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Figure 1: Multi-character animations are synthesized from single-person Motion Capture data. The individual interactions between nearby
characters are precomputed into interaction patches by expanding game trees during the off-line processing stage. Our system automatically
concatenates the patches and generates a complex multi-character animation, such as (a) one person fighting with many enemies, (b) a group
of characters falling down onto each other like dominos, (c) an American football player holding a ball and escaping from tackling defenders,
and (d) a group of people passing luggage from one to another.

Abstract

We propose a data-driven approach to automatically generate a
scene where tens to hundreds of characters densely interact with
each other. During off-line processing, the close interactions be-
tween characters are precomputed by expanding a game tree, and
these are stored as data structures called interaction patches. Then,
during run-time, the system spatio-temporally concatenates the in-
teraction patches to create scenes where a large number of charac-
ters closely interact with one another. Using our method, it is possi-
ble to automatically or interactively produce animations of crowds
interacting with each other in a stylized way. The method can be
used for a variety of applications including TV programs, adver-
tisements and movies.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Character Animation, Human Motion, Crowd Simu-
lation

1 Introduction

Scenes of battlefields, panicked crowds and team sports in movies
and TV programs involve a huge number of interactions of multiple
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characters. Existing methods have problems creating such interac-
tions. Manually composing the scene using singly captured mo-
tions or keyframed motions requires a huge amount of labor by the
animator. Flocking-based methods [Reynolds 1987; Helbing et al.
2000] have problems simulating close interactions that involve a
lot of kinematic constraints. Previous optimization-based methods
[Lee and Lee 2004; Treuille et al. 2007; Shum et al. 2008] suffer
when creating artistic interactions, as the objective functions are
designed just to benefit each character.

When we watch fighting scenes in movies, we immediately real-
ize that there are a variety of interactions appearing stylized; artistic
and logically clear as if they are designed by an artist. At the same
time, we also realize that the patterns of interactions are very sim-
ple. For example, in a scene where a main character fights with
many background characters, most interactions between them fol-
low the rule of “background character: attack”, “main character:
avoid”, “main character: counter attack” and “background charac-
ter: knocked down”.

This observation leads us to develop an algorithm that is flexi-
ble enough for the user to design his/her favorite interaction, while
sufficiently automated so that the user can create a large-scale ani-
mation involving a number of characters with the least effort. Our
system simulates the minimal unit of interactions between two char-
acters based on abstract instructions given by the user, and stores
the result as structures called interaction patches. The interaction
patches are spatio-temporally concatenated to compose a large-
scale scene in which the characters interact with each other, such
as one person fighting with many enemies (Figure 1a), a group of
characters falling down onto each other like dominos (Figure 1b),
an American football player holding a ball and escaping from tack-
ling defenders (Figure 1c) and a group of people passing luggage
one to another (Figure 1d).

1.1 Related Work

Simulating close interactions of multiple characters has been at-
tracting researchers due to the high demand in movies and com-
puter games. When creating an animation of a large-scale scene
where the characters have close interactions with one another, it



Figure 2: The outline of the proposed method.

can be done with either (1) a top-down approach that models the
overall movements of all the characters first and then further mod-
els the details, or (2) a bottom-up approach where the individual
interactions are modeled first and the overall scene is composed by
assembling them.

Crowd simulation, which is a top-down approach, provides
scalable methods to generate motions of multiple characters mov-
ing in the scenery. For example, Sung et al. [2004] propose the
use of a probabilistic model for the selection of actions. Treuille et
al. [2006] use continuum dynamics to determine the flow of people
moving in the space. In these works, the interactions between the
characters are rather simple, such as avoiding other pedestrians or
walking along with another character. No close interactions such as
holding or strongly pushing away others are included. Helbing et
al. [2000] propose a dynamical model to simulate the movements
of people in panic, which is similar to the flocking [Reynolds 1987]
model. However, in their work, there is no model to convert the
motions of particles to human actions when close contacts are in-
volved. A bottom up approach, which is to build the individual
interactions first, and combine them together to design the whole
scene, is more suitable for our objective. The following approaches
can be categorized as bottom-up.

