stress or strain his- 
tories. A second purpose is to study a situation in 
which the stresses and strains vary in space as well 
as in time. The particular problem under considera- 
tion represents a potential experiment in which a 
hollow circular cylinder of a polymer is bonded to a 
rigid support at its inner surface and a rigid shell at 
its outer surface. The shell may undergo a prescribed 
rotation history or it may rotate due to a prescribed 
moment history. This induces, at each material ele- 
ment of the cylinder, the histories of a single shear 
stress component and the corresponding shear strain 
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component. It is shown that these histories differ, in 
general, from the standard ones which have been 
used to define yield. However, yield-like phenomena 
can be defined and regions of yield in the cylinder can 
be identified. 

The constitutive equation for nonlinear viscoelas 
ticity is presented in the section entitled Constitutive 
Equation. In the section on Yield, it is shown that this 
constitutive equation can be used to simulate yield 
under the various conditions which have appeared in 
the literature. Circumferential Shear of a Cylinder 
presents the geometry and governing equations. Fi- 
nally, in Numerical Example, the method of solution 
is discussed and results are presented for two loading 
conditions, rotational control and moment control of 
the outer shell. 

CONSTITUTIVE EQUATION 

This work is concerned with conditions of geomet- 
ric linearity (small strains and rotations) and mate- 
rial nonlinearity. In addition, attention is restricted to 
cases in which a stress component, a( t), is expressed 
only in terms of the corresponding strain component 
history E (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs), 0 I s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t. The constitutive equation un- 
der consideration has the form 

Here G( t )  denotes a relaxation function associated 
with linear viscoelastic response, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[( s) is a time- 
like variable which is affected by the strain history. I t  
is given by the relation 

in which + ( E )  is positive, and decreases monotoni- 
cally with increasing strain. 

This constitutive equation is a one-dimensional 
version of that used by Shay and Caruthers, (1). or 
Knauss and Emri, (5). In both papers, the authors 
began with a tensorial version of Eqn 1 which is 
appropriate for the three dimensional response of 
isotropic materials, and then applied it to uniaxial 
extension. This led to two equations in which the 
normal stress in the direction of extension and the 
normal stresses on transverse planes are related to 
the axial and transverse normal strains. These equa- 
tions come from the condition in uniaxial extension 
that the two transverse normal strains are equal, due 
to material isotropy, and the normal stresses on 
transverse surfaces vanish. In concept, elimination of 
the transverse strain reduces this system to a single 
equation of form Eq 1, although in practice, the 
equations must be solved simultaneously. 

As will be shown in the next section, the mathe- 
matical property which causes Eqs 1 and 2 to ac- 
count for yield is that 4 decreases by several orders 
of magnitude as strain increases in some finite inter- 

val. This causes [( t )  to increase faster than time t so 
that stress relaxation is accelerated as strain in- 
creases. The specific form used for 4 in Refs. 1 and 5 
was 

l0g,,4= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- (1 - '). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.303 f f, (3) 

where B is a material constant, f is interpreted as 
the fractional free volume, and f ,  is a reference value 
of f. In both Refs. 1 and 5, the value of f at any 
instant was calculated using the volumetric strain at 
that instant. The manner in which f was calculated 
from the volumetric strain differed in these two pa- 
pers. However, in both approaches, f increased as 
elongation increased, resulting in a decrease in 4. 

Polymers also exhibit yield in shear. Experimen- 
tally determined shear stress-shear strain curves, 
obtained under conditions of constant shear strain 
rate, were presented by Bowden (7) and G'Sell and 
Gopez (1 1). These curves have the same characteris- 
tic shape as is used to define the occurrence of yield 
in uniaxial extensional response, namely a local max- 
imum followed by a drop in the stress, followed by a 
rise in the curve. Both Bowden (7) and G'Sell and 
Gopez (1 l), refer to this as yield in shear. Since there 
must be some constitutive equation which can be 
used to simulate a yield experiment in shear, and 
since Eqs 1 and 2 can be shown to describe yield, as 
will be shown in the following section, the constitu- 
tive equation for shear will be assumed to have this 
same form for some appropriate choice of 4 in Eq 2. 
Then, a( t )  and E( s), 0 I s I t, will represent the shear 
stress and the corresponding shear strain history, 
respectively. 

