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INTERACTION OF TEARING MODES WITH 
EXTERNAL STRUCTURES IN CYLINDRICAL GEOMETRY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R. FITZPATRICK 
UKAEA/Euratom Fusion Association, 
AEA Fusion, 
Culham Laboratory, 
Abingdon, Oxfordshire, 
United Kingdom 

ABSTRACT. A basic theoretical framework is developed for the investigation of tearing mode interactions in 
cylindrical geometry. A set of equations describing the coupled evolution of the amplitude and phase of each mode 
in the plasma is obtained by combining electromagnetic and fluid flow information. Two interactions are investigated 
in detail as examples. The first example considered is the slowing down of a rotating magnetic island interacting with a 
resistive wall. Under certain conditions bifurcated steady state solutions are obtained, allowing the system to make 
sudden irrevisible transitions from high rotation to low rotation states as the interaction strength is gradually increased, 
and vice versa. The second example considered is the interaction of a rotating tearing mode with a static external 
magnetic perturbation. In general, a rotating island is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstabilized to some extent by the interaction, whereas a locked 
island is destabilized. In fact, a rotating island of sufficiently small saturated width can be completely stabilized. 
However, once the island width becomes too large, conventional mode locking occurs prior to complete stabilization. 
The interaction with a tearing-stable plasma initially gives rise to a modification of the bulk plasma rotation, with little 
magnetic reconnection induced at the rational surface. However, once a critical perturbation field strength is exceeded, 
there is a sudden change in the plasma rotation as a locked island is induced at the rational surface, with no rotating 
magnetic precursor. The implications of these results for typical ohmically heated tokamaks are evaluated. The com- 
paratively slow mode rotation in large tokamaks renders such devices particularly sensitive to error-field induced 
locked modes, and the collapse of mode rotation due to wall interaction. 

1. INTRODUCTION 

Tearing modes occur in all conventional tokamaks 
and generally have a deleterious effect on plasma con- 
finement properties. For instance, it is well known that 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2, n = 1 tearing mode is intimately associated 
with major disruptions [l]. Furthermore, it is a common 
occurrence for high performance plasmas to be degraded 
by the onset of strong tearing activity [2]. A better 
understanding of tearing mode stability, with a view 
to the possible control or suppression of such modes, 
is an important goal of international fusion research. 

The basic theory of tearing modes is fairly well 
established. Tearing modes are thought to be helical 
magnetic perturbations, characterized by a poloidal 
mode number m (the number of periods in the poloidal 
direction) and a toroidal mode number n (the number 
of periods in the toroidal direction). Throughout the 
bulk of the plasma the perturbations obey the well 
known marginally stable ideal magnetohydrodynamic 
(MHD) equations [3]. However, these equations become 
singular on so-called ‘rational’ flux surfaces, where the 
magneti? winding number, or ‘safety factor’, q takes 
the rational value mln. The ideal MHD singularities at 

the rational surfaces are resolved by taking the plasma 
resistivity, viscosity and inertia into account zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. The 
region of the plasma where ideal MHD breaks down is 
termed the ‘inner region’. Likewise, the region of the 
plasma where ideal MHD holds is termed the ‘outer 
region’. For non-ideal m > 1 modes, the breakdown 
of ideal MHD in the inner region permits the tearing 
and reconnection of equilibrium magnetic flux surfaces, 
to produce helical magnetic islands centred on the 
rational surfaces, whenever this process is energetically 
favourable [5]. The m = 1 mode generally requires 
special treatment [6] and is, therefore, not considered 
in this paper. 

Non-interacting tearing modes in ohmically heated 
tokamaks usually propagate in the direction opposite 
to the equilibrium plasma current, with an associated 
rotation frequency of the order of the typical electron 
diamagnetic frequency [7] 

m T,(keV) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2?r a2(m)B,(T) 

where T, is the electron temperature, a the minor radius 
and B, the toroidal field strength. Plasmas subjected to 
unbalanced neutral beam injection can develop bulk 
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toroidal rotation velocities that are orders of magnitude 
greater than typical diamagnetic velocities. In such 
plasmas, non-interacting tearing modes are observed to 
rotate in the direction of beam injection with velocities 
similar to that of the bulk plasma [8]. The marginally 
stable ideal MHD equations are unaffected by mode or 
plasma rotation, provided that the associated velocities 
remain subsonic and subAlfv6nic [9], as is assumed to 
be the case throughout this paper. 

The rotation frequency of a non-interacting tearing 
mode is termed the ‘natural’ mode frequency. In general, 
modes resonant on different rational surfaces have sub- 
stantially different natural frequencies. This frequency 
mismatch can have a profound effect on the coupled 
evolution of the various modes in the plasma. Similarly, 
the frequency mismatch between a plasma mode and a 
stationary external structure, such as the vacuum vessel 
or a resonant error field, profoundly affects their mutual 
interaction. 

The general non-linear tearing mode stability problem 
can be separated into two distinct parts. In the first part 
the perturbed marginally stable ideal MHD equations 
are solved in the outer region, subject to appropriate 
boundary conditions at the magnetic axis and the plasma 
boundary. External structures can usually be treated as 
modified edge boundary conditions. In general, the 
Fourier harmonics of the perturbed poloidal magnetic 
flux have gradient discontinuities at the various rational 
surfaces in the plasma, implying the existence of a 
helical current sheet flowing in the inner region in the 
vicinity of each surface. Such a current can interact 
with the local magnetic island in one of two ways. If it 
is in phase with the island it will modify the evolution 
of the island width. If it is in phase quadrature it will 
give rise to a j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB torque acting on the plasma in the 
vicinity of the island. 

The second part of the non-linear stability problem 
deals with changes in the bulk plasma velocity associated 
with the deviations of the various island frequencies from 
their natural frequencies. At the simplest level, the 
various magnetic islands in the plasma can be treated 
as small obstacles entrained in a phenomenological 
(incompressible) viscous single fluid. The fluid is 
assumed to exert a viscous restoring torque if the 
island frequency deviates from its natural value. The 
single fluid equation of motion can be solved in the 
outer region subject to suitable boundary conditions 
at the magnetic axis and the plasma boundary. In this 
manner, the instantaneous viscous torque acting on 
each island region can be evaluated. 

An equation of angular motion can be written for 
each island, in which the plasma inertia in the island 

region is balanced against the sum of the local electro- 
magnetic and viscous torques. Likewise, an evolution 
equation can be written for each island specifying how 
the width evolves under the influence of local in-phase 
sheet currents. These two sets of coupled equations 
completely specify the general non-linear tearing mode 
stability problem. 

In Section 2 the various components of the scheme 
outlined above are worked out in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcylindrical geometry. 
Poloidal flow damping, which is strictly speaking a 
toroidal effect, is included in the analysis in an ad hoc 
manner. In the remainder of the paper, two examples 
of tearing mode interactions are analysed in detail. 

The first example considered (see Section 3) is the 
interaction of a rotating tearing mode with an external 
conductor (e.g. the vacuum vessel). This interaction 
has already been extensively studied in the literature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 10- 181. The interaction of tearing modes with the 
vacuum vessel is thought to be responsible for the 
rapid slowing down of mode rotation that immediately 
precedes many types of tokamak disruptions [ 1, 16, 181. 

The second example considered (see Section 5-7) is 
the interaction of a rotating plasma with an externally 
imposed static (i.e. non-rotating) helical magnetic per- 
turbation. This interaction has also been extensively 
studied in the literature [18-251. It is relevant to a 
series of experiments in which static helical magnetic 
perturbations (usually m = 2, n = 1) were applied 
to small tokamaks, via currents flowing in external 
windings, in order to affect, and possibly control, the 
intrinsic tearing mode activity [26-291. Other related 
experiments have used external coils to induce bands 
of overlapping static tearing islands in the outer regions 
of the plasma (the so-called ‘ergodic limiter’), in order 
to modify the edge conditions [30-321. A low level of 
externally induced static helical magnetic perturbations 
(the so-called ‘error field’) is present in all tokamaks, 
owing to the inevitable slight misalignment of poloidal 
[33] and toroidal [34] field coils. Recent research [22] 
has suggested that the precursorless static tearing modes 
that significantly limit the disruption-free operating 
space, for low density ohmically heated discharges, 
in DIII-D [35] and JET [36], are due to interaction 
between the error field and the plasma. 

The implications of some of the results derived in 
Sections 3-7 for typical ohmically heated tokamaks are 
discussed in Section 8. Finally, the paper is summarized 
in Section 9. 
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2. THE BASIC MODEL 

2.1. Cylindrical tokamak equilibria 

The conventional set of right handed cylindrical 
polar co-ordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( r ,  8, z )  is employed. The (circular) 
equilibrium flux surfaces lie on surfaces of constant r. 
The system is assumed to be periodic in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz (‘toroidal’) 
direction, with periodicity length 2.rrR0, where Ro is the 
simulated major radius. The safety factor q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= rB,/RoBO, 
where B, is the constant ‘toroidal’ field strength and 
Bo(r) is the polodial field strength. The equilibrium 
‘toroidal’ current satisfies pojz(r) = (rBB)’/r, where ’ 
denotes alar. Finally, the standard large aspect ratio 
tokamak ordering, (r/Ro) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1 and (BO/B,) 4 1, is 
adopted. 

2.2. Electromagnetic torques 

The flux surface integrated poloidal and ‘toroidal’ 
electromagnetic torques acting on the plasma are 
given by 

r j  x B.drd8dz $ s:’” TOEM = r j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX B - e d S  = s 
(la) 

TzEM = R o j  X B - i d s  (1b) s 
The marginally stable ideal MHD equations incorporate 
j x B = v p  [3]. It follows immediately from the form 
of Eqs ( la,  b) and from the assumed periodicity of the 
system in the poloidal and ‘toroidal’ directions that TOEM 

and TzEM are zero in the region of the plasma governed 
by ideal MHD (i.e. the outer region). Thus, any net 
electromagnetic torques acting on the plasma must 
develop in the vicinity of the rational surfaces, where 
ideal MHD breaks down and large perturbed helical 
currents flow (i.e. in the inner region) [12]. 

Consider a general (m, n)  magnetic perturbation 

6B = SB(r)exp(it) (2) 

where 5 = m8 - nz/Ro - 1‘ u(t’)dt’, and w(t)  is the 
instantaneous mode (angular) rotation frequency. (For 
the moment, it is assumed that there is only a single 
frequency w in the problem, for the sake of simplicity. 
Later on (from Section 2.4 onwards), the analysis is 
generalized to allow for the many different frequencies 

. U, associated with magnetic islands located at the various 
rational surfaces of radii r,.) The perturbed current Sj is 
also assumed to be of this form. Suppose that the large 
perturbed helical currents flowing in the vicinity of 
rational flux surfaces are ‘sheet’-like (i.e. ISj,l 4 ISj,l, 

ISj,l in the inner region). Equation (2), the Ampbre- 
Maxwell equation, and current conservation ( v .S j  = 0) 
imply that 

Here, the r, are the radii of the various rational surfaces 
(i.e. q(rk) = m/n). The above equations yield SB.Bo = 0 
(i.e. 6BIl = 0) and Sj oc Bo (i.e. Sj, = 0) in the inner 
region, where Bo is the equilibrium field. More 
generally, 

in the vicinity of a rational surface rk [ 19, 291, where 
W, is the island width (i.e. the approximate width of 
that portion of the inner region centred on rk) and 
sk zi (rq’/& is the local magnetic shear. Thus, current 
conservation (VaSj = VllSjll + Vl.Sj, = 0) gives 

(5) 

where E = a/Ro 4 1 is the inverse aspect ratio. For 
sufficiently ’small islands, Eq. (5) justifies the previous 
assumption that Sj, is negligible in the inner region. 

Electromagnetic torques can also develop outside the 
plasma due, for instance, to eddy currents induced in 
conducting walls or helical currents flowing around 
external windings. If the system is cylindrically 
symmetric and if these external currents are localized 
in radius (i.e. any walls or external windings are thin), 
then the external currents are also ‘sheet’-like and 
Eqs (3a, b) apply wherever an electromagnetic torque 
develops in the system (i.e. the rk become the radii of 
any rational surfaces inside the plasma and the radii 
of any conducting walls or helical windings outside the 
plasma). The inner region is extended to include those 
regions where the external helical currents flow. Like- 
wise, the outer region is extended to include those 
regions outside the plasma where no helical currents 
flow. Clearly, in a cylindrically symmetric system the 
external ‘sheet’ eddy currents induced by an (m,n)  
tearing mode have the same helical pitch as the equili- 
brium magnetic field at the rational surfaces inside the 
plasma. Similarly, this is the optimal pitch for external 
helical windings interacting with (m, n) modes. 
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It follows from the previous discussion that 

TzEM(r) TrEMk6(r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- rk) (6b) 
k 

where TOEMk and TzEMk are the components of the total 
electromagnetic torque which develops in that portion 
of the inner region centred on rk (extent rk- to rk+, say). 
Equations ( la, b), (3a, b) and (6a, b) yield 

implying that the ratio of poloidal to ‘toroidal’ torques 
is (-mln) in all parts of the inner region. 

2.3. The cylindrical tearing mode equation 

In the large aspect ratio limit, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE - 0, the perturbed 
magnetic field can be written 

where \k = $(r)exp(it) is (proportional to) the per- 
turbed poloidal magnetic flux. The cylindrical tearing 
mode equation, obtained by linearizing the perturbed 
‘toroidal’ component of the marginally stable ideal 
MHD relation V x (j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX B)  = 0, takes the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqs = m/n. Equation (9) is valid throughout the 
outer region, including the vacuum region (j, = 0) out- 
side the plasma. Suitable boundary conditions are that 
$ is well behaved in the vicinity of the magnetic axis, 
and bounded as r - W. Thus, 

$(O> = $(4 = 0 (10) 

The ‘constant $’ approximation, which is standard in 
the analysis of tearing modes [4], implies that the per- 
turbed flux is approximately constant across each part 
of the inner region; i.e. 

$(rk-) = $ ( r k + )  = $k (1 1) 

where $k is the approximately constant value of $ in 
that portion of the inner region centred on rk. 

Equation (9) can be solved in the outer region, subject 
to the constraints (10) and (11). In general, the first 
derivative of $ is discontinuous at the various boundaries 
between the inner and outer regions. These discontinui- 
ties are associated with the ‘sheet-like’ currents flowing 
in the inner region. It is easily demonstrated that 

Prk+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 
6Jzk = 3 rk -  3 exp(-it)Aj, dSdr 

rk+ 1 = -4n2Ro - [ r $1 
2PO rk- 

It follows from Eqs (7a, b), (8), (11) and (12) that 

Now, a trivial manipulation of Eq. (9) yields 

Integration over the outer region, invoking the previously 
mentioned boundary conditions for $, gives 

A comparison of Eqs (7a, b), (13) and (15) leads to 

Thus, in accordance with Newton’s third law of motion, 
there is zero net electromagnetic torque acting on the 
system. 

2.4. The Rutherford island evolution equation 

If $(r) is non-zero at a given rational surface within 
the plasma (radius r,, say, where the r, are the subset 
of the rk that lie inside the plasma), then a chain of 
magnetic islands is formed. The maximum island width 
is given by 

where 4, is the approximately constant value of $ in 
that portion of the inner region centred on r,. If the 
local magnetic shear s, is positive, then the island 
0 points are located at 
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(m6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn -?- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,(f)dt’) 

RO 0 point 

= (21 - l ) n  - arg($,) (18) 

and the X points at 

(m6 - n - l‘ u,(i.)df.) 
RO X point 

= 217r - arg($,) (19) 

and vice versa if the shear is negative. Here, us@) is 
the instantaneous rotation frequency of the chain of 
magnetic islands at r, and I is a general integer. 

