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Abstract

Classical self-similar solutions to the interaction of two arbitrary planar rarefaction

waves for the polytropic Euler equations in two space dimensions are constructed. The

binary interaction represents a major type of interaction in the two-dimensional Riemann

problems, and includes in particular the classical problem of the expansion of a wedge of

gas into vacuum. Based on the hodograph transformation, the method involves the phase

space analysis of a second-order equation and the inversion back to (or development onto)

the physical space.

Keywords: Simple waves, hodograph transformation, Jacobian, characteristic decomposition,

inclination angles of characteristics, 2-D Riemann problem, compressible, gas dynamics.

AMS subject classification: Primary: 35L65, 35J70, 35R35; Secondary: 35J65.

1 Introduction

Consider the two-dimensional isentropic compressible Euler system

⎧
⎪⎪⎨
⎪⎪⎩

ρt +(ρu)x +(ρv)y = 0,

(ρu)t +(ρu2 + p)x +(ρuv)y = 0,

(ρv)t +(ρuv)x +(ρv2 + p)y = 0,

(1.1)
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where ρ is the density, (u,v) is the velocity and p is the pressure given by p(ρ) = Kργ where

K > 0 will be scaled to be one and γ > 1 is the gas constant. We are primarily interested in the

so-called pseudo–steady case of (1.1); i.e., the solutions depend on the self–similar variables

(ξ,η) = (x/t,y/t). The expansion of a wedge of gas into vacuum is such a case. Assuming the

flow is irrotational, a classical hodograph transformation (see [21]) can be used to eliminate

the two self-similar variables to result in a partial differential equation of second order for the

speed of sound c in the velocity variables (u,v). It has been known that the difficulties of the

procedure are that the transformation is degenerate for common waves such as the constant

states and some other types of waves resembling the simple waves of the steady Euler system,

and the transformation of boundaries is difficult to handle. In 2001, Li ([13]) carried out

an anaysis of the second order equation in the space (c,u,v), where he discovered a pair of

variables resembling the well-known Riemann invariants together with their invariant regions

and established the existence of a solution to the expansion of a wedge of gas into vacuum

in the hodograph plane for wide ranges of the gas constant and the wedge angle. Recently in

2006, paper [15], in an attempt to establish the inversion of the hodograph mapping, clarified

the concept of simple waves for (1.1). We show in this paper that the hodograph transformation

is non-degenerate precisely for non-simple waves, and all the solutions constructed in [13] in

the hodograph plane can now be transformed back to the self-similar plane. Thus we complete

the procedural circle of construction of solutions.

We find that the circle of construction bears very interesting similarity to the construction

of centered rarefaction waves in the one-dimensional systems of conservation laws. The self-

similar variable(s) in both cases decouple from the phase space(s), and the equations in the

phase space(s) are solved first. The development of the solutions from the phase space onto

the physical space(s) requires genuine nonlinearity in the one-dimensional case and a non-

degeneracy condition of the hodograph transformation in the two-dimensional case.

The key ingredient of the paper is the simplification of the form of the equations in the

phase space brought about by the employment of the inclination angles of characteristics.

The approach now presents itself as a method of significant potential for the study of the

pseudo-steady Euler system in hyperbolic regions. It yields structure of solutions in addition

to existence. We use this approach for example to establish the Lipschitz continuity and mono-

tonicity behavior of the vacuum boundary in the problem of a wedge of gas into vacuum and

establish the dependence of the location of the boundary on the wedge angle and gas constant.

The approach is particularly suitable for studying two-dimensional Riemann problems ([26]),

since the apparent nature of the solutions of a Riemann problem is piece-wise smooth.

The expansion problem of gas into vacuum has been a favorite for a long time. The problem

has been interpreted hydraulically as the collapse of a wedge–shaped dam containing water

initially with a uniform velocity, see Levine [11]. In Suchkov [24], a set of interesting explicit

solutions were found. Mackie [19] proposed a scalar equation of second order for a potential

function, studied the interface of gas and vacuum by the method of unsteady Prandtl–Meyer

expansions and related it to the PSI approach in [21], from which Li ([13]) started with new

motivation from the success on the pressure gradient system ([7]). In the context of two-
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dimensional Riemann problems, the expansion problem of a wedge of gas into vacuum is the

interaction of two two-dimensional planar rarefaction waves. We see it as one of two possible

interactions of continuous waves in the hyperbolic region; this one expands without shocks but

with a boundary degeneracy, while the other one forms shocks with a sonic boundary as well

as a shock boundary. The method applies locally in both cases. A quick round-up of cases

that involves hyperbolic regions of non-constant continuous waves [1, 2, 10, 3, 8, 22, 14, 27]

show that the approach taken here has general applicability.

Our main results are the simple form of the equations in the phase space (c,u,v) (system

(6.16)), the existence of solutions of the expansion of a wedge of gas into vacuum (Theorem

7.2), and the detailed properties of the expansion (Theorems 7.3–7.4). We provide some

background information as well regarding the hodograph transformation and simple waves

in Sections 2–5 for the convenience of nonexpert readers. Section 6 is for the phase space

analysis, while Section 7 handles the gas expansion problem. We point out that the main

work of this paper is the estimates of the solutions in the phase space for establishing the

validity of the inversion of the hodograph transformation. The notorious difficulty of the

inversion manifests itself in the fact that the characteristics in the phase space do not have a

fixed concavity type although the corresponding characteristics in the physical space do, see

Subsections 7.5 and 7.7. We mention additionally that hodograph transforms have been used

in various forms, see [20, 4] and references therein.

Here is a list of our notations: ρ density, p pressure, (u,v) velocity, c =
√

γp/ρ speed of

sound, i = c2/(γ−1) enthalpy, γ gas constant, (ξ,η) = (x/t,y/t) the self-similar (or pseudo-

steady) variables, ϕ pseudo-velocity potential, θ wedge half-angle, and

U = u−ξ, V = v−η, κ = (γ−1)/2, m = (3− γ)/(γ+1).

Letters C, C1 and C2 denote generic constants.

2 Primary system

Our primary system is system (1.1) in the self–similar variables (ξ,η) = (x/t,y/t):
⎧
⎪⎪⎨

⎪⎪⎩

(u−ξ)iξ +(v−η)iη +2κ i(uξ + vη) = 0,

(u−ξ)uξ +(v−η)uη + iξ = 0,

(u−ξ)vξ +(v−η)vη + iη = 0.

(2.1)

We assume further that the flow is ir-rotational:

uη = vξ. (2.2)

Then, we insert the second and third equations of (2.1) into the first one to deduce the system,
{

(2κ i− (u−ξ)2)uξ − (u−ξ)(v−η)(uη + vξ)+(2κ i− (v−η)2)vη = 0,
uη − vξ = 0,

(2.3)
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supplemented by Bernoulli’s law

i+
1

2
((u−ξ)2 +(v−η)2) = −ϕ, ϕξ = u−ξ, ϕη = v−η. (2.4)

We remark that the difference between the pseudo-steady flow (2.3) and the steady case (3.27)

(see Subsection 3.1) is that the latter is self-contained, since the sound speed c can be expressed

by a pointwise function of the velocity explicitly through Bernoulli’s law (3.28).

3 Concept of Hodograph Transformation

We introduce briefly the well-known hodograph transformation. The original form of a hodo-

graph transformation is for a homogeneous quasi-linear system of two first-order equations

for two known variables (u,v) in two independent variables (x,y). By regarding (x,y) as func-

tions of (u,v) and assuming that the Jacobian does not vanish nor is infinity, one can re-write

the system for the unknowns (x,y) in the variables (u,v), which is a linear system if the coef-

ficients of the original system do not depend on (x,y). See the book of Courant and Friedrichs

[5]. Specifically, consider the system of two equations of the form,
(

u

v

)

x

+A(u,v;x,y)

(
u

v

)

y

= 0, (3.1)

where the coefficient matrix A(u,v;x,y) is

A(u,v;x,y) =

(
a11 a12

a21 a22

)
. (3.2)

The two eigenvalues, denoted by Λ±, satisfies,

Λ2
±− (a11 +a22)Λ± + |A| = 0. (3.3)

We introduce the hodograph transformation,

T : (x,y) → (u,v). (3.4)

Then (3.1) is reduced to the system
(

yv

−yu

)
+A(u,v;x,y)

(
−xv

xu

)
= 0. (3.5)

Its eigenvalues, denoted by λ±, satisfy

a12λ2
±− (a22 −a11)λ±−a21 = 0. (3.6)

Obviously, if the coefficient matrix A does not depend on (x,y), (3.5) becomes a linear system

for the unknowns (x,y).

The following proposition establishes the invariance of characteristics under the hodograph

transformation.
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Proposition 3.1 (Invariance of characteristics). A characteristic of (3.1) in the (x,y) plane

is mapped into a characteristic of (3.5) in the (u,v) plane by the hodograph transform T .

Proof. Let y = y(x) be a characteristic with
dy
dx

= Λ±. Its image is v = v(u) under the hodo-

graph transform (3.4). Then we have

dy

dx
=

yu + yv · dv
du

xu + xv · dv
du

= Λ±, (3.7)

i.e.,
dv

du
= −Λ±xu − yu

Λ±xv − yv
. (3.8)

Using (3.5) we find

(Λ±xu − yu)+λ±(Λ±xv − yv) = 0. (3.9)

Therefore we have
dv

du
= λ±, (3.10)

which completes the proof of this proposition.

The idea of hodograph transformation does not obviously generalize to other systems such

as system (2.3) of more than two simple equations or for inhomogeneous systems.

