CHAPTER 101

INTERACTION OF NONLINEAR WAVES WITH
COASTAL STRUCTURES

J.J. Lee ! C. Chang ? F. Zhuang *

ABSTRACT

Interaction of transient nonlinear waves (modeled by solitary waves with
moderate wave height) with submerged breakwater has been studied both
numerically and experimentally. The emphasis is on the comparison be-
tween the numerical solution and the laboratory experiments on the wave
transformation and the water particle velocity of the induced flow field.

For the numerical analysis, the Boundary Element Method (BEM) has
been used for analyzing the wave field induced by the coastal structure. For
the laboratory experiments the wave profiles are obtained by resistance type
wave gauge; the two dimensional water particle velocities are obtained by a
four-beam Laser Doppler Velocimeter (LDV) equipped with frequency shift-
ing and with a fiber optics system. The LDV measurements are directed to
obtain the detail of the wave kinematic properties important for ascertain-
ing the dynamics of the modified wave field in the vicinity of the submerged
breakwater. This serves as a critical check for the validity of the numerical
computations.

Results of the numerical model have been found to compare well with
the experimental data for the conditions studied in both the wave profiles
and the water particle velocities beneath the waves as they interact with the
breakwater.
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1 Numerical Analysis

For the numerical analysis, the problem is formulated as a two-dimensional
boundary value problems. The fluid in the solution domain is assumed to
be incompressible and the flow irrotational, the viscous force is neglected.
Potential theory is used for such flow condition and the Laplace’s equation
is obtained as the governing equation:

Vi(x,t) =0 x € Q). (N
The solution to the Laplace’s equation is expressed as a boundary integral
using the free space Green’s function G(xi,X;) = —5- log |x;—x;| and Green’s
theorem:

L PRI
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where x; and X are position vectors for position on the boundary (x; can also
be any where within the domain), I'(x) is the boundary of the fluid domain
2, n the unit outward normal vector and o(x;) a geometric coefficient.

The kinematic and the fully nonlinear dynamic free surface conditions
are considered, 1.e., on the free surface I';, ¢ satisfies the following kinematic
and dynamic boundary conditions:

Dr 0
b—t:(ajLu-V)r:u:VdJ (3)
Do = =gy + 3V - Lo (4)

with r the position vector of a fluid partlcle at the free surface, g the acceler-
ation due to gravity, y the vertical coordinate, p, the pressure at the surface,
P, a reference pressure and p the fluid density.

The method used to update both the new position of the free surface
and the potential function ¢ on the free surface at the next time step was
first suggested by Dold and Peregrine (1986). Similar procedure was also
used by Grilli, Skourup & Svendsen (1989). Based on the Taylor expansion
in a Lagrangian formulation (following a fluid particle on the surface), the
explicit expressions for the position vector r(¢+At) and the potential function
#(t + At) can be expressed as an infinite series as follows:

vt + A8 = £(t) + kE (At,) D D’;(f) +O[(A6] (5)

d(r(t + At), ¢ + At) = d(x(t),t) + Z (At Dk¢l()rt(:)’t) + O[(A)™]. (6)
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The terms containing the material derivatives of r and ¢ in the above two
equations are determined by first expressing them in terms of the potential
function ¢ and its time and spatial derivatives (5%, 55% -} and then solve
the time and spatial derivatives by solving successions of Laplace’s problems
for the velocity potential ¢ and its time derivatives. Each solution provides
the nonlinear free surface boundary conditions for the next one. This is
applicable because the Laplace’s equation is indeed valid for all the time
derivatives of ¢. The repeated solution of the Laplace’s equation is actunally
quite simple after the coefficient matrix of the boundary element method has
been formed and decomposed into an upper and a lower diagonal matrix.
This is so because the coefficient matrix is only a function of the geometry
and remain unchanged throughout the repeated solution process.

The Boundary Integral Equation is solved by using the so called Bound-
ary Element Method which discretize the boundary into a finite number of
elements. The boundary integration is performed on each element for a given
x,t=1,2,..., N,

alxijulx) = 3. { /r k[guc - uaa—G]dr /r k[g“G - u%]dl‘} (7)

k=1

This produces a system of NV linear algebraic equations for N unknowns. The
integral equation is solved twice in the present study for both ¢ and d4/t.
This gives a second order accuracy in the time marching scheme.

