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Abstract: Whispering gallery modes supported by open circular dielectric cavities are embedded

into a non-parametric 2-D frequency domain hybrid coupled mode theory framework. Regular

aggregates of these cavities, including straight access channels, are investigated. The model en-

ables convenient studies of the guided-wave scattering process, the response of the circuit to

guided wave excitation. Transmission resonances can be characterized directly in terms of reso-

nance frequency and linewidth by computing supermodes of the entire composite circuits, com-

prising both cavities and bus waveguides. Examples of single ring- and disk-filters, a coupled-

resonator optical waveguide, and a three-cavity photonic molecule in a reflector configuration

allow the approach to be assessed.
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1 Introduction

Circuits made of photonic micro-resonators [1, 2, 3] have already for more than a decade been intensely inves-

tigated, typically with a view to applications in e.g. optical telecommunication or optical sensing. Our focus

is on coupled circular dielectric ring- or disk-cavities. When it comes to modelling and design, but also to

understanding, techniques relying on coupled mode theory (CMT) offer frequently a more practical alternative

to usually computationally quite expensive rigorous numerical methods. As the present work continues our

preceding study [4], we refer to that article and the citations therein for a brief overview of techniques that are

relevant in the present context.

Circular micro-resonators are traditionally described in terms of a parametric model [5, 6]. Bend modes sup-

ported by curved waveguides or curved dielectric interfaces [7] represent the optical field in the cavity. For

given real excitation frequency these modes are characterized by a complex angular propagation constant. Cou-

pling regions are defined where the cavity(-ies) and bus waveguides are close. The mode amplitudes (functions)

are expected to change while traversing these regions, while outside the fields are assumed to propagate inde-

pendently. Resonances appear as extrema in the transmission characteristics when scanning over excitation

frequency, i.e. must be attributed to the entire composite device.

There is, however, a dual, equally justified viewpoint [8], that first considers the separate optical cavities, here

the separate dielectric rings or disks. Their “native” resonances, known as Whispering Gallery Modes (WGMs),

are characterized by a complex eigenfrequency and integer angular wavenumber [9] (for lack of a better term,

we apply the name WGM also to cavities with more than one circular interface). If the cavities are brought

together and / or close to a bus waveguide, one expects the WGMs to interact, where “interaction” now means

adjustment of their individual coefficients. Building on the preliminary results of [10], it is our aim here to

realize this second viewpoint by introducing WGMs into a framework of hybrid analytical / numerical coupled

mode theory (HCMT, [11]). The previous bend-mode view has been explored, in an HCMT context, in Ref.

[4]. We shall see below that both approaches lead to close results, at least for the present set of parameters.

For a configuration without excitation, looking for nontrivial solutions establishes an eigenvalue problem for the

“supermodes” of the circuit. On the one hand, when applied e.g. to a cluster of cavities (“atoms”) that constitute

a photonic “molecule”, this permits one to investigate the lift of degeneracies of the atoms’ eigenfrequencies
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due to the presence of the neighboring atoms. On the other hand, the supermode reasoning can be applied

to composite circuits that comprise cavities and bus channels, with the fields in the waveguides restricted

to outgoing waves. Frequencies and linewidths of (transmission) resonances are thus computed directly, i.e.

without having to carry out frequency scans. Here one might observe similarities to the treatment of resonant

1-D multilayer structures in terms of quasi-normal modes (QNMs, [12, 13]). We do not, however, attempt

any rigorous expansion into a complex frequency basis of the composite problem. Rather we will reason, at

least qualitatively, along the procedure outlined in [14, 15, 16], where resonances of the transmission problem

are approximated by combining (supermode) resonances of individual and composite cavities with suitable

expressions for the incoming waves.

In particular, the WGM-HCMT supermode approach permits one to conveniently investigate coupling induced

shifts of resonance frequencies [17] and related effects. The issue attracted further recent interest; examples are

the parametric frequency- and time-domain models of Refs. [18, 19], also combined with numerical analysis

[20] and experimental observations [21]. Contrary to respective statements in Ref. [17], these coupling-induced

phase shifts can well be predicted by CMT, at least by the (ab-initio) variant discussed here.

The properties of WGMs, for the parameters that we consider in this paper, are briefly discussed in Section 2.

Section 3 outlines the present coupled mode framework, and introduces the notions on supermode and pertur-

bation analysis. The examples in Section 4 provide benchmarks, and illustrate different aspects of the previous

theoretical approach.