In Refs. 1 and 5, yield in uniaxial extension was 
attributed to the acceleration of stress relaxation due 
to the increase in fractional free volume with increas- 
ing physical volume. The yield experiments of G'Sell 
and Gopez (1 1) are simple shear experiments in which 
there is no volume change. According to the constitu- 
tive equation in (1) and (2). stress relaxation will be 
accelerated due to shear deformations rather than 
volume changes. It is not intended here to relate this 
to a specific macromolecular theory, but instead to 
take a strictly phenomenological approach. A prece- 
dent for this is found in the work of McKenna and 
Zapas ( 12). They performed torsion experiments on 
PMMA rods in order to study its shear stress and 
normal stress response. Their data was analyzed in 
terms of the BKZ constitutive equation for nonlinear 
viscoelastic response. McKenna and Zapas showed 
that by allowing the time variable in their model, 
which is analogous to (( s)  in Eq 2, to depend on the 
shear strain history, they could describe the re- 
sponse of mechanically conditioned PMMA. Thus, 
constitutive equations, Eqs I and 2, are chosen be- 
cause they can simulate, at least in a qualitative 
sense, the phenomenon of yield in shear. When used 
along with the appropriate equations of mechanics to 
determine the stresses and strains in a sheared cylin- 
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der, the results should provide insight into processes 
involving spatial variation of deformation and yield in 
shear. 

This section is closed with the following comments 
pertaining to the use of Eqs 1 and 2 for shear re- 
sponse. It is expected that a relation between shear 
stress and shear strain is obtained as a component of 
a general constitutive equation for three-dimensional 
response. I t  is possible to develop a tensorial version 
of Eqs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and 2 which can be applied to the three- 
dimensional response of isotropic materials, and in 
which 4 depends on all the components of the strain 
tensor. For uniaxial response, this general form would 
give the relation between normal stresses and strains 
used in Refs. 1 or 5, in which 4 can depend on the 
volumetric strain. In shear, the general form reduces 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs 1 and 2 in which 4 depends on the shear 
strain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

YIELD 

Consider the uniaxial extension of a bar made of a 
solid polymeric material. The standard experiment for 
determining yield is one of strain control in which the 
specimen undergoes a constant strain rate history 
and the corresponding stress-time response is mea- 
sured. Since the strain history is described by E (  t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

at ,  t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 where a is a constant, the time axis is 
re-scaled to a strain axis, and the stress-time graph 
is converted into a stress-strain graph. This is gener- 
ally interpreted as the stress-strain curve for the 
material. Yield is said to occur if there is a point on 
the stress-strain curve where the stress has a local 
maximum. Note that the local maximum associated 
with yield is actually on the stress-time graph. 

After reaching its value at yield, the strain in- 
creases while the stress first decreases slightly and 
then begins to increase. At some strain E* after the 
local maximum, there appears to be a change in the 
material microstructure, (7). If the stress is reduced 
to zero before E* is reached, the specimen will eventu- 
ally return to its original length and there will be no 
permanent strain. Otherwise, there will be perma- 
nent strain, see Bowden zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7). Fig. 5. The constitutive 
equations for viscoelastic solids which have been dis- 
cussed in Refs. 1 and 5 are such that if stress is 
applied for some time and then maintained at zero for 
a sufficiently long time, the strains will reduce to 
zero. These constitutive equations are thus valid only 
for the regime near the local maximum. 

The simulations in Refs. 1 and 5 describe the re- 
sponse to constant strain rate tests. However, yield 
has been defined to occur under other strain control 
conditions. Yee and DeTorres (9) camed out experi- 
ments in which the elongation increased first at one 
constant rate and then was changed to increase at 
a second constant rate. Results were obtained for 
various choices of the second elongation rate, both 
larger and smaller than the initial rate. The mea- 
sured force-time graphs were transformed into force- 
elongation graphs by using the one to one relation 
between elongation and time. The force-elongation 

graphs had local maxima, indicating yield, and the 
yield points depended on the choice of elongation 
rates. I t  can be expected, based on these results, that 
local maxima, or yield, can occur for different mono- 
tonically increasing strain histories, and can depend 
on the particular history. 