Data driven approaches: Capturing the interactions of multiple
persons with a motion capture system, and using machine learn-
ing techniques to produce motions under different situations [Park
et al. 2004; Lee et al. 2007] is a straight forward approach. Park
et al. [2004] create animations of two persons playing Tae Kwon
Do and dancing by using Hidden Markov Model. In this method,
because of the limitation of motion capture, the Tae Kwon Do play-
ers cannot seriously hit each other, and only the combinations of
actions that have been captured can be replayed. Lee et al. [2007]
record group behaviors with an overhead camera and model how
individuals move in the crowd. Such approaches are difficult to
apply to motions involving close interactions. Kwon et al. [2008]
propose a method to create and edit the movements of characters
in a group. The only interaction they handle is avoiding collisions
between close characters.

Response motions when a person is being pushed, pulled or hit
have become attractive to researchers due to their high demand in
video games. Zordan et al. [2005] simulate the response motion af-
ter being attacked using rag-doll physics and motion capture data.
Arikan et al. [2005] use machine learning techniques for training
the system to produce plausible reactions. Synthesis of reactive
motions against obstacles has also been explored by frame-based
optimization techniques [Abe et al. 2007], support vector ma-
chines [Zordan et al. 2007] and spacetime constraints [Liu et al.
2006]. These methodologies are useful for designing individual
short interactions between two characters. However, when a large-
scale scene is to be created, we must allocate the characters in the

scene and plan their movements.

Optimization-based methods can be one solution to this prob-
lem. Lee and Lee [2004] precompute the optimal policy for the
boxer character to approach and hit a target. They focus mainly
on relatively simple interactions, such as a single punch, due to the
high dimensionality of the state space, in which each point defines a
unique condition to select an action. Treuille et al. [2007] tackle this
problem by using a near-optimal approach; the objective function
is represented by a weighted sum of bases functions, and the policy
is optimized by recursively updating the weights. They success-
fully created motions of pedestrians avoiding each other, but have
not produced close interactions such as those handled in this paper.
Shum et al. [2008] cope with the problem of high dimensionality
by collecting samples in the state space where there are meaning-
ful interactions. The problem of these learning-based methods is
that a huge number of samples are required to obtain a satisfactory
result. They also have problems simulating stylized interactions
as the objective functions are designed for each character just to
compete well. Game tree expansion [Shum et al. 2007] is an effec-
tive method to synthesize realistic interactions among characters.
This method is similar to the way that computer-based chess play-
ers select their moves. The problem is that this method requires an
exponential amount of computation.

1.2 Our Approach

Our work is inspired by the idea of Motion Patches [Lee et al.
2006], where the large-scale scene is composed of building blocks.
Using their approach, it is possible to generate an animation where
the characters interact with the environment. However, it is not pos-
sible to generate an animation where multiple characters densely
interact with each other. In this paper, we precompute the com-
plex interactions of multiple characters and use them as the building
blocks to compose the final scene.

The outline of our approach is shown in Figure 2. It is com-
posed of five steps: (1) Capture the motion of a single person us-
ing a motion capture system. (2) Create the action-level motion
graph [Shum et al. 2007], in which the actions are all annotated.
(3) Compose the set of minimal units of interactions, which we call
the interaction patches, by specifying the pattern of interactions and
expanding the game tree. These three steps are explained in Sec-
tion 2. (4) Generate two tables that list how each interaction patch
can be temporally and spatially concatenated with other interaction
patches to compose large-scale scenes. This process is explained in
Section 3. The processes up to here are done offline. (5) Compose
a scene by concatenating the interaction patches. This is the only
online process, which allows the user to optionally give high-level
commands and see what they can get immediately. The details are
explained in Section 4.



Contribution

1. We propose a method to synthesize realistic interactions be-
tween characters by expanding the game tree, based on the
pattern of interactions specified by the user. Since the pattern
is specified, the number of combinations is small, and we can
obtain realistic interactions with a limited amount of compu-
tation. These interactions are saved as interaction patches to
be used during runtime.

2. We propose a new algorithm to synthesize a large-scale scene
in which the characters densely interact with each other. The
precomputed interaction patches are spatio-temporally con-
catenated to compose a large-scale scene.