Rutherford’s well known non-linear island width 
evolution equation [5] can be written as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZI = 0.8227, 

and 

(22) 

(Note that the value of I ,  quoted above is the exact 
value, rather than the approximate value quoted in 
Ref. [5].) The width of that portion of the inner 
region centred on r, is approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, [19], so 
r,_ = r, - W,/2 and r,, = r, + W,/2. 

due to plasma velocity shear [19, 29, 37, 381 are 
neglected. This is reasonable for subAlfvtnic flows, 
provided that the velocity shear scale length does not 
become much smaller than the minor radius. This is 
likely to be the case in plasmas with an anomalous 
viscosity, where the viscous diffusion time-scale tends 
to be less than the magnetic reconnection time-scale 
(see Section 8). 

In this paper, modifications to tearing mode stability 

2.5. Viscous torques 

The various magnetic islands in the plasma are 
effectively treated as solid body obstacles entrained 
in a phenomenological (incompressible) viscous single 
fluid. 

The interaction of a non-linear magnetic island with 
the external plasma is similar to that of a solid body 
because there is no net plasma flow across the island 
separatrix (i.e. the island does not ‘slip’ through the 

plasma). This is demonstrated for a single fluid plasma 
in Ref. [19], where the cross-flux surface flows around 
a magnetic island not propagating at its natural frequency 
are found to be eddy-like (i.e. with no directed compo- 
nent in the island frame of reference). This result is 
valid as long as the island width is significantly larger 
than the linear layer width (i.e. as long as the concept 
of a magnetic island is meaningful) (see Section 7.1). 

For a multifluid plasma, the ‘no-slip’ constraint 
implies that the relative propagation velocity of the 
magnetic island with respect to the various plasma 
fluids is unaffected by the locally applied electro- 
magnetic torque. This is reasonable, since in standard 
tearing mode theory the relative propagation velocity 
of the perturbed magnetic field is determined by the 
parallel (to the local equilibrium magnetic field) Ohm’s 
law [39], whereas the electromagnetic torque acts in the 
perpendicular direction. The ‘no-slip’ constraint has 
been verified experimentally [40]. 

The single fluid treatment of the plasma is justified 
as long as the analysis is only concerned with changes 
in plasma velocity brought about by deviations of the 
various island frequencies from their natural values. 
Under normal tokamak operating conditions, the 
velocities of the various fluids that comprise the plasma 
(e.g. the fuelling ion fluid, the electron fluid) are strongly 
coupled, owing to the requirement that the net plasma 
current remains approximately constant. To a first 
approximation, a velocity change in one fluid is likely 
to be matched by equal velocity changes in all of the 
other fluids. This view is supported by experiments 
performed on the COMPASS-C tokamak, which suggest 
that changes in the phenomenological single fluid toroidal 
velocity, inferred from island frequency shifts, are 
matched by changes in the impurity ion toroidal velocity, 
measured by spectroscopic means [29]. 

If there is no net plasma flow across the various 
island separatrices, then AQo and An2, are approximately 
constant across each portion of the inner region lying 
inside the plasma (i.e. from r,_ to r,+, for all r,). Here, 
[0, AQ,(r), AQ,(r)] is the flux surface averaged change 
in the phenomenological single fluid (angular) velocity 
due to deviations of the island frequencies from their 
natural values, It follows from continuity requirements 
that 

where AQo, and Anzs are approximately constant values 
of AQ, and AQz, respectively, in that portion of the 
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inner region centred on r,. It is easily demonstrated 
that for a 'non-slipping' island 

mAQOs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- nAQ,, = Aw, = w, - wos (24) 

where Aw, represents a deviation of the island (angular) 
frequency 0, from its natural value wos. 

It is assumed that changes in the single fluid (angular) 
velocity associated with deviations of the various island 
frequencies from their natural values are opposed by the 
perpendicular viscosity [41] and by poloidal flow 
damping [42]. Thus, the following flux surface aver- 
aged equation of (angular) motion of the phenomeno- 
logical single fluid is adopted: 

Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( r )  is the plasma density, pI(r) is the (anomalous) 
coefficient of perpendicular viscosity and rD(r) is the 
poloidal flow damping time-scale. The perpendicular 
viscosity operator follows from Braginskii [41] (for 
incompressible flow, with q1 = q2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApL); however, 
the poloidal flow damping operator is purely ad hoc. 
Equations (25a, b) are valid throughout that portion 
of the outer region that lies inside the plasma. 

The boundary conditions 

A&(O) = AOl(0) = 0 (26) 

ensure that AnO and An, are well behaved in the vicinity 
of the magnetic axis. 

It is assumed that edge interactions (e.g. collisions 
with the limiter [43], or charge exchange with neutrals 
emitted isotropically from the wall [44]) are only signifi- 
cant in a thin boundary layer (thickness, ax, say) close 
to the limiter (r = U). It is further assumed that the 
average momentum exchange time between the plasma 
in the boundary layer and the wallhimiter is rX. It follows 
that the components of the total interaction torque which 
develops in the boundary layer take the form 

6 X  ToBL = -4r2Ro - [(pr3)AQOIa 
TX 

(27b) 
6X TzBL = -4r2Ro - [(prR;)AQzla 

If the fluid inertia in the boundary layer is neglected, 
then the appropriate edge boundary conditions to 
Eqs (25a, b) are 

TX 

KX [ r T]  + 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

a 

is (approximately) the ratio of the momentum diffusion 
velocity from the bulk fluid into the boundary layer to 
the momentum transmission velocity from the boundary 
layer to the wall/limiter. A simple model of the boundary 
layer is described in Appendix A. 

Equations (25a, b) can be solved in that portion of 
the outer region lying inside the plasma, subject to the 
constraints (23a, b), (26) and (28a, b). In general, the 
first derivatives of AnO and An, are discontinuous at 
the various boundaries between the inner and outer 
regions. These discontinuities are associated with the 
viscous torques acting on the inner region. It is easily 
demonstrated that 

where TBvSs and Tzvss are the components of the total 
viscous torque acting on that portion of the inner region 
in the vicinity of a rational surface r,. 

2.6. The island equation of angular motion 

The equations of angular motion of an island in the 
vicinity of a rational surface r, are obtained by balancing 
inertia against the sum of the local electromagnetic and 
viscous torques. Thus, 

4 r2R0 (pr3)dr (F) = Tovss + TOEM, (31a) 

where use has been made of Eqs (7a, b). The poloidal 
flow damping torque is neglected in the inner region, 
since it is generally much smaller than the highly 
localized electromagnetic and viscous torques. 

2.7. The global equation of angular motion 

The global equation of (angular) motion of the plasma 
is obtained by integrating Eqs (25a, b) across that por- 

1054 NUCLEAR FUSION, Vo1.33, No.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1993) 



INTERACTION OF TEARING MODES WITH EXTERNAL STRUCTURES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tion of the outer region lying inside the plasma, and 
adding the results to the sum of Eqs (31a, b) over all 
rational surfaces. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 2 R o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl a  (prRi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* dr 

0 at 

= -E TzEMk’ - (-T~BL) (32b) 
k’ 

where use has been made of Eq. (16). Here, the rk, 
are the subset of the rk that lie outside the plasma, 
so T B E M ~ ’  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF T,EMk’ are the components of the 
total electromagnetic reaction torque acting on external 
structures (e.g. the vacuum vessel), whilst (- TBBL) and 
( - T, BL) are the components of the total reaction torque 
acting on the limiter or wall, owing to interaction with 
the edge boundary layer. Equations (32a, b) specify 
how the total inertia of any change in the single fluid 
flow set up by deviations of the various island frequen- 
cies from their natural values evolves under the influence 
of electromagnetic interactions with external structures 
(e.g. the vacuum vessel), interaction with the wall or 
limiter, and (simulated) poloidal flow damping. Clearly, 
in a steady state (i.e. alat = 0) the sum of all the 
‘toroidal’ reaction torques acting externally to the 
plasma is zero. The same is not true of the poloidal 
reaction torques because the total poloidal angular 
momentum is not a conserved quantity in a (simulated) 
toroidal system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.8. Discussion of the basic model 

The electromagnetic component of the model is fairly 
conventional. It is valid for low beta, circular cross- 
section, large aspect ratio tokamaks with ‘thin’ islands 
(i.e. Wla zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1). Asymptotic matching between the inner 
and outer regions is achieved using the ‘constant rl,’ 
approximation. This rather crude level of matching 
gives rise to gradient discontinuities in the perturbed 
magnetic flux rl, at the boundaries between the inner 
and outer regions. In reality, the jumps in rl,’ across 
the various parts of the inner region take place in a 
continuous manner. An improved electromagnetic 
asymptotic matching procedure is described in Ref. [45]. 

Although it utilizes Rutherford island theory, the 
model otherwise effectively treats magnetic islands 

in the plasma as annular regions of width W,, centred 
on the rational surfaces at r,. It is assumed that the 
widths of the various parts of the inner region centred 
on the rational surfaces in the plasma are given by the 
corresponding island widths. A more sophisticated treat- 
ment is described in Ref. [19]. 

The fluid component of the model is novel, but 
is completely phenomenological in nature. The basic 
premise is that deviations of the various island frequen- 
cies from their natural values are opposed by the plasma 
perpendicular viscosity. This has been confirmed by 
experiments performed on the COMPASS-C tokamak 
[29]. The model does not attempt to predict the natural 
rotation frequencies of unperturbed modes. In fact, these 
natural frequencies must be regarded as inputs to the 
model. 

In the fluid model, asymptotic matching between the 
inner and outer regions is achieved by assuming solid 
body rotation in the inner region. This fairly basic level 
of matching gives rise to velocity gradient discontinuities 
on the boundaries between the inner and outer regions. 
An improved fluid asymptotic matching procedure is 
described in Ref. [19]. . 

Although the model is derived in cylindrical geometry, 
it is intended for use in the interpretation of data obtained 
from (low beta, large aspect ratio) toroidal devices. 
Poloidal flow damping, which turns out to be the most 
important toroidal effect, is simulated in an ad hoc 
manner. In toroidal geometry, any (incompressible) 
poloidal flow must be accompanied by toroidal ‘return 
flows’, since pure poloidal flow is not divergence free. 
This effect is not taken into account in the model. 
Toroidal coupling of the different poloidal harmonics 
of the outer ideal MHD solution is, likewise, not taken 
into account in the model. 

In summary, the model outlined in the previous 
subsections is the simplest possible treatment of the 
general coupled tearing mode problem in cylindrical 
geometry which incorporates various physics features 
that are deemed to play an essential role in the problem. 
These essential features are as follows: 

(a) Electromagnetic coupling of the various magnetic 
islands in the plasma, and any external structures (e.g. 
the vacuum vessel), via the marginally stable perturbed 
ideal MHD equations; island growth/decay governed 
by Rutherford theory. 

(b) Substantially different natural frequencies of 
modes resonant on different rational surfaces in the 
plasma; a substantial frequency mismatch between 
plasma modes and static external structures. 
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(c) No ‘slipping’ of non-linear magnetic islands 

through the plasma; a viscous restoring torque acting 
on an island whose frequency deviates from its natural 
value. 

(d) Viscous coupling across the plasma cross-section 
via bulk (anomalous) perpendicular plasma viscosity; 
momentum exchange between the edge of the plasma 
and the wall/limiter. 

(e) Poloidal flow damping due to variations of the 
toroidal field strength around flux surfaces. 

Note that Rutherford theory and the ‘no-slip’ con- 
straint are only valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnon-linear magnetic islands, 
in which the island width is much larger than the linear 
layer width. In some situations, islands are prevented 
from entering the non-linear regime (i.e. the island 
width remains less than, or of the order of, the linear 
layer width), and a slightly different approach is 
required (see Section 7). 

3. INTERACTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF 
A ROTATING MAGNETIC ISLAND 

WITH A CONDUCTING WALL 

3.1. Introduction 

Consider the interaction of a general zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, n) tearing 
mode, resonant inside the plasma on a single flux 
surface of radius r,, with a single cylindrically symmetric 
conducting wall of radius r,  (r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> a) ,  thickness 6, 
(6,/rW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1) and conductivity tensor diag(0, uWoo, u , ~ ~ ) .  

Anisotropic conductivity arises experimentally because 
many tokamaks possess vacuum vessels that are convoluted 
(i.e. bellows-like) in the toroidal direction, effectively 
decreasing the toroidal conductivity with respect to the 
poloidal conductivity. 

Helical eddy currents induced in the wall by rotation 
of the tearing mode (angular frequency w ,  say) give rise 
to a ‘jump’ in the derivative of the perturbed poloidal 
magnetic flux $(r )  across the wall. Thus, 

(33) 

[12, 15, 16, 46, 471, where $, is the approximately 
constant value of $ inside the wall, rw+ = r, f 6,/2, 
and 

7,  = 

Po Uw zz 6, rw 
2m (34) 

Formula (33) is valid, provided 

- a mwr, 4 - 

Note that with the conventional tokamak ordering 
(q5 - 0(1), r,/Ro 4 1) the interaction is governed 
almost entirely by the ‘toroidal’ wall conductivity U, ZZ. 

It is assumed that the mode growth time-scale is 
much greater than the wall time constant r,, so that 
the ‘wall modes’ discussed in Refs [20] and [46] are 
excluded from consideration. This is reasonable, 
provided that the plasma is stable to free boundary 
ideal external kink modes. 

(35) 6, r,  
rW 6, 

3.2. The electromagnetic solution 

in the outer region 

In the outer region, the perturbed poloidal flux $(r) 
satisfies the cylindrical tearing mode equation (9), 
subject to the physical boundary conditions (lo), with 
the continuity constraint (1 1) imposed at the rational 
surface and the constraint (33) imposed at the wall. 
Without loss of generality, $(r) can be split into two 
parts. The first part, $mod&), satisfies Eq. (g), the two 
physical boundary conditions and the continuity con- 
straint, but has no gradient discontinuities at the wall. 
The second part, GWall(r), also satisfies Eq. (9), the 
physical boundary conditions and the continuity con- 
straint, but is zero in the island region and is subject 
to the constraint (33) at the wall. In general, is 
zero for r < rs+. The function gmode(r) is the standard 
free boundary cylindrical tearing mode basis function, 
representing a magnetic island at the rational surface. 
The function $wan(r) represents the ideal MHD response 
of the plasma to the helical currents induced in the wall. 

If the equilibrium plasma current is mostly con- 
centrated inside the mode rational surface, so that 
j l ( r  > rs+) = 0 (this is usually a fairly good appro- 
ximation for the (2, l ) ,  (3, 1) modes, etc.), then it is 
easily demonstrated that 

$mode(r) = \k (k)-m (364 

for rs+ < r 

for r,+ < r < r,  and 
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for r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< r, where the finite width of the wall has been 
neglected. Here, the ‘reconnected magnetic flux’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ is 
the approximately constant value of $ in the island 
region. The reconnected flux is related to the island 
width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW via 

(37) 

The ‘toroidal’ component of the ‘sheet’ current 
flowing in the island region owing to the presence of 
the conducting wall (i.e. the helical current at r, due 
to $wall) is given by 

Q (oTw)2(r,+/rw)2m[1 - (r,+/rw)2m] - i(w7-w)(rs+/rw)2m 
1 + (oT,)~[~ - (r,+/r,)2m]2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

(38) 

where use has been made of Eq. (12) and the approxi- 
mation (36a-c). As will become apparent, the part of 
SJz,wall that is in phase with the island (i.e. in phase 
with Q,  see Eqs (18) and (19)) modifies the island 
stability, whereas the part that is in phase quadrature 
gives rise to a j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx B torque acting on the island. 

The tearing stability index of the mode can be 
written as 

Ai = Akode + &dl (39) 

where 

is the standard stability index for a free boundary tearing 
mode, and 

parameterizes the stabilizing effect of the conducting 
wall on the rotating mode. Here, use has been made of 
Eq. (22) and the approximation (36a-c). 

The poloidal electromagnetic torque acting on the 
island is given by 

where use has been made of Eq. (13) and the approxi- 
mation (36a-c). Clearly, the electromagnetic torque 
always acts so as to slow down the island rotation. 

