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Interaction patterns and individual 
dynamics shape the way we move 
in synchrony
Francesco Alderisio1, Gianfranco Fiore1, Robin N. Salesse  2, Benoît G. Bardy2,3 &  
Mario di Bernardo1,4

An important open problem in Human Behaviour is to understand how coordination emerges in human 
ensembles. This problem has been seldom studied quantitatively in the existing literature, in contrast 
to situations involving dual interaction. Here we study motor coordination (or synchronisation) in a 
group of individuals where participants are asked to visually coordinate an oscillatory hand motion. 
We separately tested two groups of seven participants. We observed that the coordination level of the 
ensemble depends on group homogeneity, as well as on the pattern of visual couplings (who looked at 
whom). Despite the complexity of social interactions, we show that networks of coupled heterogeneous 
oscillators with different structures capture well the group dynamics. Our findings are relevant to any 
activity requiring the coordination of several people, as in music, sport or at work, and can be extended 
to account for other perceptual forms of interaction such as sound or feel.

Motor coordination and synchronisation are essential features of many human activities, where a group of indi-
viduals performs a joint task. Examples include hands clapping in an audience1, walking in a crowd2, 3, music 
playing4, 5, sports6, 7 or dance8–10. Achieving synchronisation in the group involves perceptual interaction through 
sound, feel, or sight, and the establishment of mental connectedness and social attachment among group mem-
bers11, 12. This human phenomenon has rarely been studied in the existing literature, in contrast to the large num-
ber of results on the dynamics of animal groups13–16.

Indeed, most available theoretical results on human coordination are concerned with the case of two individ-
uals performing a joint action17–20, a recent example being that of the mirror game21, presented as a paradigmatic 
case for the study of how people imitate each other’s movements in a pair22, 23.

For larger groups of individuals, available results are mostly experimental observations of group behaviour, 
including studies on rocking chairs24–26, rhythmic activities and marching tasks27, choir singers during a concert28, 
group synchronisation of arm movements and respiratory rhythms29, team rowing during a race30 and a few other 
sport situations31. These studies have analysed the emergent level of coordination in the group, but never in rela-
tion to the structure of interactions or the individual dynamics of group members.

Other studies have shown that the outcome and the quality of the performance in a number of situations 
strongly depend on how the individuals in the ensemble exchange visual, auditory and motor information4, 32–36. 
Here too, these studies lack information about how specific interaction patterns affect coordination in the group, 
and in general a systematic and quantitative evaluation is missing of how coupling structure and intrinsic homo-
geneity (or heterogeneity) in the group contribute to the emergence of synchronisation.

In this work, we address this open problem and confirm for the first time, experimentally and computation-
ally, that different visual interaction patterns in the group affect the coordination level achieved by its members. 
We take as a paradigmatic example the case where participants are asked to generate an oscillatory hand motion 
and coordinate it with that of the others. In addition, we unfold the effects on group synchronisation of heteroge-
neities in the individual motion characteristics of the participants (measured in terms of the intrinsic frequency 
of oscillation they generate in isolation).

1Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road, 
Clifton, Bristol, BS8 1UB, United Kingdom. 2EuroMov, Montpellier University, 700 Avenue du Pic Saint-Loup, 34090, 
Montpellier, France. 3Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France. 4Department 
of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125, Naples, 
Italy. Correspondence and requests for materials should be addressed to M.d.B. (email: m.dibernardo@bristol.ac.uk)

Received: 23 March 2017

Accepted: 13 June 2017

Published online: 28 July 2017

OPEN

http://orcid.org/0000-0002-5613-9576
mailto:m.dibernardo@bristol.ac.uk


www.nature.com/scientificreports/

2SciEntific RepoRTS | 7: 6846 | DOI:10.1038/s41598-017-06559-4

Specifically, we show that the level of coordination achieved by the group members is influenced by the com-
bined action of the features characterising their motion in isolation (i.e., their natural oscillation frequency) and 
the specific interconnections (i.e., topological structure) among the players. We find that some topologies (e.g., 
all-to-all) give rise to higher levels of synchronisation (defined as an overall reduction in the phase mismatch 
among individuals) regardless of individual differences, whereas for other topologies (e.g., consecutive dyads) a 
better synchronisation is achieved through a higher homogeneity in individual dynamics.

