
CHAPTER 101 

INTERACTION OF NONLINEAR WAVES WITH 
COASTAL STRUCTURES 
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ABSTRACT 

Interaction of transient nonlinear waves (modeled by solitary waves with 
moderate wave height) with submerged breakwater has been studied both 
numerically and experimentally. The emphasis is on the comparison be- 
tween the numerical solution and the laboratory experiments on the wave 
transformation and the water particle velocity of the induced flow field. 

For the numerical analysis, the Boundary Element Method (BEM) has 
been used for analyzing the wave field induced by the coastal structure. For 
the laboratory experiments the wave profiles are obtained by resistance type 
wave gauge; the two dimensional water particle velocities are obtained by a 
four-beam Laser Doppler Velocimeter (LDV) equipped with frequency shift- 
ing and with a fiber optics system. The LDV measurements are directed to 
obtain the detail of the wave kinematic properties important for ascertain- 
ing the dynamics of the modified wave field in the vicinity of the submerged 
breakwater. This serves as a critical check for the validity of the numerical 
computations. 

Results of the numerical model have been found to compare well with 
the experimental data for the conditions studied in both the wave profiles 
and the water particle velocities beneath the waves as they interact with the 
breakwater. 
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1    Numerical Analysis 

For the numerical analysis, the problem is formulated as a two-dimensional 
boundary value problems. The fluid in the solution domain is assumed to 
be incompressible and the flow irrotational, the viscous force is neglected. 
Potential theory is used for such flow condition and the Laplace's equation 
is obtained as the governing equation: 

V2<Kx,i) = 0 x 6 n(<). (1) 

The solution to the Laplace's equation is expressed as a boundary integral 
using the free space Green's function G(x,,Xj) = — ^log |x,-—Xj| and Green's 
theorem: 

a(x;)</>(x;) =   / 
*> „,       *      ,/ ^5G(x, x,-) 

dn dn 
dT(x) (2) 

where x,- and x are position vectors for position on the boundary (x; can also 
be any where within the domain), T(x) is the boundary of the fluid domain 
ft, n the unit outward normal vector and a(x;) a geometric coefficient. 

The kinematic and the fully nonlinear dynamic free surface conditions 
are considered, i.e., on the free surface Fs, </> satisfies the following kinematic 
and dynamic boundary conditions: 

^ = (f+u.V)r = u = V^ (3) 

g^ + I|V,p_^ (4) 
with r the position vector of a fluid particle at the free surface, g the acceler- 
ation due to gravity, y the vertical coordinate, pa the pressure at the surface, 
p0 a reference pressure and p the fluid density. 

The method used to update both the new position of the free surface 
and the potential function <j> on the free surface at the next time step was 
first suggested by Dold and Peregrine (1986). Similar procedure was also 
used by Grilli, Skourup & Svendsen (1989). Based on the Taylor expansion 
in a Lagrangian formulation (following a fluid particle on the surface), the 
explicit expressions for the position vector r(t+At) and the potential function 
4>{t + At) can be expressed as an infinite series as follows: 

r(< + At) = r(t) + ± ^^ + 0[(Atr+1] (5) 

#r(* + At),t + At) = <Kv(t),t) + t (Afcf
J*^),f) + 0[(At)"+1].  (6) 
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The terms containing the material derivatives of r and <j> in the above two 
equations are determined by first expressing them in terms of the potential 
function <j> and its time and spatial derivatives (g^, g^, • • •) and then solve 
the time and spatial derivatives by solving successions of Laplace's problems 
for the velocity potential <f> and its time derivatives. Each solution provides 
the nonlinear free surface boundary conditions for the next one. This is 
applicable because the Laplace's equation is indeed valid for all the time 
derivatives of <j>. The repeated solution of the Laplace's equation is actually 
quite simple after the coefficient matrix of the boundary element method has 
been formed and decomposed into an upper and a lower diagonal matrix. 
This is so because the coefficient matrix is only a function of the geometry 
and remain unchanged throughout the repeated solution process. 

The Boundary Integral Equation is solved by using the so called Bound- 
ary Element Method which discretize the boundary into a finite number of 
elements. The boundary integration is performed on each element for a given 
Xj, l        1, Z, . . . , iv , 

«(x,.)«(xO = E {IfeG - u-W + jr[-G - u-\dT (?) 

This produces a system of N linear algebraic equations for N unknowns. The 
integral equation is solved twice in the present study for both <j> and dfyjdt. 
This gives a second order accuracy in the time marching scheme. 

Interior solutions at the interior point Xj can be obtained using 

2-K^XJ) = j[<j>{xi) — {\nr) - }nr — <j>(Xi)]ds (8) 

when all the potential values and normal potential derivatives on the bound- 
ary (for all Xi) are known. Normally the value of the potential function inside 
the domain is not as important as its derivatives with respect to x and y be- 
cause these values represent the velocity components at the interior points. 
The calculation of these velocity components can be performed by making 
direct derivatives of Equation 8 with respect to x and y, respectively, 

2ir—t(Xj] 

'|-(-f^)--|-(ln')/-#*.•)]<** (9) ox  r on       Ox On - Jr[<K*i. 