2 Whispering gallery modes of micro-rings and -disks

WGMs of circular cavities serve here as prototypes of the eigenmodes of open dielectric cavities. Adhering to

the analytical 2-D model of [9], using an ansatz of separable fields in polar coordinates, the relevant scalar 2-D

Helmholtz equation transforms into an eigenvalue problem of Bessel type for the radial function, with piecewise

constant coefficients. Piecewise solutions are sought in terms of Bessel and Hankel functions. The choice of the

Hankel function of second kind in the external region, for a time dependence ∼ exp(iωct) for eigenfrequencies

ωc with positive real and imaginary parts, realizes the boundary condition of purely outgoing waves. Analytical

solutions are found by tracking roots through a complex secant method. Our implementation relies on routines

for complex Bessel and Hankel functions from [22, 23]. To generate initial root estimates, the related bend

mode problems are translated to equivalent straight waveguides [24], followed by feeding restricted staircase

approximations of the resulting effective refractive index profiles to the 1-D multilayer slab mode solver of

[25]. Figure 1 summarizes the properties of some of the WGMs that will play a role in Section 4.
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Figure 1: Resonance wavelengths λr and quality factors Q of WGMs supported by 2-D dielectric rings (a) and disks (b)

with varying radii R in a wavelength region around 1.55µm; parameters as given for Figure 2. (c): profile of the ring-

WGM indicated by the marker in (a), for R = 7.5µm; absolute value (top) and time snapshot (bottom) of the principal

electric component Ey . See Figure 6(a, d) for the profiles of the disk-WGMs marked in (b).

We adopt a notation WGM(l, m) for the characterization of the WGMs in terms of two “quantum numbers”,

the number of radial minima l in the principal electric field component of the mode profile, and the angular

wavenumber m. Adhering to common notions, the eigenfrequencies ωc are specified in terms of the related
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resonance wavelength λr = 2πc/Reωc, the Q-factor Q = Reωc/(2Imωc) associated with the resonance, and

by the ratio ∆λ = λr/Q, which corresponds to the linewidth (full-width at half maximum) of the outgoing ra-

diation [26]. A time animation of the physical waves shows the field rotating clockwise as one compound, with

outwards escaping radiation, slowly decaying in time. All modes are twofold degenerate; fields WGM(l, −m)

corresponding to anticlockwise rotation and respectively escaping radiation constitute valid solutions of the

WGM-eigenvalue problem as well.

3 Hybrid analytical / numerical coupled mode theory

The HCMT approach will be outlined for the single ring filter configuration as introduced in Figure 2, adapted

from Ref. [4]. The parameters apply correspondingly also to all other configurations in this paper. Our primary

interest is in the scattering problem, i.e. in determining the relative guided wave transmission T and power drop

D for given excitation, here in the upper left port. Unidirectional propagation, as indicated by the arrows in

Figure 2, will be considered first. Extension towards further channels or cavities, towards multimode elements,

or towards bidirectional wave propagation should be straightforward [11].
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Figure 2: Filter device consisting of a cavity ring between two straight bus wave-

guides, a 2-D configuration described in Cartesian coordinates x, z or polar coor-

dinates r, θ. Parameters: refractive indices ng = 1.5 (guiding regions), nb = 1.0
(background), cavity radius R = 7.5µm, core width d = 0.75µm, bus wave-

guides, core width w = 0.6µm, gaps g = 0.3µm. All simulations are restricted

to 2-D, uniform for TE polarization, where the single principal electric field com-

ponent Ey is perpendicular to the x-z-plane of interest. We consider a spectral

region around the target vacuum wavelength λ ≈ 1.55µm.

3.1 HCMT procedure

We aim at approximate solutions, in 2-D, of the homogeneous frequency-domain Maxwell equations

∇×H − iωǫ0ǫE = 0, −∇×E − iωµ0H = 0, (1)

for the optical electric and magnetic fields E, H . The stationary fields oscillate ∼ exp(iωt) in time with the

(real) excitation frequency ω = 2πc/λ, specified by the excitation wavelength λ, for vacuum speed of light c.

The HCMT model relies on a plausible “template”, an ansatz for the overall electromagnetic field, which, in

case of the filter of Figure 2, reads

(

E

H

)

(x, z) = f(z)ψf(x, z) + b(z)ψb(x, z) +
∑

j

cj ψ
c
j(r, θ), (2)

implying the relations r(x, z), θ(x, z) between polar and Cartesian coordinates. Here ψf, b(x, z) =
(Ẽ, H̃)f, b(x) exp(∓iβz) are the forward/backward modes guided by the upper/lower bus channels at fre-

quency ω, with profiles (Ẽ, H̃)f, b, propagation constants ∓β, and z-dependent amplitudes f and b. A number

(index j) of WGMs ψc
j(r, θ) = (Ẽ, H̃)c

j(r) exp(−imjθ) with mode profiles (Ẽ, H̃)c
j and integer angular

wavenumbers mj enter with coefficients cj . By discretizing the functions f , b in terms of 1-D, here linear finite

elements (FEs) [11], the template (2) can be given the abstract form

(

E

H

)

(x, z) =
∑

k

ak

(

Ek

Hk

)

(x, z) (3)

of a sum over “modal elements” (Ek,Hk) which, in case of the bus channels, combine the mode profiles

with the exponential dependences on the propagation coordinates and the familiar FE triangle functions. For

the cavity, the WGM profiles appear as modal elements, without further factors. The set of coefficients ak ∈
{fj, bj , cj} includes correspondingly the discretized functions f and b as well as the WGM amplitudes cj . Of
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these, the coefficients that relate to the incoming wave in the upper left port and to the zero excitation in the

lower right port are given; all others need to be determined.