2 Interaction Patches

The interaction patch is composed of the initial condition of the two
characters and the list of short motion clips performed by each of
them. The initial condition includes the distance between the two
characters (r), the relative orientation of each character with respect
to the other (θ1 and θ2), and the delay in either of the characters to
start the first action (tdi f f ).

In the rest of this section, we first explain how we preprocess the
motion capture data, and then explain how the interaction patches
are generated. Finally we explain how they are evaluated.

2.1 Preprocessing Motion Data

A motion capture system is used to obtain a long sequence of mo-
tion data performed by a single person. We assume the motion data
is preprocessed and stored as an action-level motion graph [Shum
et al. 2007]. This is a motion graph structure in which the nodes
represent postures to start or end actions and the edges represent
semantic actions. The list of annotations used in this research are
shown in Table 1. An example of an action-level motion graph is
shown in the second left image of Figure 2. The readers are referred
to [Shum et al. 2007] for further details.

2.2 Composing Interaction Patches

The process of composing interaction patches is to let the user
specify the pattern of actions, sample the initial condition of the
two characters and simulate the interactions between them. An
overview, showing the composition of an interaction patch is shown
in Figure 3. Each process is explained in the following subsections.

Specifying Pattern of Interactions: A user first gives a
list, defined here as a PatternList, that describes the pat-
tern of the interaction between two characters: PatternList =
{ (CharID1, Annotation1), ..., (CharIDn, Annotationn) }, where
Annotationi is the annotation embedded in the action-level motion
graph, CharIDi is the identity of the character who performs this
action, which is either 1 or 2, and n is the total number of actions
in the pattern. In our system, multiple actions may share the same
annotation. Therefore, an annotation represents a cluster of actions,
rather than a specific action. Figure 3 (upper left) shows an example
of PatternList. It should be noted that the list defines only the start-
ing order of the actions, and does not mean each character has to
wait for the other character to finish its action to start a new action.

Table 1: The table of annotations used in this research
Scene Annotations

Fight punch, kick, avoid, dodge, transition, falling
Football run, jump, avoid, tackle
Mouse avoid, pushed
Crowd falling falling
Luggage carry carry, walk, hand, receive, turn

Figure 3: Given the PatternList (upper left), the system sets the
initial condition (middle left). Using these data, the action-level
motion graphs are traversed by both characters (upper right). The
traversal process is equivalent to expanding the game tree (lower
right) as there are multiple choices for the same annotation. The
good interactions are stored as interaction patches (lower left).

Sampling Initial Conditions: Once the pattern of interaction
is determined, the initial conditions of the characters are sampled
based on the annotation of first actions for each character (Figure 3,
middle left). For most of the actions, there is a range in the ini-
tial condition parameters r, θ1, θ2, tdi f f when the action becomes
successful. For attacks or tackles, the other character must be in
the front at some distance and the valid range is relatively narrow.
On the other hand, avoiding actions are valid as far as the character
can get away from the opponent, which means the range is larger.
We predefine the valid range of each parameter for each annota-
tion. The system computes the intersection of the valid range for
the characters’ first actions, and performs uniform sampling in the
intersection. In our system, distance is sampled every 20cm, angles
are sampled every 20◦, and time difference is sampled every 0.1s.

Expanding Game Tree: When simulating the interaction be-
tween the two characters, each character is controlled by its own
action-level motion graph. Starting from the sampled initial con-
dition, each character traverses its own action-level motion graph
according to the pattern of annotations given by the PatternList
(Figure 3, upper right). As the annotation represents a cluster of
actions, we have multiple choices of actions for each annotation.
Since PatternList contains a list of annotations, there are exponen-
tial combinations of instances per PatternList. The process to eval-
uate all possible combinations is equivalent to expanding a game
tree (Figure 3, lower right). In this game tree, each node represents
an action to be launched by the corresponding character, and each
edge directs the subsequent action by either character.

When expanding the game tree and evaluating the sequence of
actions, some combinations are considered invalid for the following
reasons:

• Invalid distance: We avoid interactions in which the charac-
ters stand too close, as they can cause serious penetrations.

• Incorrect order of actions: As the duration of each action is
different, sometimes the overall order of the actions does not
coincide with the pattern; such series of actions are discarded.



