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Abstract In this paper we consider the onset of
shimmy oscillations of an aircraft nose landing gear.
To this end we develop and study a mathematical
model with torsional and lateral bending modes that
are coupled through a wheel-mounted elastic tyre. The
geometric effects of a positive rake angle are fully in-
corporated into the resulting five-dimensional ordinary
differential equation model. A bifurcation analysis in
terms of the forward velocity and the vertical force
on the gear reveals routes to different types of shimmy
oscillations. In particular, we find regions of stable tor-
sional and stable lateral shimmy oscillations, as well
as transient quasiperiodic shimmy where both modes
are excited.
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1 Introduction

Lateral, unwanted oscillations during the motion of
wheeled vehicles, such as aircraft, motorcycles, cars
and trailers, are undesirable due to their detrimental
effects on the safety as well as on the costs involved in
the maintenance of the vehicle. Such oscillations are
generally referred to as shimmy oscillations. One of
the earliest documented evidence of shimmy was re-
ported by Broulhiet [3], who investigated the dynam-
ics of cars. The concept of side slip that he introduced
still forms the basis for the understanding of shimmy
oscillations in a wide range of wheeled vehicles. An-
other milestone for shimmy research was the seminal
work of von Schlippe and Dietrich [17] on tyre me-
chanics and its influence on shimmy. Shimmy has been
studied in general wheeled vehicles, including cars,
pulled trailers, motorcycles and aircraft; see, for exam-
ple, the overview papers by Dengler et al. [4], Smiley
[13] and Pritchard [12] as an entry point to the litera-
ture.

Of particular interest for our study is the work by
Pacejka [10, 11] and by Stépán [15, 16], who consider
a pulled trailer—a system that is characterized by a
large caster length (mechanical trail) with zero rake
angle and weak damping, and possible freeplay at the
kingpin. Pacejka [10, 11] found experimentally and in
a 13th-order model that shimmy may occur for a wide
range of velocities and may be associated with sud-
den jumps into and out of shimmy when the velocity
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is changed. Furthermore, he found the first example of
quasiperiodic shimmy in the form of beating oscilla-
tions where also the translational mode at the kingpin
is excited. Sudden jumps from straight-line motion (no
shimmy) of the tyre to large amplitude shimmy with
only a very small variation in a system parameter were
also found by Stépán [16]. Furthermore, in [15] he
systematically investigates quasiperiodic shimmy os-
cillations and shows that in his pulled trailer setup the
second frequency is due to a memory effect associated
with the rolling tyre. This type of tyre dynamics must
be modeled mathematically by a set of time-delayed
differential equations. In separate work, Takács and
Stépán [18] found quasiperiodic shimmy in an exper-
imental setup resembling a pulled trailer; the exper-
imental observations are also verified by comparison
with a time-delayed mathematical model.

In this paper we consider the onset of shimmy oscil-
lations for the case of an aircraft nose landing gear—
an issue that is essentially as old as aircraft themselves.
While there are certain commonalities, there are im-
portant differences between different types of vehicles,
which are crucial for the dynamics and the onset of
shimmy oscillations. The nose landing gear of a typ-
ical midsize commercial passenger aircraft has three
main vibrational modes: a torsional mode correspond-
ing to the rotation about the strut axis, a lateral mode
that is representative of vibrations of the gear about an
axis passing through the fuselage centerline, and a ver-
tical mode associated with the shock dampers of the
gear (which are generally called oleos in the context
of aircraft landing gears). These three modes of vibra-
tion are coupled via the tyre-ground interaction and
play an important role in the occurrence of shimmy in
aircraft. In contrast to pulled trailers, an aircraft nose
landing gear generally features a nonzero rake angle
and its torsional mode is very strongly damped.

Initial work in the early 1930s on the dynamic sta-
bility of aircraft on the ground concentrated on the
excitation of the vertical mode via roughness of the
ground. See the overview paper by Dengler et al. [4]
for a discussion of the early literature on how the verti-
cal mode may interact either with the torsional or with
the lateral mode. By contrast, the vertical mode of a
commercial aircraft is generally sufficiently damped
so that it does not get excited on today’s smooth run-
ways or taxiways. Nevertheless, shimmy oscillations
may still occur in aircraft landing gears, and this has
been studied experimentally, by means of linear sta-
bility analysis and by numerical simulation; see the

reviews [1, 2, 6, 8]. Smiley [13] studied shimmy for
three different landing gear structures. While one of
the cases had a nonzero rake angle, its nonlinear geo-
metric effects were not included in the model. The pa-
per [13] contains linear stability analysis of a landing
gear model and discusses a systematic way of mod-
eling the geometrical aspects of the strut. More re-
cently, Somieski [14] studied shimmy as a nonlinear
phenomenon of a nonlinear set of ODEs describing a
nose landing gear with zero rake angle. Here, time do-
main analysis showed a case of supercritical Hopf bi-
furcation leading to a set of stable limit cycles past the
bifurcation point. Woerner and Noel [20] describe the
main cause of shimmy as the energy transfer from the
contact force between the tyres and the ground to the
vibrational modes of the landing gear system whose
stability depends on the damping and stiffness char-
acteristics of tyres and the supporting structure. They
also studied the change in the frequency of different
vibrational modes of a typical nose landing gear as a
function of swivel friction and forward velocity. This
suggests that coupled motion can occur due to reso-
nance phenomena under variations in the forward ve-
locity, leading to high-amplitude shimmy oscillations.