To do so, the relevant Maxwell equations (1) are multiplied by trial fields F , G and integrated over a suitable

(2-D) computational domain [11]. One arrives at a weak form of Eqs. (1), which, for reasons that become

apparent in Section 3.2, is here written as

∫∫

A(F ,G;E,H) dx dz − ω

∫∫

B(F ,G;E,H) dx dz = 0 for all F ,G, (4)

where

A(F ,G;E,H) = F ∗ · (∇×H)−G∗ · (∇×E) , B(F ,G;E,H) = iǫ0ǫF
∗ ·E + iµ0G

∗ ·H . (5)

Upon inserting the generalized template (3) for E, H , and restricting Eq. (4) to the set of modal elements

(F ,G) ∈ {(Ek,Hk)}, this Galerkin procedure leads to a system of linear equations of the form

∑

k

(Alk − ωBlk) ak = 0 , for all l (6)

with “overlaps” of modal elements

Alk =

∫∫

A(El,H l;Ek,Hk) dx dz , Blk =

∫∫

B(El,H l;Ek,Hk) dx dz . (7)

One now groups the coefficients a = (u,g) such that u represents the actual unknowns, while g corresponds

to the given excitation, and arranges the system (6) accordingly:

[(

Auu Aug

Agu Agg

)

− ω

(

Buu Bug

Bgu Bgg

)](

u

g

)

= 0 , (8)

or Kuu = −Kgg with Ku =

(

Auu − ωBuu

Agu − ωBgu

)

, Kg =

(

Aug − ωBug

Agg − ωBgg

)

. (9)

This last overdetermined system (9) can be handled in a least squares sense. One obtains, for given input g, the

response u at a prescribed excitation frequency ω as the solution of

K
†
uKuu = −K

†
uKgg . (10)

Here the symbol † denotes the adjoint. Further details, as well as an alternative variational motivation of the

procedure, can be found in [11].

Note that so far we’ve been interested in approximate solutions of the homogeneous system (1), subject to

boundary conditions that accommodate the prescribed incoming (guided) waves, together with arbitrary outgo-

ing waves (cf. e.g. Refs. [27, 28] or the appendix of [11] for more formal statements). While these boundary

conditions did not show up anywhere explicitly, they are built into the template (2) through the appropriate

selection of contributing fields.

3.2 Supermode analysis: eigenfrequencies of composite systems

As a means to directly predict resonances of the composite systems, without carrying out frequency scans, we

now look for — prospectively complex — values ωs where the system

∇×H − iωsǫ0ǫE = 0, −∇×E − iωsµ0H = 0, (11)

subject to boundary conditions of outgoing waves only, permits nonzero solutions E, H. As before, approx-

imate solutions are sought in the form of the template (2), now without any incoming waves (the respective
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coefficients g are zeroed). With the frequency parameter being replaced by the unknown value ωs, one pro-

ceeds along the previous steps up to Eq. (8), of which only the upper left quadrant remains relevant:

Auuu = ωs
Buuu. (12)

Eq. (12) constitutes a generalized eigenvalue problem. Solutions are pairs of eigenvectors u and eigenfrequen-

cies ωs. To distinguish the related fields from the original WGMs, we shall use the term “supermodes” for

these resonances. One thus obtains a set of supermodes, each associated with a complex eigenfrequency ωs,

Q-factor Q = Reωs/(2Im ωs), resonance wavelength λr = 2πc/Reωs, linewidth ∆λ = λr/Q, and a mode

profile, obtained by substituting the respective eigenvector into Eq. (2).

Depending on the specified field template the supermodes can include the power outlets provided by the bus

waveguides; the Q-factors and linewithds then relate to the spectral properties of the waves that the composite

open cavity sends out through the access channels.

Note that the terms “resonance” is being used in this paper in at least three different contexts: First there are the

WGMs of the separate cavities (Section 2), given here as analytical solutions. Second, transmission resonances

are observed as peaks and dips in the spectral scans of the scattering problems, determined by HCMT or

an alternative method. Third, the supermodes of the composite systems are characterized by their complex

eigenfrequencies, determined by HCMT-eigenvalue analysis with purely outgoing wave templates.