For (2.3), one realizes that the three variables (i,u,v) are functions of (ξ,η), so one can

still try to use (u,v) as the independent variables and regard (ξ,η) as functions of (u,v) and

ultimately regard i as a function of (u,v). In this way we may obtain an equation for i = i(u,v)
in the plane (u,v) which eliminates (ξ,η). This was done in 1958 in a paper [21] by Pogodin,

Suchkov and Ianenko, and has been referred to as the PSI approach. The implementation is as

follows. Let the hodograph transformation be

T : (ξ,η) → (u,v) (3.11)

for (2.1), reverse the roles of (ξ,η) and (u,v) and regard i as a function of (u,v). Then i as the

function of u and v satisfies

(uξvη −uηvξ)di = (iξvη − iηvξ)du+(−iξuη + iηuξ)dv. (3.12)

We insert this into the law of momentum conservation of (2.1) and use the ir-rotationality

condition (2.2) to obtain
ξ−u = iu,
η− v = iv.

(3.13)

These interesting identities provide an explicit correspondence between the physical plane and

the hodograph plane provided that the transformation T is not degenerate.
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Therefore, using (3.13), we convert (2.3) into a “linear” (in fact, linearly degenerate, see

Section 6) system

{
(2κ i(u,v)− i2u)ηv + iuiv(ξv +ηu)+(2κ i− i2v)ξu = 0,
ξv −ηu = 0.

(3.14)

for the unknowns (ξ,η). The difficulty here is that i, as a function of u and v, cannot be

determined explicitly and point-wise. We will remark more later in contrast with the steady

case.

We continue to differentiate (3.13) with respect to u and v:

ξu = 1+ iuu, ξv = iuv,
ηu = iuv, ηv = 1+ ivv,

(3.15)

and inserting these into the first equations of (3.14) to obtain,

(2κ i− i2u)ivv +2iuiviuv +(2κ i− i2v)iuu = i2u + i2v −4κ i. (3.16)

This is a very interesting second order partial differential equation for i alone. So the study of

ir-rotational, pseudo-steady and isentropic fluid flow can proceed along (3.16).

We point out for the case γ = 1 that the dependent variable i = lnρ, instead of i = c2/(γ−1),
is used [12]. Then we can obtain a similar equation for i,

(1− i2u)ivv +2iuiviuv +(1− i2v)iuu = i2u + i2v −2. (3.17)

We will establish in the pseudo-steady case that the transform is not degenerate, i.e.,

JT (u,v;ξ,η) =
∂(u,v)

∂(ξ,η)
= uξvη −uηvξ �= 0 (3.18)

in regions of non-simple waves, to be detailed later. In the direction from (u,v) plane to the

(ξ,η) plane, it is more direct to compute

J−1
T (u,v;ξ,η) = ξuηv −ξvηu �= 0. (3.19)

Noting that (2.3) and (3.14) are all two by two systems, we use Proposition 3.1 to assert

that the characteristics of (2.3) are mapped into the characteristics of (3.14) by the hodograph

transformation (3.11). Moreover, the eigenvalues of (2.3) are

Λ± =
(u−ξ)(v−η)± c

√
(u−ξ)2 +(v−η)2 − c2

(u−ξ)2− c2
, (3.20)

while the eigenvalues of (3.14) are

λ± =
iuiv ± c

√
(i2u + i2v − c2)

c2 − i2v
. (3.21)
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By using (3.13), it is easy to see that

λ± = − 1

Λ∓
. (3.22)

Furthermore, there is a correspondence between Λ± and λ±. Indeed, let η = η(ξ) be a char-

acteristic curve in the (ξ,η) plane with
dη
dξ

= Λ+ and be mapped onto a curve v = v(u). Then,

using (3.15) and (3.22), we have

Λ =
dη

dξ
=

ηu +ηv
dv
du

ξu +ξv
dv
du

, (3.23)

i.e.,
dv

du
= −ξuΛ+−ηu

ξvΛ+−ηv

= −(1+ iuu)Λ+− iuv

iuvΛ+− (1+ ivv)
= − iuu +1+λ−iuv

iuv +λ−(ivv +1)
. (3.24)

We rewrite (3.16) as

iuu +1+(λ−+λ+)iuv +λ−λ+(ivv +1) = 0. (3.25)

Then we conclude
dv

du
= λ+. (3.26)

Similarly we obtain the correspondence between Λ− and λ−.

3.1 Steady Euler

The steady isentropic and irrotational Euler system of (1.1) has the form
{

(c2 −u2)ux −uv(uy + vx)+(c2 − v2)vy = 0,
uy − vx = 0,

(3.27)

where c is the sound speed, given by Bernoulli’s law

u2 + v2

2
+

c2

γ−1
=

k0

2
, (3.28)

where k0 is a constant. See [5]. Using the hodograph transform from (x,y) to (u,v), we obtain

a linear system, {
(2κ i−u2)yv +uv(xv + yu)+(2κ i− v2)xu = 0,
xv − yu = 0.

(3.29)

The hodograph transform is valid in the region of non-simple waves. With the same set of

steps in deriving (3.13), we obtain

−u = iu, −v = iv. (3.30)

This can also be obtained formally from (3.13) by regarding the steady flow as the limit of

unsteady flow (1.1) in t → ∞. Comparing (3.30) with (3.13), we see that it is much more

difficult to convert the hodograph plane of the steady case back into the physical plane than the

pseudo-steady case. However, system (3.29) has more advantage over (3.14) of the pseudo–

steady case because i is expressed in an explicit form by Bernoulli’s law (3.28).
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3.2 Similarity to one-dimensional problems

The current approach parallels the procedure that is used to find centered rarefaction waves to

genuinely nonlinear strictly hyperbolic systems of conservation laws in one space dimension.

Recall for a one-dimensional system ut + f (u)x = 0 of n equations, a centered rarefaction wave

takes the form ξ = λk(u) for a k ∈ (1,n) and the state variable u satisfies the system of ordinary

differential equations ( f ′(u)−λk(u)I)uξ = 0, whose solutions are rarefaction wave curves in

the phase space. The development (or inversion) of the phase space solutions onto the ξ−axis

requires the monotonicity of λk(u) along the vector field of the k−th right eigenvector rk; i.e.,

the genuine nonlinearity. For the self-similar 2-D Euler system, we have a pair ξ = u+ iu,η =
v + iv from (3.13) in place of ξ = λk(u); and the second-order partial differential equation

(3.16) in place of the ordinary differential system. For inversion to the physical space, we

show that the Jacobian J−1
T of (3.19) does not vanish.

4 Simple waves

4.1 Concept of simple waves

Now we recall some facts about simple waves. Simple waves were systematically studied, e.g.

in [9], for hyperbolic systems in two independent variables,

ut +A(u)ux = 0, (4.1)

where u = (u1, · · · ,un)
⊤, the n×n matrix A(u) has real and distinct eigenvalues λ1 < · · ·< λn

for all u under consideration. They are defined as a special family of solutions of the form

u = U(φ(x, t)). (4.2)

The function φ = φ(x, t) is scalar. Substituting (4.2) into (4.1) yields

U ′(φ)φt +A(U(φ))U ′(φ)φx = 0, (4.3)

which implies that −φt/φx is an eigenvalue of A(U(φ)) and U ′(φ) is the associated eigenvector.

This concludes that in the (x, t) plane a simple wave is associated with a kind of characteristic

field, say, λk, and spans a domain in which characteristics of the k-kind are straight along

which the solution is constant.

The property of simple waves can be analyzed by using Riemann invariants. A Riemann

invariant is a scalar function w = w(x, t) satisfying the following condition,

rk ·grad w = 0, (4.4)

for all values of u, where rk is the k-th right eigenvector of A. Using the Riemann invariants,

it can be shown that a state in a domain adjacent to a domain of constant state is always a

simple wave.
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In general, system (4.1) is not endowed with a full coordinate system of Riemann invariants

such that it is transformed into a diagonal form [6]. Note that in (4.1) the coefficient matrix A

depends on u only. Once A depends on x and t as well as u, the treatment in [9] and [6] breaks

down. For example, we are unable to use the same techniques to show that it is a simple wave

to be adjacent to a constant state.

4.2 Simple waves for pseudo-steady Euler equations

We introduce in a traditional manner a simple wave for (2.3) as a solution (u,v) = (u,v)(ξ,η)
that is constant along the level set l : l(ξ,η) =C for some function l(ξ,η), where C is constant.

That is, this solution has the form,

(u,v)(ξ,η) = (F,G)(l(ξ,η)). (4.5)

Inserting this into (2.3) gives

(
(2κ i−U2)lξ −UVlη, −UVlξ +(2κ i−V 2)lη

lη −lξ

)(
F ′

G′

)
= 0. (4.6)

Here we use U := u−ξ,V := v−η for short. It turns out that (F ′,G′) = (0,0) or there exists

a singular solution for which the coefficient matrix becomes singular. The former just gives a

trivial constant solution. But for the latter, l(ξ,η) satisfies

(2κ i−U2)l2
ξ −2UVlξlη +(2κi−V 2)l2

η = 0; (4.7)

i.e.,

−
lξ

lη
=

UV ±{2κ i(U2 +V 2 −2κ i)}1/2

U2 −2κ i
=: Λ±, (4.8)

which implies that the level curves l(ξ,η) = C are characteristic lines, and

F ′ +Λ±G′ = 0 (4.9)

holds along each characteristic line l(ξ,η) = C locally at least.