In principle, ALode, A(,,al, and TBEMs/ 19 I are all func- 
tions of the island width W, through their dependence on 
r,, = r, f W/2. However, according to Eqs (41) and 
(42), the variations of ALall and TOEM,/ I Q  1 with island 
width are negligible in the thin island limit Wla Q 1. 
On the other hand, the variation of Akode with island 
width cannot be neglected, since it is responsible for 
the non-linear saturation of the tearing mode [45]. This 
effect can be simulated by writing 

(43) 

where WO is the zero frequency (i.e. free boundary) 
saturated island width. Experiments performed on the 
COMPASS-C tokamak have verified that Eq. (43) is a 
good description of the island saturation [29]. 

3.3. The steady state fluid solution 

in the outer region 

In the outer region, the fluid velocity shift satisfies 
Eqs (25a, b), subject to the boundary conditions (26) 
and (28a, b), and the continuity constraints (23a, b). 
In the strong poloidal flow damping limit, the most 
general steady state (i.e. alat = 0) solution is 

for 0 < r < r,- 

for r,+ < r < a 

AQ,(r) = AQr, 

for 0 < r < rs- and 

j” [Pu,(a)/Pl(r’>ldr’lr’ + K X  

ja [Pl(a)/Pl(r’)l dr’/r’ + K X  

AQ,(r) = AQ,, ‘ 

rJ + 

for r,+ < r < a,  where 

Here, Anss and Anzs are the approximately constant 
fluid (angular) velocity shifts in the island region. The 
‘toroidal’ velocity shift profile is solid-body-like inside 
the rational surface, but sheared outside. The shear 
becomes increasingly weak as the drag on the plasma 
due to interaction with the wall/limiter decreases (i.e. 
as K~ increases). In the limit where this drag is zero 
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(i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 03) the whole plasma rotates ‘toroidally’ as 
a solid body. The poloidal velocity shift profile is 
localized around the rational surface, owing to the 
action of strong poloidal flow damping. Note that the 
above expression for AQo(r) is only valid in the limit 
where the localization length scales &, are much less 
than the minor radius. 

torque acting on the island are given by 
The components of the steady state viscous restoring 

(46b) 

where use has been made of Eqs (30a, b) and (44a-d). 
It is easily demonstrated that in the thin island limit 
(Wia 4 1) the variations of Tovss and Tzvss with island 
width are negligible. 

3.4. Steady state island solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4. I .  The steady state island width 

The Rutherford island equation (20) reduces to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w - 1 + 3022 
WO 1 + 3G2 
-_  

for a steady state in the thin island limit, where use 
has been made of Eqs (39), (41) and (43). Here, 

(47) 

(j = w7, [ 1 - (5Jm] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d3 

It follows from Eq. (47) that the high frequency (i.e. 
ideal wall) saturated island width, W,, is given by 

W m  = PWO (49) 

for /3 > 0. For P e 0, the mode is stable in the high 
frequency limit. 

3.4.2. The steady state fluid velocity shifts 

The ratio of the steady state velocity shifts in the 
island region are evaluated by eliminating TOEMS from 
the island equations of motion (31a, b) and then making 
use of Eqs (46a, b). Thus, 

in the thin island limit. Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  = rs/Ro. In a plasma 
subject to weak poloidal flow damping the ratio of the 
poloidal to the ‘toroidal’ velocity shifts is large, up to a 
maximum value of O(q,/E;) for a plasma where poloidal 
flow damping is absent. However, for a plasma subject 
to strong flow damping (i.e. aD < a)  the ratio is much 
reduced and may even become less than unity. The 
ratio is reduced even further if the drag on the plasma 
due to interaction with the wallhimiter becomes weak 
(i.e. K~ - m), so that the plasma can rotate freely as a 
solid body in the ‘toroidal’ direction. 

3.4.3. The steady state island Ji-equency 

The relation between the steady state island frequency 
w and the natural frequency wo is obtained from the 
island equations of motion (31a, b) and the ‘no-slip’ 
constraint (24), using Eqs (37), (42), (46a, b) and (50). 
Thus, 

where 

Here, rH is the local hydromagnetic time-scale at the 
rational surface and rv is a typical viscous diffusion 
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time-scale in the vicinity of the rational surface. Note 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AD/r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
(see Eq. (45)), so the above solution is only valid in 
the limit where the typical poloidal flow damping time- 
scale is much less than the viscous diffusion time-scale. 
The function Ssceady parametrizes the effects of poloidal 
flow damping and wall/limiter interaction for steady 
state velocity shift profiles. 

The inertia operator I' is retained in Eq. (51) in 
order to analyse the stability of solutions. In fact, the 
solutions are stable provided that 

ah -(r = 0)  < o ar (53) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

bo 

0 

3.c 

5 0  

UNSTABLE REGION 

HIGH DRAG S T A T E S  

\ \ " \  
\ 

\ \ , .  
HIGH DRAG 

. I \\' S T A T E S  

LOW DRAG 
S T A T E S  (C) 

0.0 

i.e. if the normalized frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALJ is just below the 
steady state value then ah/& > 0, and vice versa. 
Application of Eq. (53) gives the stability criterion 

(54) 
[4/3 - 5 - 3p&*] 

[l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27(p - l )G* - 9/3G4] 
6G3 - h , > O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4.4. Description of the steady state solutions 

Figures l(a-c) show steady state solutions of Eq. (51) 
plotted as contours of constant F& (normalized island 
width) in the ij (normalized mode frequency) versus LJ, 
(normalized natural frequency) plane, for three values 
of /3; 0 = 1, corresponding to ineffective wall stabili- 
zation; P = 0, corresponding to a wall stabilization 

3.0 

UNSTABLE REGION 

GO 

HIGH DRAG S T A T E S  

LOW DRAG STATES 

0.0 I 

0.0 1.5 

4 

FIG. 1. Steady state solutions for the interaction of a rotating 
magnetic island with a resistive wall. Contours of constant 
normalized (zero frequency) saturated island width (WO) are 
plotted in the normalized island frquency (6) versus normalized 
natural frequency (Go) plane. Dashed contours denote unstable 
solutions. The contours plotted are Wii4 = 0.0, 0.5, 1.0, 1.5, 
2.0, 3.0, 4.0, 5.0, 6.0 and 7.0 (the contours are crossed, in the 
listed order, as 6, is increased from zero at constant 6). Pari (a) 
shows solutions for p = 1 (i.e. ineffective wall stabilization). Part (b) 
shows solutions for p = 0 (i.e. wall stabilization just suficient to 
marginalize the mode at high frequencies). Part (e) shows solutions 
for f l  = -1 (i.e. wall stabilization strong enough to stabilize com- 
pletely the mode at high fvequencies). 

0.0 

D 
0.6 
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TABLE I. CRITICAL PARAMETERS FOR THE 
ISLAND-WALL INTERACTION AS FUNCTIONS 
OF THE DEGREE OF WALL STABILIZATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 

1 .o 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

3.0 
1.81 
1.12 
0.82 
0.65 
0.56 
0.49 
0.44 
0.40 
0.38 
0.35 

1 .o 
0.95 
0.87 
0.82 
0.79 
0.77 
0.76 
0.74 
0.74 
0.73 
0.72 

just sufficient to marginalize the mode at high rota- 
tion frequencies; and /3 = - 1, corresponding to a wall 
stabilization strong enough to completely stabilize the 
mode at high frequencies, It can be seen that for 
Go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe (Go)c,i,(/3), where the critical value is listed 
in Table I, there is a continuous spectrum of stable 
steady state solutions with G in the range [0, Go]. 
However, for Go > (Go)cri@) this spectrum bifurcates 
into two separate branches. The ‘low drag’ branch is 
mostly made up of solutions with frequencies of the 
order of the natural frequency, whilst the ‘high drag’ 
branch is made up of solutions with much lower 
frequencies of the order of the inverse wall time 
constant. A similar bifurcation of solutions is described 
in Ref. 1171. This bifurcation is a consequence of the 
non-monotonic variation of the electromagnetic drag 
torque (42) with the island frequency. At low frequen- 
cies the torque is relatively small because the currents 
induced in the wall are small, at intermediate frequen- 
cies (i.e. w7, - O(1)) the torque reaches a maximum, 
and at high frequencies the torque becomes small again 
because the rotating magnetic flux is expelled from the 
wall. Bifurcated ‘low slip’ and ‘high slip’ states are 
encountered in the analysis of conventional induction 
motors due to a similar non-monotonic variation of the 
drag torque with the slip frequency. 

As the island width increases, there is a transition 
from a low drag state with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw/wo - 1 to a high drag 
state with w/wo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 1. For Go < (Go)crit, the transition 
is fairly gradual and takes place at @O < (@o)crit(P), 

where the critical value is listed in ‘Table I. For 
Go = (&&it, the transition is quite abrupt and takes 
place at about k0 = For Go > (GO)crit, the 

low drag and high drag states become separated in mode 
frequency space by an unstable region for which no stable 
steady state solutions of Eq. (51) exist. Transitions 
across the unstable region are presumed to occur when 
no more stable steady states are available, and take place 
via a transient process in which inertia, viscosity and 
the wall drag all play a significant role. Ingeneral, it 
takes of the order of the momentum confinement time- 
scale to make such a transition. Note that the low drag 
to high drag transition takes place at a higher value of 
k0 (i.e. a larger island width) than does the high drag 
to low drag transition. However, both transitions take 
place at lko > (@o),,,t. It follows that once a transition 
has occurred, a significant change in parameters is needed 
to reverse it. Thus, in thermodynamic terminology, the 
transitions are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAirreversible. 

As the wall stabilization becomes progressively more 
significant the low drag states are confined to an ever 
diminishing region of parameter space. For instance, in 
Fig. l(b), where wall stabilization is just sufficient to 
marginalize the mode in the high frequency limit, the 
low drag states are approximately confined to the region 
w/wo 2 9/10 for Go 2 If /3 < 0, then wall 
stabilization is strong enough to stabilize the mode for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 2 Gmax = (see Eq. (47)). In this situation, 
the low drag branch ceases to exist for Go 1 G,,, 
(see Fig. l(c)). Thus, for a0 1 Gmax the analogy of 
the high drag to low drag transition discussed previously 
is a high drag to stable transition. The reverse transi- 
tion is feasible, but would probably require a strong 
transient perturbation of the plasma (e.g. a minor dis- 
ruption, or a large sawtooth crash) as a trigger. 

3.5. Summary 

Using the formalism derived in Section 2, the steady 
rotation frequency of a tearing island interacting with a 
conducting wall has been calculated. (The major differ- 
ence between the steady state solutions presented here 
and the transient solutions presented in Ref. [16] is that 
plasma viscosity balances the electromagnetic drag 
torque in the former case, whereas plasma inertia 
balances the drag torque in the latter case.) The results 
can be summarized as follows. 

For a given natural mode frequency wo there is a 
‘resonant’ wall time constant 

ir 
(55) 

at which the drag torque acting on a rotating island is 
approximately maximum. Note that in an ohmically 
heated tokamak lwol 0: m and 7, 0: m-’. It follows 
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that a wall time constant that is resonant with one 
particular tearing mode in the plasma is likely to be 
approximately resonant with all the other modes. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, / (T, , , )~~~,  then for ‘small’ wall time constants 
(i.e. $, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 1) the slowing down of the island rotation 
frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is continuous and reversible and obeys - 

where WO is the zero frequency (i.e. free boundary) 
saturated island width. For ‘large’ wall time constants 
(i.e. i, B l ) ,  the slowing down of the island rotation 
obeys 

(57) 

where W, is the high frequency (i.e. perfect wall) 
saturated island width. At w = w0/2 there is a dis- 
continuous and irreversible transition to a low rotation 
(i.e. w - 7;’) state. The critical island widths for 
significant slowing down of mode rotation in the two 
limits are 

Note that the critical island width above which signifi- 
cant slowing down of mode rotation occurs is always 
greater than, or of the order of, the scale island width 
Wunlock (defined in Eq. (74)). 

4. INTERACTION OF A TEARING MODE 
WITH A 

STATIC HELICAL MAGNETIC PERTURBATION 

4.1. Introduction 

Consider the interaction of a general (m, n) tearing 
mode, resonant inside the plasma on a single flux surface 
of radius r,, with a static (m, n) magnetic perturbation 
produced by a thin helical winding located outside the 
plasma at a radius r, (r, > a). The helical current 
flowing in the coil (extent r,- to r,,, say) gives rise 
to a ‘jump’ in the derivative of the perturbed poloidal 
magnetic flux $(r) across the coil. Thus, 

[ r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5Irr+ rc- = 2m$,exp(i l r  w(tr)dtr) (59) 

in the frame of reference of the island, where w ( t )  is 
the instantaneous island rotation frequency. The coil 

current is parametrized by the perturbed poloidal flux 
in the absence of plasma, $.,,,, where 

$vac(r> $c ( f ) m  (60a) 

for 0 < r < r,- and 

for rc+ < r,  in the frame of reference of the coil. Here, 
$, is the approximately constant value of $ inside the 
coil in the absence of plasma. 

4.2. The electromagnetic solution 

in the outer region 

Without loss of generality, $(r) in the outer region 
can be split into two parts. The first part, Gmode(r), is 
described in Section 3.2 and represents a magnetic 
island at the rational surface. The second part, GCoii(r), 
satisfies the cylindrical tearing mode equation (9), the 
physical boundary conditions (10) and the continuity 
constraint (1 l ) ,  but is zero in the island region and is 
subject to the constraint (59) at the coil. In general, 
is zero for r < rs+. The function $coil(r) represents 
the ideal MHD response of the plasma to the helical 
current flowing in the coil. 

trated inside the rational surface, so that j,(r > rs+) 
= 0,  ihen it is easily demonstrated that 

$coii(r, t> *vacexp(i l‘ 4’) dtr) 

If the equilibrium plasma current is mainly concen- 

for r,, < r < r, and 

[ (?)m - (?Im] (:)m 

for r, < r,  in the frame of reference of the island, 
where the finite width of the coil has been neglected. 
Here, *vac $vac(rs+)* 

The ‘toroidal’ component of the ‘sheet’ current 
flowing in the island region due to the presence of the 
external perturbation (i.e. the helical current at r, due 
to is given by 

GJzscoii = 4?r2Ro - m qVacexp(i 1‘ w(t’)dt’) (62) 
PO 
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where use has been made of Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12) and the approxi- 
mations (61a, b). Again, the part of 6Jzscoil that is in 
phase with the reconnected flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\k at the rational surface 
modifies the island stability, whereas the part that is in 
phase quadrature gives rise to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj x B torque acting on 
the island. 

written as 

Ai = Ahode + Adoil 

The tearing stability index of the mode can be 

(63) 

where Ahode is the standard stability index for a free 
boundary tearing mode, described in Section 3.2, and 

Aioil r, = 2m ~ cos Acp (:Y 
parametrizes the effect of the external perturbation on 
the mode stability. Here, use has been made of Eq. (22) 
and the approximations (61a, b). The island width W 
satisfies Eq. (37). The ‘vacuum’ island width W,,, is 
that obtained by superimposing the vacuum coil pertur- 
bation $vac onto the equilibrium field; thus, 

The helical phase shift Acp between the 0 points of the 
plasma and the vacuum islands is given by 

A&) = [‘ w(t’)dt’ + arg(\k,,,) - arg(’k) (66) 
0 

Note that dAcpidt = o(t). 

island is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 2  

TOEMS = -4r2Ro - l\kl l + v a c l  sin Acp 
PO 

where use has been made of Eq. (13) and the approxi- 
mation (61). 

The poloidal electromagnetic torque acting on the 

(67) 

4.3. Applications 

The above results are used to analyse three cases of 
interest. The first case is the interaction of a locked 
island with a static magnetic perturbation (see Section 5). 
The second is the interaction of a rotating island with 
a static perturbation (see Section 6). The final case 
considered is the interaction of a suppressed island 
(i.e. an island that is prevented from entering the non- 
linear regime) with a static perturbation (see Section 7). 