The focus of this work is the interaction between
the torsional mode and the lateral mode, which are
strongly coupled via the nonlinear restoring force of
the elastic tyre. Specifically, we develop a mathemati-
cal model in the form of a five-dimensional system of
ordinary differential equations for the two modes and
the kinematic equation of the nonlinear tyre. Here we
use a variant of the widely accepted stretched string
model developed by von Schlippe [17], where we in-
clude the effect of lateral bending on the lateral de-
formation of the tyre. Importantly, we include in the
model the geometric effects of a nonzero rake angle of
the gear.

A bifurcation analysis of our mathematical model
with the software package AUTO [5] reveals a two-
parameter bifurcation diagram in the plane of forward
velocity and vertical force on the gear. The main fea-
tures of the bifurcation diagram are two curves of
Hopf bifurcations, of the torsional mode and the lat-
eral mode, respectively, which intersect at two double-
Hopf points. These codimension-two points give rise
to curves of torus bifurcations (or Neimark–Sacker bi-
furcations [7, 9]) that are associated with the emer-
gence of quasiperiodic shimmy oscillations. Overall,
we find a comprehensive picture of parameter re-
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gions corresponding to stable straight-line motion, tor-
sional, lateral and transient quasiperiodic shimmy os-
cillations.

The paper is organized as follows. In Sect. 2 we de-
velop the mathematical model, which involves deriv-
ing the relevant coupling terms between the torsional
and lateral modes via nonlinear tyre forces. Section 3
is devoted to the bifurcation analysis of the model. We
first show selected one-parameter continuations in the
forward velocity and then present the bifurcation di-
agram in the plane of forward velocity and vertical
force on the gear; representative time series of differ-
ent types of shimmy oscillations are also presented.
Section 4 summarizes and discusses directions of fu-
ture research.

2 Model of a nose landing gear with torsional and
lateral dynamics

The nose landing gear of an aircraft consists of a strut
that is attached to the aircraft fuselage and coupled to
the ground via one or more wheels with flexible tyres.
We consider here a nose landing gear as sketched
in Fig. 1. Throughout this work we use one of the
conventionally accepted coordinate systems for air-
craft analysis. Specifically, the positive X-axis points
towards the backward direction of the aircraft, the
Z-axis is the upward normal to the (flat) ground, and
the Y -axis completes the right-handed coordinate sys-
tem.

The strut is able to rotate about its axis S, which
gives rise to a steering angle ψ . The wheel axle, off-
set from the strut axis by a mechanical trail (caster) of
length e, supports a wheel with tyre of radius R. Im-
portantly, the strut axis is inclined to the vertical at a
rake angle φ. The aircraft body is modeled as a block
of mass exerting a vertical force Fz on the gear, which
is moving at a fixed horizontal velocity V . Apart from
torsional motion as described by the steering angle ψ ,
we also consider lateral bending motion of the gear
assembly about the X-axis. The lateral motion is mod-
eled (in first-order approximation) by an angle δ that
the strut makes with the zero position. These two geo-
metric degrees of freedom are coupled via the lateral
deformation λ of the tyre. The wheel–ground inter-
action is modeled by the well-established stretched
string model from [17] of an elastic tyre, which we
modified to incorporate the deformation due to the lat-
eral bending mode.

Fig. 1 Schematic side, front and top views of an aircraft nose
landing gear

The structure shown in Fig. 1 closely resembles the
nose landing gear of an aircraft, which is characterized
by a moderate rake angle (about 10 degrees), a small
caster length e (about 0.1 m for a midsize passenger
aircraft), and large stiffness and damping of the tor-
sional mode ψ and the lateral mode δ due to the steer-
ing mechanism. Specifically, we use throughout real-
istic parameters for geometry and tyre taken from [14]
and summarized in Table 1. For comparison, motor-
cycles generally have large rake angles (possibly even
larger than 30 degrees) and a small caster length, while
trailers have zero rake angle and a long caster length
(up to several metres). Importantly, in both motorcy-
cles and trailers the torsional mode ψ (corresponding
here to rotation around the steering axis or kingpin, re-
spectively) is only weakly damped, which makes them
quite prone to shimmy oscillations.