In a recent paper by Li, Zhang, Zheng [15], the pseudo-steady full Euler is shown to have

a characteristic decomposition. Let us quote several identities from that paper. First, the flow

will be isentropic and ir-rotational adjacent to a constant state. Then the pseudo-characteristics

are defined as
dη

dξ
=

UV ± c
√

U2 +V 2 − c2

U2 − c2
≡ Λ±. (4.10)

Here c is the speed of sound c2 = γp/ρ. Regarding Λ± as simple straight functions of the three

independent variables (U,V,c2), we have

∂U Λ = Λ(UΛ−V )/Θ, ∂V Λ = (V −UΛ)/Θ, ∂c2Λ = −(1+Λ2)/(2Θ) (4.11)

9



where Θ := Λ(c2 −U2)+UV. Then we further obtain

∂±u+Λ∓∂±v = 0, (4.12)

∂±c2 = −2κ
(
U∂±u+V∂±v

)
, (4.13)

∂±Λ± = [∂U Λ±−Λ−1
∓ ∂V Λ±−2κ(U −V/Λ∓)∂c2Λ±]∂±u, (4.14)

where ∂± = ∂ξ +Λ±∂η. We keep ∂± for later use in the hodograph plane. Thus, if one of the

quantities (u,v,c2) is a constant along Λ−, so are the remaining two and Λ−. The same is true

for the plus family Λ+. Hence we have

Proposition 4.1 (Section 4, [15]). For the irrotational and isentropic pseudo-steady flow (2.1)

or (2.3), we have the following characteristic decomposition

∂+∂−u = h∂−u, ∂−∂+u = g∂+u, (4.15)

where h = h(u,v,c) and g = g(u,v,c) are some functions. Similar decompositions hold for

v, c2 and Λ±. We further conclude that simple waves are waves such that one family of

characteristic curves are straight along which the physical quantities (u,v,c2) are constant.

5 Convertibility

We are now ready to discuss the non-degeneracy of hodograph transformation (3.11).

Theorem 5.1 (Sufficient and Necessary Condition). Let the ir-rotational, isentropic and

pseudo-steady fluid flow (2.1) be smooth at a point (ξ,η) = (ξ0,η0). Then the Jacobian

JT (u,v;ξ,η) of the hodograph transformation (3.11) vanishes in a neighborhood of the point

if the flow is a simple wave in the neighborhood. Conversely, if the Jacobian JT (u,v;ξ,η)
vanishes in a neighborhood of the point, then the flow is a simple wave in the neighborhood.

Proof. Assume first that c2 −V 2 �= 0 at (ξ,η) = (ξ0,η0). We compute

JT (u,v;ξ,η) = uξvη −uηvξ

= − 1

c2 −V 2
· [((c2−U2)uξ −2UVuη)uξ]−u2

η

= − 1

c2 −V 2
· [(c2 −U2)u2

ξ −2UVuξuη +(c2 −V 2)u2
η].

(5.1)

Therefore, the degeneracy of the transformation implies

(c2 −U2)u2
ξ −2UVuξuη +(c2 −V 2)u2

η = 0. (5.2)

It follows that

−
uξ

uη
= Λ±. (5.3)

10



That is,

uξ +Λ+uη = 0, or uξ +Λ−uη = 0, (5.4)

at (ξ0,η0). For the former, we deduce that ∂+u = 0 along the whole Λ−-characteristic line

through (ξ0,η0) in view of (4.15) in Proposition 4.1, and so do ∂+v and ∂+c. Therefore,

conclude that the wave is a simple wave associated with Λ+.

Conversely, if a point (ξ,η) = (ξ0,η0) is in the region of a simple wave, then equation (5.4)

hold either for the plus or minus families. From there we go up the derivation to find that the

Jacobian vanishes in the same neighborhood.

The case that c2 − (v−η)2 = 0 is a special planar simple wave. Therefore the conclusion

follows naturally.

We comment that the Jacobian JT (u,v;ξ,η) can be factorized as

JT (u,v;ξ,η) = − 1

Λ−Λ+
∂+u ·∂−u = −∂+v ·∂−v. (5.5)

6 Phase space system of equations

In this section we use the inclination angles of characteristics as useful variables to rewrite

(3.16) in the hodograph plane. We proceed as follows. We first transform the second order

equation (3.16) into a first-order system of equations as in [13]. Introduce

X = iu, Y = iv. (6.1)

Then we deduce a 3×3 system of first order equations,

⎡
⎣

2κ i−Y 2 XY 0

0 1 0

0 0 1

⎤
⎦

⎡
⎣

X

Y

i

⎤
⎦

u

+

⎡
⎣

XY 2κ i−X2 0

−1 0 0

0 0 0

⎤
⎦

⎡
⎣

X

Y

i

⎤
⎦

v

=

⎡
⎣

X2 +Y 2 −4κ i

0

X

⎤
⎦ . (6.2)

This system is equivalent to (3.16) for C1 solutions if the given datum for Y is compatible with

the datum for iv. This system has three eigenvalues

λ0 = 0,

dv

du
= λ± =

XY ±
√

2κi(X2 +Y 2 −2κi)

2κ i−Y 2
=

2κi−X2

XY ∓
√

2κi(X2 +Y 2 −2κi)
,

(6.3)

11



from which we deduce that (6.2) is hyperbolic if X2 +Y 2 − 2κi > 0 provided that i > 0 and

2κi−Y 2 �= 0 (or 2κi−X2 �= 0). If 2κi−Y 2 = 0 or 2κi−X2 = 0, we have planar rarefaction

waves in the neighborhood. The three associated left eigenvectors with (6.3) are

l0 = (0,0,1), l∓ = (∓1,
√

2κi(X2 +Y 2 −2κi),0). (6.4)

We multiply (6.2) by the left eigen matrix M = (l+, l−, l0)
⊤ (here and onward the superscript

⊤ means transpose) from the left–hand side to obtain

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xu +λ−Yu +λ+(Xv +λ−Yv) =
X2 +Y 2 −4κi

2κi−Y 2
,

Xu +λ+Yu +λ−(Xv +λ+Yv) =
X2 +Y 2 −4κi

2κi−Y 2
,

iu = X .

(6.5)

Introduce the inclination angles α, β (−π/2 < α, β < π/2) of Λ+ and Λ−-characteristics

by

tanα = Λ+, tanβ = Λ−. (6.6)

Note that, see (3.22),

Λ+ = − 1

λ−
, Λ− = − 1

λ+
; (6.7)

and denote

A := tan(α/2), B := tan(β/2). (6.8)

This explains the Riemann invariant introduced in [13]. Then we find that X , Y are related

with A, B through the following identities,

A =
X −

√
X2 +Y 2 − c2

c−Y
,

B = −X −
√

X2 +Y 2 − c2

c+Y
, (c2 = 2κi),

(6.9)

or

X =
c(1−AB)

A−B
, Y =

c(A+B)

A−B
. (6.10)

In terms of α, β, we have

X = c
cos

(
α+β

2

)

sin
(

α−β
2

) , Y = c
sin

(
α+β

2

)

sin
(

α−β
2

) . (6.11)
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We observe that the variables α, β are Riemann invariants for (6.5). In fact, we can write (6.5)

as

∂+α =
1+κ

2c
· sin(α−β)

sinβ
·
[

m− tan2

(
α−β

2

)]
,

∂−β =
1+κ

2c
· sin(α−β)

sinβ
·
[

m− tan2

(
α−β

2

)]
,

∂0c = κ
cos

(
α+β

2

)

sin
(

α−β
2

) ,

(6.12)

where we use the notations of directional derivatives,

∂+ =
∂

∂u
+λ+

∂

∂v
, ∂− =

∂

∂u
+λ−

∂

∂v
, ∂0 =

∂

∂u
, (6.13)

and keep the letter m for

m =
1−κ

1+κ
=

3− γ

1+ γ
. (6.14)

We further introduce the normalized directional derivatives along characteristics,

∂̄+ = (sinβ,−cosβ) · (∂u,∂v), ∂̄− = (sinα,−cosα) · (∂u,∂v). (6.15)

They are coordinate-free. Using them, we write (6.12) as,

∂̄+α =
1+κ

2c
· sin(α−β) ·

[
m− tan2

(
α−β

2

)]
=: G(α,β,c),

∂̄−β =
1+κ

2c
· sin(α−β) ·

[
m− tan2

(
α−β

2

)]
≡ G(α,β,c),

∂0c = κ
cos

(
α+β

2

)

sin
(

α−β
2

) .

(6.16)

In particular, we note that

∂̄+c = −κ, ∂̄−c = κ. (6.17)

This highlights that the first two equations of (6.16) are entirely decoupled from the third c-

equation. In addition, each of the first two equations of (6.16) is actually a decomposition of

the second-order equation (3.16) for c.

Note from (6.6) and (6.7) that λ+ =−cotβ and λ− =−cotα. The system (6.12) is linearly

degenerate in the sense of Lax [9]. For the particular case that (α−β)/2 = (1−κ)/(1 + κ)
for 1 < γ < 3, the first two equations become homogeneous equations

αu +λ+αv = 0,

βu +λ−βv = 0,
(6.18)
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which always have a unique global continuous solution provided that the corresponding initial

and/or boundary data have a uniform bound in C1 norm (cf. [17]). In fact, the explicit solutions

of Suchkov [24] in the expansion problem of a wedge of gas into a vacuum is such a case, see

Remark 7.1 in Section 7.

The mapping (X ,Y) → (α,β) is bijective as long as system (6.5) is hyperbolic.