5. INTERACTION OF A LOCKED ISLAND 
WITH A 

STATIC HELICAL MAGNETIC PERTURBATION 

5.1. Introduction 

Consider the interaction of a ‘locked’ (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo = 0) 
island with a static external magnetic perturbation. It is 
helpful, at this stage, to define the ‘fully reconnected’ 
island width Wfull, which is the steady state locked 
island width obtained when the phase shift Acp between 
the plasma and vacuum islands is zero. It follows from 
Eqs (20), (63) and (64) that Wfull(WVac)is the real positive 
root of the transcendental equation 

If Akode(W is a monotonic decreasing function of the 
island width W, then a unique real positive root of 
Eq. (68), with an associated A~ode(Wful l )  C 0,  exists 
for all (real positive) values of W,,,. For a wide range 
of plasma parameters the above equation predicts 
Wful1 > W,,,, i.e. the plasma amplijes the external 
perturbation [48, 491. The amplification factor takes 
the form 

The standard offset-linear mode saturation model (see 
Eq. (43)) yields 

0 = K f 3  f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 + K)f2 - COSAcp 

@ = (K/Kc,,t)113 (70) 

where f = W/WfUll is the ‘fraction of reconnection’, 
and 

0 = 6K2I3 + K + 1 

Here, 6 parametrizes the intrinsic stability of the tearing 
mode, whereas K parametrizes the degree of saturation 
of the mode. 

The stability parameter 6 = (K - l ) / ~ ~ ’ ~  is listed 
as a function of the saturation parameter K in Table 11. 
It can be seen that K < 1 if the unperturbed tearing 
mode is highly stable (i.e. 6 < - l ) ,  that K = 1 if the 
mode is marginally stable and that K + 1 if the mode 
is highly unstable (i.e. 6 $- + l ) .  
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TABLE 11. CRITICAL PARAMETERS FOR THE 

OF THE SATURATION PARAMETER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK AND 
THE STABILITY PARAMETER 6 

ISLAND-COIL INTERACTION AS FUNCTIONS 

0 
0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 
1 .o 
2.0 
3.0 
4.0 
5.0 

10.0 
OD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-OD 

-4.18 
-0.79 
0.0 
0.63 
0.96 
1.19 
1.38 
1.94 
CO 

45.0 
45.3 
47.9 
50.8 
55.9 
60.3 
64.0 
67.2 
76.9 
90.0 

0.50 
0.50 
0.54 
0.57 
0.63 
0.67 
0.71 
0.74 
0.84 
1 .oo 

03 

3.03 
1.71 
1.32 
1 .oo 
0.85 
0.75 
0.68 
0.51 
0 

IAqI 

FIG. 2. Fraction of reconnection (f) as a function of the magnitude 
of the island phase shift ( 1  AV I )  for a steady state locked island 
interacting with a static magnetic perturbation, calculated for 
various different values of the saturation parameter ( K  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 1, 2, 

4, 8 and m, where f is a monotonically increasing function of K ) .  

Figure 2 shows the fraction of reconnection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf as a 
function of the saturation parameter K and the magni- 
tude of the island phase shift I Acp 1 .  It can be seen that 
when the natural mode is stable or close to marginality 
(i.e. K s l), f decreases strongly with increasing island 
phase shift. However, when the natural mode is strongly 
saturated (i.e. K + l ) ,  f is only a very weak function of 
the phase shift. The saturated island width of the unper- 
turbed mode is given by 

5.2. Steady state solutions 

For a steady state, the velocity shift profiles in the 
outer region are again given by Eqs (44a-d), with the 
associated viscous torque given by Eq. (46). The rela- 
tionship between the vacuum island width and the steady 
state island phase shift is obtained from the island equa- 
tions of motion (31) and the 'no-slip' constraint (24), 
using Eqs (37), (46a, b), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(50), (65) and (67); thus, 

in the thin island limit (Wia B l), where 

A@ = sgn(wo)Acp 

+ (;2) ($1 

The inertia operator I' is retained in Eq. (73) in 
order to analyse the stability of solutions. In fact, the 
solutions are stable provided that 

*(r = 0)  o ar (75) 

that is the system oscillates about the steady state phase 
shift, rather than exponentiates away from it. Applica- 
tion of Eq. (75) gives the stability criterion 

a . 0  
aA+ 

that is the electromagnetic locking torque, which opposes 
the island phase shift, must increase as the phase shift 
increases. 

The function g is zero when A+ = 0, initially 
increases with increasing A+, but reaches a maximum 
value g,,, at A+unlock and then starts to decrease with 
A+. According to Eq. (76), stable solutions to Eq. (73) 
are restricted to the region A+ < A+unlock, where 
A+unlock(K) and gmax(K) are listed in Table 11. Note that 
in all stable states the external perturbation acts so as to 
increase the island width to some extent (i.e. A+ < n/2, 
see Eqs (20), (63) and (64)). The maximum stable phase 
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shift is greatest when the unperturbed mode is strongly 
saprated (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa), so that the island width is essen- 
tially unaffected by the external perturbation, and 
smallest when the unperturbed mode is strongly stable 
(i.e. K - 0), so that the driven island width decreases 
with increasing phase shift. 

5.3. Mode unlocking 

It follows from Eq. (73) that a stable locked island 
state is only possible when 

(77) 

The above formula implies that there is a minimum 
coil current, parametrized by a minimum vacuum island 
width, required to maintain a locked island in a 'rotating' 
plasma (i.e. a plasma where the natural mode frequency 
is non-zero). When WVac % (Wvac)unlock, the island locks 
virtually in phase with the vacuum island (i.e. A+ - 0). 
As Wvac - (Wvac)unlock, a gradually increasing phase 
shift is set up in the direction of the viscous torque 
acting on the island. For WVac < (Wvac)unlock, the 
viscous torque acting on a static island is too large 
to be balanced by the electromagnetic locking torque, 
so the island is forced to rotate. The transition from 
a locked island to a rotating island takes place at 
Wvac  = (Wvac)unlock, where the phase shift of the locked 
island reaches the critical value Adunlock. This transition 
is generally referred to as 'mode unlocking'. 

The variation of the minimum current (0: (Wvac)t,,1ock) 

with natural mode stability is illustrated in Table 11, 
where ~-"~g;i',2 (see Eqs (70) and (77)) is tabulated 
against the stability parameter 6. This is equivalent to 
scanning A&,,,(O) whilst keeping the gradient of 
Akode(UI) (i.e. 
transition from a highly stable (i.e. 6 < -1) natural 
mode, through a marginally stable (i.e. 6 = 0) natural 
mode, to a highly unstable (i.e. 6 % + 1) natural mode 
is accompanied by a marked reduction in the minimum 
coil current needed to maintain mode locking. 

constant. It can be seen that the 

5.4. Summary 

Two asymptotic limits can be identified from the 
above analysis. In the 'saturated' island limit, the 
mode is intrinsically highly unstable (i.e. 6 % +l) ,  
so that the island width is essentially unaffected by the 
external perturbation (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = WO, where WO is the 
saturated island width). In this limit, a stable locked 
island state is only possible when 

(78) 
W L o c k  

wvac > (Wvac)unlock e ~ 

WO 

and the critical island phase shift at unlocking is ~ 1 2 .  
Note from the above that a comparatively large saturated 
island can be locked by a comparatively weak external. 
perturbation, and vice versa. The crossover point, at 
which the saturated island is of the same size as the 
vacuum island needed to lock it, occurs when both 
island widths are of the order of the scale width Wunlock. 

In the 'driven' island limit, the mode is intrinsically 
highly stable (i.e. 6 
exists owing to interaction with the external perturba- 
tion. In fact, the driven island width is a strong function 
of the island phase shift (W 0: Jcoslkp). In this limit, 
a stable locked island state is only possible when 

-l), so that the island only 

Wvac > (Wvac)unlock (a) 'I4 Wunlock (79) 

and the critical phase shift at unlocking is ~ / 4 .  It follows 
that, in order to maintain a locked island in a strongly 
tearing-stable plasma, an external perturbation of suffi- 
cient amplitude to induce a vacuum island of width 
greater than, or approximately equal to, the scale 
width Wunlock is required. 

The interaction of a non-linear locked island with a 
static magnetic perturbation is always destabilizing (i.e. 
AL,,, > 0, see Eq. (64)). 

6. INTERACTION OF A ROTATING ISLAND 
WITH A 

STATIC HELICAL MAGNETIC PERTURBATION 

6.1. Introduction 

An island rotating with an instantaneous (angular) 
frequency w(t )  experiences an electromagnetic torque 
due to interaction with a static external perturbation 
which modulates like sinAp, where dAp/dt E w(t)  
(see Eq. (67)). The most general solution to Eqs (25a, b), 
subject to the usual constraints (23a, b), (26) and 
(28a, b), which displays a similar modulation with the 
island phase, takes the form 

An&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  = IAQ,,Iexp -cos[ itan-' (WTD) ]  
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(gob) 

in the thin island limit (W/a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l ) ,  where rD is evaluated 
at the rational surface. The above formulas are valid 
provided that both the poloidal and 'toroidal' velocity 
shift profiles are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocalized in the vicinity of the rational 
surface and any excursions in mode frequency are 
relatively small. This implies 

Substitution of Eqs (80a, b) into the island equations 
of motion (31a, b), making use of Eqs (30) and (67), 
yields the following expression for the phase lags of 
the poloidal and 'toroidal' velocity shifts at the rational 
surface with respect to the driving electromagnetic 
torque: 

plagt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sgn(w)tan-l (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 i-> wl rv  (82b) 

The phase lags are due to a combination of both viscous 
and inertial effects. 

6.2. The viscous limit 

6.2.1. 17he island equation of motion 

Viscous effects are dominant in the island-coil inter- 
action when 

(83) 
?e--- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rs m v  

i.e. when the island width is much less than the 
localization scale length of the 'toroidal' velocity shift 
profile (see Eqs (80a, b)). In this limit, the island 
equations of motion (31a, b) can be combined with the 
no-slip criterion (24) to give the following integral 
equation which specifies the island phase as a function 
of time: 

/ P T  \ 

(1 - h)& = rl sin Ap(0) + h(T')dT' - plag 
J O  

where h = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIw/wol, T = l w O / t ,  Cl = W2 W ~ a c / W ~ c k l ,  

Here, Ap(0) is the arbitrary phase of the island at 
t = 0, and plag is the viscous phase lag of the island 
frequency shift with respect to the driving electro- 
magnetic torque. The function 3rotn, parametrizes the 
effects of poloidal flow damping for non-steady velocity 
shift profiles. 

6.2.2. Solution of the island equations of motion 

Equation (84) can be solved by expanding the island 
frequency as a Fourier series. Thus, 

h(T) E 0 f Gj,COSGT + 63COS30T + ... (86) 

where 0 is the average mode frequency, and ij,, ij3 

parametrize periodic oscillations about the average 
frequency, which are generally known as 'mode locking 
distortions' [50]. Only the first three terms are retained 
in the expansion for the sake of simplicity. Equation (84) 
is only valid in the limit Gl/W a 1, 3ij3/0 4 1, etc., but 
this constraint is relaxed close to a rotation frequency 
maximum or minimum, where d d d t  = 0 (see the final 
constraint (81)). The arbitrary phase Ap(0) is adjusted 
so that the minimum frequency in Eq. (86) is coincident 
with the maximum locking torque in Eq. (84). Thus, 
Ap(0) = piag - ~ 1 2 .  

In the following, the relatively unimportant modula- 
tions in plag, ll and wock, are time averaged (i.e. 0 is 
substituted for 2)  for the sake of simplicity. 

Equation (86) is matched to Eq. (84) at the minimum 
and maximum locking torques ( S T  = 0, R, respectively), 
and also at two intermediate torques (0T = ~ 1 2 ,  3n/2), 
to give 
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[l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0 f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(G1 + a3)]& (al + ij3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: +C1 (87a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.2.3. Island stability 

Solutions to Eqs (87a, b) are listed in Table 111. 
For a relatively weak mode locking torque (i.e. rl 4 l), 
the island rotates uniformly at the natural frequency 
(i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = 1, and GI,  G3 - 0). As the locking torque 
gradually increases in strength (i.e. rl - O(1)) the 
island rotation becomes increasingly non-uniform 
(i.e. GI, 5, # 0) and the average frequency is reduced 
below the natural frequency (i.e. W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 1). If the locking 
torque exceeds a critical strength, corresponding to 
rCrit, = 0.3848, then the quasi-steady rotating solutions 
of Eq. (84) break down at low rotation frequency (i.e. 
below iL1 = 1/3). This behaviour is a consequence of 
the variation of the viscous torque with mode frequency 
(see the left hand side of Eq. (84)). The viscous torque 
is proportional to the frequency shift of the island with 
respect to the natural frequency (i.e. wO - U), but is 
inversely proportional to the perpendicular velocity 
length scale (0: U-’”). It follows that the viscous torque 
attains a maximum value when the island frequency is 
one third of the natural frequency. Thus, there is a 
definite limit to the magnitude of the electromagnetic 
locking torque that can be balanced by a viscous torque 
in a quasi-steady rotating solution. If the limit is exceeded 
(i.e. rl 2 rCrit,), then the system is assumed to make a 
transition to one of the locked island solutions described 
in Section 5. This transition is generally known as 
‘mode locking’. 

TABLE 111. FOURIER COMPONENTS OF THE 
ROTATION FREQUENCY OF AN ISLAND 
INTERACTING WITH A STATIC EXTERNAL 
MAGNETIC PERTURBATION IN THE VISCOUS 
LIMIT (see Eq. (86)) 

0.0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.37 
0.38 
0.3849 

1 .o 
0.999 
0.995 
0.988 
0.978 
0.964 
0.943 
0.908 
0.891 
0.862 
0.833 

0.0 
0.032 
0.064 
0.097 
0.132 
0.168 
0.212 
0.271 
0.297 
0.337 
0.379 

0.0 
0.018 
0.037 
0.055 
0.075 
0.094 
0.112 
0.126 
0.136 
0.128 
0.121 

0.320 
0.320 
0.320 
0.326 
0.337 
0.347 
0.373 
0.423 
0.446 
0.506 
0.575 

Assuming, as is reasonable, that I u ~ T R  S- 1, it 
follows that, to a first approximation, any modulations 
in A:oil (see Eq. (64)) occur on too short a time-scale 
for the relatively slowly growing island to respond. 
(In fact, the island width does modulate slightly as the 
island rotates past the coils, giving rise to a steady 
electromagnetic torque which acts to slow down the 
island rotation. This effect is discussed in Section 7.6.) 
A quasi-steady version of the Rutherford island equa- 
tion (20) is obtained by averaging over an island rota- 
tion period. Thus, 

+ 2m (E$)* 1 
2 a  

X 0 cos(Ap(0) + &(T’)dT’) d(wT) (88) 

where use has been made of Eqs (43), (63) and (64). 
For a quasi-steady state this reduces to 

where 

1 5  
3 w  

+ -- 2 sin3x + ... 

is listed in Table 111. The non-uniform island rota- 
tion, which is a consequence of the viscous phase lag 
(i.e. plag > 0) of the island frequency shift with respect 
to the modulating locking torque, causes the island to 
spend a slightly longer time in the stabilizing phase of 
the external perturbation than in the destabilizing phase. 
Thus, a rotating island interacting with a static external 
perturbation experiences a net stabilizing effect, in 
marked contrast to a locked island, which experiences 
a destabilizing effect. Note that, in general, there is 
only one quasi-steady solution to Eq. (89), and this is 
stable to perturbations of the island width. 

