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Interaction of polyamines, abscisic 
acid and proline under osmotic 
stress in the leaves of wheat plants
Magda Pál  1, Judit Tajti1, Gabriella Szalai1, Violeta Peeva2, Balázs Végh1 & Tibor Janda1

The exact relationship between polyamine, abscisic acid and proline metabolisms is still poorly 

understood. In the present study, the effects of putrescine and abscisic acid treatments alone or in 
combination with polyethylene glycol-induced osmotic stress were investigated in young wheat 

plants. It was observed that abscisic acid plays a role in the coordinated regulation of the proline and 

polyamine biosynthetic pathways, which compounds are related to each other through a common 

precursor. Abscisic acid pre-treatment induced similar alteration of polyamine contents as the osmotic 

stress, namely increased the putrescine, but decreased the spermidine contents in the leaves. These 

changes were mainly related to the polyamine cycle, as both the synthesis and peroxisomal oxidation 

of polyamines have been induced at gene expression level. Although abscisic acid and osmotic stress 

influenced the proline metabolism differently, the highest proline accumulation was observed in the 
case of abscisic acid treatments. The proline metabolism was partly regulated independently and not in 

an antagonistic manner from polyamine synthesis. Results suggest that the connection, which exists 

between polyamine metabolism and abscisic acid signalling leads to the controlled regulation and 

maintenance of polyamine and proline levels under osmotic stress conditions in wheat seedlings.

�ere is increasing evidence that plant responses to unfavourable environment can be modulated by various 
plant hormones and plant growth regulators. Polyamines (PAs) are also involved in plant stress responses and 
tolerance. �e most abundant PAs in plants are putrescine (PUT), spermidine (SPD), and spermine (SPM), which 
can be found in relatively high amount. PUT is synthesized by the decarboxylation of ornithine, catalysed by orni-
thine decarboxylase (ODC), or indirectly by the decarboxylation of arginine by arginine decarboxylase (ADC), 
via agmatine. A�er that, SPD and SPM are produced by the sequential addition of aminopropyl moieties to 
the putrescine skeleton through enzymatic reactions catalysed by SPD and SPM synthases (SPDS and SPMS). 
�e donor of the aminopropyl groups is decarboxylated S-adenosyl-methionine, which is synthesized from 
S-adenosyl-methionine by S-adenosyl-methionine decarboxylase (SAMDC). PAs are catabolised by diamine 
oxidases (DAOs) and polyamine oxidases (PAOs)1.

Increased PA accumulation is accompanied by an increase in the activity of PA synthesis enzymes and expres-
sion of their genes have been reported in several plant species under stress conditions. In addition, investigations 
on the genetic modi�cation of their synthesis enzymes together with exogenous applications of PAs suggest that 
the level of tolerance may correlate with the elevated cellular PA content2. �e functions and the roles of the 
individual PAs in plant stress processes are diverse and sometimes contradictory. PAs are double face molecules, 
act as direct ROS scavenging and in�uence antioxidant activity at molecular and gene expression level. However, 
they are also ROS sources due to their apoplastic catabolism and the PA-cycle1 (Suppl. Fig. 1). Compared to other 
hormones, PAs are o�en present in high concentrations; according to this, changes in their metabolism may cause 
shi� in the cellular metabolism, which presumes that the existence of �ne regulation and tuning is necessary3.

�e plant hormone abscisic acid (ABA) regulates several physiological processes and may also induce toler-
ance to various abiotic stresses4. �e involvement of ABA in drought stress tolerance has been studied extensively 
at physiological and molecular levels, and a sharp increase in its endogenous level was also detected during water 
de�cit conditions5. ABA plays a central role for improvement of plant drought resistance not only by its e�ect on 
stomatal closure but also by inducing activities or gene expression of antioxidant enzymes6. ABA also increases 
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the gene expression level of the PA biosynthesis genes7. On the other hand, overexpression of the genes of PA 
synthesis enzymes, such as ADC, SAMDC or SPMS, resulted in increased ABA biosynthesis due to the higher 
expression level of 9-cis-epoxycarotenoid dioxygenase (NCED). In addition, ABA-related transcription factors 
were also upregulated8. �ese results suggest that there is a positive feedback loop between ABA and PAs.

Proline also accumulates in many plant species in response to environmental stress9–11 and acts as a major 
reservoir of energy and nitrogen, which can be utilized under stress conditions. Increased proline contents 
were detected not only upon stress conditions but also a�er ABA and PA treatments12–18. �e facts that pro-
line accumulation is mediated by both ABA-dependent and ABA-independent signalling pathways and 
that ABA modulates proline synthesis both on transcriptional level through induction of gene expression of 
∆1-pyrroline-5-carboxylate synthase (P5CS) and on post-transcriptional level by stabilizing the P5CS transcript 
are well-studied19. However, correlation between proline accumulation and abiotic stress tolerance in plants is not 
always acknowledged20. Furthermore, the fact that increased PA levels – resulted from exposure to abiotic stress, 
exogenous PA treatments or genetic manipulation – led to increased proline content is interesting, especially if we 
take into consideration that their synthesis shares a common precursor, glutamate3 (Suppl. Fig. 1). Pronounced 
contribution of PUT degradation – by DAO – to proline accumulation has also been reported21. Although sev-
eral abiotic stresses have been reported to stimulate PA oxidation, the precise role of PA catabolism in the plant 
response to environmental stress remains elusive.

According to the relationships described above, understanding the regulation of PA metabolism in plants 
is of major interest. However, the exact relationship between PA, ABA and proline metabolism is still poorly 
understood. �e main aim of the present experiment was to �nd answers to the following questions: 1. How does 
ABA treatment in�uence the PA metabolism, and vice versa: how do PAs in�uence the ABA level in wheat? 2. Do 
speci�c steps in the PA metabolism respond di�erently under control or mild osmotic stress conditions? 3. What 
relationship exists between PAs and proline content and synthesis? �e answers to these questions may increase 
the understanding of the function of PA metabolism in relation with ABA and proline, which compounds have 
well known role in drought or osmotic stress responses.