Figures 4, 8, and 9 show an excellent agreement between the resonance wavelengths and linewidths associated

with the supermodes, and the peaks and dips in the spectral transmission curves. Note that, beyond observing

that agreement, we do not establish any formal relation between the scans of the transmission problem, and the

supermode analysis. A means to do that could be to employ variational procedures again, then with a template

that combines the given incoming wave with an entire supermode, or a series of supermodes, of the composite

system, in line with what has been carried out for 1-D problems in Refs. [14, 15, 16] (not done here). At least

the field plots of e.g. Figure 5 provide some intuition on how this might work.

3.3 Perturbations of whispering gallery resonances

When applied to a template with only a single unknown, Eq. (12) permits one to derive an expression for

the perturbation of the respective basis element by a small uniform change of permittivity. Assume that we

investigate a cavity with permittivity function ǫo which supports a resonance with fieldEo,Ho at frequency ωo.

This cavity is being perturbed slightly; the permittivity ǫ = ǫo+∆ǫ characterizes the new configuration. We then

look for the supermode of that configuration, using a template with merely the one given resonance. Eq. (12)

can be evaluated explicitly for the supermode eigenfrequency. Neglecting terms ∼ ∆ω∆ǫ, the respective

change in eigenfrequency ∆ω can be given the form

∆ω =

−ωoǫ0

∫∫

∆ǫ|Eo|
2 dx dz

∫∫

(

ǫoǫ0|Eo|
2 + µ0|Ho|

2
)

dx dz

. (13)

The approach requires that the original fields represent reasonable approximations of the actual fields of the

perturbed structure. As exemplified by Figure 3, this appears to be valid in case of small uniform perturbations

[24], here a small change of the core refractive index of the cavity ring. However, one needs to be careful with

shifts of dielectric interfaces, if discontinuous basis fields are involved [29, 30].
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Figure 3: WGM resonance wavelengths λr vs. core refractive index ng, for

rings with the parameters of Figure 1(a) with R = 7.5µm. The dashed lines

indicate the slopes as predicted by Eq. (13), evaluated with the fields of the

reference structure for ng = 1.5 (markers).
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4 Examples

Our C++-implementation of the HCMT model relies on the routine libraries [25, 23] for 2-D straight and bent

slab waveguides. Commercial software for finite-difference-time-domain (FDTD, [31]) and frequency-domain

finite-element (FD-FEM, [32]) simulations serves for benchmarking. The interpolation procedure as outlined

in [4] has been applied for the fast evaluation of spectral scans in Figures 4, 8, and 9.

Among the computational parameters, for the templates with radiating elements, the most notable influence

must be expected from the extension of the computational window. For the present parameter set, however, this

appears not to be critical. As an example, we could observe hardly any visible change of the transmission curves

in a plot like Figure 4(a), if the window is enlarged from the original setting of (20µm)2 to (45µm)2. Accurate

evaluation of the modal element overlaps (7) is required in all cases. The integrals are computed numerically by

Gaussian quadrature [33], applied piecewise in case of non-smooth fields at dielectric interfaces, with stepsizes

such that the overall results appear to be converged (checked at least occasionally).

4.1 Single-ring or -disk filters

Figure 4 summarizes the spectral properties of filter configurations with a single ring- or disk-cavity. Beyond the

data from the present approach, the figure includes results from a series of alternative methods. The bend-mode

based HCMT simulations view the cavity as a bent waveguide that supports eigenmodes with real frequency and

complex angular wavenumber [4]. The “conventional” CMT model [34] splits the resonator into two coupler

regions, each comprising adjacent segments of a bend and a straight waveguide. The guided wave interaction

within these is modeled separately by standard codirectional coupled mode theory, with the coupler scattering

matrices then embedded in an analytic resonator description. A quite satisfying nice overall agreement can be

observed with the benchmark data from two numerical methods [32, 31].

As to be expected, slightly larger deviations appear for the resonances related to the first order WGMs of

the micro-disk, where the larger radial extension of the WGM profiles leads to a stronger field overlap in the

coupler regions (albeit not to a more efficient interaction). Obviously here the assumptions inherent in the

HCMT template are less adequate.
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Figure 4: Transmission properties of micro-ring (a) and micro-disk resonators (b); directly transmitted power T (top) and

dropped optical power D (bottom) as a function of the excitation wavelength λ. Parameters are as given for Figure 2.

Results of different methods are compared, as explained further in the text: WGM-HCMT (continuous, the approach of

this paper), conv-CMT (dashed, conventional CMT [34]), BM-HCMT (dash-dotted, (a) only, bend-mode-based HCMT

[4]), FEM (dash-dotted, (b) only, finite element solver, commercial [32]), and FDTD (markers, finite-difference-time-

domain, commercial [31]). Resonances are classified by the dominant contributing WGM. The marker lines in the central

part are positioned at the respective resonance wavelengths: separate WGMs (light gray, continuous), WGMs perturbed by

the bus waveguide permittivities (light gray, dashed), and HCMT supermodes (black, lower bars indicate the linewidths).