Interior solutions at the interior point z; can be obtained using

2rg(as) = [19(e) mn(Inm) — e 2 g(z)lds ®)

when all the potential values and normal potential derivatives on the bound-
ary (for all z;) are known. Normally the value of the potential function inside
the domain is not as important as its derivatives with respect to = and y be-
cause these values represent the velocity components at the interior points.
The calculation of these velocity components can be performed by making
direct derivatives of Equation 8 with respect to z and y, respectively,

2#3%¢(:cj) = /[¢( ')b%(}l—%) B B_x(ln T) Plai)lds ©)
r. 0
2%3%‘15(:6]‘) = /W' ')b%(%%) B 8y(1llr)82n¢(xi)]ds' 1o

Only ¢ at the interior point z; is differentiated since that is where the deriva-
tives are wanted. From Equation 9 & 10 it is seen that the values of ¢, —g—f
inside the integral are those on the boundary and they are not involved in
the differentiation of the function.
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2 Experimental equipment and experimen-
tal procedures

Experiments involving propagation of solitary waves over various submerged
breakwater configurations are conducted in a wave tank 15.2 meter long,
39.4 centimeter wide, and 61 centimeter deep. The side-walls of the wave
tank are made of glass and offer excellent transparency for laser beams. A
programmable piston type wave generator is installed at one end of the tank
and a sloping beach is installed at the other end of the wave tank.

Two different breakwater configurations are used in the experiment. The
first breakwater is 45 inch wide, 4.5 inch high and is made of plywood. The
second breakwater is of one third in width with the same height and is made
of lucite. The breakwater is sunk and fixed to the bottom of the wave tank
by adding lead weight.

The wave generating device is a piston type wave generator. It is powered
by a hydraulic piston whose motion is controlled by a personal computer.
The computer determines a voltage time history which defines the trajectory
of the wave plate through a hydraulic-servo system. The wave generation
program nsed by the compnter allows motions of the wave machine to be
prescribed for generating small amplitude periodic waves, finite amplitude
periodic waves, and solitary waves.

Tap water is used to fill the wave tank to the desired depth. The depth is
measured using a point gage which is mounted to a movable carriage traveling
on a rail system installed at the top of both side walls of the wave tank.
Resistance type wave gages are used to measure water surface elevations as a
function of time. Three wave gages are installed at desired locations to make
simultaneous wave profile measurements. The wave gages are connected to a
Sanborn four channel oscillograph recorder which records the measurements
on an oscillograph paper.

The water particle velocities are measured using a portable four-beam,
two-component, fiber optic Laser Doppler Velocimeter (LDV) manufactured
by TSI, Inc.. The LDV system used in the experiment consists of a 100
mW argon-ion laser, transmitting and receiving optics, a fiberoptic probe,
frequency shifting and signal processing instruments. A multicolor beam
separator separates the incident laser beam into four beams, two blue beams
and two green beams. The four laser beams are focused into one point within
the flow field to form a two-component system. Figure 1 provides a flow chart
of the LDV system used for the present experiment. Two photomultipliers
convert optical signals into electric signals. Two frequency shifters help attain
accurate flow measurements in applications where high turbulence or flow
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reversals are anticipated. A fiberoptic probe which features focusing and
receiving optics in one compact unit offer considerable ease for setting up
the LDV system. Two IFA550 signal analysis systems are used for signal
analysis. This is done by using a personal computer which manages the
LDV measurements, stores velocity measurements, and displays the velocity-
time history on the monitor. The whole LDV system is installed in a room
close to the wave tank. When velocity measurements are needed, only the
portable fiberoptic probe is moved to the measuring station and is mounted
to a traversing mechanism which offers three dimensional positioning of the
measuring point. Seeding is one of the key elements affecting the performance
of the LDV measurements. Seeding particles must be small enough to move
with the flow yet large enough to scatter sufficient light for ideal signal quality.
Titanium Dioxide powder (Ti0O;) is used in the experiment and is proved to
be a good seeding agent for water in the wave tank used for the present
experiments.

3 Presentation and Discussion of Results

Figure 2 shows the wave profiles obtained from the numerical model at dif-
ferent time steps as the incident solitary wave propagates over a submerged
breakwater which is at one-half of the water depth. The wave height/water
depth ratio is 0.2, still water depth is 9 inches and the breakwater width is
ten times the breakwater height. It should be noted that the vertical scale in
Figure 2 is greatly distorted for easy visualization of the wave profiles. From
Figure 2 it is seen that the frontal slope of the solitary wave is steepened
when the propagating wave approaches the shallower water depth region. It
is evident that the submerged breakwater acts to breakup the solitary wave
with significant oscillatory tails.