The presence of a nonzero rake angle φ is incorpo-
rated into our model because it has several important
geometrical effects in an aircraft nose landing gear.
First, it induces an effective caster length eeff [19],
which is given by

eeff = e cosφ + (R + e sinφ) tanφ. (1)
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Table 1 System
parameters and their values
as used in the modeling

Symbol Parameter Value

Structure parameters

e caster length 0.12 m

lg gear height 2.5 m

kψ torsional stiffness of strut 3.8 × 105 N m rad−1

cψ torsional damping of strut 300.0 N m s rad−1

Iz moment of inertia of strut w.r.t. Z-axis 100.0 kg m2

kδ lateral bending stiffness of strut 6.1 × 106 N m rad−1

cδ lateral bending damping of strut 300.0 N m s rad−1

Ix moment of inertia of strut w.r.t. X-axis 600.0 kg m2

φ rake angle 0.1571 rad (9◦)
Tyre parameters

R radius of nose wheel 0.362 m

h contact patch length 0.1 m

cλ damping coefficient of elastic tyre 570.0 N m2rad−1

kα self-aligning coefficient of elastic tyre 1.0 m rad−1

kλ restoring coefficient of elastic tyre 0.002 rad−1

L relaxation length 0.3 m

αm self-aligning moment limit 0.1745 rad (10◦)
Continuation parameters

Fz vertical force on the gear 30.0–700.0 kN

V forward velocity 10.0–180 m s−1

Secondly, for a nonzero rake angle the swivel angle
θ of the wheel with the ground is different from the
steering angle ψ ; namely, it is given by θ = ψ cosφ.
Thirdly, there is a tilt γ = ψ sinφ of the wheel when
the steering angle ψ is nonzero. The tilt γ contributes
to the overall tilt of the wheel due to lateral bending
motion as expressed by δ and both result in a lateral
restoring force on the tyre. The point of application of
this restoring force is ahead of the center of the contact
patch. Depending on the tilt direction, this lateral tilt
force may act in the same or in the opposite direction
to the lateral restoring force created due to pure lateral
distortion or torsional motion of the tyre. This can lead
to an increase or decrease of the effective self-aligning
moment responsible for stabilizing the shimmy oscil-
lations. Since it is known to affect dynamics of mo-
torcycles and cars more than aircraft tyres, we do not
consider this force in the analysis.

Another effect of a nonzero rake angle is the in-
crease in the moment that destabilizes the orientation
of the gear. The vertical force Fz is offset from the
(X–Z) plane due to the effective caster length eeff.
This offset vertical force generates a moment, in-

creased by the effect of the caster length, that acts to
turn the gear about its strut axis. In the case of aircraft
landing gears, the high torsional stiffness and damping
about the strut axis resist this destabilizing moment.
However, in the case of bicycles and motorcycles tor-
sional stiffness and damping are negligibly small, so
that this moment makes it very difficult to ride a bike
when the handle bar is rotated by 180 degrees.

Taking into account torsional and lateral motion
and their coupling through the elastic tyre, the equa-
tions for the landing gear model can be written in the
form

Izψ̈ + MKψ + MDψ + MF1 + MDλ

− Fz sin(φ)eeff sin(θ) = 0, (2)

Ix δ̈ + MKδ + MDδ + Mλδ − Fzeeff sin(θ) = 0, (3)

λ̇ + V

L
λ − V sin(θ) − lgδ̇ cos(δ)

− (eeff − h) cos(θ)ψ̇ cos(φ) = 0. (4)

Equation (2) governs the torsional dynamics and (3)
the lateral dynamics. Equation (4) comes from von



Interaction of torsion and lateral bending in aircraft nose landing gear shimmy 459

Schlippe’s stretched string model [17]; it describes the
nonlinear kinematic relationship between the steering
angle ψ , lateral bending angle δ and the lateral defor-
mation λ of the leading edge of the contact patch of
the tyre. We now present a detailed description of the
individual terms in (2)–(4) in the next sections.

2.1 Torsional mode of the landing gear

Equation (2) describes the torsional aspect of the land-
ing gear dynamics. The moment MKψ due to the tor-
sional stiffness of the strut is a function of the steering
angle ψ and is given by

MKψ = kψψ, (5)

and the moment MDψ due to the torsional damping of
the strut is a function of the angular velocity of the
steering ψ̇ and is given by

MDψ = cψψ̇, (6)

where kψ and cψ are the torsional stiffness and damp-
ing coefficients of the strut, respectively. The last three
terms in (2) model the tyre interaction with the ground.
Specifically, the combined moment MF1 due to the
tyre’s restoring force FKλ and self-aligning moment
MKα , which are functions of the tyre’s lateral defor-
mation λ, is given by

MF1 = MKα + eeffFKλ. (7)

The self-aligning moment MKα is given by the piece-
wise continuous function [14]

MKα =
{

kα
αm

π
sin(α π

αm
)Fz if |α| ≤ αm,

0 if |α| > αm,
(8)

and the lateral restoring force FKλ due to tyre defor-
mation is given by

FKλ = kλ tan−1(7.0 tan(α)
)

× cos
(
0.95 tan−1(7.0 tan(α)

))
Fz. (9)

Here, kα and kλ are the torsional and lateral stiffnesses
of the tyre. The slip angle α is related to the lateral
deformation λ by α = tan−1(λ/L), where L is the re-
laxation length of the tyre. The rake angle φ enters
into the model via the effective caster length as given
in (1); note that eeff = e for φ = 0. The constant αm

is the limit on the slip angle α beyond which the self-
aligning moment is taken to be zero.

Finally, in (2), the moment MDλ due to the tyre’s
tread damping is given by

MDλ = cλψ̇ cos(φ)

V
, (10)

where cλ is the lateral damping coefficient of the tyre.