Figure 4(a) shows WGM-HCMT results that are computed with a unidirectional template which includes

WGMs(0, 37-41) of the ring. We also carried out WGM-HCMT scans with different field templates. If one
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uses WGM(0, 39) only, then merely the respective dip/peak appears in the transmission/drop curves, positioned

precisely (on the scale of Figure 4(a)) at the same spot, with an otherwise flat response. A bidirectional field

template, with forward and backward waves in both bus channels and WGMs(0, ±37-±41) leads to hardly

any changes concerning the peak positions and widths, but to slightly lower power drop, i.e. to slightly higher

losses. The levels of reflected power (upper left port in Figure 2) and forward-dropped guided power (lower

right port) remain below 10−4 over the spectral range considered here.

When compared to the ring, the micro-disk supports WGMs of slightly higher quality, which leads to the

narrower linewidths of the transmission resonances. These linewidths, however, are here obviously being

dominated by the interaction between bus waveguides and WGMs: the first order WGMs, originally of lower

quality, appear with narrower transmission resonances than the WGMs of fundamental radial order, that interact

more effectively with the waves in the bus cores.

The central vertical lines in Figure 4 indicate the resonance wavelengths and linewidths associated with the

(super-) modes of the device. While each individual WGM is clearly associated with one of the transmission

extrema, there is still a noticeable difference between the resonance wavelengths of the separate WGMs and the

positions of the transmission peaks. If one considers the bus channels as a mere permittivity perturbation, in

line with the reasoning of Section 3.3 (minus sign in Eq. (13)), this leads to a further red-shift of the resonance

positions; here the simple perturbational viewpoint is clearly inadequate. A supermode computation as outlined

in Section 3.2, however, with a template that covers the WGMs of the cavity and the waves in the channel wave-

guides, permits one to predict the blue-shifted transmission resonances and their linewidths quite accurately.

Table 1 collects some of the actual values that characterize these resonances; Figures 5 and 6 provide some

impressions of the related field profiles.
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Figure 5: Field pattern related to the WGM(0, 39) resonance of the ring filter in Figure 4(a). Panels (a-c) correspond

to the transmission problem (tr), where a guided wave excitation is present in the upper left channel. Bend-mode-based

HCMT results [4] (a) serve as reference. The WGM-HCMT simulations for (b) and (c) differ with respect to the HCMT

template: Plots (b) are based on a template that includes unidirectional fields for both bus waveguides and merely the

one WGM(0, 39) for the cavity. Simulations (c) take also WGMs(0, 37-41) into account. Panels (d-f) show the results of

supermode calculations (sm), based on either a unidirectional HCMT-template (d) or on a template where bidirectional

variants of all fields are supplied (e, f).

Panels (a–c) of Figure 5 relate to the transmission resonance of the ring for WGM(0, 39). The bend-mode

HCMT result (a), here the reference, shows noticeably different local intensities in the left and right half of the

cavity. This could be attributed to waves that enter the cavity through the top coupler, propagate along half the

ring, and leave the device through the bottom coupler, without contributing in the resonance effect. The single

WGM(0, 39) used in the template for panel (b) with its rotational symmetry can obviously not represent that

feature. The template of (c) with a series of WGMs, however, leads to a field plot very similar to (a). One might

thus just as well attribute the difference in local intensity to the interference of neighboring WGMs. In a plot of

the coefficients cj from Eq. (2) versus excitation wavelength (not shown), one indeed observes a small nonzero

amplitude for the respective WGMs of nearby angular order.

Supermode fields for the ring are illustrated in panels (d–f) of Figure 5, all with resonance wavelengths very

close to (coinciding with) the WGM(0, 39)-transmission peak (cf. Table 1). Contrary to the unidirectional field

(d) with its traveling waves in all cores (this also applies to (a–c)), the time animation of (e, f) shows purely

standing waves in the cavity, with outgoing waves in all four outlets. Applying the reasoning of [14, 15, 16]
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Ring λr/ µm Q ∆λ/ µm Fig. Disk λr/ µm Q ∆λ/ µm Fig.