Only (j> at the interior point Xj is differentiated since that is where the deriva- 
tives are wanted. From Equation 9 & 10 it is seen that the values of 0, |^ 
inside the integral are those on the boundary and they are not involved in 
the differentiation of the function. 
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2     Experimental equipment and experimen- 
tal procedures 

Experiments involving propagation of solitary waves over various submerged 
breakwater configurations are conducted in a wave tank 15.2 meter long, 
39.4 centimeter wide, and 61 centimeter deep. The side-walls of the wave 
tank are made of glass and offer excellent transparency for laser beams. A 
programmable piston type wave generator is installed at one end of the tank 
and a sloping beach is installed at the other end of the wave tank. 

Two different breakwater configurations are used in the experiment. The 
first breakwater is 45 inch wide, 4.5 inch high and is made of plywood. The 
second breakwater is of one third in width with the same height and is made 
of lucite. The breakwater is sunk and fixed to the bottom of the wave tank 
by adding lead weight. 

The wave generating device is a piston type wave generator. It is powered 
by a hydraulic piston whose motion is controlled by a personal computer. 
The computer determines a voltage time history which defines the trajectory 
of the wave plate through a hydraulic-servo system. The wave generation 
program used by the computer allows motions of the wave machine to be 
prescribed for generating small amplitude periodic waves, finite amplitude 
periodic waves, and solitary waves. 

Tap water is used to fill the wave tank to the desired depth. The depth is 
measured using a point gage which is mounted to a movable carriage traveling 
on a rail system installed at the top of both side walls of the wave tank. 
Resistance type wave gages are used to measure water surface elevations as a 
function of time. Three wave gages are installed at desired locations to make 
simultaneous wave profile measurements. The wave gages are connected to a 
Sanborn four channel oscillograph recorder which records the measurements 
on an oscillograph paper. 

The water particle velocities are measured using a portable four-beam, 
two-component, fiber optic Laser Doppler Velocimeter (LDV) manufactured 
by TSI, Inc.. The LDV system used in the experiment consists of a 100 
mW argon-ion laser, transmitting and receiving optics, a fiberoptic probe, 
frequency shifting and signal processing instruments. A multicolor beam 
separator separates the incident laser beam into four beams, two blue beams 
and two green beams. The four laser beams are focused into one point within 
the flow field to form a two-component system. Figure 1 provides a flow chart 
of the LDV system used for the present experiment. Two photomultipliers 
convert optical signals into electric signals. Two frequency shifters help attain 
accurate flow measurements in applications where high turbulence or flow 
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reversals are anticipated. A fiberoptic probe which features focusing and 
receiving optics in one compact unit offer considerable ease for setting up 
the LDV system. Two IFA550 signal analysis systems are used for signal 
analysis. This is done by using a personal computer which manages the 
LDV measurements, stores velocity measurements, and displays the velocity- 
time history on the monitor. The whole LDV system is installed in a room 
close to the wave tank. When velocity measurements are needed, only the 
portable fiberoptic probe is moved to the measuring station and is mounted 
to a traversing mechanism which offers three dimensional positioning of the 
measuring point. Seeding is one of the key elements affecting the performance 
of the LDV measurements. Seeding particles must be small enough to move 
with the flow yet large enough to scatter sufficient light for ideal signal quality. 
Titanium Dioxide powder (TiOa) is used in the experiment and is proved to 
be a good seeding agent for water in the wave tank used for the present 
experiments. 

3    Presentation and Discussion of Results 

Figure 2 shows the wave profiles obtained from the numerical model at dif- 
ferent time steps as the incident solitary wave propagates over a submerged 
breakwater which is at one-half of the water depth. The wave height/water 
depth ratio is 0.2, still water depth is 9 inches and the breakwater width is 
ten times the breakwater height. It should be noted that the vertical scale in 
Figure 2 is greatly distorted for easy visualization of the wave profiles. From 
Figure 2 it is seen that the frontal slope of the solitary wave is steepened 
when the propagating wave approaches the shallower water depth region. It 
is evident that the submerged breakwater acts to breakup the solitary wave 
with significant oscillatory tails. 