2.2 Lateral bending mode of the landing gear

Equation (3) describes the lateral bending motion of
the landing gear assembly about the X-axis. The mo-
ment MKδ due to the stiffness of the strut acting
against the lateral bending motion is a function of δ

and is given as

MKδ = kδδ, (11)

where kδ is the bending stiffness of the strut w.r.t. the
rotation about the X-axis.

The moment MDδ due to the damping characteris-
tics of the strut against the lateral motion is a function
of δ̇ and is given as

MDδ = cδδ̇, (12)

where cδ is the damping coefficient of the lateral bend-
ing of the strut. The last two terms in (3) are contribu-
tions of the tyre forces to the lateral bending motion δ.
Specifically, the moment Mλδ is the result of the force
created from the lateral deformation of the tyre and is
given as

Mλδ = (lg)FKλ cos(θ) cos(φ), (13)

where lg is the distance between the point of attach-
ment of the gear to the fuselage and the ground.

2.3 Tyre kinematics

Equation (4) describes the motion of the tyre under the
influence of the strut’s torsional and lateral bending.
Here, the effect of the deformation resulting from the
lateral bending mode is incorporated into the conven-
tional kinematic equation representing the stretched
string theory of a tyre [17]. This is important be-
cause the natural frequencies of the lateral and tor-
sional modes are typically different and the resultant
lateral deformation is an algebraic sum of the defor-
mation caused by both the modes.
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From [17], the nonlinear form of the equation de-
scribing the kinematics is given as

λ̇ + V

L
λ = V sin(θ) + (eeff − h) cos(θ)θ̇ . (14)

The effect of lateral deformation due to lateral bending
on the tyre kinematics can be derived in a similar fash-
ion as in the case of a pure torsional mode. Namely,
the relationship between the lateral bending angle δ

and the lateral deformation λ of the tyre at the leading
edge of the contact patch is given by:

λ̇ + V

L
λ = (lg)δ̇ cos(δ). (15)

To obtain the kinematic equation (4), we superim-
pose the individual effects of the torsional and lateral
motions on the tyre deformation, that is, (14) and (15);
this modeling step is justified by derivations that are
not presented here.

3 Bifurcation analysis

We now perform a bifurcation analysis of the nose
landing gear model, (2)–(4), with the continuation
software AUTO [5]. Specifically, we consider the de-
pendence of the dynamics on the forward velocity V

and the vertical force Fz, where we fix all other sys-
tem parameters at the realistic values given in Table 1.
Our starting point is the transition to shimmy oscilla-
tions with varying V , which can be studied by means

of one-parameter bifurcation diagrams. We then con-
sider the bifurcation diagram in the (V ,Fz)-plane to
provide a more global view of the overall dynamics.
Representative time histories are presented to discuss
the possible motion of the nose landing gear in terms
of the contributions of torsion and lateral bending.

3.1 Dynamics as a function of forward velocity

Equations (2)–(4) always have the equilibrium so-
lution (ψ, δ,λ) = (0,0,0), which corresponds to
straight-line rolling of the tyre. This equilibrium is
stable when the forward velocity V and vertical force
Fz are very low, but for higher vertical force as the
forward velocity is increased it may lose its stabil-
ity in a Hopf bifurcation resulting in shimmy oscilla-
tions. A continuation in V reveals not only the onset of
shimmy, but is also able to follow the ensuing steady-
state shimmy oscillations to study their stability.

Figure 2 shows two continuations in V for differ-
ent values of the vertical force Fz; all other parame-
ters are as in Table 1. For Fz = 150.0 kN the zero
equilibrium (that is, straight-line rolling) is stable for
low velocity V , and it becomes unstable in a Hopf
bifurcation Ht at V ≈ 4.6 m s−1. This Hopf bifurca-
tion is supercritical and, hence, gives birth to a stable
periodic orbit corresponding to shimmy oscillations
whose amplitude grows quickly with V . It is repre-
sented in panel (a1) in terms of the maximum of the
torsion angle ψ , and in panel (a2) in terms of the max-
imum of the lateral bending stroke δ∗ = lg sin(δ) (at
ground level). As can be observed from the difference

Fig. 2 (Color online) One-parameter continuation in V for
Fz = 150.0 kN (a) and Fz = 500.0 kN (b); the top panels show
the maximum of the torsion angle ψ and the bottom panels
the maximum of the lateral bending stroke δ∗. Stable parts of

branches are solid and green and unstable parts in dashed and
red; along the branches one finds Hopf bifurcations Ht (of the
torsional mode), saddle-node of limit cycle bifurcations SL, and
torus bifurcations Tt (of the torsional mode)
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in scale (tens of degrees versus millimeters) of the two
panels, the Hopf bifurcation curve Ht corresponds to
the undamping of the torsional mode (hence the sub-
script). The branch of torsional shimmy oscillations is
stable throughout and disappears in a second super-
critical Hopf bifurcation Ht at V ≈ 93.3 m s−1, after
which the zero equilibrium of straight-line rolling is
stable again. This scenario of onset and disappearance
of shimmy oscillations for Fz = 150.0 kN is what one
also finds for models that only feature a torsional mode
and no lateral bending [19].