We summarizes the above as follows, which is similar to [13]:

Theorem 6.1. The two–dimensional pseudo-steady, irrotational, isentropic flow (3.16) can

be transformed into a linearly degenerate system of first order partial differential equations

(6.12) or (6.16) provided that the transform (X ,Y) → (α,β) is invertible, i.e., system (6.5) is

hyperbolic.

Regarding ∂̄−α and ∂̄+β, we have second-order equations although we are unable to obtain

explicit expressions for them like (6.16). By direct computations, we obtain

Lemma 6.1 (Commutator relation of ∂±). For any quantity I = I(u,v), there holds

∂−∂+I −∂+∂−I =
∂−λ+−∂+λ−

λ−−λ+
(∂−I −∂+I). (6.19)

Lemma 6.2 (Commutator relation of ∂̄±). For any quantity I = I(u,v), there holds,

∂̄−∂̄+I − ∂̄+∂̄−I =
1− cos(α−β)

sin(α−β)
(∂̄−I + ∂̄+I)∂̄+α, (6.20)

where ∂̄+α is given in (6.16). Noting ∂̄+α = ∂̄−β in (6.16), we can also use ∂̄−β in (6.20).

Using these commutator relations, we easily derive:

Theorem 6.2. Assume that the solution of (6.16) (α,β) ∈C2. Then we have

∂̄+∂̄−α+W ∂̄−α = Q(α,β,c),

−∂̄−∂̄+β+W ∂̄+β = Q(α,β,c),
(6.21)

where W (α,β,c) and Q(α,β,c) are

W (α,β,c) =
1+κ

2c

[(
m− tan2 ω

)(
3tan2 ω−1

)
cos2 ω+2tan2 ω

]
,

Q(α,β,c) =
(1+κ)2

4c2
sin(2ω)

(
m− tan2 ω

)(
3tan2 ω−1

)
,

ω =
α−β

2
.

(6.22)
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Proof. The proof is simple. Recall from (6.17) that

∂̄+c = −κ, ∂̄−c = κ. (6.23)

Then we apply the commutator relation to obtain (setting I = α in (6.20))

∂̄+∂̄−α = ∂̄−∂̄+α+
1− cos(α−β)

sin(β−α)
(∂̄−α+ ∂̄+α)∂̄−β. (6.24)

Using the expressions of ∂̄+α and ∂̄−β in (6.16), we compute directly to yield the result in

(6.21) and the proof of Theorem 6.2 is complete.

7 The gas expansion problem

We now use the hodograph transformation and the decomposition of the previous section to

study the expansion of a wedge of gas into vacuum. The problem was studied earlier in

[24, 19, 11, 13], and especially by Li in [12, 13], but the solution of Li is in the hodograph

plane for 1 ≤ γ < 3, and the behavior of the vacuum boundary was left open. We continue the

effort of Li and prove that the solution in the hodograph plane can be transformed back to the

physical self-similar plane for all γ > 1 and the vacuum boundary is a Lipschitz continuous

curve which is monotone in the upper and lower parts of the wedge respectively. We also

determine explicitly the relative location of the vacuum boundary with respect to the vertical

position of the explicit solution of Suchkov [24]. Moreover, we can draw a clear picture of the

distribution of characteristics. For notational simplicity in this section, we use m̄, m0, defined

by

tan2 m̄ = m, m0 = 1/
√

m, (7.1)

for 1 < γ < 3; and m̄ ≡ 0 for γ ≥ 3.

7.1 The planar rarefaction waves.

First we prepare our planar rarefaction waves. Assume that the initial data for (1.1) is

(ρ,u,v)(x,y,0) =

{
(ρ1,0,0), for n1x+n2y > 0,

vacuum, for n1x+n2y < 0,
(7.2)

where n2
1 + n2

2 = 1, and ρ1 is a constant. The solution of (1.1) and (7.2) takes the form, see

[14],

(ρ,u,v)(x,y, t) =

⎧
⎪⎨
⎪⎩

(ρ1,0,0), ζ > 1,

(ρ,u,v)(ζ), −1/κ ≤ ζ ≤ 1,

vacuum, ζ < −1/κ,

(7.3)
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where ζ = n1ξ+n2η, (ξ,η) = (x/t,y/t), and the solution (c,u,v) has been normalized so that

c1 = 1. The rarefaction wave solution (ρ,u,v)(ζ) satisfies

ζ = n1u+n2v+ c,
n1

κ
c−u =

n1

κ
,

n2

κ
c− v =

n2

κ
. (7.4)

Note that this rarefaction wave corresponds to a segment in the hodograph plane, n2u−n1v =
0, −n1/κ ≤ u ≤ 0.

In particular, when we consider the rarefaction wave propagates in the x-direction, i.e.,

(n1,n2) = (1,0), this wave can be expressed as

x/t = u+ c, c = κu+1, v ≡ 0, −1/κ ≤ u ≤ 0. (7.5)

That is, in the hodograph (u,v) plane, this rarefaction wave is mapped onto a segment v ≡ 0,

−1/κ ≤ u ≤ 0, on which we have

i =
1

2κ
(κu+1)2, iu = κu+1, iuu = κ. (7.6)

When we consider the expansion problem of a wedge of gas in the next subsection, we need

to know not only the derivatives of i with respect to u in (7.6), but also the derivatives with

respect to v, on the segment v ≡ 0, −1/κ ≤ u ≤ 0. For this purpose, we insert (7.6) into (3.16)

to obtain

(i2v)u −
κ+1

κu+1
i2v = −(κ+1)(κu+1). (7.7)

Solving this equation in terms of i2v yields,

i2v =

⎧
⎨
⎩

(κu+1)2

[
1

m
+

(
C2 − 1

m

)
(κu+1)

1−κ
κ

]
, for γ �= 3,

(1+u)2[C2−2ln(1+u)], for γ = 3,

(7.8)

where C is an integral constant. This was obtained in [11].

7.2 A wedge of gas

We place the wedge symmetrically with respect to the x–axis and the sharp corner at the origin,

as in Figure 7.1(a). This problem is then formulated mathematically as seeking the solution

of (1.1) with the initial data,

(i,u,v)(t = 0,x,y) =

{
(i0,u0,v0), −θ < δ < θ,

(0, ū, v̄), otherwise,
(7.9)

where i0 > 0, u0 and v0 are constant, (ū, v̄) is the velocity of the wave front, not being specified

in the state of vacuum, δ = arctany/x is the polar angle, and θ is the half-angle of the wedge
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Figure 7.1: The expansion of a wedge of gas

restricted between 0 and π/2. This can be considered as a two–dimensional Riemann problem

for (1.1) with two pieces of initial data (7.9). As we will see below, this problem is actually

the interaction of two whole planar rarefaction waves. See Figure 7.1(b). We note that the

solution we construct is valid for any “portions” of (7.9) as the solutions are hyperbolic.

The gas away from the sharp corner expands into the vacuum as planar rarefaction waves

R1 and R2 of the form (i,u,v)(t,x,y) = (i,u,v)(ζ) (ζ = (n1x + n2y)/t) where (n1,n2) is the

propagation direction of waves. We assume that initially the gas is at rest, i.e., (u0,v0) =
(0,0). Otherwise, we replace (u,v) by (u− u0,v− v0) and (ξ,η) by (ξ− u0,η− v0) in the

following computations (see also (2.1)). We further assume that the initial sound speed is

unit since the transformation (u,v,c,ξ,η)→ c0(u,v,c,ξ,η) with c0 > 0 can make all variables

dimensionless. Then the rarefaction waves R1, R2 emitting from the initial discontinuities l1, l2
are expressed in (7.4) with (n1,n2) = (sinθ,−cosθ) and (n1,n2) = (sinθ,cosθ), respectively.

These two waves begin to interact at P = (1/sinθ,0) in the (ξ,η) plane due to the presence

of the sharp corner and a wave interaction region, called the wave interaction region D , is

formed to separate from the planar rarefaction waves by k1, k2,

k1 : (1−κ2)ξ2
1 − (κη1 +1)2 = 2(1−κ)/κC(κη1 +1)(κ+1)/κ, (ξ1 > 0,−1 ≤ η1 ≤ 1/κ),

k2 : (1−κ2)ξ2
2 − (κη2 +1)2 = 2(1−κ)/κC(κη2 +1)(κ+1)/κ, (ξ2 > 0,−1/κ ≤ η2 ≤ 1),

(7.10)

where k1 and k2 are two characteristics from P, associated with the nonlinear eigenvalues of

system (2.1), see [14, 26], and the constant C is

C = (γ+1)

[
1√

γ(γ+1)

](γ+1)/(γ−1)

·
[
(3− γ)(γ)−(γ+1)/(2(γ−1)) +(γ+1)(γ)(γ−3)/(2(γ−1))

]
,

(7.11)
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and {
ξ1 = ξcosθ+ηsinθ,

η1 = −ξsinθ+ηcosθ,

{
ξ2 = ξcosθ−ηsinθ,

η2 = ξsinθ+ηcosθ.
(7.12)

So, the wave interaction region D is bounded by k1, k2 and the interface of gas with vacuum,

connecting D and E, see Figure 7.1(b). The solution outside D consists of the constant state

(i0,u0,v0), the vacuum, and the planar rarefaction waves R1 and R2.

Problem A. Find a solution of (2.1) inside the wave interaction region D , subject to the

boundary values on k1 and k2, which are determined continuously from the rarefaction waves

R1 and R2.