WGM(0, 39) 1.56373 1.1 · 105 1.4 · 10−5 1(c) WGM(0, 40) 1.56514 8.2 · 105 1.9 · 10−6 6(a)

pert. 1.56516 pert. 1.56579
(tr)BM 1.5621x 5(a) (tr) 1.5645x 6(b)

(tr)WGM(0, 39) 1.5622x 5(b) (sm)ud. 1.56454 6.7 · 102 2.3 · 10−3 6(c)

(tr)WGM(0, 37-41) 1.5622x 5(c) WGM(1, 35) 1.57444 1.7 · 103 9.3 · 10−4 6(d)

(sm)ud. 1.56219 4.3 · 102 3.7 · 10−3 5(d) pert. 1.57904
(sm)bd., even 1.56223 4.5 · 102 3.5 · 10−3 5(e) (tr) 1.5730x 6(e)

(sm)bd., odd 1.56215 4.0 · 102 3.9 · 10−3 5(f) (sm)ud. 1.57320 1.1 · 103 1.4 · 10−3 6(f)

Table 1: Resonance wavelengths λr, or peak locations, respectively, in case of the transmission problems (tr), quality

factors Q and spectral linewidths ∆λ associated with selected resonances of Figures 1, 4, 5, 6. Rows “pert” give the shifts

of resonance wavelengths caused by the bus waveguide cores, if these are considered merely as permittivity perturbations.

(tr) refers to extrema in the spectral transmission, computed by bend-mode HCMT (BM), or by the present WGM-HCMT

with different templates. Rows (sm) contain the results of the HCMT-supermode analysis, with uni- (ud.) or bidirectional

field templates (bd.).

one can imagine the field of the transmission resonance (c) emerging as the superposition of the unidirectional

supermode (d) with a guided wave in the upper excitation channel, such that the fields in the upper right port

interfere destructively, cancelling the direct transmission. The unidirectional supermode (d) in turn can be

viewed as a superposition of the nearly degenerate bidirectional modes (e, f), such that the waves cancel in the

upper left and lower right outlets.
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Figure 6: Field pattern related to central resonances of the disk filter in Figure 4(b). Panels (b, c) correspond to the radial

fundamental mode WGM(0, 40) (a), panels (e, f) show pattern for the first order WGM(1, 35) (d). HCMT results for the

resonant transmission (b), (e) are compared with the supermode fields of fundamental (c) and first order (f). All HCMT

fields rely on a template that includes the WGMs(0, 38-42) and WGMs(1, 34-37).

Figure 6 collects a series of field examples for the micro-disk resonator. Features very similar to the ring

are observed in panels (a–c) that concern the radially fundamental WGM(0, 40). Fields (d–f) related to the

WGM(1, 35) of first radial order exhibit the radial nodal line and pronounced losses. As for the ring, for both

sets one can imagine, at least approximately, the transmission resonance (tr) to be a superposition of the nearest

supermodes (sm) and a guide wave in the upper channel, with almost complete (b) or partial (e) destructive

interference in the upper right port. Contributions of both the supermodes (c) and (f) would explain the weak

angular beating pattern [34] (most notable in (e)) of the transmission resonances.

With the recipes of Section 3.2, there are the means at hand to characterize directly the resonance properties

of the composite filter devices, without carrying out frequency scans. The curves in Figure 7 shall serve as an

example. The HCMT templates include the fields of the bus waveguides together with the WGMs(0, ±37-±41)

of the cavity ring; results with uni- and bidirectional templates are compared. For the present parameter set, one

observes hardly any difference between the uni- and bidirectional models, in line with the findings of Ref. [35].

The degeneracy of supermodes with opposite symmetry is being lifted slightly for pronounced field overlaps

at nearly vanishing gaps (only just visible in part (a) for small g). In accordance with [17], depending on the

bus core width (b), the cavity-bus-interaction causes a slightly red- or blue-shifted resonance of the composite

system (both signs are possible).
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Figure 7: Resonance wavelengths λr and Q-

factors of ringresonators as in Figure 2, for

varying gap g (a), and bus width w (b). The

horizontal lines indicate the resonance wave-

lengths of the isolated cavity ring.

4.2 Coupled resonator optical waveguide

Linear series of coupled cavities received much attention in the recent past [36, 37], mainly for their optical

delay properties, both theoretically and experimentally. Here we look at only one specific configuration adapted

from [4], a series of nine of the former cavities. Figure 8 summarizes the results.
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Figure 8: A coupled resonator optical waveguide (CROW), a series of cavities as introduced in Figure 2. (a): Spectrum of

the device, relative transmission T and power drop D as as function of the excitation wavelength λ; unidirectional HCMT

simulations based on templates with one WGM per cavity (bold lines) and with five WGMs per cavity (thin dashed

curves). The central lines give the positions of the resonance wavelength of one separate ring (single bold line, gray),

of the resonances for the series of rings without bus waveguides (dashed), and of the resonances of the complete system

(continuous, here also the respective linewidths are shown), in all cases computed using templates with one WGM(0, 39)

per ring. (b): Supermode patterns for the system with bus waveguides (bold), and for the ring series only (thinner,

mostly shadowed). Real parts (dashed), imaginary parts (dash-dotted), and absolute values (continuous) of the amplitudes

attributed to the WGMs of neighboring cavities are connected to clarify the systematics.