Figure 2(b) shows the one-parameter bifurcation di-
agram for Fz = 500.0 kN. There are several important
differences relative to the case Fz = 150.0 kN. The
zero equilibrium is now unstable before the Hopf bi-
furcation Ht . Furthermore, the onset of shimmy oscil-
lations is now due to a subcritical Hopf bifurcation Ht

at V ≈ 4.1 m s−1, so that the bifurcating shimmy os-
cillations are initially unstable. On the corresponding
branch we find a saddle-node of limit cycle (or fold)
bifurcation SL. It is immediately followed by a torus
bifurcation Tt at V ≈ 4.3m s−1 (where a pair of com-
plex conjugate Floquet multipliers of the periodic or-
bit crosses the unit circle), after which the shimmy os-
cillations are stable. The branch remains stable over
a large range of V , up to a second saddle-node of
limit cycle bifurcation SL at V ≈ 133 m s−1. Here the
branch turns back and, after an immediate torus bi-
furcation Tt , it connects to the zero-equilibrium at a
second subcritical Hopf bifurcation Ht . Since the zero
equilibrium does not regain stability, the system jumps
from stable shimmy oscillations to some other attrac-
tor (not shown) when the velocity V is increased past
the rightmost SL point.

Overall, Fig. 2 provides evidence for the interac-
tion between the torsional and lateral bending modes
of the landing gear in the form of torus bifurcations
for sufficiently high vertical force Fz. More generally,
the vertical force Fz has a strong influence on how the
behavior of the nose landing gear depends on the for-
ward velocity V . In effect, increasing Fz increases the
interaction between the two modes.

3.2 Bifurcation diagram in the (V ,Fz)-plane

The bifurcation points that were identified in Fig. 2
can be continued in the (V ,Fz)-plane. The result is the
two-parameter bifurcation diagram shown in Fig. 3. Its
main feature is the interaction between a curve Ht of

Hopf bifurcations of the torsional mode and a curve Hl

of Hopf bifurcations of the lateral mode.
The torsional Hopf bifurcation curve Ht forms an

isola (a closed curve). For lower values of Fz (cer-
tainly for Fz < 450.0 kN) it is supercritical and leads
to stable torsional shimmy oscillations; compare with
Fig. 2(a). In fact, this supercritical part of Ht at low
vertical force Fz is as presented in Thota et al. [19],
where the lateral bending mode was not considered
at all. However, the criticality of Ht changes at two
degenerate Hopf bifurcation points DH [7, 9], so that
the upper part of the isola Ht (in the range 450.0 <

Fz < 550.0 kN) is subcritical. Hence, it gives rise
to unstable shimmy oscillations. Two curves SL of
saddle-node of limit cycle bifurcations emerge from
the codimension-two points DH, and these can be con-
tinued towards larger values of Fz until they exit our
region of interest. As a consequence, subcritical Hopf
bifurcations for small and large velocities V are pre-
ceded and followed by saddle-node of limit cycle bi-
furcations; compare with Fig. 2(b).

The lateral Hopf bifurcation curve Hl in Fig. 3
crosses the bifurcation diagram from left to right. It
intersects the torsional Hopf bifurcation curve Ht in
two Hopf–Hopf bifurcation points HH at (V ,Fz) ≈
(3.8 m s−1, 300.0 kN) and (V ,Fz) ≈ (154.9 m s−1,

274.9 kN). We find that two torus bifurcation curves
emerge locally from each of these codimension-two
points, which is in agreement with what may be ex-
pected from bifurcation theory [7, 9]. More specifi-
cally, we find a lower torus bifurcation curve Tl of
lateral shimmy oscillations, and a higher torus bifur-
cation curve Tt of torsional shimmy oscillations, both
connecting the two HH points.

The bifurcation diagram in Fig. 3 provides a global
picture of the interaction between the torsional and lat-
eral modes. The different bifurcation curves divide the
(V ,Fz)-plane into regions where different types of so-
lutions are stable. In the white region for low values
of Fz there are no shimmy oscillations, that is, the
straight-rolling motion is stable. Shimmy oscillations
bifurcate when a Hopf bifurcation curve is crossed. As
is discussed in Sect. 3.3, the ensuing shimmy oscilla-
tion may be of torsional or lateral nature; their respec-
tive stability regions are shown in Fig. 3 by right- and
left-slanted shading, respectively. It is worth mention-
ing that size and position of the isola Ht , the points
DH and emanating curves SL are almost unaffected
by changes of the damping in the lateral mode. Simi-
larly, changes in the torsional damping have very little
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Fig. 3 (Color online) Two-parameter bifurcation diagram of
(2)–(4) in the (V ,Fz)-plane, consisting of curves of Hopf bi-
furcations (red), saddle-node of limit cycle bifurcations (green)
and torus bifurcations (black). The Hopf bifurcation curve Ht of
the torsional mode forms an isola and changes criticality at two
degenerate Hopf points DH (the dashed part is subcritical); it
interacts with the Hopf bifurcation curve Hl of the lateral mode
in two double-Hopf points HH. Time series of shimmy oscil-

lations for the points labeled (a) to (c) are shown in Fig. 5. In
the unshaded region the zero equilibrium solution (straight-line
rolling) is stable, in the region with right-slanted shading tor-
sional shimmy oscillations are stable, and in the region with
left-slanted shading lateral shimmy oscillations are stable; in the
checkered region one finds bistability between the two types of
shimmy oscillations

effect on the Hopf bifurcation curve Hl . The bifurca-
tion structure in Fig. 3 is in fact typical for the case
that damping and stiffnesses of the torsional and lat-
eral modes are more or less of the same order, in which
case the curves Ht and Hl cross in two double-Hopf
points HH. These codimension-two points act as orga-
nizing centers of the dynamics in the sense that they
give rise to torus bifurcations that are associated with
quasiperiodic shimmy oscillations.