This problem is a Goursat–type problem for (2.1) since k1 and k2 are characteristics. Our

strategy to solve this problem is to use the hodograph transform, solve the associated problem

in the hodograph plane, and show that the hodograph transformation is invertible.

Note that initial data (7.9) is ir-rotational, we conclude that the flow is always ir-rotational

provided that it is continuous. So the irrotationality condition (2.2) holds and all results about

the hodograph transformation can be used to treat this problem. Then Problem A can be

converted into a problem in the hodograph plane.

For this purpose, we need to map the wave interaction region D in the (ξ,η) plane into a

region Ω in the (u,v) plane. Notice that the mapping of the planar rarefaction waves R1 and

R2 into (u,v) plane are exactly two segments

H1 : ucosθ+ vsinθ = 0, (−sinθ/κ ≤ u ≤ 0) and

H2 : ucosθ− vsinθ = 0, (−sinθ/κ ≤ u ≤ 0).

The boundary values of c on H1, H2, are

c|H1
= 1+κv′ =: c1

0, c|H2
= 1+κv′′ =: c2

0, (7.13)

where v′ = usinθ− vcosθ and v′′ = usinθ+ vcosθ. Obviously,

0 ≤ c1
0,c

2
0 ≤ 1. (7.14)

Thus the wave interaction region Ω is bounded by H1, H2 and the interface of vacuum con-

necting D and E in the hodograph (u,v)-plane, see Figure 7.2. We define Ω more precisely to

contain the boundaries H1 and H2, but not the vacuum boundary c = 0.

Boundary conditions. We need to derive the necessary boundary conditions on H1 and

H2, respectively. This can be done simply by using coordinate transformations for (7.6) and

(7.8). Indeed, denote temporarily (cf. (7.8))

Γ(u,C) :=

⎧
⎪⎨
⎪⎩

[
1
m

+
(
C2 − 1

m

)
(κu+1)

1−κ
κ

] 1
2
, for γ �= 3,

[C2 −2ln(1+u)]
1
2 , for γ = 3,

(7.15)
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Figure 7.2: Wave interaction region in the hodograph plane

Then we have
iu = (1−κv′){Γ(v′,C1)cosθ+ sinθ} ,

iv = (1−κv′){(Γ(v′,C1)sinθ− cosθ} ,
on H1, (7.16)

and
iu = (1+κv′′){Γ(v′′,C2)cosθ+ sinθ} ,

iv = (1+κv′′){−Γ(v′′,C2)sinθ+ cosθ} ,
on H2, (7.17)

where C1 and C2 are two constants. Applying the compatibility condition that iu, iv are con-

tinuous at (u,v) = (0,0), we obtain

C1 = −C2 = cotθ. (7.18)

Thus we obtain the boundary conditions as in (7.16) and (7.17).

In order to evaluate the boundary values of α, β, we substitute (7.13), (7.16)–(7.17) into

(6.9) to deduce

A|H1
=

sinθ

1+ cosθ
= tan(θ/2),

B|H1
= −−Γ(v′,cotθ)sinθ+(1+ cosθ)

Γ(v′,cotθ)(1+ cosθ)+ sinθ
=: B1,

A|H2
=

−Γ(v′′,cotθ)sinθ+(1+ cosθ)

Γ(v′′,cotθ)(1+ cosθ)+ sinθ
=: A2,

B|H2
= −1+ cosθ

sinθ
= − tan(θ/2).

(7.19)

Thus the boundary values for α, β on H1 and H2 are

α|H1
= θ, β|H1

= 2arctan(−B1),
α|H2

= 2arctan(A2), β|H2
= −θ.

(7.20)
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The boundary values of c on H1 and H2 are given in (7.13). Now Problem A becomes:

Problem B. Find a solution (α,β,c) of (6.12) with boundary values (7.20) and (7.13), in the

wave interaction region Ω in the hodograph plane.

In order to solve Problem B, we estimate the boundary values (7.20) and (7.13).

Lemma 7.1 (Boundary data estimate). For the boundary data (7.20) on the boundaries Hi,

i = 1,2, we have the following estimates:

(i) If θ < m̄, there holds

2θ ≤ (α−β)|Hi
≤ 2m̄. (7.21)

(ii) If θ > m̄, there holds

2m̄ ≤ (α−β)|Hi
≤ 2θ. (7.22)

Proof. For the first case, i.e., θ < m̄, by noting 0 ≤ 1+κv′,1+κv′′ ≤ 1, we estimate to get

tan(θ/2) ≤ B|H1
≤ −m0 tan(θ/2)+1

m0 + tan(θ/2)
=: mθ, (7.23)

where m0 = 1/
√

m. It is easy to check that

tan(θ/2+ arctanmθ) =
√

m = tanm̄. (7.24)

Therefore

2θ ≤ (α−β)|H1
≤ 2m̄. (7.25)

Similarly we can prove the second inequality on H2 in (7.21).

For the second case that θ > m̄, the proof is also similar if 1 < γ < 3. If γ ≥ 3, it is evident

that

− tan(θ/2) ≤ A|H2
,B|H1

≤ tan(θ/2). (7.26)

Then the proof is complete.

The local existence of solutions at the origin (u,v) = (0,0) follows routinely from the idea

[18, Chapter 2] or [25]. We need only to check the compatibility condition to this problem,

i.e.,

1

λ+

[
l0 ·∂+K −κ

cos(α+β
2

)

sin(α−β
2

]
=

1

λ−

[
l0 ·∂−K −κ

cos(α+β
2

)

sin(α−β
2

)

]
(7.27)

at (u,v) = (0,0), where K = (α,β,c)⊤ and l0 = (0,0,1). That is, we need to check if there

holds

1

λ+

[
∂+c−κ

cos(α+β
2

)

sin(α−β
2

]
=

1

λ−

[
∂−c−κ

cos(α+β
2

)

sin(α−β
2

)

]
. (7.28)
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This is obviously true by using (6.17). Hence we have

Lemma 7.2 (Local existence). There is a δ > 0 such that the C1–solution of (6.12) and (7.13),

(7.20) exists uniquely in the region Ω̄ = {(u,v) ∈ Ω;−δ < u < 0}, where δ depends only on

the C0 and C1 norms of α, β on the boundaries H1 and H2.

We do not give the proof. For details, see [18, Chapter 2] or [25].

Next we will extend the local solution to the whole region Ω. Therefore some a priori

estimates on the C0 and C1 norms of α, β and i, are needed. The norm of i comes from the

norms of α and β, see the third equation of (6.12). Therefore we need only the estimate on α
and β. Recall that the derivation of (6.12) is based on the strict hyperbolicity of the flow, i > 0.

These will be achieved when we estimate the C0 norms of α and β, see Subsection 7.3. The

main existence theorem is stated as follows. Let l be the interface of the gas with the vacuum.

Theorem 7.1 (Global existence in the hodograph plane). There exists a solution (α,β, i) ∈
C1 to the boundary value problem (6.12) with boundary values (7.13) and (7.20)(Problem B)

in Ω. The vacuum interface l exists and is Lipschitz continuous.

We prove this theorem by two steps. We estimate the solution itself in Subsection 7.3 and

then proceed with estimates on the gradients in Subsection 7.4. The proof of Theorem 7.1 is

also given in Subsection 7.4.

After we solve Problem B, we show the inversion of hodograph transformation in Subsec-

tion 7.5, which establishes the existence of the gas expansion problem, Problem A.

Theorem 7.2 (Global existence in the physical plane). There exists a solution (c,u,v) ∈C1

of (2.1) for the gas expansion problem (Problem A) in the wave interaction region D in the

physical plane, the (ξ,η)-plane.

7.3 The maximum norm estimate on (α,β,c)

We estimate the solution (α,β,c) itself, i.e, the C0 norm of α, β and c. We adopt the method

of invariant regions [23].

Lemma 7.3. Suppose that there exists a C1 solution (α(u,v),β(u,v),c(u,v)) to problem (6.12),

(7.13) and (7.20) in Ω. Then the C0–norms of α and β have uniform bounds:

(i) If θ < m̄, there holds 2θ ≤ α−β ≤ 2m̄,α ≥ θ,β ≤−θ;

(ii) If θ > m̄, there holds 2m̄ ≤ α−β ≤ 2θ,α ≤ θ,β ≥−θ.
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Proof. For convenience, let us use system (6.16). For the first case, we construct a region

bounded by L1, L2 and L, as shown in Figure 7.3(a), by Lemma 7.1. Here L is an arbitrary

convex curve on the right hand side of α−β = 2m̄. Note that L1 corresponds to H1 and L2 to

H2. On the boundary L1, L2 of this region, we have

G(α,β,c) > 0, on L1,L2. (7.29)

On the other hand, we have

G(α,β,c) < 0, on L. (7.30)

Note that the vector (sinβ,−cosβ) on H1 points toward the interior of Ω, and the vector

(sinα,−cosα) on H2 point towards outside of Ω, see Figure 7.2. We conclude that such a

region bounded by L1, L2 and L is invariant, see Figure 7.3(a).

α

β

L1

L2

L

2m̄

-2m̄

−θ

θ
0

Invariant region

(a) Case θ < m̄

α

β

L1

L2

L

2m̄

−2m̄

−θ

θ0

Invariant region

(b) Case θ > m̄

Figure 7.3: Invariant regions

Similarly, we can treat the second case θ > m̄. We construct a region as shown in Figure

7.3(b). If 1 < γ < 3, the concave curve L is constructed to be located between lines α−β = 0

and α−β = 2m̄; and if γ ≥ 3, L is on the left-hand side of α−β = 0. Then we have

G(α,β,c) < 0, on L1,L2;

G(α,β,c) > 0, on L.