6.2.4. Mode stabilization versus mode locking 

As the coil current (0: W:,,) is gradually increased, 
= W2 W,2,,IWpOCk, initially increases the parameter 

with the vacuum island width W,,,, but eventually 
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reaches a maximum and starts to decrease as the true 
island width W is reduced via the stabilization mechanism 
described above (see Eq. (89)). If the maximum value 
of .ti is less than the critical value rCcrit, then the island 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompletely stabilized when the coil current exceeds a 
critical value parametrized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( Ahode (O) rs )” W o c k I  

2m sin plag 
(Wvac)stab = 1.3 

where both plag and Wlockl are evaluated at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 1, and 
use has been made of G,(O) = 0.32 (see Table 111). If 
the maximum value of just equals rcrit, then the mode 
locks before complete stabilization is achieved when 
W = 0.8 WO. The critical coil current at mode locking 
is parametrized by 

where both plag and 
and use has been made of G1(rCricritl) = 0.575 (see 
Table 111). If the maximum value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl1 exceed rcritl 
then the coil current needed to lock the mode is 
correspondingly reduced, and W > 0.8 WO when 
locking occurs. The criterion that the maximum value 
of 
saturated island width: 

are evaluated at w = 0.833, 

lies below rCritl is equivalent to a limit on the 

where pIag and W1ock, are evaluated at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = 0.833. If 
WO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC (WO)lock, then complete mode stabilization is 
possible, given a sufficiently large coil current, but if 
WO L (WO)lockl then the mode locks before complete 
stabilization is achieved. 

6.3. The inertial limit 

6.3. I .  The island equation of motion 

Inertia effects are dominant in the island-coil inter- 
action when 

W 1 

i.e. when the island width is much greater than the 
localization scale length of both the poloidal and 
‘toroidal’ velocity shift profiles (see Eqs (80a, b)). 
In this limit, the integral equation that specifies the 
island phase as a function of time takes the form 

(94) 

(1 - G)G = {zsin(np(0) + iT G(T’)dT’ - r )  2 (95) 
0 

Note that the inertial phase lag of the island frequency 
shift with respect to the driving electromagnetic torque 
is n/2.  In the strong poloidal flow damping limit, 
7D - 0, the island phase satisfies Eqs (95) and (96a, b) 

with 3 r o t n 2  ( q s / e s > 2 .  

6.3.2. Solution of the island equation of motion 

Equation (95) can be solved using the Fourier series 
given in Eq. (86). The solution, which exhibits a behaviour 
analogous to that of Eq. (84), is listed in Table IV. 
If the locking torque exceeds a critical strength, cor- 
responding to f’crif2 = 0.25, then quasi-steady rotating 
solutions to Eq. (95) break down at low rotation fre- 
quencies (Le below G = 1/2), This behaviour is a con- 
sequence of the variation of island inertia with mode 
frequency (see the left hand side of Eq. (95)). The 
inertial resistance to shifts in the island frequency is 
proportional to the amplitude of the frequency shift 
(i.e. wo - 0) and the instantaneous mode frequency w.  
It follows that the inertia attains a maximum value 
when the island frequency is one half of the natural 
frequency. Thus, there is a definite limit to the magni- 
tude of the electromagnetic locking torque which can be 
balanced by inertia in a quasi-steady rotating state. If 
the limit is exceeded (i.e. S; > ccrit2) then the system 
makes a transition to a locked island state. 

TABLE IV. FOURIER COMPONENTS OF THE 
ROTATION FREQUENCY OF AN ISLAND 
INTERACTING WITH A STATIC EXTERNAL 
MAGNETIC PERTURBATION IN THE INERTIAL 
LIMIT (see Eq. (86)) 

0.0 1 .o 0.0 
0.05 0.998 0.050 
0.10 0.990 0.103 
0.15 0.974 0.162 
0.20 0.948 0.236 
0.23 0.917 0.301 
0.24 0.900 0.335 
0.25 0.854 0.423 

-0.0 
-0.ooO1 
-0.0010 
-0.0038 
-0.0118 
-0.0249 
-0.0345 
-0.0700 

0.500 
0.505 
0.520 
0.552 
0.616 
0.703 
0.761 
0.960 

0.0 
0.38 
0.74 
I .04 
1.25 
1.26 
1.21 
1 .o 
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6.3.3. Island stability 

The quasi-steady version of the Rutherford island 
equation, obtained by averaging over an island rotation 
period, takes the form 

(97) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGz(r2) is listed in Table IV. Again, the non- 
uniform island rotation, which is a consequence of the 
inertial phase lag, leads to a net stabilization effect. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.3.4. Mode stabilization versus mode locking 

Below a critical saturated island width given by 
-113 

Akode(o) rs 
(WO)lockz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= o*83 ( 2m ) 6 o c k Z  

application of a sufficiently large coil current leads to 
the disappearance of stable solutions of Eq. (97), with 
a consequent collapse of the island width to zero on a 
resistive time-scale. The last stable steady state is 
characterized by W = 0.5 WO. The critical coil current 
required to induce a collapse is parametrized by 

where F(S; = 0 . 5 W 0 W ~ ~ c / W ~ , k z )  is listed in Table IV. 
At W, = (WO)lockz, mode locking takes place prior to any 
collapse in the island width, when W = 0.75W0. The 
critical coil current at mode locking is parametrized by 

For WO > (WO)lockz the critical coil current needed to 
lock the mode is reduced, and W > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.75 WO at locking. 

6.4. Mode locking versus mode unlocking 

A comparison of Eqs (74a-d), (77), (85a-e), 
(92), (96a, b) and (100) shows that, in general, 

owing to the reduced velocity shift perpendicular length 
scale and the consequently increased viscous torque 
associated with a rotating island state. It follows that 
once mode locking has occurred and the velocity shift 
profile has had sufficient time to relax, the coil current 
must be reduced by a significant amount in order to 

(Wvac)lockl > ( Wvac)unlock and (Wvac)lock2 > (Wvac)unlockr 

induce mode unlocking. Likewise, once mode unlocking 
has occurred and the system has had sufficient time to 
reach a quasi-steady state, a significant increase in the 
coil current is needed to induce mode locking. In thermo- 
dynamic terminology, both mode locking and unlocking 
are irreversible processes. 

6.5. Summary 

The interaction of a rotating non-linear island with a 
static external perturbation is always stabilizing, owing to 
oscillatory modulations induced in the island frequency, 
which cause the island to spend slightly more time in 
the stabilizing phase of the external perturbation than in 
the destabilizing phase. Mode stabilization is predo- 
minantly a viscous effect at small island widths and 
predominantly an inertial effect at larger island widths. 
For a sufficiently small unperturbed saturated island 
width (WO < (WO)lock, see Eqs (93) and (98)) the island 
can be completely stabilized, given a large enough per- 
turbation field strength (Wvac > (Wvac)stab in the viscous 
regime, Wvac > (Wvac)coll in the inertial regime, see 
Eqs (91) and (99)). As the saturated island width is 
increased, the modulations in frequency needed to stabi- 
lize the mode become more and more violent. Above a 
critical saturated island width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(WO > ( WO)iock), conven- 
tional mode locking [ l ,  14, 181 occurs before complete 
mode stabilization can be achieved. 

7. INTERACTION OF A SUPPRESSED ISLAND 
WITH A HELICAL MAGNETIC PERTURBATION 

7.1. Introduction 

Under certain circumstances the inner region in the 
vicinity of the rational surface, where ideal MHD breaks 
down, effectively reduces to a linear layer. 

The major difference between the interaction of a 
non-linear island with an external magnetic perturbation 
and the interaction of a linear layer with such a pertur- 
bation lies in the boundary condition applied to the 
perturbed plasma flow in the vicinity of the rational 
surface. For a non-linear island the perturbed flow is 
subject to the ‘no-slip’ constraint, Eq. (24). For a linear 
layer this constraint is relaxed, although continuity of 
the perturbed flow across the layer is still a require- 
ment (see Eqs (23a, b)). 

The relaxation of the ‘no-slip’ constraint for a linear 
layer is implicit in the (single fluid) formalism presented 
in Section I11 of Ref. [19]. The basic expansion para- 
meter is 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+)3’* 

where - ( T ~ / T ~  T ~ )  rs is the appropriate linear 
layer width for an externally driven visco-resistive 
tearing mode. (Note that owing to an unfortunate typo- 
graphical error in Ref. [19], X is mis-spelled y in its 
defining equation (82). Furthermore, the simple rela- 
tionship between X and the ratio of the linear layer 
width to the island width is obscured because the 
inappropriate inviscid layer width is quoted.) Section I11 
of Ref. [ 191 is only concerned with the non-linear regime zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(A a 1). In this regime, expansion of the visco-resistive 
MHD equations in X yields a solution in which the flow 
inside the island separatrix is circulatory in nature, the 
flow outside the separatrix follows the flux surfaces, 
and there is no flow across the separatrix (i.e. there is 
no ‘slip’), The flows inside and outside the island 
separatrix are matched via a viscous boundary layer 
of thickness similar to that of the linear layer. The 
non-linear solution is strongly affected by plasma 
viscosity and inertia, but is only weakly dependent 
on the plasma resistivity via a In X variation of the 
matching conditions across the separatrix. 

resistive MHD equations in X-’ yields a solution in 
which the non-helical component of the perturbed 
flow completely decouples from the helical component, 
becoming independent of the local velocity of the per- 
turbed magnetic field (i.e. the flux surface averaged 
flow ‘slips’ with respect to the perturbed field). The 
helical component of the perturbed flow is localized 
within the layer and co-rotates with the perturbed 
magnetic field. In general, the linear solution is 
dependent on plasma viscosity, inertia and resistivity. 

In the following, the ‘tearing frequency’ is defined 
as the frequency at which the layer response to a 
rotating resonant magnetic perturbation is maximal 
[19] and can be thought of as the rotation frequency 
of the ‘tearing frame’. In the unperturbed plasma the 
tearing frequency is identical with the natural frequency 
wo. In a general plasma the tearing frequency is denoted 
by w;. The ‘no-slip’ constraint implies the identity of 
the tearing frequency and the rotation frequency of the 
reconnected magnetic flux. Thus, for a non-linear island 
the tearing frequency is identical with the island rota- 
tion frequency. 

Strictly speaking, linear analysis is only valid when 
the predicted island width is much smaller than the linear 
layer width. However, as soon as a magnetic island 
enters the non-linear regime it becomes subject to the 
‘no-slip’ constraint, i.e. the tearing frequency must 

In the linear regime (X %- l ) ,  expansion of the visco- 

become identical with the island rotation frequency. If 
the island is unable to satisfy this constraint it will 
remain in a ‘suppressed’ state, with a width of the 
order of the linear layer width and the plasma flow 
‘slipping’ through it to some extent. The physics of 
the suppressed island state lies somewhere between the 
non-linear and linear regimes, but is probably more akin 
to the linear regime owing to the relaxation of the ‘no- 
slip’ constraint. It is conjectured that, to a first approxi- 
mation, a suppressed island can be treated as a linear 
layer, so that the analysis presented in this section is 
valid whenever an island is prevented from entering 
the non-linear regime. This is an approach which is 
distinctly different from that taken in Ref. [19], where 
it was assumed that the dynamics of the suppressed 
island state is determined by the existence or non- 
existence of certain non-linear island states. 

7.2. Basic theory 

For a layer driven by an external perturbation 
oscillating with a frequency oca,,, asymptotic matching 
to the two linearly independent outer solutions, $,ode 

(described in Section 3.2) and 
Section 4.2), yields 

Aayer(rs-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz . *ex~ ( - i~co ,~ t )  (102a) 

(described in 

$layer(rs+, t )  = I* + $ ~ o , 1 ( ~ ~ ) ~ 1 a y e r / 2 l e x ~ ( - i ~ c o i 1  t )  

(102b) 

in the laboratory frame. Here, r,, = rs k 61ayer/2, 
and Slayer is the linear layer width. It follows that 

(103) 
1 - -- * 

*full 1 + Alayer/(-Akode) 

[19], where 
edge of the layer, 

is the perturbed magnetic flux at the 

(104) 
$doll(rs) = 2m 

*full = - ~ *vac 
Akode Akode rs 

is the ‘fully reconnected’ magnetic flux (see Section 5. l ) ,  
Akode is the linear (i.e. zero island width) intrinsic tearing 
stability parameter of the mode (see Eq. (40)), and Alayer 
is determined from the asymptotic behaviour of the layer 
solution assuming an exp( -iwcoll t )  time dependence of 
layer quantities. Thus, if the perturbed poloidal flux 
of the layer has the asymptotic form 

Aayer(rs-2 t )  E (bo + b- SIayer/2)exP(-iwcoiit) (105a) 

$layer(rs+, t )  (bo + b+ 61ayeJ2) ~ X P  ( - i~co i~  t )  (105b) 
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in the laboratory frame, then 

Note that for a linear layer the rotation frequency of 
the reconnected magnetic flux is that imposed by the 
external perturbation. The phase shift of the reconnected 
magnetic flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\k at the edge of the layer with respect 
to the vacuum flux is given by 

AV = arg(9,ac) - arg(W 

(see Eqs (18) and (19)). 

the vicinity of the layer satisfies 
The electromagnetic torque exerted on the plasma in 

This is a slightly more general formula than that of 
Eq. (13), which is only valid when the ‘constant $’ 
approximation holds. Note that the torque only depends 
on the asymptotic behaviour of the layer solution. The 
above equations imply that 

(109) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm2 
TOEM = -4n2 Ro - I \k I 1 \kVac I sin Ap 

PO 

(see Eq. (67)). Thus, if the phase shift Ap is non-zero 
the external coil exerts a steady (i.e. non-modulating) 
electromagnetic drag torque on the plasma in the vicinity 
of the rational surface. 

The electromagnetic drag torque acting in the vicinity 
of the rational surface modifies the bulk plasma rotation, 
shifting the tearing frequency by 

(1 10) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwo is the original tearing frequency (i.e. the 
natural frequency) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw; is the new tearing frequency, 
and Anos and Anzs are the components of the pheno- 
menological single fluid velocity shift in the vicinity of 
the rational surface (see Section 2.5). The steady state 
velocity shift profiles in the outer region are given by 
Eqs (44a-d). The associated steady viscous torque 
exerted on the plasma in the vicinity of the rational 
surface is given by Eqs (46a, b). 

AWO = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU; - oo = mADo, - nADzs 

7.3. Linear layer physics 

The single fluid linear layer equations, assuming an 
exp( - iucoi, t )  time dependence of layer quantities and a 
modified bulk plasma rotation, take the form 

( l l l a )  

( l l l b )  

[39], where $ is the perturbed poloidal flux, 
4 = s(r,)Bo(rs)E (s is the magnetic shear and Bo is the 
equilibrium poloidal magnetic field), 5 is the plasma 
displacement, y = r/rs, and A o  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoh - wcoil is the 
‘slip frequency’ between the tearing frame and the 
reconnected magnetic flux. The time-scales rR, rH 
and rv are defined in Eqs (21) and (52f, g). 

to most tokamak plasmas, except close to the edge 
of discharges. Three distinct subsidiary limits can be 
identified as the slip frequency is varied. In the first 
limit, viscosity and resistivity are of equal importance 
in the layer, whereas inertia is unimportant. In this 
visco-resistive limit, I Au 1 Q orI = T$’~/T$’~ r;l3 and 

Consider the limit rR % rv, which is appropriate 

s layer  .AI3 --- 
r, T A ’ ~ ~ $ ’ ~  (1 12a) 

(1 12b) 

In the second limit, viscosity alone is important in the 
layer. In this ideal viscous limit, 

wII a I A ~  I a w12 = 1/r;/3r:/3 

and 

Finally, in the third limit, inertia alone is important in 
the layer. In this ideal inertial limit, u12 a law1 and 

& - ~AoI~TH (1 14a) 
r, 

(1 14b) 
n 

Alayerrs = ___ exp(id2) 
AU T H  

The ‘constant $’ approximation is valid whenever 

(see Eqs ( l l l a ,  b)). It follows from the above that the 
‘constant $’ approximation holds in the visco-resistive 
limit, but is invalid in the two ideal limits. The break- 
down of the ‘constant $’ approximation in the ideal 
limit is not surprising, since if resistivity is neglected 
in the layer equations (1 1 la ,  b) then there is zero 
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reconnected flux at the centre of the layer even when 
the flux at the edge is non-zero. 

In the visco-resistive limit the reconnected flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
given rise to a standard 'constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$' magnetic island 
whose width is proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ\E/B,I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' I 2  (see Eq. (37)). 
In the ideal limit there is no change in topology of the 
magnetic flux surfaces, although the perturbed flux at 
the edge of the layer 9 can be non-zero. 