An example of the emergence of shimmy oscilla-
tions for large vertical force is provided by the one-
parameter continuation in Fig. 4 for Fz = 650.0 kN.
When the leftmost curve SL in Fig. 3 is crossed in
the direction of increasing V , a pair of shimmy os-
cillations is born, of which the one with the larger
amplitude of ψ is stable. The difference in scale of
panels (a1) and (a2) of Fig. 4 again shows that the
torsional mode dominates. The stable and the unsta-
ble shimmy oscillations come together and disappear
when the rightmost curve SL in Fig. 3 is crossed. Note
also the two torus bifurcations points labeled Tt on
the unstable part of the branch. The shimmy oscilla-

Fig. 4 (Color online) One-parameter continuation in V for
Fz = 650.0 kN; the top panel shows the maximum of the torsion
angle ψ and the bottom panel the maximum of the lateral bend-
ing stroke δ∗. Stable parts of branches are solid and green and
unstable parts dashed and red, with torus bifurcation labeled Tt

tions shown in Fig. 4 are no longer connected to the
zero equilibrium of straight-rolling motion, because
the vertical force of Fz = 650.0 kN is above the max-
imum of the curve Ht . Hence, stable shimmy oscil-
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lations for Fz = 650.0 kN appear and disappear sud-
denly when the velocity V is changed.

3.3 Different types of shimmy oscillations

We now present different types of shimmy oscilla-
tions, which we distinguish in terms of the relative
contributions of the torsion angle ψ , the lateral bend-
ing stroke δ∗ and the lateral deformation of the tyre λ.
Figure 5 shows time series of these quantities for the
values of the parameters (V ,Fz) corresponding to the
points labeled (a)–(c) in Fig. 3.

Figure 5(a) shows an example of torsional shimmy
oscillations, specifically for (V ,Fz) = (40.0 m s−1,

150.0 kN), which corresponds to the labeled point (a)
in Fig. 3. This point is reached from the stable region
by crossing the Hopf bifurcation curve Ht , where the
torsional mode undamps. Consequently, we find os-
cillations of the torsion angle ψ at the frequency (of
about 10.6 Hz) of the torsional mode; see Fig. 5(a1).
These oscillations induce an oscillation of the lateral
tyre deformation λ. Due to the coupling via the tyre,
the lateral stroke follows these oscillations with very
small amplitude, but there are no oscillations at the fre-
quency of the lateral mode; see Fig. 5(a2). Because of
these properties this type of dynamics can indeed be
characterized as torsional shimmy oscillations.

Figure 5(b) shows lateral shimmy oscillations for
(V ,Fz) = (175.0 m s−1, 350.0 kN), corresponds to
the labeled point (b) in Fig. 3. This type of dynam-
ics can be reached from the stable region by cross-
ing the Hopf bifurcation curve Hl . It is characterized
by large amplitude oscillations of the lateral stroke δ∗
at its characteristic frequency (of about 16.1 Hz); see
Fig. 5(b2). These oscillations again induce an oscilla-
tion of the lateral tyre deformation λ, which is now
followed by the torsional angle ψ ; see Fig. 5(b1). No-
tice that, compared to the case of torsional shimmy
oscillations, the amplitude of ψ is now considerably
smaller. Furthermore, ψ simply follows the lateral tyre
deformation λ, meaning that the torsional mode fre-
quency is not present in the dynamics. This is why we
refer to this dynamics as lateral shimmy oscillations.

Torsional and lateral shimmy oscillations are stable
in large regions of the (V ,Fz)-plane, which are indi-
cated in Fig. 3 by right-slanted and left-slanted shad-
ing, respectively. The region of torsional shimmy os-
cillations is bounded below by the curve Ht between
the two double-Hopf points HH. To the left and the
right it is bounded by the first parts of the curve Tt

from the points HH up to tangency points of Tt with
the saddle-node of limit cycle bifurcation curves SL.
The latter curve forms the boundary of the region of
stable torsional shimmy oscillations for larger values