Yield has also been discussed under stress control 
conditions. Bowden (7) described a yield point when a 
specimen is subjected to a constant stress rate test. 
Carapellucci and Yee (8) conducted biaxial deforma- 
tion experiments in which the stress rates were con- 
stant and the strain-time responses were measured. 
The strain increased monotonically and approached a 
very large rate of growth at some finite time. In other 
terms, the strain-time curve had a vertical asymp 
tote. This rapid growth of strain is defined to be yield. 
The stress control history is described by a( t )  = /3 t, 
t 2 0 where /3 is constant. This can be used to trans- 
form the time axis into a stress axis thereby creating 
another stress-strain graph. The vertical asymptote 
on the strain-time graph becomes a horizontal 
asymptote at some finite stress on the stress-strain 
graph, which is an indicator of yield. 

The preceding discussion points out that the defini- 
tion of yield depends on the particular stress or strain 
history that is being controlled. Although yield is 
usually defined in terms of a feature of a stress-strain 
curve, this feature is first observed on a stress-time 
or strain-time graph. It will now be shown that the 
proposed constitutive equation can simulate yield 
under these different stress and strain histories. 

Let Eq 1 be differentiated with respect to time and 
use Eq 2. The result is 

(4) 

where the superposed dot denotes the derivative of 
the function with respect to its argument. 

Now consider a constant strain rate history, E (  t )  = 

at ,  t 2 0 where a is constant. Equation 4 becomes 

The relaxation function has the property that CX s) 2 
0, as) I 0,  s 2 0. Thus, the first term in Eq 5 is 
positive and the integral is negative (recall that 4 ( ~ )  
is also positive). As the strain increases, 4(at)  de- 
creases by several orders of magnitude, and can b e  
come extremely small. At some time t*, the right 
hand side of Eq 5 vanishes, 

G(0) + ~ /"G[ 5( t*) - &( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs)]ds = 0, (6) 
+(at* )  0 

and the stress-time graph will have a local maximum. 
When the time axis is re-scaled by the relation E (  t )  = 

at, the result is a stress-strain curve with the local 
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maximum which characterizes yield. This is the basis 
for the yield curves in Refs. 1 and 5. 

Now consider a continuous strain history which 
increases monotonically from the undeformed state. 
Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, t 2 0. The leading term in 
Eq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 vanishes, the second term is positive and the 
integral is negative. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the strain increases, 4 ( ~ ( t ) )  
decreases monotonically to a value sufficiently small 
that at some time 2, u( ̂t) = 0. The strain histories of 
Yee and DeTorres (9) were the special case in which 
E(t)=al ,  O i t < T ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE( t )=ag ,  t>T,, where al, 
a2. and To are constants. 

Finally, consider the constant stress rate test, a( t )  
= p t, t 2 0 where p is positive. Since a(0) = 0 implies 
~ ( 0 )  = 0, the strain rate i( t )  is found from Eq 4 to be 
given by the relation 

(7) 

According to Eq 7, i(0) > 0 so that i (s)  > 0 in some 
time interval. The right hand side of Eq 7 is seen to 
be positive, which implies that E (  t )  is always positive. 
Thus E (  t )  increases monotonically, (p( E (  t))  decreases 
and again becomes extremely small. Correspond- 
ingly, E ( t )  becomes very large in some finite time 
interval and the material is said to be undergo- 
ing yield. This describes the experimental results of 
Carapellucci and Yee (8). Finally, consider general 
stress histories for which a(0) = 0 and +( t )  2 0, t 2 0. 
A similar discussion again leads to the conclu- 
sion that E (  t )  becomes very large in some finite time 
interval. 

Although yield is normally defined for specific strain 
and stress histories, the above discussion makes it 
clear that yield can also occur for many other stress 
or strain histories. This will be illustrated using the 
example presented in Circumferential Shear of a 
Cylinder and Numerical Example sections. 