Figure 4: Two cases of temporal concatenation of interaction
patches. Two characters finishing the previous interaction patch re-
join in the next patch (upper). One character starts to interact with
a different character after finishing the previous patch (lower).

Close interactions involve a lot of close contacts of body seg-
ments. We need to evaluate whether the segments collide or not. We
represent the body segments with rectangular bounding boxes and
check if any segments are overlapping. If the colliding segment has
large linear / angular momentum, response motion of being pushed
or falling down is immediately launched. We compare every pos-
ture of the response motion with the posture at the moment when
the impulse is added to the body. The best matching frame is used
as the starting frame of the response motion [Zordan et al. 2005].
If the segments unintentionally collide, such as when a character
is supposed to successfully avoid the attack according to the given
pattern but gets hit, this sequence of actions is discarded.

2.3 Evaluating the Interactions

After expanding the game tree, we evaluate the interactions using a
cost function. Any paths connecting the root and leaf nodes of the
game tree form a series of interactions between the two characters.
The set of interactions with a score above a threshold are stored as
interaction patches. The design of the evaluation scheme is specific
to the type of interactions. We used the linear combination of the
following objective functions in our experiments.

• Contact criterion: For some actions such as holding the
hand, punching the face, and tackling the body of the other
person, some parts of the bodies must contact either for a mo-
ment or throughout the timeline. Better scores are given to a
series of actions that result in desired contacts.

• Relative distance/orientation criterion: For actions such as
dancing, the characters need to stay close and face each other
for some period. Similarly, for interactions such as one char-
acter punching and the other avoiding, the defender should
get away from the punch, but needs to face the attacker while
avoiding it. For these interactions, there are desired distances
and relative orientations of the root of the body at some mo-
ment / throughout the motion. We can evaluate the interac-
tions based on the difference of the resulting values and the
desired values.

• Timing criterion: Some combinations of actions performed
by both characters need to be well synchronized. We consider
those interactions with small timing differences to be better.

Figure 5: The condition for applying the spatial concatenation to
the interaction patches: Either the series of actions in the initial and
final part of the patches must overlap (upper) or the whole series
of actions of one interaction patch overlaps with part of the other
interaction patch (lower).

All the interactions designed in our experiments are modeled by
different combinations of the above functions. The blending ratio
are manually tuned for each example.

2.4 Computational Efficiency

Since the process of constructing the interaction patches involves
game tree expansion, the computational cost is of an exponential
order. In general, when fully expanding the game tree to evaluate
the interactions of characters, the computational cost is AD, where
A is the average number of available actions, and D is the depth of
the tree to be expanded. However, we can greatly reduce the cost
by making use of the following features:

1. As the patterns of actions are given, the number of actions
to be expanded at each level are much fewer than that of doing
a full search. Assuming the actions are evenly divided into N
types of annotation, the computational cost will be reduced to

( A
N )D. At the same time we can get high quality samples, as

the pattern of interaction is a very important factor to deter-
mine the realism of the interaction.

2. As the PatternList is short, the depth of the expanded tree,
D, is limited. This is because only short interaction patches
are required in our system. We can generate longer interac-
tions, and those of more than two characters, by concatenating
the interaction patches based on the method explained later in
Section 3.

3 Connecting Interaction Patches

We compose large scale scenes by connecting the interaction
patches. Long series of interactions can be created by temporally
concatenating the interaction patches. Animations of more than two
characters concurrently interacting can be composed by spatially
concatenating the interaction patches. We check if such concate-
nations are possible for every pair of interaction patches, and save
this information in a table. The details of checking the eligibility of
temporal and spatial concatenations are explained in the following
subsections.



3.1 Temporal Concatenation of Interaction Patches

Two interaction patches A and B can be temporally concatenated if
(1) both of the characters finishing patch A start interacting again
in patch B (Figure 4, upper), or (2) one of the characters finishing
patch A joins patch B and starts to interact with a different character
(Figure 4, lower).

The patches must satisfy two further conditions to be temporally
concatenated: Firstly, the motions when switching from patches A
to B must be continuous; this can be examined by checking the con-
tinuity of actions in the motion graph. Secondly, if the characters
in the two patches are different, as in Figure 4 (lower), we must
make sure the leaving character in patch A does not collide with
the joining character in patch B. The leaving character either leaves
the scene or joins another interaction patch with another character.
For example, in Figure 4 (lower), after patch A, character 1 goes
away and character 3 joins in patch B. Collision detection based on
the two bounding boxes that surround character 1 and character 3 is
carried out for all actions in the patch. Only if there is no collision
can patch A and B be temporally concatenated.