We focus on the spectral region around the WGM(0, 39)-resonance of the individual rings. As for the filter

of Section 4.1, one must expect that neighboring WGMs play a role. The transmission curves in Figure 8(a),

obtained with templates that include the WGM(0, 39) and WGMs(0, 37-41) for each ring, agree qualitatively,

with only small shifts (on a scale of the free spectral range of the rings, ≈ 36 nm, c.f. Figure 4(a)) in the actual

peak positions. We therefore restrict things to the model where each cavity is represented by a single WGM.

Supermode analysis for the chain of nine cavities, first without the bus channels, predicts that the original

WGM splits into a series of nine supermodes, positioned close to, but not quite at, the transmission resonances.

If the access waveguides are taken into account as well, the HCMT supermodes reflect accurately the peak

positions and the linewiths of the transmission spectrum. Figure 8(b) compares the related “mode profiles”,

here the complex amplitudes assigned to the WGMs in the cavity series. One observes a systematic pattern

of “harmonics” with a growing number of “nodes”, where the fundamental resonance appears at the longest
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wavelength, i.e. at the lowest energy level. Only minor differences between the patterns for the systems without

and with waveguides are visible.

Due to the semi-numerical nature of the HCMT approach there are no principal restrictions on distances, posi-

tioning, or (guided wave) excitation conditions. Small local or global changes in refractive index can be taken

into account as perturbations, for supermode calculations or spectral scans. The present model should thus be a

convenient means to to carry out ab-initio studies of further less-standard CROW-based circuits, like e.g. bends

in CROW-based photonic molecules [38], defect-assisted CROWS [39], or tunable CROW based optical filters

[40], always including the access waveguides.

4.3 Three-ring photonic molecule

As a last example we consider three identical rings, positioned at the corners of an equilateral triangle, and

their excitation through a single access waveguide (Figure 9(a)). Structures of this type have attracted interest

for some time already. The parametric scattering-matrix model of Refs. [41, 42] predicts that the configura-

tion can function as a resonant mirror / reflector. Without the bus channel, one might view the structure as a

photonic “molecule”, constituted by the three rings as photonic “atoms”. A rigorous integral equation analy-

sis of isolated molecules with emphasis on their Q-factors can be found in Ref. [43]. Further recent studies

include the ab-initio HCMT model [4], based on the bend mode viewpoint, a parametric pathway analysis for

purposes of application as a sensor [44], and an approximate analytical WGM-based description [45] that led

to experimental observations [46]. Results of the present WGM-HCMT model are summarized in Figure 9.
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Figure 9: (a): Three-ring photonic molecule, excited by a straight bus waveguide. (b): Relative guided transmitted

(T ) and reflected optical power (R), as a function of excitation wavelength λ; bidirectional HCMT simulations with

the WGMs(0, ±39) included for each ring. The vertical markers indicate the resonance WGM(0, 39) of an individual

ring (single bold gray line), the HCMT supermodes computed for the three-ring molecule only, without the bus channel

(dashed), and the supermodes for the entire compound, consisting of molecule and waveguide (continuous, here also the

respective linewidths are shown). (c): Supermode profiles predicted for the three-ring molecule, time-snapshots of the

standing wave pattern (large panels) and absolute values (smaller insets) of the principal electric field component.

As before we look at the spectral region close to the WGM(0, ±39) resonance of the single rings. Bidirectional

wave propagation is essential in this case; the cavities are thus represented in the HCMT template by six WGMs.

Figure 9(b) shows the spectral guided wave transmission and reflection. As for the previous examples, one can

only expect approximate results from the simple template. Comparison with the bend-mode HCMT in Ref.

[4], however, shows that the spectral features are adequately captured by the WGM-HCMT model. The curves

deviate slightly with respect to the precise peak positions, and with respect to the predicted maximum levels of

reflection, for the three right-most reflection peaks. Note that these features cover a total wavelength range of

about 10 nm, roughly a quarter of the free spectral range of the individual rings.
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At the same time our present model can, at least to some degree, explain the formation of the resonances. Con-

sidering only the molecule without bus channels, the HCMT analysis predicts the six supermodes of Figure 9(c).

One observes purely standing waves in all cavities, with stationary nodal lines. This concerns a structure that

is mirror-symmetric with respect to the three axes angled at 2π/3, hinted at by the thin dashed lines in the field

plots. One can thus expect modes with even (e) or odd parity (o) with respect to each of these axes. The panels

in Figure 9(c) and the related resonance wavelengths in (b) are classified accordingly. The “fundamental” su-

permode (eee) with the longest resonance wavelength / lowest energy exhibits the least “strained” profile, i.e.

a field that is symmetric across all three lines. Likewise the supermode (ooo) with the most “strained” field

appears with the shortest wavelength, or at highest energy, respectively. The four remaining supermodes come

in two degenerate pairs. Of these, one is symmetric with respect to the horizontal axis, the other antisymmet-

ric1. Suitable superpositions of these two degenerate modes thus realize configurations where in turn each of

the three cavities is “switched off”, i.e. configurations with even or odd symmetry with respect to each of the

three axes in turn, as exemplified by the third an fifth fields in the row.