7.4. The visco-resistive limit 

7.4.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction 

Consider the case of a static external perturbation 
(i.e. wcoii = 0). If the natural mode frequency wo is 
much less than wI ,  then the layer always remains in the 
visco-resistive limit (see Section 7.3). In this limit, the 
typical reconnection time-scale is given by 

Equations (103), (107) and (112a, b) yield 

1 
(117a) 

~ c p  = tan-'(&&) (117b) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 = uhrrecl& is the slip frequency normalized 
with respect to the typical reconnection time-scale. It 
follows that if the slip frequency is less than, or of the 
order of, the inverse reconnection time-scale, a rela- 
tively large amount of reconnection is driven, and the 
island phase shift with respect to the vacuum island is 
significantly less than a/2.  However, if the slip frequency 
is much greater than the inverse reconnection time-scale, 
very little reconnection is driven and the island phase 
shift approaches a12 asymptotically. This phase shift is 
due to the viscous drag exerted on the island by the 
flowing plasma and is in the direction of the rotation 
of the tearing frame. 

According to Eqs (109) and (1 17a, b) the electro- 
magnetic drag torque acting in the vicinity of the 
rational surface is given by 

Note that this torque is almost identical in form with the 
drag torque acting on a rotating island interacting with 
a resistive wall (see Eq. (42)), with the slip frequency 
taking the place of the island frequency, the layer 
reconnection time-scale taking the place of the wall 
time constant, and the vacuum magnetic flux taking 

the place of the reconnected flux [24]. This effect is 
a special property of the visco-resistive layer and does 
not occur in other limits. 

7.4.2. The steady state tearing frequency 

The relation between the steady state slip frequency 
06 and the natural frequency wo is obtained from the 
island equations of motion (31a, b), using Eqs (46a, b), 
(50), (110) and (118); thus, 

(1 8w:ac + 3G2) ) + ( G o = &  1 +  

where 

+ (;:) ($1 ( 120a) 

3 0  = w ~ T r e c / d 3  ( 120b) 

w w c  = WvacJwrec (120c) 

(120d) 

Note the similarity between Eq. (119), which describes 
the slowing down of the rotation of the tearing frame 
due to interaction with a static external perturbation, 
and Eq. (51), which describes the slowing down of the 
rotation of a magnetic island interacting with a resistive 
wall. 

The inertia operator r is retained in Eq. (1 19) in 
order to analyse the stability of solutions. In fact, the 
solutions are stable, provided that 

(121) 
a3 -(r = 0)  < o ar 
which reduces to 

+ 3 0 < 0  
6 3  

1 - 3G2 

Now, a suppressed island can enter the non-linear 
regime as soon as it is able to satisfy the 'no-slip' con- 
straint (i.e. 06 = 0, for a static perturbation) whilst 
remaining in a stable torque balance. For the case 
under consideration this occurs when 

3(1 + 3Q2) 

(A3 - 1y 
Go < 

for 3 < I/&, where the variation of Ahode with island 
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width has been neglected (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 in the notation of 
Section 5.1). The non-linear island states at the boundary 
between the linear and non-linear regimes all have phase 
shifts of .x/4 with respect to the vacuum island, which 
is the maximum stable phase shift achievable in the 
non-linear regime (for K = 0) (see Section 5.2 and 
Table 11). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.4.3. Description of the steady state solution 

Figure 3 shows steady state solutions of Eq. (119) 
plotted as contours of constant kvac (normalized vacuum 
island width or normalized perturbation field strength) in 
the 3 (normalized slip frequency) versus Go (normalized 
natural frequency) plane. The boundary between stable 
and unstable solutions and the extent of the non-linear 
regime are also indicated. 

It can be seen from Fig. 3 that application of an 
external perturbation modifies the bulk plasma rotation 
(this is parametrized by a reduction in the slip frequency). 
If the natural frequency lies below a critical value, given 
by ( w ~ ) ~ ~ ~ ~  = 3 & / ~ , , ~  (i.e. effectively the inverse layer 
reconnection time-scale), then there is a continuous 
spectrum of stable slipping states between the unper- 
turbed state and the first accessible non-linear state. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10 -0 
i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 3. Steady state solutions for the interaction of a visco-resistive 
tearing layer with a static magnetic perturbation. Contours of 
constant normalized vacuum island width (WVac) are plotted in the 
normalized tearing frequency (6) versus normalized natural frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(6,) plane. Dashed contours denote unstable solutions. The hatched 
region represents the extent of non-linear solutions. The contours 
plotted are Wi:: = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0 and 
7.0 (the contours are crossed, in the listed order, as 6, is increased 
from zero at constant 6). 

Thus, the transition between the unreconnected state 
and the fully reconnected state is achieved in a 
continuous and reversible manner as the external per- 
turbation strength is gradually increased from zero. This 
transition is associated with a gradual change in the 
bulk plasma rotation, with an associated gradual reduc- 
tion of the slip frequency from the unperturbed value 
w0 to zero in the non-linear regime. 

If the natural. frequency lies above the critical value 
then some of the intermediate slipping states 

become unstable. Thus, when the amplitude of the 
external perturbation is raised above a certain critical 
value, the system crosses the high slip boundary of the 
unstable region and makes a transition to a stable solu- 
tion on the low slip side. The unstable region is only 
encountered when W,,, > W,,, (see Eqs (120a-d)). 
The transition is characterized by an abrupt increase in 
the reconnected magnetic flux and an abrupt change in 
the bulk plasma rotation. In general, it takes a time of 
the order of the momentum confinement time-scale to 
complete a transition over the unstable region. The 
reverse transition occurs when the system crosses the 
low slip boundary of the unstable region. For fixed coo, 
this occurs at a somewhat lower external perturbation 
field strength than that required to trigger the high 
rotation to low rotation transition (see Fig. 3). It 
follows that if the natural frequency wo lies above 
the critical value (wO)crlt, then the transition from the 
unreconnected state to the fully reconnected state is 
neither continuous nor reversible. 

7.4.4. Mode penetration 

In the asymptotic limit where the unperturbed natural 
frequency is much greater than the inverse layer 
reconnection time-scale, the slowing down of plasma 
rotation due to interaction with the external perturba- 
tion is parametrized by 

where 

Thus, as the perturbation strength is gradually increased 
the slip frequency is gradually decreased until it reaches 
one half of its original value, at which point the system 
makes an irreversible transition to a non-linear island 
state. Such a transition is generally referred to as ‘mode 
penetration’ [22, 231, and is characterized by an abrupt 
and sizeable increase in the reconnected magnetic flux, 
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with a simultaneous abrupt change in the bulk plasma 
rotation. Mode penetration is distinguished from mode 
locking (described in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6)  by the absence of any 
rotating island state immediately prior to the production 
of the non-linear locked island state. Mode locking is 
essentially a transition from a rotating island state to a 
locked island state and is brought about by the slowing 
down and eventual locking of the island rotation. Mode 
penetration, on the other hand, is a transition from a 
suppressed (but locked) island state to an unsuppressed 
(but locked) island state and is brought about by the 
slowing down and eventual locking of the rotation of 
the tearing frame. 

width exceeds the critical value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,,,, (see Eqs (124) 
and (125)), which is a function of the plasma resistivity 
and viscosity. The predicted scaling of the critical per- 
turbed field strength required to induce mode penetra- 
tion is 6B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArH IwOIS5”* v7’12 (where S = rR/rH and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U = TH/rv), which is in good agreement with a previous 
numerical study of penetration [25]. 

The process inverse to mode penetration is mode 
unlocking (described in Section 5). As long as the 
island remains in the non-linear regime its rotation 
frequency is tied to that of the tearing frame via the 
‘no-slip’ constraint. Thus, if the perturbation field 
strength is reduced in order to make the island unlock, 
both the tearing frame and the island are simultaneously 
‘spun up’ by the viscous torque acting in the vicinity 
of the rational surface. Only after the island width has 
decayed back to a width of the order of the linear layer 
width is the ‘no-slip’ constraint relaxed, allowing the 
island to decouple from the rotating tearing frame and 
revert to the suppressed (locked) island state. 

Mode penetration takes place when the vacuum island 

7.5. The ideal limits 

If the natural mode frequency wo is much greater 
than coli = T ~ ’ ~ / T ~ ’ ~ T ~ ’ ~  then the layer is initially in 
one of the ideal limits. Figure 4 is a schematic 
diagram of the variation of the electromagnetic torque 
(oc I\k I sin Acp, see Eq. (109)) as a function of the slip 
frequency wf,, for a fixed amplitude static external 
magnetic perturbation. The torque is zero when wf, = 0, 
because the phase shift Acp = 0, and initially rises 
rapidly with increasing wf, as the phase shift increases, 
reaching a maximum at of, = T;:~. As wf, is raised 
further, the torque falls off approximately like l/w; as 
resistive reconnection becomes less efficient, until the 
boundary between the resistive and ideal regimes is 
reached at U,’, - wII. At this point the torque is a 
minimum. Any further increase in wf, leads to a rising 

! 
T 

0.c 

I \ B 

\ \  RESISTIVE LIMIT 1 IDEAL L I M I T  
\ 

Tl/3/  T i 1 3  T:3 
7;ic V w; - 

FIG. 4. Schematic diagram of the normalized electromagnetic 
torque (?) exerted by a static external magnetic perturbation at 
fixed amplitude on the plasma in the vicinity of a tearing layer, 
calculated as a j2nction of the slip frequency between the tearing 
frame and the reconnected magnetic jlu (U;). Balance points 
between the electromagnetic and viscous torques acting in the 
vicinity of the rational surface correspond to the intersection of the 
torque curve with a straight line of negative gradient which passes 
through wd = w5 at ‘f = 0. Here, w5 is the natural mode frequency. 
Two example straight lines are shown. The first corresponds to 
visco-resistive mode penetration (i.e. the transition A to B), the 
second to ideal mode penetration (i.e. the transition C to 0). 

torque as the layer becomes increasingly ideal in nature, 
and viscosity and inertia become relatively more impor- 
tant. In the ideal viscous limit the torque increases like 
( ~ f , ) ” ~ ,  whereas in the ideal inertial limit it increases 
like U; (see Eqs (113) and (114a, b)). 

viscous torques acting in the vicinity of the rational 
surface correspond to the intersections of the torque 
curve with a straight line that passes through wo (the 
natural frequency) at zero torque and has a negative 
gradient proportional to W;$. The balance points are 
stable if the line passes from above to below the torque 
curve as wf, increases, and they are unstable if the 
opposite is the case. 

Two example lines are shown in Fig. 4. For the 
first line, wo 4 q,, so that the layer is always in the 
visco-resistive limit. The system is just about to make a 
transition from a stable high slip state (marked A) to 
a stable low slip state (marked B). This corresponds to 
a state on the high slip boundary of the unstable region 
in Fig. 3. The transition (i.e. mode penetration) occurs 
when w; -wo/2. For the second line, wo % w I I ,  so that 

The balance points between the electromagnetic and 
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the layer is initially in the ideal limit. The system is 
again just about to make a transition from a stable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, II WTR 

(133) 

high slip state (marked C) to a stable low slip state 
(marked D). The transition (i.e. mode penetration) 
occurs when the tearing frequency has been reduced 
to about wII, so that the layer is just about to become 
resistive and the torque is a minimum. 

assuming I W(l)/W(o)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1 and neglecting any oscilla- 
tions in Alayer(W). According to Eq. (133), as the island 
rotates past the external coils its width modulates slightly 
under the influence of finite plasma resistivity. The 
reconnected magnetic flux is written as 

In the ideal viscous limit the modification of plasma 
rotation due to interaction with the external perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* = 

in the island frame, where 

+ \E(’) sin Acp ( 134) 

is the steady state is parametrized by 

(1 - 2) - ($94 = 0 
component and * ( I )  is the amplitude of the modulating 
component. It is easily demonstrated that (12@ 

where 

Mode penetration occurs when CO; - wII or when 
Wvac 2 Wpen,, where 

513 116 114 67.31 
gsteady 1 %  9) TV 

The constant in the above formula is chosen such that 
W,,,,, = Wpen2 when U,$ = wII (see Eq. (125)). The 
predicted scaling of the critical perturbed field strength 
required to induce mode penetration in the ideal limit 

Finally, in the ideal inertial limit the modification 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6B - ( T H  I w ~ ~ ) ~ ’ ~ S ~ ’ ~ ~ V ~ ~ ~ ~ ,  

(135) 

It follows from Eq. (67) that the modulations in the 
rotating island width give rise to a non-oscillating 
electromagnetic torque, which acts to slow down the 
island rotation. The time averaged poloidal component 
of this torque takes the form 

The change in the island induced by the steady 
electromagnetic drag, obtained in the usual manner by 
balancing the electromagnetic and viscous torques at 
the rational surface, is described by 

perturbation is parametrized by % - I + -  WO - -  2 2 [ 1 -  (2)‘]’” (137) 
of plasma rotation due to interaction with the external 

where 

where 
(129) 

7.6. The non-linear analogue to mode penetration 

Consider the case of a non-linear magnetic island of 
width W, rotating uniformly with a frequency w .  The 
Rutherford island equation takes the form 

where dApldt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Let 

W = W(O) + W(I) sin Acp 

where W(O) is the steady island width. It follows that 

The last steady state solution of Eq. (137) occurs when 
the island frequency has been reduced to one half of 
its original value, that is when Wvac = WIOCk3. If 
Wva, > WIOCk3, the electromagnetic drag torque is too 
large to be balanced by the viscous restoring torque, 
and the system makes a transition to one of the locked 
island states discussed in Section 5.  

Note the similarity between Eq. (124), which 
describes the slowing down of plasma rotation due to 
interaction with an external perturbation in the linear 
regime, and Eq. (137), which describes the equivalent 
slowing down of plasma rotation in the non-linear 
regime. In fact, Wlock3 can be re-written as 

(139) 

(see Eq. (125)), where 61ayer/rs = 2 . 5 6 ~ ~ ~ ~ / ~ ~ ‘ ~ ~ ~ ~ ~  is 
the appropriate linear layer width (see Eq. (1 12a)). It 
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follows that the mode locking mechanism described 
above is the non-linear analogue of visco-resistive 
mode penetration. Since the non-linear island width 
is always greater than the linear layer width, Eq. (139) 
implies that the external perturbation field strength 
required to lock a rotating island exceeds that needed 
to induce mode penetration in an otherwise equivalent 
tearing-stable plasma. 

Note that in describing the steady electromagnetic 
drag torque associated with modulations in the rotating 
island zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwidth, any modulations in the island zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrequency, 
such as those described in Section 6, have been 
neglected. Likewise, modulations in the rotating island 
width are neglected in Section 6. These two effects, 
which in reality occur simultaneously, have been 
treated separately for the sake of clarity. 

7.7. Summary 

An island that is unable to satisfy the ‘no-slip’ con- 
straint is prevented from entering the non-linear regime 
and remains in a ‘suppressed’ state, with a width of 
the order of the linear layer and with the plasma slipping 
through it to some extent. Suppressed islands are most 
likely to occur during the interaction of an external 
magnetic perturbation with a tearing-stable plasma. 
It is assumed that the physics of a suppressed island 
state is similar to that of a linear layer. 

For a linear layer interacting with a static external 
magnetic perturbation the reconnected flux at the rational 
surface is non-rotating. The external perturbation exerts 
a steady electromagnetic drag torque in the vicinity of 
the rational surface, which modifies the bulk plasma 
rotation. The amount of driven reconnection is a highly 
non-linear function of the perturbation field strength 
(parametrized by the vacuum island width). As the 
vacuum island width is gradually increased from zero, 
the modification of plasma rotation gradually increases 
in strength, but relatively little reconnection is driven at 
the rational surface. However, above a critical vacuum 
island width (W,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> W,,,, if the layer is resistive, 
W,,, > Wpenz if the layer is ideal, see Eqs (125) and 
(128)), there is an abrupt increase in the reconnected 
flux as a locked non-linear island is induced at the 
rational surface. There is a simultaneous abrupt change 
in the plasma rotation as the rotation of the tearing frame 
is arrested. This process is known as ‘mode penetration’ 
[22, 291 and is distinguished from mode locking by 
the absence of any rotating island state immediately 
prior to the production of the locked mode. 