Fig. 5 (Color online) Time
series of the torsion angle
ψ , and of lateral bending
stroke δ∗ (black) and lateral
tyre deformation λ (blue)
for the values of (V ,Fz)

that are labelled (a)–(c) in
Fig. 3. Specifically,
panels (a) for
(V ,Fz) = (40.0 m s−1,
150.0 kN) show torsional
shimmy oscillations,
panels (b) for
(V ,Fz) = (175.0 m s−1,
350.0 kN) show lateral
shimmy oscillations, and
panels (c) for
(V ,Fz) = (155.0 m s−1,
350.0 kN) show
quasiperiodic shimmy
oscillations (on two
different time scales) in the
transition from torsional to
lateral shimmy
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of Fz (above about Fz = 500 kN). Lateral shimmy
oscillations are stable in the region above the union
of the torus bifurcation curve Tl and the two parts of
the lateral Hopf bifurcation curve Ht to the left of the
leftmost point HH and to the right of the rightmost
point HH. As a result, there is a large region above
the curve Tl where the torsional mode and the lateral
mode are both stable. In this bistability region (check-
ered shading in Fig. 3) the initial condition determines
onto which of the two periodic solutions the system
settles down. From a practical point of view, there is
a clear split of the (V ,Fz)-plane. For a light aircraft
below a vertical force Fz of about 300 kN, torsional
shimmy oscillations are encountered as the only type
of dynamical instability. For a heavy aircraft above
a vertical force Fz of about 300 kN the situation is
quite different: there is a large region of relevant inter-
mediate velocities V between about 5 and 140 m s−1

where both types of shimmy oscillations may occur,
depending on the initial condition or the path taken
into this region. Furthermore, in the bistability region
there is the possibility of sudden jumps between stable
torsional and stable lateral shimmy oscillations as the
result of sufficiently large external perturbations.

Figure 5(c) shows that one may also find shimmy
oscillations with components of the frequencies of
both the torsional and lateral modes. For the parame-
ter values as specified in Table 1, we find this type of
shimmy as a prominent transient phenomenon when
the system switches from stable torsional to stable lat-
eral shimmy oscillation as the boundary of bistable
regions formed by the torus bifurcation curve Tt is
crossed. As Fig. 5(c1)/(c2) shows, in this transition
the lateral stroke δ∗ increases while that of the tor-
sional mode ψ decreases. At the same time the sys-
tem switches from the frequency of the torsional mode
to the frequency of the lateral mode. The process is
quite slow, and one observes both frequency compo-
nents over several tens of seconds. Due to the notable
absence of an observable low rational frequency ra-
tio, we refer to this type of dynamics as quasiperi-
odic shimmy oscillations. The shorter time series in
Fig. 5(c3)/(c4) highlight their quasiperiodic character.
We find that quasiperiodic shimmy oscillations can be
found transiently whenever the system is moved out
of the bistability region by crossing a torus bifurcation
curve, which is either Tt to the left or right or Tl when
crossing the lower boundary. In the latter case, tran-
sient quasiperiodic shimmy is associated with a switch
from lateral to torsional shimmy oscillations.

Our numerical investigations indicate that for the
parameter values shown in Table 1 we find quasiperi-
odic shimmy oscillations only as long and physically
relevant transients, but not as stable dynamics on an
attracting torus. Specifically, the torus bifurcations are
subcritical along the curves Tl and Tt , and there do
not appear to be other bifurcation curves along which
the bifurcating unstable tori stabilize. However, it is to
be expected that for different sets of parameter values,
corresponding to different aircraft nose landing gears,
one may indeed find stable quasiperiodic shimmy os-
cillations. In particular, it would be an interesting chal-
lenge to identify when the torus curves change their
criticality; this would require a study of higher-order
terms of a suitable Poincaré return map.

3.4 Dependence on the rake angle

The two-parameter bifurcation diagram in the (V ,Fz)-
plane in Fig. 3 was obtained for the parameter val-
ues in Table 1, which were chosen as representative
for a midsize passenger aircraft. The question arises
how this bifurcation diagram and, in particular, the re-
gions of different types of shimmy oscillations, change
when one or several of these parameters are changed.
As a parameter of specific interest we consider here
the rake angle φ for the following reasons. First of
all, φ may differ quite substantially between aircraft
types, in the range between zero to 10 degrees; by con-
trast, the relative ranges of most other parameters in
Table 1 are much smaller. Secondly, the geometric ef-
fects of a nonzero rake angle have been incorporated
fully into (2)–(4), so that such a study becomes feasi-
ble.

Figure 6(a) shows the bifurcation diagram of (2)–
(4) in the (V ,Fz)-plane for a rake angle of φ = 0. Bi-
furcation curves and regions of stable straight-rolling,
torsional and lateral shimmy oscillations are shown
and labeled as in Fig. 3, which is for φ = 9 de-
grees. The two bifurcation diagrams are qualitatively
the same, by which we mean that we find the same bi-
furcations and regions for both values of φ. However,
there are clearly differences of a quantitative nature.
Most importantly, Fig. 6(a) is shown on a much larger
scale, where V now ranges from 0 to 300 m s−1 and
Fz from 0 to 1000 kN. If viewed in the same range of
the (V ,Fz)-plane as that shown in Fig. 3, the main dif-
ference is that the two torus bifurcation curves Tl and
Tt have moved towards larger values of Fz in Fig. 6(a).