CIRCUMFERENTIAL SHEAR OF A 

CYLINDER 

Consider a hollow circular cylinder made of a solid 
polymer. I ts inner and outer radii are Ri and R,, 
respectively, and its length is L. The inner surface is 
bonded to a rigid cylindrical support and the outer 
surface is bonded to a rigid shell. A time dependent 
moment is applied to the outer shell which causes it 
to undergo a time dependent rotation. The resulting 
relative rotation between the inner and outer sur- 
faces of the cylinder induces a non-homogeneous 
shear stress and shear strain distribution at each 
instant. These are to be determined when the mate- 
rial has the constitutive equation discussed in the 
sections on Constitutive Equation and Yield, as is 
the relation between the rotation of the cylinder and 
the applied moment. 

It is assumed that the cylinder is sufficiently long 
that end effects and axial variation of quantities can 
be neglected. The deformation is assumed to be axi- 

ally symmetric, quasi-static, and sufficiently small 
that the small strain approximation is valid. 

Let u,, %, u, denote displacement components 
with respect to a cylindrical coordinate system. The 
assumptions imply that 

u,= u,=O, u,= 4 r .  t ) .  (8) 

The only non-vanishing component of the infinitesi- 
mal strain tensor is ere. Let the corresponding gee 
metric shear strain be denoted by yre. Then yrs = 2 ere 
and it is related to U(r, t )  by 

y r s = r L ( ( " ) .  dr r 

or 

d 

dr 
yrS = r-( w( r ,  t ) ) .  

(9) 

where w( r, t )  = U( r, t ) / r  is the rotation of the cylindri- 
cal surface of radius r at time t. 

The cylinder material is assumed to be an isotropic 
nonlinear viscoelastic solid. The general form of the 
constitutive equation ( E q  I) for three dimensional 
stress and strain rates, restricted for geometric lin- 
earity, is presented in Refs. 1 and 5. Since at each 
material element of the cylinder the only non-zero 
strain is yrS,  it is found from the general constitutive 
eqquation that the only non-zero stress is are. These 
are related by Eq I which is restated in terms of the 
present variables, 

where [( s)  is given by Eq 2 in which E is replaced by 

Since the deformation is quasi-static, the stress 
must satisfy equilibrium conditions at each time t. It 
can be shown by using either the differential equa- 
tions of equilibrium or the equation for the balance of 
moments for a portion of the cylinder between a 
typical radius r and the outer surface, that 

Yrs. 

Here M ( t )  is the moment per unit length at time 
which is applied to the outer shell. 

Let Eqs 11  and 12 be combined to give 

where, by Eq 2, 
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These represent equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyd( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  t). Once this has 
been determined, d r ,  t )  can easily be obtained from 
Eq 10 using the boundary condition at the fixed 
support that w ( R i ,  t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. The rotation of the outer 
cylinder is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw( R,, t). 

Two different loading conditions will be considered: 
Moment Control-in which the moment history zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM( t )  
is specified, and Rotation Control-in which the rota- 
tion history w(R,, t )  is specified. For each of these 
problems, it will be possible to determine the strain 
and rotation at each time, and to construct the 
stress-strain relation at each particle and the M-o 
relation for the cylinder. 

For the purposes of later discussion, it will be use- 
ful to determine the solution when the material 
is isotropic and linearly viscoelastic. This is charac- 
terized by the condition that 4 = 1 in Eq 14, so that 
[( t )  = t, i.e. independent of strain. Equation 11 re- 
duces to the constitutive equation for linear 
viscoelasticity , 

This equation can be inverted to give the strain his- 
tory in terms of the stress history 

~ d ( t )  = u r o ( O > J ( t )  + / ‘ J ( t -S )&ro (s )& .  (16) 
0 

where J( t )  denotes the creep function of the material. 
Using the system consisting of Eqs 10, 12, 15, and 
16, the rotation and moment control problems can be 
solved in a quite straightforward manner. The details 
of their solution will be omitted, and only the final 
results will be presented here. Attention will be 
restricted to control histories which increase at a 
constant rate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Moment Control 

Consider the moment history M( t )  = M, t, where M, 
is a constant. It follows from Eq 12 that the stress is 
given by 

This shows that each material element experiences a 
constant stress rate history, but that the rate varies 
with radius. The corresponding strain history is found 
to be given by 

A shear stress-shear strain relation can be con- 
structed for each particle by eliminating time be- 
tween Eqs 1 7 and 18. This can be written in the form 

where 

M, 
2ar2  ’ 

u, = - 

The rotation history O( R,, t )  is 

which implies the moment-rotation relation 

Rotation Control 

h, is a constant. The strain yd is found to be 
Consider the rotation history w(R,, t )  = hot, where 