If the natural frequency is smaller than the inverse 
layer reconnection time-scale, then the transition to the 

locked island state becomes completely smooth and 
reversible as the perturbed field strength is gradually 
increased. 

magnetic perturbation can also give rise to a steady 
electromagnetic drag torque acting in the vicinity of 
the rational surface. This torque is associated with 
periodic modulations in the island width. The torque 
acts to slow down the island rotation, but once a critical 
vacuum island width is exceeded (W,,, > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWIOCk3, see 
Eq. (138)) conventional mode locking occurs. This 
effect is the non-linear analogue of mode penetration. 
In fact, the critical perturbation field strength needed 
to induce locking merges with the critical field strength 
required to induce penetration as the island width is 
reduced to that of the linear layer (see Eq. (129)). 

The interaction of a rotating island with an external 

8. IMPLICATIONS FOR 
OHMICALLY HEATED TOKAMAKS 

The aim of this section is to make some quantitative 
predictions for ohmically heated tokamaks, using some 
of the results derived in Sections 3-7. It is not intended 
to perform a detailed comparison of theory and experi- 
ment, since this is best left to experimental papers, but 
rather to indicate which of the many effects described 
in the preceding sections are likely to be of significance 
in tokamak plasmas. Of particular interest is the scaling 
of the various effects with machine size. 

Consider a family of tokamaks of constant aspect 
ratio a = 0.35R0, in which the toroidal field strength 
scales like B, = 1.38ROo7 T. Broadly speaking, most 
modern tokamaks of conventional design are members 
of this family; for instance, COMPASS-C (R, = 0.56 m, 
a = 0.2 m, B, = 1.1 T) [29], DIII-D (Ro = 1.67 m, 
a = 0.64 m, B+ = 1.3 T) [35], JET (Ro = 3.0 m, 
a = 1.1 m, B, = 3.0 T) [ l ]  and ITER (R, - 6.0 m, 
a - 2.2 m, B, - 4.9 T) [51]. 

The discharge parameters chosen for this study are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
411 = 3.5, he = 2 x 1019 m-3, y = 0.5, Y T  = 2.0, 
Meff = 2.0, Zeff = 3.0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK~ = 0.0 (see Appendices A 
and B). In smaller tokamaks (e.g. COMPASS-C), 
these correspond to standard Ohmic operation in 
deuterium, at densities well below the density limit. 
In larger tokamaks, the parameters describe typical low 
density Ohmic ‘target plasmas’ used to access reactor- 
relevant plasma performance regimes via the addition 
of strong auxiliary heating (e.g. the DIII-D VH mode 
[52] and the JET trace tritium experiment [53]). 

Figure 5 shows the hydrodynamic (rH), resistive (T~) ,  

viscous ( T ~ )  and neoclassical poloidal flow damping ( T ~ )  
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lo-& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 5. Typical hydromagnetic (rH). resistive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(rR), viscous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7”) 

and neoclassical poloidal flow damping (rD) time-scales for a 
(2, 1 )  mode, evaluated as functions of the major radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(R,), 
using the scaling model for ohmically heated plasmas described 
in Appendix B. The minor radius is given by a = 0.35R0, and 
the toroidal field strength by B, = 1.38R:’ T. The discharge 
parameters are qi = 3.5, 5, = 2 X l O I 9  m-’, y = 0.5, 
y r  = 2.0, Me# = 2.0, Zeff = 3.0 and K~ = 0.0. 

FIG. 6. Steady state localization scale length for the poloidal 
velocity shift profiles associated with, for example, locked modes 
as a fraction of the minor radius @,/a), and the related ratio of 
‘toroidal’ to poloidal mode frequency shifts (AWJAW~), calculated 
as a function of the major radius (R,) for the same set of para- 
meters as those used in Fig. 5. 

time-scales for a (2, 1) mode, evaluated as functions of 
the major radius Ro, using the simple scaling model for 
ohmically heated plasmas described in Appendix B. 

Figure 6 shows the steady state localization scale 
length for the poloidal velocity shift profiles associated 
with locked modes, for example (see Eqs (44a-d) and 
(161)), and the related ratio of toroidal to poloidal mode 
frequency shifts (see Eq. (162)), calculated for a (2, 1) 
mode using the neoclassical poloidal flow damping time- 
scale. It can be seen that the neoclassical time-scale 
yields increasingly strong localization of poloidal 
velocity shift profiles as Ro increases, but that the 
degree of localization is insufficient to prevent the 
mode frequency shift from being mostly poloidal in 
nature (i.e. mostly due to changes in the poloidal, 
rather than the toroidal, component of the plasma 
velocity at the rational surface). 

The latter prediction is completely at variance with 
experiment. For instance, a study in JET of the slowing 
down of mode rotation due to interaction with the 
vacuum vessel concludes that the associated plasma 
velocity change is predominantly in the toroidal direc- 
tion [16, 541. In COMPASS-C, a fairly comprehensive 
study of mode penetration comes to the conclusion that 
the plasma velocity change associated with the creation 
of a locked mode is also predominantly toroidal [29]. 
In DIII-D, independent spectroscopic measurements 
of the poloidal and toroidal ion velocities during the 
slowing down, and eventual penetration, of a mode 
interacting with a resonant external magnetic perturba- 
tion have confirmed that large changes are induced in 
the toroidal rotation, but that the poloidal rotation is 
little affected 1551. 

In fact, theory and experiment can only be reconciled 
if the poloidal damping time-scale is significant smaller 
than the neoclassical value. This conclusion is unlikely 
to be an artifact of the scaling model, or the ad hoc 
form adopted for the damping term in Eqs (25a, b), 
because the neoclassical damping time-scale falls so 
far short of that needed to account for the experimental 
observations. 

One possible explanation for this apparent discrepancy 
is that the perpendicular viscosity is much larger in the 
poloidal direction than in the toroidal direction. Alterna- 
tively, poloidal flow damping may be dominated by 
collisionless processes (e.g. Landau damping) rather 
than the collisional processes considered in neoclassical 
theory. In the following, it is assumed that T~ - 0, so 
that the plasma velocity changes due to locked modes, 
for example, are entirely toroidal. This assumption is 
generally found to be consistent with experimental 
observations. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 3.0 6.0 

R , ( m )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe natural frequency (coo), the critical natural frequency 
[ ( W ~ ) ~ , , J ,  the critical frequency mismatch above which a driven 
tearing layer becomes ideal (col,) and the critical frequency mis- 
match above which the layer becomes ideal inertial (q2), for a 
(2, I )  mode, calculated as functions of the major radius (R,) for 
the same set of parameters as those used in Fig. 5. 

Figure 7 shows the natural (2, 1) mode frequency (ao), 
the critical natural frequency ( ( w ~ ) ~ ~ ~ ~ ,  see Section 7.4.3)), 
the critical frequency mismatch above which a driven 
(2, 1) tearing layer becomes ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 74’3/7i’37213, 

see Section 7.5) and the critical frequency mismatch 
above which the layer becomes ideal inertial 
(aI2 f 1/7i’37$/3, see Section 7.5), as functions of the 
major radius. According to Fig. 7, in ohmically heated 
tokamaks the natural mode frequency wo is considerably 
larger than the critical value which is effectively 
the inverse layer reconnection time-scale. In follows 
from Section 7.4 that externally induced reconnection 
in a tearing-stable plasma (due to application of a static 
resonant magnetic perturbation, say) is highly discon- 
tinuous in nature. Below a critical perturbation field 
strength, there is some modification of the bulk toroidal 
plasma rotation, but relatively little magnetic reconnec- 
tion is driven at the rational surface. As the critical 
field strength is exceeded, there is a sudden change in 
the plasma rotation as a large locked island is induced 
at the rational surface. This process is termed ‘mode 
penetration’ and is characterized by the absence of 
any rotating magnetic precursor to the locked mode. 

Figures 5 and 7 suggest that, to a good approxima- 
tion, 7R 7v and wo 4 wII for (2, 1) modes in ohmi- 
cally heated tokamaks. It follows that mode penetration 
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lies in the visco-resistive limit described in Section 7.4, 
with the modification of plasma rotation prior to 
penetration governed by Eq. (124) and the penetration 
threshold itself given by Eq. (125). 

penetration is the mode locking mechanism discussed 
in Section 7.6. According to this, if the saturated island 
width exceeds the visco-resistive layer width Slayer (see 
Fig. 8), then the modification of plasma rotation prior 
to mode locking is described by Eq. (137), and the 
locking threshold itself is given by Eq. (138). This 
locking mechanism is associated with periodic modula- 
tions in the island width as the rotating mode is alterna- 
tively stabilized and destabilized via interaction with 
the static magnetic perturbation. This is likely to be 
the dominant locking mechanism in ohmically heated 
tokamaks because the alternative locking mechanism, 
associated with periodic modulations in the island 
frequency as the rotating mode is alternatively speeded 
up and slowed down by the interaction (see Section 6), 

turns out to have an extremely high threshold. 
Figure 8 shows the visco-resistive linear layer width 

Slayer = 2 . 5 6 ( ~ h / ~ / ~ i ’ ~  ~ $ ’ ~ ) r , ,  the critical vacuum island 
width for visco-resistive mode penetration (W,,,,, see 
Eq. (125)) and the critical vacuum island width for 

For a non-tearing-stable plasma, the analogue of mode 

O.* h 

0.5 3.0 6.0 

R,(m) 

FIG. 8. The visco-resistive linear layer width divided by the minor 
radius (610yer/a), the critical vacuum island width for visco-resistive 
mode penetration divided by the minor radius (Wpe,,,/a) and the 
critical vacuum island width for unlocking divided by the minor 
radius (Wunl0,/a), for a (2, I )  mode, calculated as functions of the 
major radius (R,) for the same set of parameters as those used in 
Fig. 5. 
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unlocking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Wunlock, see Eq. (74d)), calculated for 
(2, 1) modes, and expressed as a fraction of the 
minor radius. It can be seen that the layer width is 
quite substantial in small tokamaks, but falls rapidly 
with increasing machine size. The quantity Wunlock is, 
broadly speaking, the minimum locked island width 
that can be maintained in a tearing-stable plasma by 
a static external magnetic perturbation (see Section 5.4). 
In small tokamaks, where the natural mode frequency 
is comparatively high, only a very large locked island 
can be maintained against the strong viscous restoring 
torque acting in the plasma. As the machine dimensions 
increase, the natural frequency decreases and the 
restoring torque becomes progressively weaker, 
permitting ever smaller locked islands to be main- 
tained in the plasma. 

Figure 9 shows critical vacuum radial perturbation 
field strength at the plasma edge for (2, 1) visco- 
resistive mode penetration and unlocking, expressed as a 
fraction of the toroidal magnetic field strength. It can 
be seen that the critical magnetic perturbation ampli- 
tude needed to induce or maintain a locked mode 
decreases markedly with increasing machine size. 
Comparison with experimental data [29, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35,  361 
reveals that the theoretical mode penetration threshold 
is about a factor of two too high, although it 

’- 0 5  3.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 0  

R o  (m) 

FIG. 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATne critical vacuum radial perturbation field strength at 
the plasma edge for visco-resistive mode penetration divided by the 
equilibrium toroidal field strength ((b,/BJpen), and the critical 
field strength for unlocking divided by the toroidal field strength 
((br/B,JUniock), for a (2, 1) mode, calculated as &netions of the 
major radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(R,) for the same set of parameters as those used 
in Fig. 5. 

predicts the relative scaling from machine to machine 
fairly accurately. This discrepancy could be due to 
shortcomings in the vacuum eigenfunction approxima- 
tion used throughout this paper, or inaccuracies in the 
scaling model described in Appendix B (in particular 
in the scaling of the viscosity, which is not very well 
known). However, the most probable source of 
inaccuracy is the approximation of the suppressed 
island state as a linear layer employed in Section 7. 
The theory described in Refs [19] and [29], in which 
the suppressed island is treated as a fully non-linear 
island, actually gives better agreement with experiment 
for the penetration threshold, but is unable to account 
for the observed modification of plasma rotation prior 
to penetration. 

Note that in small tokamaks, such as COMPASS-C, 
the critical perturbation strength required for penetra- 
tion (b,lB, > is much larger than any conceivable 
field error. For medium to large tokamaks, such as 
DIII-D and JET, the critical perturbation strength 
(b,lB, < 5 x is similar to the known level of 
field errors. In fact, field error induced (2, 1) mode 
penetration is observed in both devices at low density 
[35, 361 and can significantly restrict the disruption 
free operating space unless remedial action is taken 
(e.g. reducing the field errors [35] and ‘spinning’ the 
plasma with neutral beams [ S I ) .  For a tokamak of the 
(proposed) size of ITER, the critical perturbation 
strength for penetration (b,lB, > 5 x 
extremely low. Clearly, if ITER is to avoid the same 
(or worse!) problems with field error induced locked 
modes which have beset DIII-D, and to a lesser extent 
JET, the level of field errors will need to be kept 
significantly below those found, at present, on either 
of these devices. 

One method for raising the penetration threshold, and 
thereby reducing the sensitivity of the discharge to error 
fields, is to ‘spin’ the plasma with unbalanced neutral 
beam injection (NBI), This increases the natural frequency 
wo, but also tends to decrease U/, = (basi- 
cally because TR is larger in the hotter beam heated 
plasma). In fact, in contrast to ohmically heated plasmas, 
wo tends to exceed col, in NBI plasmas. It follows that 
mode penetration lies in the ideal limit described in 
Section 7.5, with the modification of plasma rotation 
prior to penetration governed by Eqs (126) or (129), 
and the penetration threshold itself given by Eq. (128). 
This implies that the critical perturbation field strength 
for penetration scales like 6B 0: 
instead of like 6B 0: lwoI in Ohmic discharges. In fact, 
the empirical scaling obtained from NBI discharges in 
DIII-D is 6B 0: 1 0 1  0.4 [55]. 

is 

in NBI discharges, 
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In ohmically heated discharges, penetration occurs 

when the tearing frequency has been reduced to one 
half of its original value. In NBI discharges, on the 
other hand, penetration occurs when the tearing 
frequency has been reduced to a fixed value (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- w ~ , ) ,  which is usually only a small fraction 
of its original value. It follows that a more marked 
relative reduction in the tearing frequency is expected 
in NBI discharges than in Ohmic discharges. In fact, 
in Ohmic discharges the reduction in the tearing 
frequency just prior to penetration, inferred from 
magnetic and spectroscopic data, is about 30% of 
the original value [29]. In NBI discharges a much 
larger reduction of up to 70% of the original value 
is observed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[55]. 

Figure 10 shows the resonant wall time constant 
(T,),,, 2/)woJ at which the drag on a rotating 
island is maximum, calculated for a (2, 1) mode (see 
Section 3.5). The critical island width for significant 
slowing down of island rotation due to interaction with 
a resonant wall is approximately Wunlock. It follows from 
Fig. 8 that in small tokamaks, even in the resonant case 
7, - (7,),,,, only extremely large islands can be slowed 
down by the wall. On the other hand, if the wall is 
resonant in ITER, then islands as small as 2 %  of the 
minor radius will be significantly slowed down. In this 
situation there will effectively be no conventional rotating 
MHD activity, since all substantial modes will be ‘quasi- 
stationary’ [54] owing to strong interaction with the wall. 

0.5 3.0 6.0 

U, (m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe resonant wall time constant [(r,),,J (in seconds) 
for a (2, 1 )  mode, calculated as a function of the major radius 
(R,) for the same set of parameters as those used in Fig. 5. 

This is clearly undesirable since it will facilitate mutual 
locking of the various modes in the plasma (which is 
destabilizing) and will also make it easier for the 
modes to lock to external field errors. It follows that 
some care must be taken during the design of ITER to 
ensure that the wall is significantly off resonance (i.e. 
T , ~  is either much larger than, or much smaller than, 
(7,)res - 1 ms). 