Results
Before the present work demonstrated in this paper a pilot experiment was carried out using 2 wheat geno-
types including TC33 and a winter wheat variety Mv Hombár from Agricultural Institute, Centre for Agricultural 
Research, Hungarian Academy of Sciences, Martonvásár. �ese preliminary results revealed that 0.15 mM ABA 
for 1 day provided protection against osmotic stress induced by 15% PEG manifested in the gas exchange param-
eters (data not shown). ABA treatment alone did not only in�uence the proline content, but the PA content was 
also changed (data not shown). As changes induced in the PA and proline contents were similar in the two gen-
otypes, for further experiment TC33 was chosen for the present experiment, as this was relatively drought sen-
sitive. In order to clarify in�uence of ABA or PEG on PA metabolism, as an additional treatment, PUT was also 
used. PA metabolism is linked with proline metabolism, so another question of the present work was to reveal 
how changes in PA content in�uence proline synthesis.

Gas exchange parameters and relative water contents. In order to characterize the e�ects of ABA, 
PUT and PEG treatments on the physiological status of control and PEG-treated wheat (TC 33) plants, gas 
exchange parameters were determined in all of the treatments, while relative water content was measured at the 
end of the experiment a�er 5 days with or without PEG treatment. 1d ABA pre-treatment induced signi�cant 
decrease in Pn due to a pronounced stomatal closure, which was in parallel with the decrease of the intracellular 
CO2 concentration indicating the continuation of photosynthesis, while 1d PUT pre-treatment did not in�uence 
the gas exchange parameters. A�er the 5 days of recovery period, these di�erences in the Pn and Ci parame-
ters mainly disappeared in ABA-treated (ABA + 5d) plants compared to the same day of control (C + 5d) where 
slightly lower stomatal conductance and transpiration have been still detected (Table 1). PEG treatment alone 
decreased the gs and E parameters as a mild osmotic stress, and similar values were detected in the combined 

Treatments Pn (µmol CO2 m−2 s−1) Ci (µmol CO2 mol−1) gs (mol CO2 m−2 s−1) E (mmol H2O m−2 s−1) RWC

C 7.592 ± 0.83 b 298 ± 17 b 0.158 ± 0.033 ef 2.122 ± 0.355 d

ABA 5.03 ± 1.683 a 16 ± 5 a 0.018 ± 0.014 a 0.267 ± 0.213 a

Put 9.04 ± 1.067 b 274 ± 18 b 0.15 ± 0.011 e 1.867 ± 0.197 d

C + 5d 6.616 ± 0.86 a 351 ± 19 c 0.238 ± 0.02 g 1.933 ± 0.153 d 93.55 ± 1.50 cd

ABA + 5d 5.8 ± 0.889 a 329 ± 13 c 0.144 ± 0.031 def 1.296 ± 0.255 c 93.68 ± 2.35 bcd

PUT + 5d 5.853 ± 0.15 a 359 ± 24 c 0.204 ± 0.022 fg 2.033 ± 0.462 d 94.76 ± 1.37 d

C + 5dPEG 5.037 ± 0.574 a 313 ± 19 bc 0.083 ± 0.019 bc 0.917 ± 0.196 b 89.3 ± 3.74 ab

ABA + 5dPEG 5.733 ± 0.75 a 317 ± 26 bc 0.114 ± 0.043 cdf 1.13 ± 0.294 bc 92.66 ± 1.56 bc

PUT + 5dPEG 5.31 ± 0.41 a 314 ± 1.4 bc 0.100 ± 0.021 cd 1.01 ± 0.155 bc 90.39 ± 1.32 a

Table 1. E�ects of 1-day 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments followed 
by 5 days of recovery period or 15% polyethylene glycol (PEG) treatments on gas exchange parameters (Pn: 
CO2 assimilation rate; Ci: intracellular CO2 concentration; gs: stomatal conductance and E: transpiration) and 
relative water content (RWC) of the leaves of wheat plants. Data represent mean values ± SD, n = 10. Di�erent 
letters indicate signi�cant di�erences between the treatments at P < 0.05.
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treatments (ABA + 5dPEG and PUT + 5dPEG) (Table 1). ABA and PUT pre-treatments did not in�uence the 
RWC while PEG treatment either alone or in combination with PUT decreased it (Table 1).

ABA content and synthesis. Despite the thorough root washing high ABA content was detected in case 
of the root a�er 1-day ABA pre-treatment. However, increased ABA content was found not only in the roots but 
also in the leaves, and the increased ABA levels were still detected both in the leaves and roots of ABA + 5d wheat 
plants compared to the control plants (Fig. 1A). PUT pre-treatment did not in�uence the ABA content in the 
leaves, but in the roots where in the control ABA contents could not be detected, de�nite peaks were identi�ed 
(Fig. 1A). PEG treatment alone also increased the ABA content especially in the leaves, and similar changes were 
induced in the PUT + 5dPEG-treated plants. Under osmotic stress conditions, the highest ABA accumulation in 
the leaves was found in the case of the ABA + 5dPEG treatment. �e expression level of 9-cis-epoxycarotenoid 
dioxygenase (NCED), the gene encoding the key enzyme of ABA biosynthesis showed low expression level in the 
leaves and increased only in the case of ABA and PUT + PEG treatments (Fig. 1B).

PA metabolism. Not surprisingly, 1d PUT treatment caused PUT accumulation in the roots, but this con-
centration with such duration was not enough for the induction of root to shoot translocation or signi�cant 
increase in the content of higher PAs (SPD or SPM) (Fig. 2A–C). According to this, the PUT/(SPD + SPM) ratio 
increased in the roots (C: 0.30 and PUT:0.69) but did not change remarkably in the leaves (C: 0.16 and PUT: 0.18). 
Increased PUT content was still detected a�er the 5 days of recovery period without any treatment, especially in 
the roots (PUT + 5d), with 0.33 and 0.45 PUT/(SPD + SPM) ratio for C + 5d and PUT + 5d, respectively. In the 
leaves, similar values were found as in C and PUT; 0.15 for C + 5d and 0.19 for PUT + 5d. In contrast to this, 
ABA treatment (ABA) induced more extensive changes in PA contents. A�er 1d ABA treatment, PUT accumu-
lation was in parallel with a signi�cant decrease in the SPD content both in the leaves and roots, while SPM level 
decreased in the leaves. A�er the recovery period, only increased leaf PUT and decreased leaf SPM content was 
detected in ABA + 5d plants compared with the same day control (C + 5d) (Fig. 2A,C). �ese changes also in�u-
enced the PUT/(SPD + SPM) ratio, 0.59 for ABA and 0.38 for ABA + 5d in the leaves, and 1.35 for ABA and 0.27 
for ABA + 5d in the roots.