3.2 Spatial Concatenation of Interaction Patches

The animator might need a scene where more than two characters
concurrently interact; we can compose such a scene by spatially
concatenating interaction patches of two characters. For example,
the animator might need a scene in which a football player jumps
up and avoids tackles from two opponents, one from the left and
another from the right. This scene can be composed using two in-
teraction patches, in which (1) a character jumps and avoids the
tackle from the left, and (2) a character jumps and avoids the tackle
from the right. There are two conditions for such a concatenation
(Figure 5). First, the two uncommon characters in the two patches
(character 1 and 3 in Figure 5) must not collide into each other.
This condition is the same as the one in temporal concatenation.
Second, the common character in the two patches (character 2 in
Figure 5) must conduct the same series of actions for a continuous
duration. The duration of overlap does not have to cover the whole
interaction patch. If the ending part of one patch and the initial part
of another patch overlap (Figure 5, upper) or if the whole series of
actions in the shorter patch completely overlaps with a part of the
longer patch (Figure 5, lower), this condition is satisfied.

4 Scene Composition

Once we know which interaction patches can be concatenated, we
can automatically compose large-scale scenes by spatio-temporally
concatenating the patches. In this section, we explain the process
of composing the scene: First, we explain the criteria for selecting
the next interaction patch among all the available ones, and then
explain how these criteria are applied to generate the scene. Finally,
we explain how to reuse characters that exited interaction patches
for other interaction patches later in the scene.

4.1 Selecting Patches

Among all the patches that can be connected to the currently played
one, our system excludes those which result in collisions, and then
selects the best one among the rest based on an objective function
explained in this subsection.

First, we exclude the patches that result in collisions. If a patch
requires the system to add a new character to the scene, we need
to ensure that the newly added character does not collide with any
other characters present in the scene. This is done by representing
each character as a bounding box and checking if the new character
overlaps with those in the scene. Then, we evaluate the interaction
patches based on the following factors:

• Density of characters: Because there are going to be a large
number of characters involved in the interactions, we favor

patches that allocate characters in open space. This is evalu-
ated as follows:

sd(p) =
1

dp +1

where dp is the current density of characters at the region
where the candidate interaction patch p will occupy.

• Frequency of the usage: As we prefer the characters not to
keep repeating similar movements, lower scores are given to
patches which have been recently used. We define a parameter
fp to represent the usage of the patch p; once a patch is used,
its corresponding fp value is increased by one. On the other
hand, the value is decreased by 10% each time other patches
are selected. The usage score of the patch is calculated as
follows:

s f (p) = (1−min( fp,1))

• User preference: We provide a simple interface for the user
to select the preferred type of actions represented by action
annotations. The patches that include such types of action are
given better scores: su(p) = 1 if the action satisfies the user’s
preference and su(p) = 0 if it does not.

The final score of a patch is defined as the weighted sum of the
above factors:

S (p) = wd sd(p)+w f s f (p)+wusu(p) (1)

where p is the patch to be evaluated, wd , w f , wu are the weights for
each factor, which we set as wd = 10,w f = 1000 and wu = 10000.
The patch that returns the highest score is selected.

4.2 Concatenating Interactions

Here we explain how to generate scenes of continuous interactions
involving many characters by concatenating the interaction patches.

When an interaction patch is about to end, we automatically se-
lect the patch that can be temporally concatenated by evaluating all
the connectable patches using Equation (1). If there are any patches
which are spatially connectable, such patches are also evaluated by
Equation (1) and the one with the best score is concatenated.

Then, the movements before and after the interaction for charac-
ters are generated by a locomotion engine which controls the char-
acter in a greedy manner. The locomotion engine selects a move-
ment which is collision free and transfers the character as close as
possible to the target position. The movements of the characters are
determined backward and forward in time starting from the moment
of the interaction. For those characters that appear from the back-
ground, the starting point is set at a location outside the scene in
the radial direction. The motions of the character whose interaction
happens first is decided first. Therefore, when deciding the loco-
motion of each character, we only need to avoid the the characters
that are already in the scene. Although more elaborate locomotion
engines based on model predictive control [Lau and Kuffner 2005]
or reinforcement learning [Lo and Zwicker 2008] might perform
better, our controller works well for the scenes we simulated.