Figure 3 shows the wave profiles computed at three locations: five water 
depth upstream, five water depth downstream, and on the top of the break- 
water. The wave profiles computed from the present numerical model are 
compared with the wave profiles recorded from the present experiments. It 
should be noted that the wave profiles shown in Figure 2 are for the La- 
grangian system and the time history of the computed wave profile shown 
in Figure 3 has been converted to the Eulerian reference system so that the 
computed wave profiles can be compared with the experimental wave profile 
directly. A comparison of the numerical results and the experimental wave 
profiles at the three locations shown in Figure 3 clearly demonstrate that the 
numerical model predicts the wave profile well. It is interesting to note that 
the peak amplitude of the transmitted solitary wave at the location five water 
depth downstream of the breakwater is actually larger than the amplitude of 
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Figure 2: Transformation of solitary wave over submerged 
breakwater 
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Figure 3:   Comparison of wave profiles at three different 
locations (— present theory, • • • experiment) 
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the incident solitary wave before interacting with the breakwater. The shape 
of wave profile is different at the three locations showing the different degree 
of interaction with respect to transmission, reflection, and the varying water 
depths effect. 

Figure 4 shows the numerical model and the experimental data on the 
horizontal and vertical water particle velocity at the same three horizontal 
locations and at 0.1 water depth below the still water level. In each of the 
three figures shown the horizontal velocities are significantly larger than the 
vertical velocities. Comparing the numerical and experimental results one 
can see that the agreement is quite good even though there is some scattering 
when the velocity is very small. The good agreement between the theory and 
experiment for the two components of the water particle velocities provides 
another critical check of the reliability of the numerical model. 

Experiments for different water depths resulting in several cases for dif- 
ferent relative submergence of the breakwaters have been conducted. LDV 
measurements for horizontal and vertical components of the water particle 
velocities have also been conducted at many different locations. However, 
space limitation does not permit presentation of these additional results. 

Experiments have also been conducted for the case of breakwater crest 
height exactly at the still water level. Thus the incident solitary wave will 
travel across the top of the breakwater as if wave is traveling at zero water 
depth. A sketch of this series of experiments is shown in Figure 5. Wave 
profiles are measured at three stations: one at 10 water depth upstream of 
the breakwater (45" upstream), another at 3.33 water depth downstream of 
the breakwater (15" downstream) and the third station at 10 water depth 
downstream of the center of the breakwater (45" downstream). 

The incident solitary wave height is H/h = 0.2. The measured wave 
profiles are presented in Figures 6-8. The ordinates of these three figures 
represent the wave height (H) normalized with respect to the water depth 
(h). The abscissa represents the real time in seconds. 

From Figure 6 it is clear that the majority of the first wave represents 
the incident solitary wave and the second wave represents the reflected wave 
from the upstream edge of the breakwater. The shape of the reflected wave 
is quite similar to the solitary wave also. The wave profile shown in Fig- 
ure 7 represents the transmitted wave profile at 15" downstream after the 
solitary wave has traveled above the breakwater crest region (at zero water 
depth). It shows that the primary wave is followed by a series of oscillatory 
tails. These oscillatory wave trains have been reformed into more regular 
oscillatory waves as they traveled further downstream as evidenced in the 
wave profile presented in Figure 8. It is interesting to observe the physical 
nature of the transmitted wave as it travels above the breakwater crest at 
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Figure 5 
Sketch of an experimental set up showing the 

breakwater height, still water depth and locations 
of three wave profile measurement stations (not to scale) 
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Figure 6:   Wave record at 45" upstream of the center of 
breakwater (station 1) 
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0.25 

Figure 7: Wave record at 15" downstream of the center of 
breakwater (station 2) 

0.25 

Figure 8: Wave record at 45" downstream of the center of 
breakwater (station 3) 
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zero depth. The jet like water mass is translated into the shoreward region 
of the breakwater. This water mass which is above the still water level then 
plunge into the shoreward region by the continuous effect of the gravity forces 
causing the water mass in the shoreward region to exhibit significant undu- 
lations. Velocity measurements in this region have also been performed but 
due to space limitation they are not presented herein. Comparing the wave 
profiles shown in Figure 6, 7, and 8, it is clear that the breakwater serves 
to break up the incident wave resulting in significant higher frequency wave 
components in the shoreward region. This physical phenomenon is significant 
for the assessment of basin response of the shoreward coastal region. 

4     Conclusions 

The interaction of solitary wave with submerged breakwater has been studied 
both experimentally and numerically using a boundary element method. For 
incident solitary wave with moderate wave height and when the breakwater 
is deeply submerged the numerical results have been compared with the 
experimental data. It is shown that the agreement between the numerical 
results and the experimental data has been excellent. The comparison was 
performed in terms of the wave profiles at various stations and the horizontal 
and vertical components of the water particle velocities in the vicinity of the 
breakwater. The LDV measurements of particle velocities are shown to be 
effective in resolving the velocity time history. 

A series of experimental data is also presented for solitary wave interact- 
ing with the breakwater which has the same height as the still water depth. 
Only the experimental data is available for this aspect of the study. Since 
the incident wave actually travels in a certain region of zero water depth be- 
fore propagating toward the shoreward region, the present numerical method 
would not be able to simulate this flow condition. The experimental data 
show that a series of higher frequency oscillatory tails is generated in the 
shoreward region. This transmitted wave is reformed to become a series of 
well defined oscillatory wave as they propagate further away from the break- 
water. 
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