Note that each material element undergoes a con- 
stant rate strain history, but the strain rate varies 
with radius. The stress is given by 

ud( r ,  t )  = ~ 2RqR2, - h o / f G ( x ) d x .  (23) RZ-R? r2  o 

and the moment history by 

R:R~, 
M ( t ) = -  ~ 2 ,  - R: 4rh,/dG( x) ak. (24) 

A shear stress-shear strain relation follows from Eqs 
22 and 23. and can be written as 

= /oy‘e’”” G( x )  ak, 

in which 

Finally, the moment-rotation relation is found, using 
Eq 24 to be given by 

NUMERICAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEXAMPLE 

I t  does not appear possible to obtain a general 
solution to Eqs 13 and 14 for nonlinear response, 
analogous to that presented in Eqs 17-26 for linear 
response. Instead, a numerical solution is presented. 
For notational convenience let y = ye. The functions 
at) and + ( y )  are chosen, for the purpose of this 
numerical example, to represent properties of a typi- 
cal material, rather than a specific material. The shear 
relaxation function associated with linear response is 
taken to have the form 

G( t) = Go[( 1 - g ) e -  t / r o  + g ]  , (27) 
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in which Go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(O), g = G(m)/G(O) and T~ is a charac- 
teristic relaxation time. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 )  denote a shear 
strain dependent stress relaxation function. Its form 
is assumed to be 

e(t .7)  = G,[(I - g ) e - ' / ' ( ~ ' + g ] ,  (28) 

in which ~ ( y )  is a shear strain dependent character- 
istic relaxation time. Define 

(29) 

where T ~ =  ~ ( 0 ) .  It follows from Eqs 27, 28, and 29 
that 

e ; ( w  = G(t/4(7))* (30) 

and hence that 4 ( y )  can be interpreted as the shear 
strain dependent shift function in Eqs 2 and 14. 

A form for 4 ( y )  is based on the assumption that 
T (  y )  is given by a relation of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B - 

T ( y )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACE?p(yl, (31) 

in which p ( y )  is a positive, monotonically increasing 
function of 171. Then ~ ( 7 )  decreases as y increases. 
This relation is chosen to be similar in form to the 
relaxation time-temperature relation in the statistical 
thermodynamical theory of Adam and Gibbs which is 
presented by Ward in Ref. 13. 

It follows from Eq 29 that 

In the present work 

P ( Y )  =Po+elrl. (33) 

When 8 = 0, + ( y )  = 1 and the constitutive equation 
reduces to that for linear viscoelasticity. In the com- 
putational results presented here, 8 = 0.05. The val- 
ues of the parameters in Eqs 32 and 33 are B = 0.474 
and po = 0.0217, and are the same as used for the 
PVAc in calculations by Knauss and Emri (5). Let the 
following non-dimensionalization be defined: 

M( t )  
G( f )  = G( t)/Go, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa( f )  = 2rrG0Rf ' 

The non-dimensional forms of Eqs 13 and 14 are 

(35)  

(36) 

Let a moment history be specified. For each fixed 
radius, Eqs 35 and 36 define a nonlinear Volterra 
integral equation for the shear strain history at the 
radius. The numerical solution is based on methods 
presented by Linz (14) and has been used in earlier 
work, e.g. Wineman (15). At radial node f i  in the 
interval [ 1, R,], the shear strain is obtained at a 
discrete set of times f, = 0, f,, . . . , f, as follows. At 
time f,, the integrals in Eqs 35 and 36 are approxi- 
mated by a finite summation which is expressed in 
terms of y(fi, f,), j= 1,. . . , n. If ? ( T i ,  f,) have been 
found for j =  1,. . . , n - 1, then Eqs 35 and 36 b e  
come an equation for y( Pi, f,). This equation is solved 
by iteration. When the solution has been found at 
time f,, the process is repeated at time n +  1. The 
radial distribution of rotations of cylindrical surfaces 
at time f, is obtained by numerical integration of Eq 
10. Further details are omitted here for the purpose 
of brevity. Calculations were carried out for the case 
in which g = 0.001 and R, = 2. 