Therefore, the region bounded by L1, L2 and L is invariant.

By checking the construction of the invariant regions and noting that L is an arbitrary

curve, we deduce that (α,β) is actually located inside the triangle bounded by L1, L2 and the

line α−β = 2m̄. The proof is complete.
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Corollary 7.1. For solutions (α,β,c) of (6.16),(7.20) and (7.13), we have:

(i) If θ < m̄, then G(α,β,c) > 0 and ∂̄+α > 0, ∂̄−β > 0 for all (u,v) ∈ Ω.

(ii) If θ > m̄, then G(α,β,c) < 0 and ∂̄+α < 0, ∂̄−β < 0 for all (u,v) ∈ Ω.

Remark 7.1. If the angle of the wedge θ and the adiabatic index γ are related by

tan2 θ =
3− γ

γ+1
, (7.31)

for 1 < γ < 3, i.e., θ = m̄, then boundary value (7.20) becomes constant (α,β)|H j
= (θ,−θ),

j = 1,2. In this case the invariant region shrinks to a point (θ,−θ) on the line α−β = 2m̄.

Note that the source terms of (6.16) vanish on the boundaries H1, H2. We can use (6.18) to get

an explicit solution,

c = 1+
κ

sinθ
u, (7.32)

where −sinθ/κ ≤ u ≤ 0. We further use (3.13) to get an explicit solution for the original gas

expansion problem,

c = 1+
κ(ξsinθ−1)

κ+ sin2 θ
,

u =
sinθ(ξsinθ−1)

κ+ sin2 θ
,

v = η.

(7.33)

This solution was first observed in [24].

Remark 7.2. In the proof of Lemma 7.3, we observe that

cos((α+β)/2)

sin((α−β)/2)
> δ (7.34)

for some constant δ > 0. It follows from the third equation of (6.16) that

c < 1+δu (7.35)

for u < 0 and thus c vanishes at u > −1/δ. Therefore there exists a curve u = u(v) such that

c(u(v),v) = 0 where u = u(v) is well-defined in the (u,v) plane. This is the interface of gas

and vacuum.

Corollary 7.2. For the gas expansion problem, the mappings (X ,Y) → (α,β) and (X ,Y) →
(A,B) are all bijective in the whole region Ω.

Proof. It suffices to check the non-degeneracy of the Jacobian, say from (X ,Y) → (α,β),

J(X ,Y ;α,β) = − 1

sin2(α−β
2

)
· cot(

α−β

2
). (7.36)

In view of Lemma 7.3, we obtain the conclusion.

Corollary 7.2 show that we can convert system (6.2) into system (6.12) and therefore use

system (6.12) or (6.16) to discuss Problem B in the hodograph plane.
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7.4 Gradient estimates and the proof of Theorem 7.1

In order to establish the existence of smooth solutions in the whole wave interaction region Ω,

we need to establish gradient estimates for system (6.12) or (6.16). Due to the degeneracy of

interface l, we cut off a sufficient thin strip between the interface l and the level set of c = ε,

ε > 0. The remaining sub-domain is denoted by Ωε, in which c > ε. We first show that there

is a unique solution on Ωε. Then we extend the solution to Ω by using the argument of the

arbitrariness of ε > 0.

Lemma 7.4 (Gradient estimate). Consider system (6.12) or (6.16) with boundary values

(7.20) and (7.13). Assume that there is a C1 solution (α,β) in Ωε, then the C1 norm of α and β
has a uniform bound, which only depends on the C0 and C1 norms of boundary values (7.20).

That is, there is a constant C > 0, depending only the boundary data (7.20) and (7.13), but not

on ε, such that

‖(α,β)‖C1(Ωε) ≤C/ε, (7.37)

where ‖ · ‖C1(Ωε) represents the C1-norm.

Proof. We use (6.21) to integrate ∂̄−α and ∂̄+β along λ+ and λ−–characteristics, respectively.

Noting (6.17), we know that the integral path has a limited length. Also we note that Q has a

uniform bound C/ε2 in Ωε. Then we deduce that ∂̄−α and ∂̄+β are uniformly bounded in Ωε,

|∂̄−α| < C/ε, |∂̄+β| < C/ε. (7.38)

On the other hand, since G has a bound C/ε in Ωε (see (6.16)), so are ∂̄+α and ∂̄−β,

|∂̄+α| < C/ε, |∂̄−β| < C/ε. (7.39)

Hence using the identities,

∂u =−sin−1(α−β)(cosα ∂̄+−cosβ ∂̄−), ∂v =−sin−1(α−β)(sinα ∂̄+−sinβ ∂̄−), (7.40)

and using the hyperbolicity α �= β in Ωε, we conclude that ∂uα, ∂vα, ∂uβ and ∂vβ are uniformly

bounded in Ωε, as expressed in (7.37).

Lemma 7.5 (Modulus estimate). Assume that the solution (α,β) ∈ C1(Ωε). Then we have

the following modulus estimate,

‖(α,β)‖C1,1(Ωε) < C/ε2, (7.41)

where ‖ · ‖C1,1(Ωε) represents the C1,1-norm, and C1,1(Ωε) is the space of functions whose

C1-derivatives are Lipschitz continuous.

Proof. Using (6.21), we follow [7] or [17] to obtain

‖∂̄−α‖C1,1(Ωε) < C/ε2, ‖∂̄+β‖C1,1(Ωε) < C/ε2. (7.42)
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Then we use the same approach to derive

‖∂̄+α‖C1,1(Ωε) < C/ε2, ‖∂̄−β‖C1,1(Ωε) < C/ε2. (7.43)

Thus the identities (7.40) are used to yield (7.41).

Proof of Theorem 7.1. With the classical technique in [17] or [7], we obtain the “global” so-

lution in Ωε by the extension from the local solution.

In view of Lemma 7.2, we obain a local solution (α,β,c) in Ωδ = {(u,v)∈Ωε;−δ < u < 0}.

We take a level set of c, denoted by ϒc, in Ωδ. On this curve, (α,β,c) is known from the local

solution and (α,β) ∈ C1(ϒc) in view of Lemma 7.5. Then our problem becomes to find a

solution of (6.12) in the remaining region, subject to the data on H1, H2 and ϒc.

Denote the slope of ϒc by s0,

s0 :=
dv

du
= −cu

cv
= −cot(

α+β

2
). (7.44)

Then we have

1

s0
− 1

λ−
=

sin(α−β
2

)

cos(α+β
2

)cosα
> 0,

1

s0
− 1

λ+
= − sin(α−β

2
)

cos(α+β
2

)cosβ
< 0. (7.45)

This shows that the level set ϒc is not a characteristic and λ±-characteristics always points

toward the right hand side of ϒc. Thus, we follow the proof of Lemma 4.1 in [7, Page 294],

using Lemmas 7.4 and 7.5, to finish the proof of the existence of solutions in Ωε.

Owing to the arbitrariness of width ε > 0, we use the contradiction argument to show that

the C1 solution (α,β,c) can be extend to the whole region Ω.

The discussion of vacuum boundary is left in Subsection 7.7.2.

7.5 Inversion

We now discuss the inversion of the hodograph transform, i.e., the Jacobian J−1
T (u,v;ξ,η) in

(3.19) does not vanish for the gas expansion problem. Before doing this, we investigate the

curvature of λ±-characteristics. In other words, we need precise estimates on the gradient of

the variables α, β.

Using the evolution equations for ∂̄−α and ∂̄+β in Theorem 6.2, we can obtain preliminary

(rather rough) gradient estimates on α and β.
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Lemma 7.6 (Preliminary gradient estimates). Consider the solution (α,β,c) of (6.16) and

(7.20) for the gas expansion problem. There are two categories: (I) γ ≥ 2 and (II) 1 < γ < 2.

For each, there are three sub-categories. They are stated as follows. See Figure 7.4.

(I1). If 2 ≤ γ < 3 and θ ≤ m̄(≤ π/6), then

∂̄−α ≤ 0, and ∂̄+β ≤ 0. (7.46)

(I2). If γ ≥ 2 and m̄ < θ ≤ π/6, we have

∂̄−α ≥ 0, and ∂̄+β ≥ 0. (7.47)

(I3). If γ ≥ 2 and π/6 < θ < π/2, the signs of ∂̄−α and ∂̄+β are not definite. That is, the

convexity of λ± may change.

(II1) If 1 < γ < 2 and m̄ ≤ θ < π/2, then

∂̄−α ≤ 0, and ∂̄+β ≤ 0. (7.48)

(II2) If 1 < γ < 2 and π/6 < θ < m̄, then

∂̄−α ≥ 0, and ∂̄+β ≥ 0. (7.49)

(II3). If 1 < γ < 2 and 0 < θ < π/6, the signs of ∂̄−α and ∂̄+β are not definite. That is, the

convexity of λ± may change.

We note that these two categories are parallel and symmetric.

Proof. We use (6.21) and check the sign of Q for each case. By noting that ∂̄−α|H1
= 0 and

∂̄+β|H2
= 0, we immediately prove this lemma.

Now we look at the hodograph transformation T : (ξ,η) → (u,v). The mapping (3.13)

defines a domain via ξ = u+ iu, η = v+ iv. We need to show that no two points map to one,

J−1
T (u,v;ξ,η) = ξuηv −ξvηu = (1+ iuu)(1+ ivv)− i2uv �= 0. (7.50)

We calculate, on the one hand, using (3.16),

(2κi− i2u)i
2
uv +2iuiviuv(1+ iuu)+(2κi− i2v)(1+ iuu)

2 = (2κi− i2u)[i
2
uv − (1+ iuu)(1+ ivv)].