An example of an overall time line is shown in Figure 6 (up-
per), in which character 1 (Ch.1) interacts with character 2, 3, 4
and 6 (Ch.2, Ch.3, Ch.4 and Ch.6) with temporal concatenation.
The interaction patch shared by Ch.1 and Ch.4 is spatially concate-
nated with another patch shared by Ch.4 and Ch.5. A corresponding
fighting scene is shown in Figure 7. Ch.1 (blue) first attacks Ch.2
(green) at the right side of the image, and next Ch.3 (grey) at the
top, then Ch.4 (violet) at the left, and finally Ch.6 (orange) at the
bottom. When Ch.4 falls down, this motion is spatially concate-
nated with another interaction patch, in which it falls over character
Ch.5 (cyan). Once the interaction patches are fixed, the motions of
the characters entering the scene are decided.



Figure 6: The structure of scenes composed by our method. A main
character interacts with many background characters (upper). With
characters recycled, they can continuously interact with other char-
acters (lower). The dotted lines indicate that adjustment motions
may be required to connect two patches.

4.3 Recycling Characters

When multiple characters continuously interact, they need to re-
peatedly enter and exit interaction patches (character 1 to 3 in Fig-
ure 6, lower). For instance, if we want to design such a scene for
two characters, both characters going out from a patch need to re-
join in the next patch. However, sometimes these kind of patches
cannot be found due to the distinct initial condition to start an inter-
action patch. We solve this by giving the characters the degrees of
freedom to adjust their locations, orientations and postures.

First, we introduce the concept of standard pose, which is a pair
of postures for two characters, from where the two characters can
easily find ways to enter various interaction patches (Figure 8). This
corresponds to the hub nodes [Gleicher et al. 2003] in the Motion
Graph. We first categorize the initial and final postures of the inter-
action patches according to their relative distance, orientation and
postures. The average poses of all the categories are computed and
they become the standard poses. Then, we can concentrate on plan-
ning how to reach the standard poses. We use the locomotion en-
gine for moving the characters to the desired locations when it is
far away from the standard pose. The characters move towards the

Figure 7: The scene that corresponds to the data flow shown in
Figure 6 upper. The blue character (Ch.1) sequentially interacts
with Ch.2, Ch.3, Ch.4 and Ch.6. This sequence of interactions is
composed by temporal concatenation. Ch.4 falls over Ch.5. This
interaction is produced by spatial concatenation.

Figure 8: The standard pose (the circle at the center) acts as a hub
to connect different interaction patches. The dotted lines indicate
that the characters in the patches may need to adjust their locations
and orientations for getting back to the standard pose.

nearest standard pose to start another interaction patch.
We define a distance function that evaluates the difference be-

tween the current pose (Pc) and each standard pose (Ps) as follows:

F(Pc,Ps) = (
rc − rs

r′
)2 + (

θ1c − θ
1
s

θ′
)2 + (

θ2c − θ
2
s

θ′
)2 (2)

where rc is the distance between the characters, θ1c and θ2c are the
angles between the line connecting the two characters and the direc-
tion each character is facing, rs, θ

1
s , θ2s are the corresponding values

in the standard pose. The constants r′ and θ′ are used to normalize
the effects of distance and angle, and are set to 300cm and 180◦ re-
spectively. The distance between the current status of the characters
and each standard pose is calculated and the one with the smallest
distance is selected:

argminP j
F(Pc,P j) (3)

where P j is the j-th standard pose, and Pc is the current status of
the two characters.

Once the target standard pose is selected, each character ap-
proaches the character it is to interact with by using the locomotion
engine. When the characters are at the required relative distance
and orientation, each character expands the game tree to find the
action that brings its posture to that in the standard pose. Since (1)
the connectivity of the action-level motion graph is high, and (2) the
posture of each character in the standard pose is a commonly used
posture, we can usually arrive at the target pose in one step. If the
graph connectivity is low, and complex path planning is required
for arriving at the standard pose, it is possible to apply dynamic
programming to find the path in real-time.