Interaction of torsion and lateral bending in aircraft nose landing gear shimmy 465

Fig. 6 Panel (a) shows the
two-parameter bifurcation
diagram of (2)–(4) in the
(V ,Fz)-plane with
parameter values as in
Fig. 3, but for a zero rake
angle φ, that is, for φ = 0.
Panel (b) gives the
dependence on φ of the
leftmost point Hmin

t and the
rightmost point Hmax

t of the
Hopf bifurcation curve Ht

The main overall effect of reducing the rake angle ap-
pears to be a scaling of the closed Hopf bifurcation
curve Ht . This scaling can be quantified on the V -
scale by plotting the left- and rightmost points Hmin

t

and Hmax
t of Ht as a function of the rake angle φ. As

is shown in Fig. 6(b), the points Hmin
t and Hmax

t scale
linearly with φ in very good approximation. In partic-
ular, Hmin

t does not change much at all, while Hmax
t

moves to lower values of V with increasing rake angle
φ. This corresponds to a reduced region of bistability
between torsional and lateral shimmy oscillations for
larger values of φ.

4 Discussion and future work

We introduced a mathematical model of an aircraft
nose landing gear that takes into account the torsional
and the lateral bending modes of the gear. Both are
coupled via the interaction through the tyre, which is
modeled by incorporating lateral deformation into the
classic stretched string model of von Schlippe. In our
model we fully incorporate for the first time the geo-
metric effects of a nonzero rake angle of the landing

gear. It manifests itself via several nonlinear coupling
effects, which include tilting of the tyre during steer-
ing and the generation of an effective caster length.
While our model is quite general, we considered here
the case of an aircraft landing gear, which is character-
ized by strong damping of torsional and lateral modes
and a moderate rake angle.

The main focus of our study was the interaction
of torsional and lateral modes of an aircraft landing
gear for realistic values of the different model parame-
ters. In particular, the lateral damping was roughly of
the same order as that of the torsional mode. We pre-
sented a bifurcation diagram in the plane of forward
velocity V and vertical force Fz as the two main op-
erational parameters. The bifurcation diagram is orga-
nized by Hopf bifurcation curves of the torsional and
lateral modes, which cross at two double-Hopf points.
These codimension-two bifurcation points effectively
organize the interaction of the two modes by giving
rise to torus bifurcation curves.

Apart from the well-known torsional shimmy os-
cillations, we also found stable lateral shimmy oscil-
lations. Both types of shimmy oscillations are stable
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in large regions of the (V ,Fz)-plane, and there is a
large region of bistability between torsional and lat-
eral shimmy oscillations. Furthermore, we found qua-
siperiodic shimmy oscillations as long transients near
curves of torus bifurcations that bound the bistability
region. This type of shimmy is characterized by strong
frequency components of both the torsional and lat-
eral mode. Shimmy with two frequency components
was found in experiments and a 13th-order model of
a pulled trailer by Pacejka [11]. More recently, quasi-
periodic shimmy has been found by Takács and Stépán
[18] in a similar experimental setup of a pulled trailer
and in a different mathematical model. Importantly,
Stépán shows that in the pulled trailer setup the second
frequency is due to a delay effect associated with the
rolling tyre, which requires a mathematical model in
the form of delay differential equations. By contrast,
we found that in an aircraft nose landing gear quasi-
periodic shimmy may occur in an ordinary differential
equation model due to the interaction of two differ-
ent modes of the gear itself. We remark that, because
of hysteretic damping in the viscoelastic von Schlippe
tyre model used here, the tyre response lags behind the
strut response by the tyre relaxation time.

The study performed here shows that the different
types of shimmy oscillations can be found in a realis-
tic range of forward velocities, that is, below landing
and take-off velocities of between 70 and 100 m s−1

that are typical for passenger aircraft. From the prac-
tical point of view, the influence of the lateral bending
mode on the dynamics increases with increasing ver-
tical force on the gear, that is, with loading or braking
of the aircraft. For heavy aircraft one may find lateral
shimmy as well as quasiperiodic shimmy oscillations
as long transients when torsional shimmy oscillations
lose their stability. This type of information may have
implications for the design of shimmy dampers for air-
craft, which are presently designed to dampen only
torsional motion.

There are several directions for future research.
The landing gear parameters as used in our study
are representative of a midsize passenger aircraft. We
considered here the influence of the rake angle and
showed how the overall scale of the bifurcation dia-
gram changes with the rake angle, while its qualita-
tive features are preserved. A detailed study of the de-
pendence of the bifurcation structure on other para-
meters, for example, those specifying tyre properties,
is the subject of our ongoing research. Secondly, we

mention the evaluation of aircraft taxi, take-off and
landing scenarios, which involve specific changes of
the vertical force as a function of the forward veloc-
ity. The relationship between operational parameters
can be determined/calibrated from experimental mea-
surements with the goal of investigating more realistic
aircraft operation scenarios. Finally, our landing gear
model can be expanded to take into account additional
oscillatory modes. In the first instance, this would in-
volve modeling oscillations along the strut axis due
to oleo (vertical shock absorber) compression. In the
longer term, one may also wish to incorporate dynam-
ical modes that are transmitted by the fuselage. The
final goal would be the formulation of an integrated
mathematical model of a generic aircraft with all land-
ing gear units, but in such a way that a balance is struck
between incorporating the relevant effects while keep-
ing the model amenable to bifurcation analysis.
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