15% PEG treatment for 5 days induced pronounced shi� in the ratio of PUT/(SPD + SPM) as it increased 
(0.46) in a similar way in the leaves as ABA or ABA + 5d treatments, while it decreased (0.22) in the roots 
as it was found in the case of ABA + 5d. In the background of these alterations, increased leaf PUT and root 
SPM but decreased leaf SPD contents were detected (Fig. 2A–C). In the combined treatments (ABA + 5dPEG 
or PUT + 5dPEG), similar patterns of the PA content and ratio were found as it was described in the case of 
C + 5dPEG treatment.

Figure 1. E�ects of 1 day 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments followed 
by 5 days of recovery period or 15% polyethylene glycol (PEG) treatments on the abscisic acid content (A) in 
the leaves and roots, and gene expression level of 9-cis-epoxycarotenoid dioxygenase (NCED: B) in the leaves of 
wheat plants. Data represent mean values ± SD, n = 5. Di�erent letters indicate signi�cant di�erences between 
the treatments at P < 0.05.
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�e applied treatments slightly in�uenced the PA synthesis genes in the leaves of young wheat plants. Both 
pathways of the PUT biosynthesis were active, as the gene expression level of ODC and ADC was detected in all 
cases (Fig. 3A,B). Only ABA, PUT and ABA + 5dPEG treatments could increase the level of ADC transcript. �e 
expression level of SPDS and SAMDC, which are responsible for synthesis of higher PAs did not show remarkable 
changes (Fig. 3C,D).

�e main PA catabolic process is localised in the apoplast and exerted through DAO and PAO, the former 
showing a strong preference for diamines (PUT and cadaverin), while the latter only oxidizes higher PAs (SPD 
and SPM). Apoplastic PAOs (apoPAO), which are responsible for this terminal catabolism of PAs, oxidize SPD 
and SPM to 1,3- diaminopropane (DAP). Although none of the applied treatments in�uenced the DAO or 
apoPAO activities in wheat plants signi�cantly (Fig. 4A,B). Increased DAP level was detected in the leaves of 
PUT-treated plants compared to the same-day control (C), but similar amount was found a�er a recovery period 
in PUT + 5d compared to C + 5d. ABA + 5d, C + 5dPEG, ABA + 5dPEG and PUT + 5dPEG also increased it 
in the leaves in comparison with the control of the same day (Fig. 4C). In parallel with these, the gene encoding 
the peroxisomally localised PAO enzyme responsible for the back-conversion of SPM to SPD, and SPD to PUT 
also increased in the cases of ABA + 5d and all the PEG treatments (C + 5dPEG, ABA + 5dPEG, PUT + 5dPEG) 
(Fig. 4D).

Proline metabolism. 1d ABA treatment induced high accumulation of proline both in the leaves and roots 
of wheat plants, while PUT caused only slight increase in the leaf proline content (Fig. 5A). However, these 

Figure 2. E�ects of 1 day 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments followed by 
5 days of recovery period or 15% polyethylene glycol (PEG) treatments on the free polyamine contents, namely 
putrescine (PUT: A), spermidine (SPD: B) and spermine (SPM: C) in the leaves (white bars) and roots (black 
bars) of wheat plants. Data represent mean values ± SD, n = 5. Di�erent letters indicate signi�cant di�erences 
between the treatments at P < 0.05.
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di�erences disappeared a�er the 5 days of recovery period. Although PEG-induced stress alone increased the 
level of proline in the leaves and roots signi�cantly, in the combined treatments, as an additive e�ect of the plant 
growth regulator pre-treatments followed by PEG treatment, higher proline accumulations were found. �e high-
est increment was detected in the leaves of ABA + PEG-treated plants (Fig. 5A).

�e genes involved in proline synthesis responded di�erently to the applied treatments. �e expression level 
of P5CS1 gene, which encodes ∆1-pyrroline-5-carboxylate synthetase that catalyses the synthesis of proline 
from glutamate, showed that especially ABA and PUT pre-treatments induced it, but these changes disappeared 
a�er the recovery period, while ABA + 5dPEG and PUT + 5dPEG, where high proline accumulation was found, 
caused only a slight increment compared to the same day of control (Fig. 5B). In comparison, OAT gene, which 
encodes ornithine aminotransferase (the enzyme catalysing the synthesis of proline from ornithine), was induced 
a�er ABA pre-treatment, and this induction could also be observed a�er the recovery period. Interestingly, 
PUT + 5dPEG decreased it compared to the same day of control (Fig. 5C).

Figure 3. Changes in the gene expression of the arginine decarboxylase (ADC: A), ornithine decarboxylase 
(ODC: B), spermidine synthase (SPDS: C) and S-adenosyl-methione decarboxylase (SAMDC: D) genes in the 
leaves of wheat plants a�er 1-day of 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments 
followed by 5 days of recovery period or 15% polyethylene glycol (PEG) treatments. �e relative gene expression 
values were determined with the ∆∆Ct method. All reactions were performed in triplicate.
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Discussion
In the present work, the e�ect of ABA, PEG treatments and their combinations on PA metabolism were inves-
tigated in order to reveal the interactions between ABA and PAs in stress responses with special regard to their 
relationship with proline metabolism. In order to exclude and distinguish the e�ect of increased PUT level, PUT 
treatment alone was also applied. In addition, the e�ects of 1 d ABA or PUT treatments were also investigated 
a�er a 5-day-recovery period for further di�erentiation between the e�ects of ABA and PUT compared to the 
PEG treatment induced osmotic stress.