As a result, even if there is no available interaction patch that
can be immediately launched, the characters can move around and
adjust their poses to start the next desirable interaction patch. As
for timing, if one character arrives at the corresponding posture in
the standard pose slightly earlier than the other character, we let
the character wait there so that it is synchronized with its opponent
before launching the next interaction patch.

4.4 Refining Motions

As motions during interactions require a lot of contacts and avoid-
ance, we adjust the motions in order to preserve contacts or avoid
penetration of the segments. We also need to refine the motions by
reducing artifacts such as foot sliding due to the concatenation of
motion clips. Such motion refinements are done at the final stage
of the animation by traditional inverse kinematics and physically-
based animation using the Open Dynamics Engine (ODE). When
the segments collide, impulsive forces are added to the colliding
segments to avoid penetration. Although the forces greatly change
the posture, a PD controller is used to gradually pull the body back
to the original motion [Zordan and Hodgins 2002]. If a response



motion is launched, the PD controller pulls the body towards the
response motion [Zordan et al. 2005; Arikan et al. 2005].

5 Experimental Results

Using our method, we have simulated two types of scenes, which
are generated by (1) only concatenating interaction patches, and (2)
using the standard poses to let the characters continuously interact.
The first group of scenes can be generated by the method explained
in Section 4.2, and the second group of scenes further requires the
techniques explained in Section 4.3. The set of PatternList used to
generate the interaction patches are shown in Table 2.

Scenes generated by concatenating interaction patches: We
simulated scenes where (1) a main character fights with many back-
ground characters (Figure 1a), (2) a group of people fall down over
each other like dominos (Figure 1b, Figure 9, top), (3) an Ameri-
can football player holding the ball avoids the defenders and runs
towards the goal (Figure 1c), and (4) a mouse runs into a crowd and
the frightened people avoid it and bump onto each other (Figure 9,
bottom, left). Although our system can automatically select all the
actions for all the characters, usually the user prefers to give high
level commands. Therefore, for scenes (1), (3) and (4), we have
prepared an interface for the user to provide basic commands such
as transition and rotation of the character, as well as field-specific
commands such as punch, kick, and avoids. The commands corre-
spond to su(p) in Equation (1).

For scenes (2) and (4), the interactions of one character bumping
into another or falling down onto another are designed by com-
bining PD control and motion of being pushed away or falling
down [Arikan et al. 2005; Zordan et al. 2005]. In scene (2), the
interaction patches are automatically concatenated so that the area
specified by a given bitmap on the floor is filled with characters
falling to the ground. As the interactions between the characters
are precomputed, even for large numbers of characters, we can ob-
tain the results in real-time.

Scenes where characters are recycled: We simulated scenes
where (1) two characters are continuously fighting (Figure 9, bot-
tom right) and (2) a group of characters are passing luggage one
after another to the characters next to them (Figure 1 (d)).

In the first example, after finishing an interaction patch, the char-
acters either immediately enter another patch, or search for a stan-
dard pose, which leads them to a set of other patches. A fighting
scene where the characters keep on attacking and defending can be
generated. In the second example, each character continuously in-
teracts with one of its neighbors. Different interaction patches are
selected according to the size and the weight of the luggage. Each
patch includes the motion of the first character standing, walking to
receive the luggage, carrying and handing it to the second character,
and going back to the original location. We define a set of standard

Table 2: The PatternList used to compose the interaction patches
(The actions of the second character are shown in bold font). Attack
includes punch and kick, and defense includes dodge and avoid.