Moment Control 

A constant moment rate history, M( t )  = Akot was 
selected so that results for the nonlinear case ( 8  = 

0.05) could be compared with results for the linear 
viscoelastic case ( 8  = 0) presented in Circumferential 
Shear of a Cylinder. Let this moment history be sub  
stituted into Eq 35 and let the non-dimensionaliza- 
tion from Eq 34 be introduced. The left hand side of 
Eq 35 becomes Hof/f2. where Mo = Mo~,/2~G0 Rf. 
Calculations were carried out for fi0 = 0.0001. 

According to Eq 17, this moment history causes 
each material element to be subjected to a constant 
shear stress rate history, with the stress rate a maxi- 
mum at the inner boundary and decreasing with 
radius. Each material element then has a monotoni- 
cally increasing strain history. Figure 1 shows shear 
strain histories for material elements at the inner 
boundary P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, near the boundary, at P = 1.2, and at 
the outer boundary f =  2. Histories are shown for 
both the nonlinear case ( 8  = 0.05) and the linear case 
( 8  = 0). Results are shown only for the initial time 
interval when y<O.O8, which is near the limit of 
validity of the small strain assumption. At each ra- 
dius, the strains for 8 = 0.05 increase faster than 
those for 8 = 0. For sufficiently small times, the strain 
history for 8 = 0.05 is very close to the strain history 
for 8 = 0. When the shear strain increases to about 
0.002, the strain history for 8 = 0.05 begins to in- 
crease noticeably faster than that for 8 = 0. At P = 1, 
this occurs at about f =  5. At f =  1.2, it occurs at 
f =  6 while at f =  2, it does not occur until f =  12. The 
difference between the strain histories increases at 
both time and strain increase. Since the shear stress 
rate is greatest at the inner boundary, this is the 
region where the difference grows fastest. This effect 
is indicated in Fig. 2. The strain-time plot for P = 1, 
8 = 0.05, becomes very steep at f = 20. while the oth- 
ers are still gradually increasing. 

The shear strain distributions at several times are 
shown in Fig. 2. In each case, the strain is a maxi- 
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- 

Fg. 2. Moment control: shear strain us. radius for times 
f =  6.67, 13.33. and 20.0. 

mum at the inner boundary and decreases monotoni- 
cally with increasing radius. This is a consequence of 
a similar radial distribution in shear stress rate. At 
f =  6.67, the maximum shear strain is still small and 
the strain distributions for 0 = 0.05 and 0 = 0 are very 
close. At ?= 13.33, the difference in the distributions 
has increased, and is greatest near the inner bound- 
ary. As time increases to f = 20, the difference in- 

creases much more rapidly near the inner boundary. 
A zone of large shear strain and very large strain 
gradient develops near the inner support. 

Figures 3 and 4 provide useful insight into the 
mechanism of development of the zone of large shear 
strain. Q w e  3 shows histories of s ( P ,  f) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus. f for 
various radii and Fig. 4 shows Z(P,  t )  us. f for various 
times. When 8 = 0, it follows from Eqs 32, 33, and 36 
that s( P, f) = f. In Fig. 3, 5 us. f for 0 = 0 corresponds 
to the continuation of the straight line near 5 = 0 

k1 .o  8=0.05 Fsi.8 8=0.05 
r=l.B LkO.05 F=1.2 8=0.05 

r=1.4 8=0.05 - r s . 0  e=o.os 
60.0 I I 

- 
...............__.. 

50.0 1 ~o=o.oool 

g=O.OOl 

0.0 5.0 10.0 15.0 20.0 
t 
- 

Ftg. 3. Moment control: reduced time us. time at several radii. 

50.0 
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g=O.OOl 

0.0 1.0 * 1.2 1.4 1.6 1.8 2.0 

- 
r 

Fig. 4. Moment control: reduced time us. radius for times 
f =  6.67, 13.33, and 20.0. 
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common to all histories. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 for 0 = 0 is 
a horizontal line. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigures 3 and 4 show that when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8=0.05, 5 grows faster than f ,  this growth being 
faster as f increases. It is fastest near P =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, and 
decreases with the radius. Since accounts for a 
strain dependent stress relaxation process, these re- 
sults imply that when 0 = 0.05, stress relaxation is 
faster than when 8 = 0, is fastest near P = 1, and 
decreases rapidly with radius. 