Figure 3 shows the wave profiles computed at three locations: five water
depth upstream, five water depth downstream, and on the top of the break-
water. The wave profiles computed from the present numerical model are
compared with the wave profiles recorded from the present experiments. It
should be noted that the wave profiles shown in Figure 2 are for the La-
grangian system and the time history of the computed wave profile shown
in Figure 3 has been converted to the Eulerian reference system so that the
computed wave profiles can be compared with the experimental wave profile
directly. A comparison of the numerical results and the experimental wave
_ profiles at the three locations shown in Figure 3 clearly demonstrate that the
numerical model predicts the wave profile well. It is interesting to note that
the peak amplitude of the transmitted solitary wave at the location five water
depth downstream of the breakwater is actually larger than the amplitude of
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Figure 2: Transformation of solitary wave over submerged
breakwater



1334 ! COASTAL ENGINEERING 1992

0.3
Five Depth Upstream of Breakwater

0.25 -~ [ ———

Surface elevation (n/h)

Surface elevation (n/h)

0.3 — -
Five Depth Downstream of Breakwater
—~~
2 0.25 - [ e i e
~
=
~ 02—
=]
1)
':‘é 0.15}+
>
2 0.1}
[}
3 0.05
8
1
= 0 -
wn
_o.os 1. i — i L 1 ) - A J i 1 1

0 2 4 8 8 10 12 14 16 10 20 22 24 26 20 %

Time (¢4/g/h)

Figure 3: Comparison of wave profiles at three different
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the incident solitary wave before interacting with the breakwater. The shape
of wave profile is different at the three locations showing the different degree
of interaction with respect to transmission, reflection, and the varying water
depths effect.

Figure 4 shows the numerical model and the experimental data on the
horizontal and vertical water particle velocity at the same three horizontal
locations and at 0.1 water depth below the still water level. In each of the
three figures shown the horizontal velocities are significantly larger than the
vertical velocities. Comparing the numerical and experimental results one
can see that the agreement is quite good even though there is some scattering
when the velocity is very small. The good agreement between the theory and
experiment for the two components of the water particle velocities provides
another critical check of the reliability of the numerical model.

Experiments for different water depths resulting in several cases for dif-
ferent relative submergence of the breakwaters have been conducted. LDV
measurements for horizontal and vertical components of the water particle
velocities have also been conducted at many different locations. However,
space limitation does not permnit presentation of these additional results.

Experiments have also been conducted for the case of breakwater crest
height exactly at the still water level. Thus the incident solitary wave will
travel across the top of the breakwater as if wave is traveling at zero water
depth. A sketch of this series of experiments is shown in Figure 5. Wave
profiles are measured at three stations: one at 10 water depth upstream of
the breakwater (45” upstream), another at 3.33 water depth dowustream of
the breakwater (15” downstream) and the third station at 10 water depth
downstream of the center of the breakwater (45” downstream).

The incident solitary wave height is H/h = 0.2. The measured wave
profiles are presented in Figures 6-8. The ordinates of these three figures
represent the wave height (H) normalized with respect to the water depth
(h). The abscissa represents the real time in seconds.

From Figure 6 it is clear that the majority of the first wave represents
the incident solitary wave and the second wave represents the reflected wave
from the upstream edge of the breakwater. The shape of the reflected wave
18 quite similar to the solitary wave also. The wave profile shown in Fig-
ure 7 represents the transmitted wave profile at 15” downstream after the
solitary wave has traveled above the breakwater crest region (at zero water
depth). It shows that the primary wave is followed by a series of oscillatory
tails. These oscillatory wave trains have been reformed into more regular
oscillatory waves as they traveled further downstream as evidenced in the
wave profile presented in Figure 8. It is interesting to observe the physical
nature of the transmitted wave as it travels above the breakwater crest at
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zero depth. The jet like water mass is translated into the shoreward region
of the breakwater. This water mass which is above the still water level then
plunge into the shoreward region by the continuous effect of the gravity forces
causing the water mass in the shoreward region to exhibit significant undu-
lations. Velocity measurements in this region have also been performed but
due to space limitation they are not presented herein. Comparing the wave
profiles shown in Figure 6, 7, and 8, it is clear that the breakwater serves
to break up the incident wave resulting in significant higher frequency wave
components in the shoreward region. This physical phenomenon is significant
for the assessment of basin response of the shoreward coastal region.

4 Conclusions

The interaction of solitary wave with submerged breakwater has been studied
both experimentally and numerically using a boundary element method. For
incident solitary wave with moderate wave height and when the breakwater
is deeply submerged the numerical results have been compared with the
experimental data. It is shown that the agreement between the numerical
results and the experimental data has been excellent. The comparison was
performed in terms of the wave profiles at various stations and the horizontal
and vertical components of the water particle velocities in the vicinity of the
breakwater. The LDV measurements of particle velocities are shown to be
effective in resolving the velocity time history.

A series of experimental data is also presented for solitary wave interact-
ing with the breakwater which has the same height as the still water depth.
Only the experimental data is available for this aspect of the study. Since
the incident wave actually travels in a certain region of zero water depth be-
fore propagating toward the shoreward region, the present numerical method
would not be able to simulate this flow condition. The experimental data
show that a series of higher frequency oscillatory tails is generated in the
shoreward region. This transmitted wave is reformed to become a series of
well defined oscillatory wave as they propagate further away from the break-
water.
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