(7.51)

On the other hand, we have

(2κi− i2u)i
2
uv +2iuiviuv(1+ iuu)+(2κi− i2v)(1+ iuu)

2 = (2κi− i2v)(∂+iu +1)(∂−iu +1). (7.52)

26



γ

θ

1 2 3

π
2

π
6

π
4

(I1)

(I2)

(I3)(II1)

(II2)

(II3)
m̄ = m̄(γ)

Figure 7.4: Ranges of gas constant γ and wedge half angle θ

Then we obtain

J−1
T (u,v;ξ,η) = − 1

λ−λ+
(∂+X +1)(∂−X +1) =

1

cosαcosβ
(∂̄+X + sinβ)(∂̄−X + sinα),

(7.53)

by using the definition of ∂̄±, see (6.15). This is parallel to (5.5). Therefore, in order to show

that J−1
T (u,v;ξ,η) does not vanish, it is equivalent to prove that:

Lemma 7.7. The non-degeneracy of the Jacobian J−1
T (u,v;ξ,η) is equivalent to

∂̄+X + sinβ �= 0 and ∂̄−X + sinα �= 0. (7.54)

Recall the expression of X in terms of α, β in (6.11). Then we compute

∂̄+X + sinβ = −κ
cos(α+β

2
)

sin(α−β
2

)
− 1+κ

2
cot(

α−β

2
)cosβ[tan2 m̄− tan2(

α−β

2
)]

+sinβ+
c

2

cosα

sin2(α−β
2

)
∂̄+β,

∂̄−X + sinα = κ
cos(α+β

2
)

sin(α−β
2

)
+

1+κ

2
cot(

α−β

2
)cosα[tan2 m̄− tan2(

α−β

2
)]

+sinα− c

2

cosβ

sin2(α−β
2

)
∂̄−α.

(7.55)
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They are easily simplified to be

∂̄+X + sinβ = − 1+κ

sin(α−β)
cosα+

c

2

cosα

sin2(α−β
2

)
∂̄+β

=
c

2

cosα

sin2(α−β
2

)

[
∂̄+β− 1+κ

c
tan(

α−β

2
)

]
,

∂̄−X + sinα =
1+κ

sin(α−β)
cosβ− c

2

cosβ

sin2(α−β
2

)
∂̄−α

= −c

2

cosβ

sin2(α−β
2

)

[
∂̄−α− 1+κ

c
tan(

α−β

2
)

]
.

(7.56)

Note that on the boundary H1, H2, the values ∂̄+β and ∂̄−α are, respectively,

∂̄+β|H2
≡ 0, ∂̄−α|H1

≡ 0. (7.57)

Therefore (7.54) follows from the following Lemma.

Lemma 7.8. There holds

∂̄+β <
1+κ

c
tan(

α−β

2
), ∂̄−α <

1+κ

c
tan(

α−β

2
) (7.58)

in the region Ω, see Figure 7.2.

In order to prove this lemma, we need to use:

Lemma 7.9. Consider the following initial value problem for ODEs,
⎧
⎨

⎩

dy

dx
+P(x,y)y = R(x,y), x > 0,

y(0) = 0,
(7.59)

where P(x,y), R(x,y) > 0. If
d

dx
[R(x,y(x))/P(x,y(x))] > 0, then the solution y = y(x) is

bounded by the asymptotic state R/P,

0 ≤ y(x) < R/P, ∀x > 0. (7.60)

Proof. The proof is simple. Note that (7.60) holds for 0 < x < δ for some small δ > 0. Set

x0 = min{x > 0;y(x) = R(x,y(x))/P(x,y(x))}. (7.61)

Then at this point we have

d

dx
(Py−R) =

dP

dx
· y+P

dy

dx
− dR

dx

=
dP

dx
· R

P
− dR

dx

< 0,

(7.62)

by using the condition on P and R. This contradicts that Py−R cannot attain the zero value

from the left hand side of x0.
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Proof of Lemma 7.8. Now we prove (7.58) case by case, in accordance with Lemma 7.6.

(I1) 2 ≤ γ < 3 and θ ≤ m̄. We have ∂̄−α ≤ 0 and ∂̄+β ≤ 0 in view of Lemma 7.6. Thus

(7.58) holds obviously.

(I2) γ ≥ 2 and m̄ ≤ θ < π/6. This is the most delicate and representative case, for which

we have

tan2 m̄ ≤ tan2(
α−β

2
) < 1/3. (7.63)

Set

S :=
1+κ

2c
sin(α−β)

[
1− tan2(

α−β

2
)

]
. (7.64)

We want to use Lemma 7.9 to show that S is the upper bound of both ∂̄−α and ∂̄+β,

∂̄−α < S, ∂̄+β < S. (7.65)

Since S < 1+κ
c

tan(α−β
2

), the inequalities (7.58) follow immediately.

Since ∂̄−α > 0 and ∂̄+β > 0 inside Ω in view of Lemma 7.6 as well as ∂̄−α|H1
= ∂̄+β|H2

≡ 0,

we claim that

−∂̄−S > 0, ∂̄+S > 0, (7.66)

provided that (7.65) holds. Indeed, we compute

−∂̄−S =
(1+κ)κ

2c2
sin(α−β)

[
1− tan2(

α−β

2
)

]

−1+κ

2c

[
cos(α−β)

(
1− tan2(

α−β

2
)

)
−2tan2(

α−β

2
)

]
(∂̄−α− ∂̄−β).

(7.67)

Note again that ∂̄−α > 0, ∂̄−β < 0 and thus ∂̄−α− ∂̄−β > 0 in Ω for the present case. So if

cos(α−β)(1− tan2(
α−β

2
))−2tan2(

α−β

2
) < 0, (7.68)

then (7.66) holds obviously. Otherwise, we have, if (7.65) hold,

∂̄−α− ∂̄−β <
1+κ

2c
sin(α−β)(1− tan2 m̄) =

κ

c
sin(α−β). (7.69)

It follows that

−∂̄−S >
(1+κ)κ

2c2
sin(α−β)

[
(1− tan2(

α−β

2
))(1− cos(α−β))+2tan2(

α−β

2
)

]

> 0.
(7.70)

Similarly we can prove ∂̄+S > 0.

29



We further note that

0 < Q/W < S. (7.71)

In fact, we compute

Q−SW =
1+κ

c
sin(α−β) tan2(

α−β

2
)

·
{[

tan2 m̄− tan2(
α−β

2
)

][
3tan2(

α−β

2
)−1

]
cos2(

α−β

2
)−

[
1− tan2(

α−β

2
)

]}
.

(7.72)

The quantity in the brace is negative for the present case. So, (7.71) holds. Denote

W̃ := Q/S. (7.73)

Then we have

0 ≤ W̃ < W. (7.74)

Construct the initial value problem for a system of the following system of ODEs,

∂̄+φ+W̃ φ = Q,

−∂̄−ψ+W̃ ψ = Q,
(7.75)

with zero boundary values,

φ|H1
≡ 0, ψ|H2

≡ 0. (7.76)

By the comparison principle, we conclude

∂̄−α < φ, ∂̄+β < ψ, (7.77)

inside the domain Ω.

We claim that

φ < S, ψ < S, (7.78)

inside Ω. Indeed, note that the vector fields ∂̄+ on H1 and −∂̄− all point towards the interior

of Ω. Suppose on the contrary that there is a “maximum” point (u0,v0) in Ω such that at this

point φ = S and ψ < S for all u0 < u ≤ 0, i.e.,

u0 = max{u;φ(u,v) = S(α(u,v),β(u,v)) and ψ(u,v) < S(α(u,v),β(u,v))}. (7.79)

At (u0,v0), we know ∂̄−α < φ = S and ∂̄+β < ψ < S by using (7.77). Then in view of Lemma

7.9, we deduce φ < S at (u0,v0), which yields a contradiction.

Thus we have shown that (7.78) holds and so does (7.65). The proof of Case (I2) is com-

plete.

(I3). γ ≥ 2 and π/6 < θ < π/2. The proof of this case follows from Cases (I1) and (I2). First,

when the solution (α,β) is in the region (α−β)/2 > π/6 (see Figure 7.3), we have

tan2(
α−β

2
) > 1/3 > tan2 m̄. (7.80)
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It follows that ∂̄−α < 0 and ∂̄+β < 0 in this region. Then the solution (α,β) enters the region

m̄ < (α−β)/2 < π/6, in which (α,β) satisfies

tan2 m̄ < tan2(
α−β

2
) < 1/3, (7.81)

and ∂̄−α and ∂̄+β become increasing from negative values, along ∂̄− and −∂̄−, respectively.

If ∂̄−α and ∂̄+β never attain zeroes, (7.58) holds automatically. Otherwise, we use the same

argument as in Case (I2) from the point at which ∂̄−α = 0 or ∂̄+β = 0. The convexity of

λ±-characteristics, or the sign change of ∂̄−α and ∂̄+β, is illustrated in Figure 7.5. Thus we

prove Lemma 7.8 for this case.

u

v

0

θα

β

Figure 7.5: Changes of convexity types of λ±-characteristics

For the second big category (II) that 1 < γ < 2, we do the proof parallel to (I) case by case.