ABA-PA relation. Recent results have shown that exogenous PUT increases the ABA content and the NCED 
transcript level in the leaves of tomato under chilling stress22. In the present case, although PUT treatment did not 
in�uence the ABA content and the gene expression level of NCED in the leaves, it caused slight but clear increase 

Figure 4. E�ects of 1 day 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments followed by 
5 days of recovery period or 15% polyethylene glycol (PEG) treatments on the activities of apoplastic diamine 
oxidase (DAO: A) and polyamine oxidase (apoPAO: B) and 1,3-diaminopropane (DAP: C) content in the 
leaves (white bars) and roots (black bars) of wheat plants. Data represent mean values ± SD, n = 5. Di�erent 
letters indicate signi�cant di�erences between the treatments at P < 0.05. Changes in the gene expression of the 
peroxisomal polyamine oxidase (perPAO: D) gene in the leaves of wheat plants. �e relative gene expression 
values were determined with the ∆∆Ct method. All reactions were performed in triplicate.
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in root ABA content of young wheat plants, which was in parallel with pronounced root PUT accumulation. It 
has been demonstrated that rapid increase in PUT levels is required for ABA accumulation in response to low 
temperature in Arabidopsis, and the gene expression level of NCED was also increased by PUT addition23. In the 
present experiment the gene expression of NCED increased only in the leaves of ABA- and PUT + PEG-treated 
plants. However, other studies showed that the expression level of NCED may depend on the genotype; and the 
level of the expression is not always in correlation with changes in the ABA content under PEG-induced osmotic 
stress conditions24.

In contrast to the e�ect of PUT on ABA content, ABA treatment had powerful e�ect on PA metabolism. �e 
most characteristic changes were the increase in PUT and the decrease in SPD contents of ABA-treated plants. 
In addition, a�er the recovery period (ABA + 5d), the PUT-increasing and SPM-decreasing e�ects of ABA were 
still detected. Correlation analyses also revealed that a positive relationship existed between ABA and PUT, and 
ABA and DAP, but negative relationship was found between ABA and SPD or SPM contents (Table 2). Results 
also indicated that the degree of PUT accumulation was lower than the depletion in SPD content of ABA-treated 
plants. However, these changes did not result from decreased gene expression level of SPDS or SAMDC in the 
leaves, indicating that not the modi�cation on the synthesis side is responsible for the observed decrease in the 
level of SPD and SPM. �e accumulation of PUT in the wheat plants was in parallel with increased ADC gene 
expression in the case of ABA and PUT treatments. �ese results suggest that the exogenously applied PUT 
was not only taken up by the wheat plants but also induced its de novo synthesis in the leaves. Our results are in 
accordance with earlier �ndings when ABA also induced increase in PUT content of 3-day-old wheat seedling, 
which could be inhibited by α-di�uoromethylarginine (an inhibitor of ADC) or α-di�uoromethylornithine (an 
inhibitor of ODC) in the shoots25. Exogenous ABA also increased the PUT contents in chickpea26, while ABA has 

Figure 5. E�ects of 1 day 0.15 mM abscisic acid (ABA) or 0.5 mM putrescine (PUT) pre-treatments followed 
by 5 days of recovery period or 15% polyethylene glycol (PEG) treatments on the proline contents (A) in the 
leaves (white bars) and roots (black bars) of wheat plants. Data represent mean values ± SD, n = 5. Di�erent 
letters indicate signi�cant di�erences between the treatments at P < 0.05. Changes in the gene expression of the 
∆1-pyrroline-5-carboxylate synthase (P5CS1: B) and ornithine aminotransferase (OAT: C) genes in the leaves 
of wheat plants. Changes in the gene expression of the peroxisomal polyamine oxidase (perPAO: D) gene in 
the leaves of wheat plants. �e relative gene expression values were determined with the ∆∆Ct method. All 
reactions were performed in triplicate.
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been reported to trigger PA synthesis through a transcriptional activation of genes encoding SPDS in maize27. 
Under the present experimental conditions a positive correlation has also been found between ABA content and 
gene expression level of ADC and SAMDC (Table 2).

ABA treatment enhanced the activity of apoPAO and also the expression level of gene encoding apoPAO 
in maize28. In Arabidopsis, ABA-induced perPAO enhances the back-conversion pathway of PAs29. Not only 
increased activities of PAOs, but also induced PA exodus (transport of PAs from the cytosol to the apoplast) were 
detected in Vitis vinifera a�er ABA treatment30. In contrast to these, in the present study, ABA or PUT treatments 
did not in�uence the activities of DAO and apoPAO remarkably, which are localized in the apoplast and have a 
role in the terminal catabolism of PUT and SPD/SPM, respectively. However, the gene expression of the perPAO 
was induced a�er ABA treatments indicating that the interconversion of SPD/SPM to PUT occurred in the leaves. 
�ese results suggest that ABA modulates PA metabolism in a complex way at transcriptional level and the result 
of the induced changes in back-conversion displayed in the observed PA pattern.

PA-osmotic stress. ABA plays a key role in the responses of plants to drought or osmotic stress conditions, 
and its biosynthesis may be induced �rstly in the roots and then the hormone can be readily transported in the 
xylem into the leaves. Changes in the PA metabolism under osmotic stress conditions have also been extensively 
studied for a long time31–33. However, results are sometimes controversial and especially its relationship with the 
ABA signalling is less understood. Interestingly, ABA-induced PA pattern in the wheat leaves was similar to that 
of PEG-treated plants, as 15% PEG for 5 days increased PUT and decreased SPD content. However, signi�cant 
changes could not be detected in the roots. In addition, PEG either alone or in the cases of combined treatments 
(ABA + 5dPEG and PUT + 5dPEG) did not induce remarkable changes in the gene expression pattern of PA syn-
thesis enzymes, except for the ADC, as its transcript level was slightly increased by the ABA + 5dPEG treatment. 
Although osmotic stress alone or in the combined treatments did not a�ect the apoplastic DAO or PAO activities, 
but increased leaf DAP content and the gene expression level of the peroxisomal PAO.