We also propose a data-driven mathematical model that captures most of the coordination features observed 
experimentally. The model shows that, surprisingly, when performing a simple oscillatory movement, the group 
behaves as a network of nonlinearly coupled heterogeneous oscillators37, 38 despite the complexity of unavoidable 
social interactions in the group39–42. Also, the model reproduces the dependence of the coordination level of each 
individual in the group upon the intrinsic properties of its members and the interaction structure among them, 
notwithstanding the complex neural mechanisms behind the emergence of such coordination.

Results
Two groups of seven players were considered, respectively named Group 1 and Group 2. Members of each group 
were asked to perform a simple oscillatory movement with their preferred hand and to synchronise their motion 
(see Methods). The oscillations produced by each individual, when isolated from the others, had a specific natural 
frequency. The two groups exhibited a different level of dispersion with regards to the natural oscillation frequen-
cies of their respective members (measured in the absence of coupling, see Section 3 of Supplementary 
Information), as quantified by the ensembles’ coefficient of variations cv (Fig. 1a,b). In particular, the frequencies 
of the players of Group 2 ( =c 21%v2

) showed a higher dispersion than the frequencies of those of Group 1 
( =c 13%v1

). (See also Supplementary Tables 1 and 2).
Four different topologies of interactions were implemented through visual coupling for each group: Complete 

graph, Ring graph, Path graph and Star graph (Fig. 2). For more details on the implementation of such interaction 
patterns, refer to Section 1 of Supplementary Information.

A network of heterogeneous nonlinearly coupled Kuramoto oscillators37 was employed as mathematical 
model to capture the relevant features observed experimentally [equation (7)], given the oscillatory nature of the 
task participants were required to perform. For more details on how the parameters of such model were set, see 
Methods.

Synchronisation levels depend on the combined action of group homogeneity and visual inter-
actions. The values of the individual synchronisation indices ρk of the participants in the two different groups, 
equal to 1 in the ideal case of player k being perfectly coordinated within the ensemble and taking lower values for 
increasing coordination mismatches (see Methods), were first averaged over the total number of trials for each kth 
player and for each topology, and then underwent a 2(Group) X 4(Topology) Mixed ANOVA. Their mean value 
and standard deviation over the total number of participants in the group are represented for each topology in 
Fig. 1c in the experimental cases, and in Fig. 1d for the simulations, respectively.

The ANOVA performed with the Greenhouse–Geisser correction revealed a statistically significant effect of 
Topology ( . . = .F(1 648, 19 779) 29 447, p < 0.01, η = .0 7102 ), suggesting an advantage of both the Complete 
graph and the Star graph in generating higher individual synchronisation (Bonferroni post-hoc test, p < 0.01). 
The Group main effect was not in itself significant ( = .F(1, 12) 0 053, p = 0.821, η = .0 0042 ). More importantly, 
the significant Group X Topology interaction ( . . = .F(1 648, 19 779) 3 908, p < 0.05, η = .0 2462 ) revealed that the 
topology effect on synchronisation was more pronounced for the less homogenous group (Group 2), with for 
instance the Path graph in that group producing the lowest level of synchronisation (Bonferroni post-hoc test, 
p < 0.01). For further details, see Supplementary Tables 5–7.