In other terms, as the shear strain increases, the 
shift function $ ( y )  decreases, 2 increases faster than 
real time ?, and stress relaxation occurs faster. When 
the shear strain is small, the effect is minor and there 
is not much difference between the linear and nonlin- 
ear cases. When the strain becomes sufficiently large, 
the decrease in the shift function and the increase in 
the rate of stress relaxation are significantly acceler- 
ated. The difference between the linear and nonlinear 
cases then becomes substantial. In effect, the condi- 
tions for yield under constant stress rate, as dis- 
cussed in the section on Yield, are being satisfied for 
particles in the neighborhood of the inner support. 

The rotation histories of cylindrical surfaces at f = 

1.2 and 7= 1.4 near the inner boundary and at 7=  2 
near the outer boundary are shown in Fig. 5. The 
radial distributions of w are shown in Fig. 6. The 
growth is quite gradual when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO = O .  However, for 
0 = 0.05, there is a rapid increase in rotation after 
?= 15. As seen from Eq 10, this is due to the rapid 
increase in shear strain near f = 1. 

Recalling that the moment history is %( f) = Go?, 
the time axis in Fg. 5 can be re-scaled as a moment 
axis. This leads to a plot of the moment us. rotation of 
the outer radius shown in Fig. 7. 
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Fig. 5. Moment control: cylindrical surface rotation us. time 
at radii f = 1.2, 1.4, and 2.0. 
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Fig. 6. Moment control: cylindrical surface rotation us. radius 
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Fig. 7. Moment control: moment us. rotation of outer surface. 

Figure 8 shows shear stress us. shear strain for the 
material elements at 7=  1, P =  1.2, and P =  2. Plots 
are shown for both O = 0 and 8 = 0.05. The plot corre- 
sponding to P =  1, O = 0.05, has a large horizontal 
portion, characteristic of yield under constant stress 
rate conditions. The curves for P = 1.2, 0 = 0.05, is 
just beginning to indicate yield. However, the strains 
at f =  1.2 never increase to a level suggesting yield 
has occurred. The figure thus points out an impor- 
tant feature of using a model for nonlinear viscoelas 
ticity to account for yield. When the deformation 
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Fig. 8. Moment control: shear stress vs. shear strain at radii 
P = 1.0, 1.2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand2.0. 

varies spatially, the model allows for a continuous 
transition to yield-like behavior. I t  eliminates the ne- 
cessity of introducing a yield criterion, and the ass@ 
ciated difficulty of determining where yield occurs. 

Another comment should be made in conjunction 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 8. The material elements of the cylinder are 
identical. Yet, for both 0 = 0 and 0 = 0.05, each mate- 
rial element has a different stress-strain plot. This is 
a consequence of the different strain history at each 
element. I t  is common practice in the literature (1, 5, 
7-9) to present a stress-strain plot for a material. 
This figure shows that a material element does not 
have a unique stress-strain plot. In applications, 
where conditions vary spatially, the concept of a 
stress-strain plot may be of little use. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rotation Control 

The outer cylinder was assumed to undergo a con- 
stant rotation rate history w( R,, t )  = hot or in dimen- 
sionless form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW( R,, t )  = t o t ,  where Go = h ~ , .  Results 
for the nonlinear case ( 0  = 0.05) can then be com- 
pared with results for the linear case (0  = O),  which 
has the analytical solution presented in the section 
on Circumferential Shear of a Cylinder. Calculations 
were carried out for $, = 0.00 1. 

Rotation control requires a modification of the nu- 
merical solution outlined above. Suppose that a( 5)  
and r( P. 6 )  have been found, j = 1.2,. . . , n - 1. At 
time f,, M( t,) is estimated and r( Ti, f,) is solved for at 
each radial node using Eqs 35 and 36. Equation 10 
is integrated numerically to obtain a value for 
G(Eo, En). M(f,> is then adjusted until lG(R,, f,) - 

1 L . l -  

is within a specified tolerance. 