Partly similarly to the present experiment, 0.1 mM ABA or 15% PEG applied for 3 weeks did not in�uence 
PUT content, but it induced a continuous decrease in the SPD level in parallel with increased SPM content in the 
leaves of wheat plants34. However, earlier studies focusing on changes in the activities or gene expression levels of 
the enzymes, which are involved in the metabolism of PAs are limited. �e analysis of PA content in PA synthesis 
mutant Arabidopsis during drought stress revealed that drought induced strong metabolic canalization of SPM 
to PUT due to the PA back-conversion pathway, but not to the terminal catabolism of SPM35. Similarly to water 
de�cit, ABA treatment increases stomatal resistance and decreases transpiration rate as it was also found in the 
present experiment. PUT and SPD at 0.5 mM for 7 days were also reported to induce stomatal closure in wheat18. 
Moreover, it was shown that DAO in Vicia faba, while PAO in Vitis vinifera are involved in the ABA-induced 
stomata closure due to the subsequent H2O2 production30,36. In the present experiment, apoplastic DAO and PAO 
activities did not change despite the observed stoma closure. �e �ndings that higher SPD degradation can occur 

PUT SPD SPM DAP DAO apoPAO ADC ODC SPDS SAMDC perPAO ABA NCED PRO P5CS OAT

PUT 1

SPD −0,445* 1

SPM −0,104 0,112 1

DAP 0,216 0,221 −0,411* 1

DAO 0,047 −0,118 0,114 −0,325 1

apoPAO 0,0005 0,409* −0,14 0,245 −0,434* 1

ADC 0,073 0,124 −0,499* 0,746** −0,436* 0,287 1

ODC 0,203 −0,183 −0,08 −0,261 0,619** −0,269 −0,384 1

SPDS 0,489* −0,115 −0,379 0,225 0,028 0,073 0,046 0,312 1

SAMDC −0,065 0,154 −0,667** 0,666** −0,44* 0,334 0,641** −0,355 0,017 1

perPAO 0,649** −0,526** 0,19 0,115 0,147 −0,366 −0,249 0,403 0,536* −0,312 1

ABA 0,478* −0,526** −0,493** 0,412* −0,331 0,196 0,578** −0,079 0,193 0,555** 0,221 1

NCED 0,447* −0,236 −0,216 0,128 0,1 0,135 0,126 0,153 −0,018 0,185 0,118 0,315 1

PRO 0,467* −0,653** −0,058 0,175 0,238 −0,233 0,199 0,248 −0,015 −0,087 0,487* 0,513* 0,134 1

P5CS 0,071 0,061 −0,572** 0,69** −0,138 0,333 0,749** −0,085 0,039 0,783** −0,112 0,523** 0,535** 0,181 1

OAT 0,259 −0,291 −0,731** 0,128 −0,238 0,425 0,389 −0,078 0,269 0,423 −0,236 0,727** 0,102 0,078 0,222 1

Table 2. Correlation analysis of the investigated parameters in the leaves of wheat plants a�er 1-day 0.15 mM 
abscisic acid or 0.5 mM putrescine pre-treatments followed by 5 days of recovery period or 15% polyethylene 
glycol (PEG) treatment. Signi�cant correlations at 0.05 level were highlighted in bold. Investigated parameters: 
contents of ABA: abscisic acid; DAP: 1,3-diaminopropane; PUT: putrescine; SPD: spermidine and SPM: 
spermine; enzyme activities of apoPAO: apoplastic polyamine oxidase and DAO: diamine oxidase; gene 
expression levels of ADC: arginine decarboxylase; NCED: 9-cis-epoxycarotenoid dioxygenase; OAT: ornithine 
aminotransferase; ODC: ornithine decarboxylase; perPAO: peroxisomal polyamine oxidase; P5CS: ∆1-
pyrroline-5-carboxylate synthase; SAMDC: S-adenosyl-methione decarboxylase; SPDS: spermidine synthase. 
*Correlation is signi�cant at the 0.05 level (2-tailed). **Correlation is signi�cant at the 0.01 level (2-tailed).
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without increase in PAO activity is consistent, since it has also been suggested that instead of the induction of the 
already high apoplastic DAO/PAO activity, rather the controlled PA exodus is responsible for the regulation of 
cellular PA levels37. In the present experiment, increased perPAO gene expression was found in the leaves of PEG 
treated plants.

�e gene expression level of the PA synthesis enzymes were not inhibited, while DAP and PUT contents 
increased; in addition, the transcript level of perPAO also increased under osmotic stress conditions, suggest-
ing that both the terminal catabolism and the back-conversion may be involved in the reduction of SPD level. 
Correlation analyses also revealed that positive relationship exist between SPD content and enzyme activity of 
apoplastic PAO, but negative relationship between SPD content and the gene expression level of perPAO (Table 2). 
According to these, osmotic stress-induced changes in PA content may be the resultant of the complex alteration 
in synthesis, exodus, degradation and back-conversion.

PA-proline. Increase in proline content is considered as a drought-injury sensor38. Nevertheless, it is a 
long-standing question how proline accumulation and metabolism may be modi�ed during the development of 
drought tolerance39. �us it is important to understand the connections between PA and proline metabolisms.

It has been shown that up-regulation of PUT biosynthesis leads to widespread metabolic redistribution40,41. 
As biosynthesis of PAs and proline use glutamate as a common precursor, considerable changes in the pool of PAs 
could cause a shi� between the synthesis pathway of PA and proline. Diversion of ornithine into PA biosynthesis 
does not only in�uence its biosynthesis from glutamate but also a�ects the arginine and proline biosynthesis. 
However, it is not always clear which pathway is involved in increased proline biosynthesis directly from gluta-
mate by P5CS or from ornithine by OAT40. In high PUT-producing transgenic Arabidopsis, it was revealed that 
production of proline is regulated independently from the glutamate-ornithine-arginine pathway, which latter 
pathway is regulated rather at enzymatic than at transcriptional level. However, the regulation of the �ux of glu-
tamate into PAs or proline under stress conditions, when increased synthesis of PUT occurred, is still enigmatic. 
Furthermore, not only the syntheses of PA and proline are linked but PA catabolism has also been shown to be 
closely related to proline accumulation, which was associated with a rapid decrease in PUT and SPD levels and 
some increase in DAP, and the CuAO inhibitor inhibited the accumulation of proline32. Correlation analyses 
revealed that under the present experimental conditions the OAT transcript level was in positive relationship 
with ABA contents, and negative relationship with SPM, while the P5CS transcript level was also in a negative 
relationship with the SPM content, but in a positive relationship with DAP and ABA contents and gene expression 
levels of ADC, NCED and SAMDC (Table 2).