Specifically, we have

(II1). If 1 < γ < 2 and θ > m̄, there holds,

∂̄−α ≤ 0, ∂̄+β ≤ 0. (7.82)

(II2). If 1 < γ < 2 and π/6 ≤ θ ≤ m̄, there holds,

0 ≤ ∂̄−α <
1+κ

2c
sin(α−β)

[
1− tan2(

α−β

2
)

]
,

0 ≤ ∂̄+β <
1+κ

2c
sin(α−β)

[
1− tan2(

α−β

2
)

]
.

(7.83)

(II3). If 1 < γ < 2 and 0 < θ < π/6, ∂̄−α and ∂̄+β may changes signs, but their upper bounds

in (7.83) are still valid.

31



The proof of Lemma 7.8 is complete.

7.6 Proof of Theorem 7.2

The above estimates are sufficient for the proof of Theorem 7.2. For completeness, we sum

it as follows. First we use the hodograph transformation (3.11) to convert Problem A into

Problem B. Since the region D in Figure 7.1(b) is a wave interaction region, the Jacobian

JT (u,v;ξ,η) does not vanish in view of Theorem 5.1, so the hodograph transformation (3.11)

is valid. Then we solve Problem B in Theorem 7.1. In Lemmas 7.8 and 7.7, we show that

the hodograph transformation JT (u,v;ξ,η) is invertible. Thus the proof of Theorem 7.2 is

complete.

7.7 Properties of the solutions

7.7.1 Convexity of characteristics in the physical plane

Now we discuss the convexity of Λ±-characteristics in the mixed wave region D , in the (ξ,η)
plane. It is a rather simple way to look at this from the correspondence between the (ξ,η)
plane and the (u,v) plane.

Consider the hodograph transformation T of (3.11). We note, by using the chain rule, that,

∂

∂u
+λ+

∂

∂v
=

(
∂ξ

∂u
+λ+

∂ξ

∂v

)
∂

∂ξ
+

(
∂η

∂u
+λ+

∂η

∂v

)
∂

∂η
. (7.84)

We rewrite (3.14) as
∂ξ

∂u
+λ+

∂ξ

∂v
= −λ−

(
∂η

∂u
+λ+

∂η

∂v

)
. (7.85)

Using (3.13), we have
∂ξ

∂u
+λ+

∂ξ

∂v
= ∂+X +1. (7.86)

Thus we derive a differential relation from (7.84), by noting Λ+ = −1/λ−,

∂̄+ = (∂̄+X + sinβ)

(
∂

∂ξ
+Λ+

∂

∂η

)
. (7.87)

Similarly, we have

∂̄− = (∂̄−X + sinα)

(
∂

∂ξ
+Λ−

∂

∂η

)
. (7.88)
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Acting (7.87) on Λ+ and (7.88) on Λ− as well as using the definition of α, β (i.e., Λ+ = tanα,

Λ− = tanβ), we obtain

(
∂

∂ξ
+Λ+

∂

∂η

)
Λ+ =

1

cos2 α
· (∂̄+X + sinβ)−1 · ∂̄+α,

(
∂

∂ξ
+Λ−

∂

∂η

)
Λ− =

1

cos2 β
· (∂̄−X + sinα)−1 · ∂̄−β.

(7.89)

Therefore, the convexity of Λ±-characteristics is determined by two factors, respectively. By

Corollary 7.1, the signs of ∂̄+α and ∂̄−β just depend on the relation between the wedge angle

θ and the index m̄, i.e.,

∂̄+α < 0, ∂̄−β < 0, (7.90)

if θ > m̄; and

∂̄+α > 0, ∂̄−β > 0, (7.91)

if θ < m̄. In view of Lemma 7.8, we have

∂̄+X + sinβ < 0, ∂̄−X + sinα > 0. (7.92)

Hence we conclude,
(

∂

∂ξ
+Λ+

∂

∂η

)
Λ+ > 0,

(
∂

∂ξ
+Λ−

∂

∂η

)
Λ− < 0, for θ > m̄, (7.93)

and (
∂

∂ξ
+Λ+

∂

∂η

)
Λ+ < 0,

(
∂

∂ξ
+Λ−

∂

∂η

)
Λ− > 0, for θ < m̄. (7.94)

Theorem 7.3. The Λ±-characteristics in the wave interaction region D of (ξ,η) plane have

fixed convexity types:

(i) If θ > m̄, the Λ+-characteristics are convex and the Λ−-characteristics are concave.

(ii) If θ < m̄, the Λ+-characteristics are concave and the Λ−-characteristics are convex.

(iii) If θ = m̄, the solution has the explicit form (7.32) and all characteristics are straight.

7.7.2 Regularity of the vacuum boundary.

Recall that the formulae (3.13) transform the solution (α,β,c) in the (u,v) plane, back into

the (ξ,η)-plane. Note that (α,β), and thus cu, cv, are uniformly bounded for 1 < γ < 3, and

that c tends to zero with a rate much faster than cu, cv for γ ≥ 3. We conclude that on the

vacuum boundary, the (u,v) coordinates coincide with the (ξ,η) coordinates. This is because,

by using (3.13),

ξ = u+ iu = u+
c

κ
cu = u, η = v+ iv = v+

c

κ
cv = v. (7.95)
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Figure 7.6: Convexity types of the characteristics and the vacuum boundaries in the (ξ,η)
plane are opposite to each other in the two cases.

We prove that the vacuum boundary is Lipschitz continuous. Let us consider the curve

{(u,v) | i(u,v) = ε > 0} for all small positive ε. Differentiating the equation i(u(v),v) = ε
with respect to v, we find

du

dv
= −Y

X
= − tan

(
α+β

2

)
. (7.96)

Since |α+β| < π/2 uniformly with respect to ε > 0, the level curve i(u,v) = ε has a bounded

derivative and in the limit as ε → 0+ converges to a Lipschitz continuous vacuum boundary.

7.7.3 Relative location

For the explicit solution when θ = m̄, the vacuum boundary is a vertical segment. Now we

hold θ fixed and consider varying γ so that θ < m̄. Then we find α and β lies on the left-hand

side of the line α−β = 2m̄ in the α−β phase plane. By the formula iv = Y and the location

of the boundary data, we have Y < 0 on the upper half of the wedge, thus i is monotone

decreasing in v on the upper half, hence the vacuum boundary is on the left of the Suchkov

boundary and of a concave type. Similarly, the other case θ > m̄ has the opposite result.

Theorem 7.4. Let the vacuum boundary be represented as ξ = ξ(η). Then it is Lipschitz

continuous. It is less than the Suchkov solution boundary and is convex if θ < m̄, but it is

concave and greater than the Suchkov solution boundary for θ > m̄.
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7.7.4 Characteristics on the vacuum boundary

We already know that the sound speed c attains zero in a finite range of u. Conversely, from

(6.17) we deduce that the lengths of λ±-characteristics are limited. Then in view of (6.16) it

can be seen that on the vacuum boundary,

α−β = 2m̄. (7.97)

As a matter of fact, on one hand, if (7.97) would not be true, then ∂̄+α and ∂̄−β become infinity

as (u,v) is close to the vacuum boundary, which forces (α,β) to reach the line α−β = 2m̄ in

the (α,β)-plane. See Figure 7.3. On the other hand, the line α−β = 2m̄ is the set of stationary

points of (α,β). Thus once (7.97) holds, we have c = 0.

Thus we see clearly the distribution of characteristics on the vacuum boundary. In par-

ticular, for 1 < γ < 3, a Λ+-characteristic line has a non-zero intersection angle with a Λ−-

characteristic line. However, if γ ≥ 3, we have α = β on the vacuum boundary such that they

are all tangent to the vacuum boundary.

8 Summary remarks

We have considered the phase space equation (3.15)

(2κ i− i2u)ivv +2iuiviuv +(2κ i− i2v)iuu = i2u + i2v −4κ i (8.1)

known from 1958 for the enthalpy i with the inverse of the hodograph transformation (3.13)

ξ = u+ iu, η = v+ iv (8.2)

for the two-dimensional self-similar isentropic ir-rotational Euler system. Upon introducing

the variables of inclination angles of characteristics and normalized characteristic derivatives,

we have changed the second-order phase space equation to a first order system (6.16)

∂̄+α = G(α,β,c), ∂̄−β = G(α,β,c), ∂0c = κcos

(
α+β

2

)
/sin

(
α−β

2

)
, (8.3)

where

G(α,β,c) =
1+κ

2c
· sin(α−β) ·

[
m− tan2 α−β

2

]
.

Derivatives of the variables α and β along directions not represented in (8.3) are provided by

the higher-order system (6.21). We use these infrastructure to construct solutions to binary

interactions of planar waves in the phase space and show that the Jacobian of the inverse

of the hodograph transform does not vanish, so we obtain in particular a global solution to

the gas expansion problem with detailed shapes and positions of the vacuum boundaries and

characteristics.
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The invariant regions in the phase space revealed in the process have more potential than

what has been used here. For example, we will use them to handle binary interactions of

simple waves, which will lead to the eventual construction of global solutions to some four-

wave Riemann problems that will not have vacuum in their data, see a forthcoming paper

[16].

We have made a comparison of the pair (8.1)(8.2) to the pair of eigenvalue ξ = λ(u) and

wave curve system (λ− f ′(u))u′ = 0 for the one-dimensional system ut + f (u)x = 0 from Lax

[9]. The wave curves of the one-dimensional case correspond to surfaces in the phase space

(i,u,v). It will be a very interesting next step to find out the phase space structure that involves

subsonic domains and shock waves as well as the hyperbolic surfaces.
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