Before presenting the numerical results, it will be 
useful to discuss the analytical solution for the linear 
case ( e  = 01, in the previous section. It is seen from 
Eq 22 that each material element undergoes a con- 
stant strain rate history, with the strain rate decreas 
ing with increasing radius. At a fixed time, the shear 
strain decreases as l/f2. It is easily found from Eqs 
23 and 24 that at a fured radius, the stress rate and 
moment rate are proportional to at), and thus de- 
crease monotonically with time. Near t = 0, these 
rates are proportional to G O ) ,  and subsequently de- 
crease to being proportional to a m ) .  

The moment history required to impose the con- 
stant rotation rate history on the outer cylinder is 
shown in Fig. 9 for both 0 = 0 and 0 = 0.05. The us. 
f graph for e = O  is consistent with the analytical 
results discussed above. The 3 us. f graph is mono- 
tonic, with a slope decreasing from a value propor- 
tional to G(O) = 1 to a value proportional to a m )  = 

0.001 and this appears to be nearly horizontal. 
The solution for f3= 0.05 is completely different. 

The us. f graph reaches a local maximum at about 
f = 2.5 and then begins to decrease. The reason for 
this can be seen in the shear strain histories in Fig. 
1 0  and shear strain distributions in Fig. 1 1 .  Since 
the shear stress is greatest near the inner boundary, 
the shear strain is also greatest there. Hence, stress 
relaxes faster there. This in effect softens the re- 
sponse and allows the strain to increase faster. Ac- 
cording to Eq 10, this causes most of the contribu- 
tion to the rotation of the outer cylinder to come from 
the shear distortion of the material near the inner 
support. In order to ensure that W( R,, ?) grows at the 
prescribed rate, the moment history must begin to 
decrease at some time. By Eq 12, the shear stress at 
each radius will be decreased, thereby slowing the 
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Fg. 9. Rotation control: moment us. time. 
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Fig. 1 1 .  Rotation control: shear strain us. radius for times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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growth of the strain histories and the rotation of the 
outer boundary. 

These figures also show another important result. 
In the moment control case, a constant moment his- 
tory means that each material element is subjected to 
a constant stress rate history. In the case of constant 
rotation rate for 0 = 0, each material element under- 
goes a constant strain rate history. In contrast, a 

constant rotation rate for 0 = 0.05 does not lead to 
constant shear strain rate histories at each material 
element. Figure 10 shows that the shear strain near 
the inner support grows faster than at a constant 
strain rate, while the shear strain in the outer por- 
tion grows slower than at a constant rate. In fact, no 
material element appears to undergo a shear strain 
history which corresponds to any of the standard 
histories discussed in the section entitled Yield. 

The radial distribution of the strain, shown in Fig. 
11, plays a significant role in the interpretation of 
this behavior. For small time f, the strains are small 
enough that they do not influence the relaxation 
process. According to Eq 22, the strains decay as 
l /F2 ,  so that the strains near the inner boundary are 
much greater than near the outer boundary. When 
the strains grow large enough near the inner bound- 
ary to accelerate stress relaxation, the strains near 
the outer boundary are still so small as to have 
negligible effect on stress relaxation. This is seen in 
Figs. 12 and 13, which show histories and radial 
distributions of g, respectively. Finally, in regard to 
Figs. 10, when the moment is reduced, the stresses 
at all particles are reduced. Near the inner boundary, 
stress relaxation is fast enough that the strains con- 
tinue to increase. Near  the outer boundary, stress 
relaxation is only slightly influenced by strains. When 
the stress decreases, so does the growth of strains. 

Plots of shear stress us. shear strains are shown in 
Figs. 14 to 16 for material elements at 7 = 1, 1.2, and 
2 respectively. Note that each graph has a local maxi- 
mum, which normally is associated with yield. How- 
ever, the reason for this local maximum depends on 
the location of the material elements. For elements 
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Fig. 12. Rotation control: reduced time us. time at several 
radii. 
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Fg. 14. Rotation control: shear stress us. shear strain a t  
radius f = 1 .O. 

near the inner boundary, the shear strain history 
grows sufficiently rapidly that the conditions for yield 
discussed previously are met. On the other hand, the 
shear strain in the elements in the outer layer be 
comes almost constant. The stress decreases there 
due to stress relaxation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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