In the present experiment, both ABA and PUT treatments, as well as osmotic stress conditions increased 
the level of proline, with the highest accumulation in the leaves of ABA + 5dPEG-treated plants. However, pro-
line accumulation was in positive correlation with PUT content, but in negative correlation with SPD content 
(Table 2), direct cause and e�ect relationship was not responsible for the observed increase of proline. Despite the 
similar e�ect of ABA and osmotic stress on PA pattern, di�erent e�ect of them on proline synthesis was observed 
in wheat leaves. ABA or PUT pre-treatments resulted in PUT accumulation and induced the activation of P5CS 
gene expression, but only ABA pre-treatment increased the expression level of OAT gene. Although proline accu-
mulation was observed a�er 5 days of PEG treatment, osmotic stress did not in�uence either of the proline bio-
synthesis pathways on the same day. However, the fact that greatest proline content was measured in the plants 
treated with ABA + 5dPEG could not be explained by only the actually detected changes in the gene expression 
of OAT or P5CS1. �ese results suggest that ABA-induced increased gene expressions of OAT and P5CS1 were 
responsible for proline accumulation, which changes were not related directly to the excess of endogenous PUT, 
as PUT pre-treatment induced only P5CS1 and resulted in lower increase in proline content also in the case 
of PUT + 5dPEG treatment. In addition, it has been reported that P5CS is subjected to feedback inhibition by 
increased proline content38. According to these, production of proline was partly regulated independently and 
not in an antagonistic manner from the PA synthesis. Nevertheless, as proline accumulation was in positive cor-
relation with increased perPAO gene expression level (Table 2), it cannot be excluded that the PA catabolism and 
the PA cycle is related to proline synthesis.

Conclusions
Our results suggest that a connection exists between PA metabolism and ABA signalling leading to a controlled 
regulation and maintenance of the SPD and SPM levels under osmotic stress in wheat seedlings. ABA modulates 
PA metabolism in a complex way at transcriptional level and the results of catabolism and/or back-conversion 
displayed in the observed PA pattern both under control condition and during osmotic stress. Despite the similar 
e�ects of ABA and osmotic stress on PA pattern, di�erent e�ects on proline synthesis were observed in the leaves. 
Synthesis of proline and PAs were partly regulated independently and not antagonistically; in addition, the PA 
catabolism and the PA cycle is suggested to be related to proline synthesis (Suppl. Fig. 1). As a further prospect, 
investigation on the function and regulation of di�erent members of the PA oxidase families in wheat may help 
for the better understanding of the relation of proline and PA metabolisms.

Materials and methods
Plant material and growth conditions. In the present experiment, a spring wheat (Triticum aestivum 
L. TC33) (�atcher-based near-isogenic line, TC33: �atcher*6/P.I.58548) genotype was used. A�er 3 days of 
germination between moistened �lter papers at 22 °C in the dark, seedlings were grown in modi�ed Hoagland 
solution42 at 22/20 °C, 16/8-h light/dark periodicity and 75% relative humidity in a Conviron GB-48 plant growth 
chamber (Controlled Environments Ltd, Winnipeg, Canada). Plastic containers were planted with 12 wheat seed-
lings and placed in the growth chamber in a fully randomized manner. �e photosynthetic photon �ux density 
(PPFD) was 250 µmol m−2 s−1. �e plant growth solution was changed every two days.
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A�er 14 days of growth in modi�ed Hoagland solution, the wheat plants were treated hydroponically with 
0.15 mM ABA or 0.5 mM PUT for 24 h and part of the 15-day-old plants were sampled with the control from 
the same day (C: without any treatment). Concentrations were chosen based on our previous results, where 
0.1 mM ABA pre-treatment for 2 days e�ectively decreased chilling injury in maize43 and where 0.5 mM PUT 
pre-treatment for 7 days alleviated PEG-induced osmotic stress in maize and wheat18, and these treatments 
also e�ciently induced changes in the antioxidant enzyme activities and SA content. A�er a gentle but thor-
ough root washing in distilled water twice, another part of the plants was divided into six groups. C, ABA and 
PUT pre-treated plants were either moved to control growth condition as a recovery period (C + 5d, ABA + 5d 
or PUT + 5d) or treated with 15% PEG 6000 as an osmotic stress for 5 days (C + 5dPEG, ABA + 5dPEG or 
PUT + 5dPEG). A�er 5 days of PEG treatment, the roots and youngest fully developed leaves were sampled for 
further analysis. �e growth solution of the plants during the growing condition and PEG treatment was changed 
every 2nd day. �e duration of the PEG treatment was established based on previous results9,44.

Gas exchange measurements. Gas exchange analyses were performed a�er 24 h pre-treatments or 5 days 
a�er PEG-induced osmotic stress treatment on the intact, last fully expanded leaves using a Li-6400 instrument 
(Li-Cor, Lincoln, USA). �e reference level of CO2 was 380 µL L−1, and the light intensity was 250 µmol m−2 s−1. 
�e gas exchange analysis was performed at room temperature; the air humidity was 50 ± 3% in both cases. �e 
parameters of CO2 assimilation rate (Pn), stomatal conductance (gs), intracellular CO2 concentration (Ci) and 
transpiration (E) were determined at the steady-state level of photosynthesis.

PA and 1,3-diaminopropane (DAP) analysis. �e analysis was carried out as described earlier44, by 
200 mg of leaves homogenized with 1 ml 0.2 M ice-cold perchloric acid and having le� them to stand for 20 min 
on ice. �e extract was centrifuged at 10000 g for 20 min and the supernatant was used. �e most abundant PAs, 
namely PUT, SPD and SPM together with DAP – the product of SPD and SPM terminal catabolism – were ana-
lysed as dansylated derivatives via HPLC using a W2690 separation module and a W474 scanning �uorescence 
detector with excitation at 340 nm and emission at 515 nm (Waters, Milford, MA, USA).

Diamine oxidase and PA oxidase enzyme activities. �e activity of the diamine oxidase (DAO, EC 
1.4.3.6.) and PA oxidase (apoPAO, EC 1.5.3.3.) enzymes was estimated by the method of Takács et al.45. Enzyme 
activity was expressed in nmol ∆1-pyrroline min−1 g−1 FW using an extinction coe�cient of 1.86 × 103 mol−1 
cm−1.