Once a bus channel is placed as indicated in Figure 9(a), the incoming wave interacts only with those su-

permodes of the molecule that show non-negligible field strength in the vicinity of the bus core. Hence one

observes merely four peaks, not six, in the transmission and reflection spectrum. The respective fields (not

shown) resemble, in the region of the cavities, the first, second, fourth, and sixth profiles of Figure 9(c). With

respect to the specific excitation through the waveguide, the supermodes in the third and fith panels behave as

nonradiative “dark” states. In the present idealized model they are degenerate with the radiating “bright” states,

the second and fourth profiles. Some small perturbation might thus lead to the excitation of sharp resonances

of Fano-type [47], here in a comparably large dielectric integrated optic system.

As for the examples in Sections 4.1 and 4.2, the vertical lines in Figure 9(b) show that the positions and

linewidths of the peaks in the transmission spectrum can accurately be predicted by HCMT supermode analysis,

if the bidirectional modes guided by the bus channel are taken into account. The respective supermodes are

symmetric or antisymmetric with respect to the horizontal axis. Similar to the reasoning in Section 4.1, the

transmission resonances, here the states with vanishing reflection, can be thought of as a superposition of one

of these supermodes with the upward traveling guided mode of the bus channel, such that the waves interfere

destructively in the upper outlet.

5 Concluding remarks

The HCMT scheme can be used successfully with templates that involve known modes of open dielectric

cavities. At least for the present configurations with high-Q cavities and thus moderately low losses, problems

related to the outwards growing basis fields did not occur. Our ab-initio calculations are based on analytically

computed WGMs of circular cavities. One obtains approximations for the full optical electromagnetic field. A

series of examples show the versatility of the method. We’ve specifically looked at coupling-induced frequency

shifts, which can conveniently be predicted by HCMT supermode analysis.

The scheme is inherently numerical in the sense that no analytical expressions for the amplitudes of the coupled

modes emerge. Still, by extracting the respective numerical values, the coupled mode amplitudes can be made

available for inspection and physical interpretation. Alternatively the method can be viewed as an approximate

numerical (finite element) scheme, but one with very specific, structure-dependent nonlocal element functions.

One operates at the intersection between “numerics” and “modeling”; convergence can be expected only up to

what is built into the field template.

The extension to 3-D is still pending. While the formalism as given in this paper is directly applicable to 3-

D configurations, the present analytical WGMs would have to be replaced by numerical approximations, i.e.

by basis fields computed through corresponding cavity eigenmode solvers [32]. For comparable circuits, the

number of unknowns, i.e. the dimensions of the systems (10) and (12), would remain the same as in the 2-D

case. However, apart from the bookkeeping, the efficient evaluation of the basis element overlaps (7) would

constitute the major computational/numerical challenge.

1Due to the numerics (rectangular computational window, integration procedures) the horizontal axis is not strictly equivalent to the

other two.
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[9] L. Prkna, J. Čtyroký, and M. Hubálek. Ring microresonator as a photonic structure with complex eigenfrequency.

Optical and Quantum Electronics, 36(1/3):259–269, 2004.

[10] E. Franchimon. Modelling circular optical microresonators using whispering gallery modes. MSc thesis, University

of Twente, Enschede, The Netherlands, 2010.

[11] M. Hammer. Hybrid analytical / numerical coupled-mode modeling of guided wave devices. Journal of Lightwave

Technology, 25(9):2287–2298, 2007.

[12] P. T. Leung, S. Y. Liu, and K. Young. Completeness and orthogonality of quasinormal modes in leaky optical

cavities. Physical Review A, 49(4):3057–3067, 1994.

[13] M. Bertolotti. Linear one dimensional resonant cavities. In F. Michelotti, A. Driessen, and M. Bertolotti, editors,

Microresonators as building blocks for VLSI photonics, volume 709 of AIP conference proceedings, pages 19–47.

American Institute of Physics, Melville, New York, 2004.

[14] M. Maksimovic, M. Hammer, and E. van Groesen. Field representation for optical defect microcavities in multilayer

structures using quasi-normal modes. Optics Communications, 281(6):1401–1411, 2008.

[15] M. Maksimovic, M. Hammer, and E. van Groesen. Coupled optical defect microcavities in 1d photonic crystals and

quasi-normal modes. Optical Engineering, 47(11):114601 1–12, 2008.

[16] M. Maksimovic. Optical resonances in multilayer structures. University of Twente, Enschede, The Netherlands,

2008. Ph.D. Thesis.
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