In short, visual interaction between players was found to affect synchronisation indices, more so when natural 
individual motions differed largely from each other43.
Remark 1. One could argue that the group members’ plasticity, as quantified by the individual standard deviations 
of their natural oscillation frequencies (higher for the participants of Group 1), might be the source of differences in 
the overall performance. However, further numerical simulations (see Section 8.1 of Supplementary Information) 
confirmed that the overall frequency dispersion, rather than the intra-individual variabilities of the natural oscilla-
tion frequencies, has a significant effect on the synchronisation levels achieved by the group members. One could also 
argue that the difference in the natural oscillation frequencies of the participants getting disconnected in a Ring graph 
(to form a Path graph), or the particular member chosen as central player in a Star graph, might have a significant 
effect on the synchronisation levels of the ensemble. Additional numerical simulations exclude both these possibilities 
(see Sections 8.2 and 8.3 of Supplementary Information for more details).

A network of heterogeneous Kuramoto oscillators behaves like a human ensemble. A 
2(Group) × 4(Topology) Mixed ANOVA was performed on the simulated data to evaluate the capacity of the model 
proposed in equation (7) to reproduce the topology and group effects observed on the experimental human data.

The ANOVA revealed a statistically significant effect of Topology ( = .F(3, 36) 5 946, p < 0.01, η = .0 3312 ), sug-
gesting an advantage of the Complete graph in generating higher individual synchronisations (Bonferroni post-hoc 
test, p < 0.05). The Group main effect was not significant ( = .F(1, 12) 0 031, p = 0.862, η = .0 0032 ), and neither was 
the Group X Topology interaction ( = .F(3, 36) 0 163, p = 0.920, η = .0 0132 ). This shows that the model succeeds in 
replicating the statistical significant effect of Topology, with higher values of synchronisations obtained in Complete 
graph and Star graph, as observed experimentally. However, in its current form it fails in modulating the topology 
effect by variations in the group homogeneity. (See Supplementary Tables 8 and 9 for more details).
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The ability of our model to capture the human synchronisation behaviour was further reinforced by the results 
of two Mixed ANOVAs performed with the Greenhouse–Geisser correction separately for Group 1 and for Group 
2, showing no effect of Data origin (experiment vs. simulations, Group 1: = .F(1, 12) 0 206, p = 0.658, η = .0 0172 ; 
Group 2: = .F(1, 12) 0 619, p = 0.447, η = .0 0492 ), a statistical significant effect of Topology (Group 1: 

. . = .F(1 523, 18 272) 5 419, p < 0.05, η = .0 3112 ; Group 2: . . = .F(1 875, 22 504) 12 406, p < 0.01, η = .0 5082 ), and 
no interaction between these two factors (Group 1: . . = .F(1 523, 18 272) 0 893, p = 0.4, η = .0 0692 ; Group 2: 

. . = .F(1 875, 22 504) 1 606, p = 0.223, η = .0 1182 ). Specifically, higher synchronisations were found in the 
Complete graph and Star graph (Bonferroni post-hoc test, p < 0.01). For further details, see Supplementary 
Tables 10–13.

Altogether, these results suggest that, for each interaction pattern, a human ensemble and a network of 
Kuramoto oscillators behave similarly. Specifically, the mathematical model proposed in equation (7) succeeds in 

Figure 1. Natural oscillation frequencies and individual synchronisation indices ρk for each group and 
topology. Mean (black circle) and standard deviation (black error bar) of the natural oscillation frequencies ωk 
of the participants in Group 1 (a) and Group 2 (b) are presented. The frequencies of Group 2 are distributed 
further from their mean value averaged over the total number of players (grey dashed line) than those of Group 
1, as quantified by their respective coefficient of variation cv, which is equal to =c 13%v1

 for Group 1 and 
=c 21%v2

 for Group 2. Individual synchronisation indices are presented for experiments (c) and numerical 
simulations (d). Mean values over the total number of participants are represented by circles, and standard 
deviations by error bars (grey for Group 1, black for Group 2). CG: Complete graph, RG: Ring graph, PG: Path 
graph, SG: Star graph.
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replicating that individual synchronisation indices ρk depend on the particular interaction pattern implemented, 
as observed experimentally.