Gene expression analysis. Total RNA was extracted from fully developed leaf and root samples using TRI 
Reagent®. �e samples were treated with DNase I and cleaned with a Direct-zol™ RNA MiniPrep Kit (Zymo 
Research, Irvine, CA, USA) according to the manufacturer’s instructions. cDNA synthesis was carried out by 
using M-MLV Reverse Transcriptase (Promega Corporation, Madison, WI, USA). Gene-speci�c primers and 
housekeeping primers (Suppl. Table 1)46,47, PCRBIO SyGreen Mix (PCR Biosystems, London, UK) and CFX96 
Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) were used for quantitative real-time 
PCR reaction. �e relative gene expression values were determined with the ∆∆Ct method48. Ct values were 
normalized by the Ct values of housekeeping gene Ta30797 encoding phosphogluconate dehydrogenase. All reac-
tions were performed in triplicate.

Proline content. �e proline content was determined on the basis of its reaction with ninhydrin, according 
to the Bates method49.

Statistical analysis. �ree independent repetitions were performed for each experiment, and representa-
tive data are presented. �e results were the means of at least 5 replicates for measurements of the gas exchange 
parameters, spectrophotometric and HPLC determinations. �e data were statistically evaluated using the stand-
ard deviation and t-test methods. �e SPSS 17.0 statistical program (Statistical Package for the Social Sciences) 
was used to examine correlations between the parameters.

Data Availability. All data generated or analysed during this study are included in this published article (and 
its Supplementary Information �les).

References
 1. Pál, M., Szalai, G. & Janda, T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 237, 16–23 (2015).
 2. Liu, J. H., Wang, W., Wu, H., Gong, X. & Moriguchi, T. Polyamines function in stress tolerance: from synthesis to regulation. Front. 

Plant Sci. 6, 827 (2015).
 3. Minocha, R., Majumdar, R. & Minocha, S. C. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5, 175 

(2014).
 4. Vishwakarma, K. et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future 

prospects. Front. Plant Sci. 8, 161 (2017).
 5. Kaur, G. & Asthir, B. Molecular responses to drought stress in plants. Biol. Plant. 61, 201–209 (2017).
 6. Wei, L. et al. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding 

ascorbate-glutathione biosynthesis. Front. Plant Sci. 6, 458 (2015).
 7. Alcázar, R., Cuevas, J. C., Patron, M., Altabella, T. & Tiburcio, A. F. Abscisic acid modulates polyamine metabolism under water 

stress in Arabidopsis thaliana. Physiol. Plant. 128, 448–455 (2006).
 8. Marco, F., Alcázar, R., Tiburcio, A. F. & Carrasco, P. Interactions between polyamines and abiotic stress pathway responses unraveled 

by transcriptome analysis of polyamine overproducers. OMICS: a Journal of Integrative Biology. 15, 775–781 (2011).
 9. Kovács, V. et al. UV-B radiation modi�es the acclimation processes to drought or cadmium in wheat. Env. Exp. Bot. 100, 122–131 

(2014).
 10. Borgo, L., Marur, C. J. & Vieira, L. G. E. E�ects of high proline accumulation on chloroplast and mitochondrial ultrastructure and 

on osmotic adjustment in tobacco plants. Acta Sci., Agron. 37, 191–199 (2015).



www.nature.com/scientificreports/

1 1SCIENTIFIC REPORTS |  (2018) 8:12839  | DOI:10.1038/s41598-018-31297-6

 11. Darko, E. et al. Di�ering metabolic responses to salt stress in wheat-barley addition lines containing di�erent 7H chromosomal 
fragments. PLoS One. 12, e0174170 (2017).

 12. Zeid, I. M. & Shedeed, Z. A. Alterations in nitrogen metabolites a�er putrescine treatment in alfalfa under drought stress. Pak. J. Biol.
Sci. 10, 1513–1518 (2007).

 13. Hou, Y. D. et al. E�ects of cold acclimation and exogenous pytohormone abscisic acid treatment on physiological indicators of 
winterness wheat. J. Plant Sci. 5, 125–136 (2010).

 14. Planchet, E. et al. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-de�cit stress 
during seedling establishment in Medicago truncatula. J. Exp. Bot. 65, 2161–2170 (2014).

 15. Shevyakova, N. I. et al. E�ect of ABA on the contents of proline, polyamines, and cytokinins in the common ice plants under salt 
stress. Russ. J. Plant Physiol. 60, 741–748 (2013).

 16. Zhou, L. et al. Exogenous abscisic acid signi�cantly a�ects proteome in tea plant (Camellia sinensis) exposed to drought stress. 
Horticulture Research 1, 14029 (2014).

 17. Durmuş, N. & Bekircan, T. Pretreatment with polyamines alleviate the deleterious e�ects of diuron in maize leaves. Acta Biol. Hung. 
66, 52–65 (2015).

 18. Szalai, G. et al. Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol. Biochem. 112, 239–250 
(2017).

 19. Hare, P. D., Cress, W. A. & van Staden, J. Proline synthesis and degradation: a model system for elucidating stress-related signal 
transduction. J. Exp. Bot. 50, 413–434 (1999).

 20. Szabados, L. & Savouré, A. Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
 21. Su, G. X. & Bai, X. Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity. Biol. Plant. 52, 

796 (2008).
 22. Diao, Q., Song, Y., Shi, D. & Qi, H. Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress 

in tomato (Lycopersicon esculentum Mill.) seedlings. Front. Plant Sci. 8, 203 (2017).
 23. Cuevas, J. C. et al. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in 

response to low temperature. Plant Physiol. 148, 1094–1105 (2008).
 24. Gallé, Á. et al. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in 

stress responses. J. Plant Physiol. 170, 1389–1399 (2013).
 25. Aurisano, N., Bertani, A., Mattana, M. & Reggiani, R. Abscisic acid induced stress-like polyamine pattern in wheat seedlings, and its 

reversal by potassium ions. Physiol. Plant. 89, 687–692 (1993).
 26. Bueno, M. & Matilla, A. Abscisic-acid increases the content of free polyamines and delays mitotic-activity induced by spermine in 

isolated embryonic axes of chickpea seeds. Physiol. Plant. 85, 531–536 (1992).
 27. Jiménez-Bremont, J. F., Ruiz, O. A. & Rodríguez-Kessler, M. Modulation of spermidine and spermine levels in maize seedlings 