Scene PatternsList

Fight (one-many) {attack, defense, attack, fall},
{attack, fall}, {attack, attack, fall},
{arbitrary motion, fall, fall}

Fight (one-one) {attack, defense}, {attack, fall}
Football {run, tackle, avoid}
Mouse {arbitrary motion, avoid, pushed away},

{arbitrary motion, pushed away,
pushed away},
{run, avoid}, {arbitrary motion, avoid, fall}

Crowd falling {arbitrary motion, fall, fall}
Luggage carry {carry, walk, hand, receive, turn, carry}

Figure 9: A large group of characters falling down onto each other
in the floor bitmap area (top), a crowd in panic avoiding and bump-
ing into one another (bottom left) and two characters continuously
fighting in a stylized way (bottom right)

Table 3: The computational speed, number of actions and num-
ber of interaction patches of each experiment (Computational speed
above 60 frame per second (fps) is real-time)

Scene Speed (fps) Actions Patches

Fight (one-many) 87 162 157
Fight (one-one) 104 162 279
Football 194 217 21
Mouse 78 65 3716
Crowd falling 72 39 4091
Luggage carry 162 108 72

poses which are suitable for passing and receiving luggage. Using
these interaction patches and standard poses, we have generated a
scene where a large number of characters pass luggage one after
another to the next person.

The computational speed and the number of actions and patches
of each experiment are shown in Table 3. The computer used comes
with a Pentium 4 Dual Core 3.0 GHz CPU and 2 GB of RAM. The
reason for large numbers of interaction patches in the “Mouse” and
“Crowd falling” demo is that we need to generate characters collid-
ing from all directions for different orientations of the characters.
Excluding the rendering, all the animation can be generated in real-
time, once the instructions from the user are given. The readers are
referred to the supplementary video for further details.

6 Summary and Discussions

In this paper, we have proposed a method to develop large-scale
animations where characters have close interactions. The user can
obtain stylized interactions between the characters by simply speci-
fying the pattern of interactions. The interactions between the char-
acters are saved by data structures called interaction patches. The
interaction patches are spatio-temporally concatenated to compose
large-scale scenes. Once the interaction patches are prepared, the
process of composing the scene is fully automatic. At the same
time, the users can control the scene using our control interface.

Our system requires far fewer samples than other optimization-
based systems. For example, in [Shum et al. 2008], the number of
samples produced is over 50,000. With this large number of sam-
ples, it is difficult to monitor the quality of the interactions. For
our demos, fewer than 300 interaction patches are needed to create
a stylized fighting scene. Previous methods of controlling charac-
ters are targeted for real-time applications such as computer games.
In order to make the computer-controlled character strong, the con-
trollability of the character must be high, which means the character



needs to be able to launch various kinds of movements, including
subtly different steppings and attacks. This results in dense sam-
pling of the state space. On the other hand, our objective is to cre-
ate a stylized animation of characters interacting. The system does
not need high controllability of the characters, but only needs to be
able to satisfy the high level commands given by the animator. In
addition to that, as our system first determines how the characters
are going to interact, the characters have a lot of degrees of free-
dom to adjust their movements before and after the interactions. As
a result, we can greatly reduce the number of interaction samples.

There are two possible extensions to enhance the controllability
of the characters. The first method is to greatly increase the number
of interaction patches and introduce a hierarchical structure to store
the patches. In that case, according to the input by the animator, the
corresponding cluster will be selected first, and then the best patch
in the cluster will be selected subsequently. The second method
is to introduce parametric techniques to deform and interpolate the
existing patches. Using such a method, we will be able to produce
a large number of variations from a small number of patches.

Our system can become an alternative to creating realistic in-
teractions by using infinite horizon optimization methods such as
reinforcement learning. In theory, it is possible to produce realis-
tic interactions between characters if each of them select motions
based on what benefits them the most. However, in practice, such
smartness can make the scene less stylized as the characters will
never conduct actions that do not benefit them. The characters be-
come too careful and as a result, they will never launch risky move-
ments that can make the interaction more attractive. On the other
hand, the animators or the audience want to see energetic move-
ments. It is much easier to produce such interactions by using our
short-horizon method as the users can explicitly specify the pattern
of interaction they want to see. Another advantage is that the com-
putational cost is limited by the short depth of the game tree.

There are some limitations with our method. First of all, the
process of specifying the pattern can cause problems if the actions
by the characters are abstract and aimless as they are difficult to
annotate. Our method is more suitable for actions which are easy to
annotate. Secondly, we have limitations in generating scenes where
multiple characters continuously interact. In the examples shown,
the characters were allowed to adjust their movements without a
time limit. If the time and locations of the interactions are strictly
constrained, a global planner that can plan the sequence of all the
characters at once will be required. Solving such a problem using
discrete optimization is one of the future directions for this research.
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