9. SUMMARY AND CONCLUSIONS 

In Section 2 a basic theoretical framework is developed 
for the investigation of tearing mode interactions in 
cylindrical geometry. The problem is split into three 
main parts. In the first part, the marginally stable ideal 
MHD equations are solved in the region of the plasma 
where ideal MHD holds, subject to suitable boundary 
conditions. This enables the stability of the various 
modes in the plasma to be assessed and also allows 
the electromagnetic torques acting in the plasma to be 
evaluated. In the second part, fluid equations describing 
modifications to the bulk plasma rotation are solved in 
the ideal MHD region of the plasma, subject to suitable 
boundary conditions. This enables the viscous torques 
acting in the plasma to be evaluated. In the final part, 
the electromagnetic and fluid components of the model 
are combined to give a set of equations describing the 
coupled evolution of the amplitude and phase of each 
mode in the plasma. 

The scheme outlined above is, of course, much more 
involved than the standard non-interacting tearing mode 
problem. This is due to the fact that there is, in general, 
more than one frequency in the system. For instance, 
for the case of many interacting tearing modes resonant 
on different rational surfaces in the plasma, each mode 
will have its own preferred rotation frequency (the so 
called ‘natural’ frequency). In general, there is very 
little response if a tearing mode is driven off resonance 
(i.e. at a frequency substantially different from its natural 
frequency) [ 191. However, the frequency of each mode 
in the plasma can be non-linearly modified by the 
electromagnetic torques acting in the vicinity of the 
various rational surfaces. These torques act to bring 
all modes into co-rotation, where the mutual interac- 
tion is at a maximum. Such frequency modifications 
are opposed by viscous restoring torques. It follows 
that the stability of the various modes in the plasma is 
a strong function of the tearing frequencies at each 
rational surface, which in turn depend on the relative 
strengths of the electromagnetic and viscous torques. 
Of course, these torques are sensitive functions of the 
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amplitudes, phases and rotation frequencies of the 
various modes in the plasma. Thus, a highly non-linear 
set of equations is obtained, which can lead to a rich 
variety of different types of behaviour, even for 
apparently quite simple systems. The interaction of a 
tearing mode with a static external structure (e.g. an 
error field) is similar in form to the coupled tearing 
mode problem, except that one of the frequencies in 
the system (i.e. that corresponding to the external 
structure) is always zero. 

In Section 3 the slowing down of a rotating magnetic 
island interacting with a resistive wall is investigated, 
and the results are summarized in Section 3.5. The 
main result is that for a sufficiently large unperturbed 
island rotation frequency there is a bifurcation of steady 
state solutions, so that if the interaction strength exceeds 
a certain critical value there is a sudden decrease in 
the island rotation to a very small value, accompanied 
by a sudden change in the bulk plasma rotation. 

In Sections 4-7 the interaction of a tearing mode 
with a static resonant magnetic perturbation is inves- 
tigated. Five distinct types of interaction are found. 
Mode unlocking is the transition from a locked island 
state to a rotating island state, and takes place when 
the perturbation strength falls below a critical value. 
Mode locking is the inverse process, and can take 
place via predominantly viscous, inertial or resistive 
mechanisms, if the perturbation strength is sufficiently 
large. The slightly non-uniform rotation of a non-locked 
magnetic island interacting with a static magnetic 
perturbation gives rise to a net zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstabilizing effect on the 
mode, in marked contrast to a locked island where the 
interaction is always destabilizing. Mode stabilization 

can take place via predominantly viscous or inertial 
mechanisms. A sufficiently small saturated island can 
be completely stabilized, but if the island is too large 
then locking occurs prior to complete stabilization. The 
interaction of a tearing-stable plasma with a static 
magnetic perturbation can give rise to modification of 
the bulk plasma rotation. This process is known as 
plasma rotation braking and takes place without any 
substantial magnetic reconnection being driven at the 
rational surface. However, if the perturbation strength 
exceeds a critical value there is a large change in the 
plasma rotation, as a locked island is induced at the 
rational surface. This process is known as mode 

penetration, and is distinguished from conventional 
mode locking by the absence of any rotating magnetic 
precursor to the locked island. All of the above men- 
tioned effects are observed in experiment. 

In Section 8, some of the results derived in 
Sections 3-7 are applied to typical ohmically heated 

tokamak discharges with the aid of the simple scaling 
model described in Appendix B. The neoclassical poloi- 
dal flow damping time-scale is found to be significantly 
too large to account for the experimental observation/ 
inference that mode frequency shifts induced by resistive 
walls or static magnetic perturbations are predominantly 
due to toroidal, rather than poloidal, velocity shifts at the 
rational surface. The mode penetration threshold is 
found to decrease rapidly with increasing machine size, 
placing stringent limits on the permissible error field 
level in ITER if problems with locked modes are to be 
avoided. Finally, it is pointed out that a certain range 
of values for the wall time constant in ITER will lead 
to the collapse of MHD rotation at extremely small 
saturated amplitudes. Since this is clearly undesirable, 
it is important that this range of values be avoided. 

The most important conclusion of this paper is that 
application of an (m, n )  magnetic perturbation does not 
necessarily give rise to driven reconnection at the (m, n )  
mode rational surface(s) in the plasma [19]. In fact, 
unless the perturbation rotates at the natural frequency 
of the plasma (m, n) mode, no substantial reconnection 
is driven until a certain threshold perturbation strength 
is exceeded. This threshold strength is basically that 
required to shift the (m, n)  tearing frequency off its 
natural value, such that it becomes coincident with the 
applied frequency. Although this conclusion is deduced 
from a study of the interaction of a single tearing mode 
with an external perturbation, it is also likely to hold 
for toroidal coupled tearing modes. 

The results derived in Sections 4-7 suggest that a 
magnetic island on a particular rational surface which 
is not of sufficient amplitude to lock neighbouring (i.e. 
toroidally coupled) rational surfaces actually has a 
stabilizire effect on modes resonant on these surfaces. 
Also the A' of the low amplitude mode should, to a 
first approximation, be worked out using an eigen- 
function which behaves ideally (i.e. with zero recon- 
nection) at the neighbouring surfaces. As the island 
grows, it will eventually reach sufficient amplitude 
to lock one of the neighbouring rational surfaces, at 
which point a co-rotating island will be induced at 
this surface, and the original mode will become more 
unstable. Note that the co-rotating island will not, in 
general, be exactly in phase with the original island, 
owing to the viscous torques acting in the plasma. 
There will be a change in the bulk plasma rotation 
associated with the locking of a neighbouring rational 
surface, tending to bring the tearing frequencies of the 
various modes in the plasma closer together. Further 
growth of the island may lock the other neighbouring 
surfaces, one by one, or may lead to catastrophic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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locking of all the surfaces. Note that the more surfaces 
a given island is able to lock, the more unstable it is 
likely to become. 

In conclusion, the study of tearing mode interactions 
in cylindrical geometry has given rise to many rewarding 
insights into tearing mode behaviour. It is hoped that it 
will be possible, in the not too distant future, to complete 
a complementary study of tearing mode interactions in 
toroidal geometry. 

Appendix A 

THE SCRAPE-OFF LAYER 

The boundary condition satisfied by the perturbed 
velocity at the edge of the plasma is parametrized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K~ (see Eqs (28a, b)). In this appendix, a simple model 
of the scrape-off layer is developed that enables K~ to 
be estimated from the edge plasma parameters. 

Consider a scrape-off layer produced by a single 
poloidal ring limiter, extending from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (the radius 
of the last closed flux surface) to r = a + d (the radius 
of the vacuum vessel). For the sake of simplicity, the 
scrape-off layer is assumed to be uniform in the poloidal 
and toroidal directions. The angular momentum of the 
ion fluid is gradually destroyed as the individual ions 
collide with the limiter. The rate of destruction of 
angular momentum is approximately U t h , / L c ,  where Uth ,  

is the ion thermal velocity (i.e. the velocity with which 
ions stream along field lines) and L, = 2nRo is the 
connection length along field lines from one side of 
the limiter to the other. 

The destruction of flui& angular momentum via 
collisions with the limiter can be incorporated into 
Eqs (25a, b), yielding a simple one dimensional 
equation describing the perturbed ‘toroidal’ flow 
in the scrape-off layer. Thus, 

where x = r - a.  Here, the scrape-off layer is assumed 
to be thin compared with the plasma cross-section, and 
any variations in the density and viscosity across the 
layer are neglected. The steady state solution of 
Eq. (140) that satisfies the physical boundary condition 
imposed at the wall, AQ,(a + d) = 0, is 

sinh[(a + d - r)/Xsol] 
sinh(d/Xsol) 

AQ,(r) = Afl,(a) 

for r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL a ,  where 

Equation (141) yields 

(see Eqs (28a, b)). 
It is easily demonstrated that the fraction of the 

‘toroidal’ viscous torque transmitted to the scrape-off 
layer by the bulk plasma that develops on the wall is 

The remainder of the torque transmitted to the scrape- 
off layer ends up on the limiter. Note that in a steady 
state the total ‘toroidal’ torque that develops on the 
wall and limiter is equal to the total ‘toroidal’ 
electromagnetic torque acting inside the plasma 
(see Eqs (32a, b)). 

The boundary condition, AO,(a + d) = 0, can be 
justified by modelling the wall as a set of closely spaced 
poloidal ring limiters. In the limit where the spacing 
goes to zero, the above analysis yields Lc - 0, 
A,,, - 0,  K~ - 0, and hence An,  - 0, at the wall. 

Equations (143) and (144) imply that if the velocity 
decay scale length in the scrape-off layer X,,, is much 
smaller than the maximum width of the layer d, then 
K~ = Xso,la and nearly all of the torque transmitted to 
the layer ends up on the limiter. On the other hand, if 
Xsol is much greater than d, then K~ = d/a and nearly 
all of the torque transmitted to the layer ends up on 
the wall. Thus, the maximum possible value of K~ is 
dla. Now, in most tokamaks the radial extent of the 
limiter is only a small fraction of the plasma radius. 
It follows that K~ is always much smaller than unity. 
Any process, such as charge exchange with neutrals 
[44], which gives rise to additional edge plasma 
momentum losses, will tend to reduce K~ still further. 

Appendix B 

A SCALING MODEL FOR 

OHMICALLY HEATED TOKAMAKS 

The vacuum safety factor profile 

4 = 4*x2 (145) 

is adopted for consistency with the vacuum eigenfunc- 
tions employed in Sections 3 and 4 (see Eqs (36a-c) 
and (61a, b)). Here, q+ is the edge safety factor and 
x = r/a. The magnetic shear associated with the 
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vacuum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq profile is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= q ’ / q  = 2. The rational 
surface is located at r,la = a. The density and 
temperature profiles are assumed to take the form 

(146a) 

(146b) 

where ne is the electron number density, Ee the line 
averaged electron number density, T, the electron tem- 
perature, the ion temperature and 

(147) 

The central electron temperature is estimated by 
balancing the volume averaged Ohmic heating power, 
calculated using the classical parallel resistivity [41, 561 

Zeff In Re qll (f2.m) = 1.65 x 
T,(keV) 3‘2 

against the volume averaged rate of electron energy 
losses, calculated using the neo-Alcator energy con- 
finement time-scale [57] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s )  = 7 X 

yielding 

E,(lOJ9 m-3) a(m) Ri(m) q3 (149) 

Here, a is the plasma minor radius, Ro the major 
radius of the magnetic axis, B, the toroidal magnetic 
field strength and Zeff the effective charge number of 
the ions. The volume averaged Coulomb logarithm for 
electron-ion collisions is given by (see Ref. [56]) 

lnA, = 16.4 - f lnE, (lOI9 m-3) 

+ In TeC (keV) - In (1 + yT) (151) 

The neoclassical enhancement of plasma resistivity 
[56] is neglected in Eq. (148) for the sake of simplicity. 
It can be crudely simulated by increasing Z,,, by an 
appropriate factor. The neo-Alcator scaling of T~ is 
valid for most ohmically heated tokamak plasmas, 
except at high densities (above E, - 8 x loi9 m-3, 
say [58]) where the confinement ‘saturates’ (i.e. rE 
ceases to increase with density). 

the volume averaged rate of heating by the electrons, 
calculated using the classical electron-ion energy 
exchange time-scale [41] 

The central ion temperature is evaluated by balancing 

(152) 
Me, T2:’ 

T,, (s) = 0.67 
Zeff InA,G(y)E, (loi9 m-3) 

against the volume averaged rate of ion energy losses, 
calculated using the neo-Alcator energy confinement 
time-scale, yielding 

(153) 

In Eq. (152), Me, is the effective mass number of the 
ions (in units of the proton mass). Note that the electron 
and ion energy confinement time-scales have been 
assumed to be equal, for the sake of simplicity. 

Neglecting profile effects, the viscosity time-scale 7v 

(defined in Eq. (52g)) is related to the momentum con- 
finement time-scale 7M (i.e. the time-asymptotic e-folding 
time for the viscous decay of an unsupported ‘toroidal’ 
velocity shift profile) via (see Ref. [29]) 

The momentum confinement time-scale 7 M  is set 
equal to the neo-Alcator energy confinement time-scale 
(149), evaluated at a fixed density (E, - 2 X l O I 9  m-3, 
say). This is reasonable, since 7M is observed to be 
similar in magnitude to 7E in most tokamaks [59]. The 
comparative lack of variation of 7M with plasma density 
(in low density ohmically heated tokamaks) is consistent 
with the observed rate of increase of the penetration 
threshold for static external magnetic perturbations 
with increasing density [29, 35, 361. 

in Eqs (52f) and (21)) take the form 
The hydromagnetic and resistive time-scales (defined 

a* (m) T;’ (keV) 
T R ( s )  = 7.6 X lo2 

Zeff In n e  

(155b) 

The natural mode (angular) frequency wo is set equal 
to the electron diamagnetic frequency, so that 

As is demonstrated in Ref. [7], this is an extremely 
good scaling law for ohmically heated tokamaks. 

According to standard neoclassical theory, poloidal 
flow damping in tokamaks is due to magnetic pumping 
in the Pfirsch-Schluter regime [42] and friction between 
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trapped and passing ions in the banana regime [60]. 
A somewhat simplified formula for the poloidal flow- 
damping time-scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~ at the rational surface can be 
derived from the neoclassical formalism of Ref. [60]. 
Thus, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (q,/q+J”4 ao, 

(1 - qs/qli.)3YT/2 

(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq s / 4 + ) Y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

is the classical ion-ion collision time-scale, and 

h, = 7.u  
1 - I t  t r ,  

T,:” (keV) 
13(r)Z~( lO’~ m”)lnAiRO(m)q, 

= 2.1 x 104 

(157) 

(159) 

parametrizes the ion collisionality. Here, utr, is the ion 
transit frequency around the rational flux surface. The 
volume averaged Coulomb logarithm for ion-ion colli- 
sions takes the form 

lnA, = 18.5 - 11n%,(10i9 me3) + ilnT,(keV) 

- $ ln ( l  + yT) ( 160) 

[56]. Equation (157) yields the correct asymptotic for- 
mula for rD in both the Pfirsch-Schluter (XI - 0) and 
the banana (XI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-00) limits. The effect of impurities has 
been neglected for the sake of simplicity. In fact, it can 
be demonstrated that under normal circumstances impu- 
rities only give rise to an O(1) correction to rD. 

The steady state localization scale length for the 
poloidal velocity shift profiles associated with, for 
example, locked modes is given by 

s. a = JZ- 4* rv 
(161) 

(see Eq. (45) and Section 3.4.3). The related ratio of 
the mode frequency shift attributable to changes in the 
poloidal velocity at the rational surface, Aws = mAQo,, 
to the frequency shift attributable to changes in the 
‘toroidal’ velocity, Au, = -nAClZs, is 

in steady state (see Eq. (50)). Here, any variation of 
p l ( r )  with r has been neglected. 
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