subjected to long-term salt stress. Plant Physiol. Biochem. 45, 812–821 (2007).
 28. Xue, B., Zhang, A. & Jiang, M. Involvement of polyamine oxidase in abscisic acid- induced cytosolic antioxidant defense in leaves of 

maize. J. Integr. Plant Biol. 51, 225–234 (2009).
 29. Moschou, P. N., Delis, I. D., Paschalidis, K. A. & Roubelakis-Angelakis, K. A. Transgenic tobacco plants overexpressing polyamine 

oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol. Plant. 133, 140–156 (2008).
 30. Konstantinos, P. A., Imene, T., Panagiotis, M. N. & Roubelakis-Angelakis, K. A. ABA-dependent amine oxidases-derived H2O2 

a�ects stomata conductance. Plant Signal. Behavior. 5, 1153–1156 (2010).
 31. Flores, H. E. & Galston, A. W. Osmotic stress-induced polyamine accumulation in cereal leaves: I. Physiological parameters of the 

response. Plant Physiol. 75, 102–109 (1984).
 32. Aziz, A., Martin-Tanguy, J. & Larher, F. Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation 

in tomato leaf discs treated with sodium chloride. Phiol. Plant. 104, 195–202 (1998).
 33. Legocka, J. & Kluk, A. E�ect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in 

Lupinus luteus seedlings. J. Plant Physiol. 162, 662–668 (2005).
 34. Kovács, Z., Simon-Sarkadi, L., Szucs, A. & Kocsy, G. Di�erential e�ects of cold, osmotic stress and abscisic acid on polyamine 

accumulation in wheat. Amino Acids 38, 623–631 (2010).
 35. Alcázar, R. et al. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant 

Craterostigma plantagineum. Plant Signal. Behav. 6, 243–250 (2011).
 36. An, Z., Jing, W., Liu, Y. & Zhang, W. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced 

stomatal closure in Vicia faba. J. Exp. Bot. 59, 815–825 (2008).
 37. Cona, A., Rea, G., Angelini, R., Federico, R. & Tavladoraki, P. Function of amine oxidases in plant development and defence. Trends 

Plant Sci. 11, 80–88 (2006).
 38.  Verslues, P. E. & Sharma, S., Proline metabolism and its implications for plant-environment interaction in �e Arabidopsis Book (eds 

Paul, E. Verslues and Sandeep Sharma) 8: e0140. (American Society of Plant Biologists 2010).
 39. Bhaskara, G. B., Yang, T. H. & Verslues, P. E. Dynamic proline metabolism: importance and regulation in water limited environments. 

Front. Plant Sci. 6, 484 (2015).
 40. Majumdar, R. et al. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the 

post-transcriptional level. Front. Plant Sci. 7, 78 (2016).
 41. Majumdar, R., Shao, L., Minocha, R., Long, S. & Minocha, S. C. Ornithine: the overlooked molecule in regulation of polyamine 

metabolism. Plant Cell Physiol. 54, 990–1004 (2013).
 42. Pál, M., Horváth, E., Janda, T., Páldi, E. & Szalai, G. Cadmium stimulates the accumulation of salicylic acid and its putative 

precursors in maize (Zea mays) plants. Physiol. Plant. 125, 356–364 (2005).
 43. Pál, M., Janda, T. & Szalai, G. Abscisic acid may alter the salicylic acid-related abiotic stress response in maize. J. Agron Crop Sci. 197, 

368–377 (2011).
 44. Németh, M., Janda, T., Horváth, E., Páldi, E. & Szalai, G. Exogenous salicylic acid increases polyamine content but may decrease 

drought tolerance in maize. Plant Sci. 162, 569–574 (2002).
 45. Takács, Z., Poór, P. & Tari, I. Comparison of polyamine metabolism in tomato plants exposed to di�erent concentrations of salicylic 

acid under light or dark conditions. Plant Physiol. Biochem. 108, 266–278 (2016).
 46. Xiong, H. et al. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a space�ight-induced 

wheat mutant. Sci. Reports 7, 2731 (2017).
 47. Paolacci, A. R., Tanzarella, O. A., Porceddu, E. & Cia�, M. Identi�cation and validation of reference genes for quantitative RT-PCR 

normalization in wheat. BMC Molecular Biology 10, 11 (2009).
 48. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta 

C(T)) Method. Methods. 25, 402–408 (2001).
 49. Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).

Acknowledgements
�is work was �nanced by the grants of the Hungarian National Scienti�c Research Foundation (K124472) and 
the Hungarian-Bulgarian bilateral programme (NKM-22/2017), which are gratefully acknowledged.



www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS |  (2018) 8:12839  | DOI:10.1038/s41598-018-31297-6

Author Contributions
Magda Pál was responsible for supervision, proline and polyamine determination, and measurements of the 
diamino oxidase and polyamine oxidase enzyme activities, statistical analyses, writing and visualization. Judit 
Tajti was responsible for RT-PCR analyses, Gabriella Szalai for abscisic acid measurement, Violeta Peeva for gas 
exchange measurement, Balázs Végh for the determination of relative water content. Tibor Janda is responsible 
for review and editing. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31297-6.

Competing Interests: �e authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-31297-6
http://creativecommons.org/licenses/by/4.0/

	Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants

	Results

	Gas exchange parameters and relative water contents. 
	ABA content and synthesis. 
	PA metabolism. 
	Proline metabolism. 

	Discussion

	ABA-PA relation. 
	PA-osmotic stress. 
	PA-proline. 

	Conclusions

	Materials and methods

	Plant material and growth conditions. 
	Gas exchange measurements. 
	PA and 1,3-diaminopropane (DAP) analysis. 
	Diamine oxidase and PA oxidase enzyme activities. 
	Gene expression analysis. 
	Proline content. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Effects of 1 day 0.
	Figure 2 Effects of 1 day 0.
	Figure 3 Changes in the gene expression of the arginine decarboxylase (ADC: A), ornithine decarboxylase (ODC: B), spermidine synthase (SPDS: C) and S-adenosyl-methione decarboxylase (SAMDC: D) genes in the leaves of wheat plants after 1-day of 0.
	Figure 4 Effects of 1 day 0.
	Figure 5 Effects of 1 day 0.
	Table 1 Effects of 1-day 0.
	Table 2 Correlation analysis of the investigated parameters in the leaves of wheat plants after 1-day 0.