Effects of individual consistencies on synchronisation levels. Correlation analysis between individ-
ual consistencies (across trials performed in isolation) and coordination levels (obtained from group trials) ruled 
out the hypothesis of higher individual synchronisation indices ρk being related to higher individual variabilities 

ωc ( )v k  of natural oscillation frequency (see Section 3 of Supplementary Information for more details). Indeed, 
correlations between these two variables tended to be negative in the experimental data for both groups 
(Complete graph: R = −0.69, p < 0.01; Ring graph: R = −0.14, p = 0.62; Path graph: R 0, p = 0.83; Star graph: 
R = −0.45, p = 0.11), and such relations were replicated by the simulated data (Complete graph: R = −0.88, 
p < 0.01; Ring graph: R = −0.66, p < 0.01; Path graph: R = −0.45, p = 0.11; Star graph: R = −0.55, p < 0.05).

In short, our findings show the existence of a negative relation between individual variabilities and synchroni-
sation indices, at least significantly in the Complete graph, and that the model captures such relation.

Visual coupling maximises synchronisation within connected dyads. For each participant of both 
groups, in most cases (99% for Group 1 and 94% for Group 2) the highest values of the dyadic synchronisation 
indices ρdh k,

, defined similarly to ρk but with respect to two generic participants h and k of the same group (see 
Methods), were observed for the visually connected dyads, a result that was found for all topologies (Fig. 3). 
Statistically, visually connected dyads across Group 1 and Group 2 were indeed found to exhibit higher synchro-
nisation than non-visually coupled dyads, both in the experiments ( . = − .t(117 970) 8 872, p < 0.01) and in the 
simulations ( . = − .t(153 326) 6 361, p < 0.01). For further details, refer to Section 5 of Supplementary Information.

The trend of ρdh k,
 was thus similar in both groups, with the only exception of the Star graph in Group 1, where 

Player 7 failed to synchronise well with the central node (Fig. 3d, left panel). In some cases, a relatively high value 
of group synchronisation index ρg, equal to 1 in the ideal case (see Methods), coexisted with low values of ρdh k,

, as 
observed in the Path graph for Group 1 (Fig. 3c, left panel).

This suggests that the overall group synchronisation can be high in spite of occasional lower dyadic synchro-
nisations in visually uncoupled players, as also replicated by the proposed mathematical model.

Synchronisation dynamics over time differ between group interaction patterns. A closer look at 
the dynamics of the group synchronisation index ρg(t) over time finally revealed interesting differences between 
topologies. For the Complete graph, as well as to a lesser extent for the Star graph, group synchronisation was 
quickly reached in most trials, though with transient losses, for both Group 1 and Group 2. The scenario is dif-
ferent for the Ring and Path graphs, for which ρg(t) exhibited no clear shift between transient (low time-varying) 
and steady state (high constant) values, but a continuous variation in its values for both human ensembles. The 
mathematical model proposed in equation (7) reproduces such feature, as well as replicates the qualitative trend 
of ρg(t) over time, for each group and topology (see Section 7 of Supplementary Information for further details).

These results suggest that players are not always able to maintain a high level of synchronisation over time 
once it is reached, particularly for the Ring and Path graphs, as also captured by the proposed mathematical 
model.

Figure 2. Interaction patterns implemented through visual coupling in the experiments. (a) Complete 
graph: each participant can see the movements of all the others. (b) Ring graph: each participant can see 
the movements of only her/his two partners. (c) Path graph: similar to the Ring graph configuration, but 
agents 1 and 7, defined as external, have only one partner (2 and 6, respectively) and consequently are not 
visually coupled. (d) Star graph: agent 3, defined as central, can see the movements of all the others, defined 
as peripheral, who in turn see the movements of only the central player. The other panels show the actual 
arrangement of the players during the experiment [(e) for the Complete graph, (f) for Ring and Path graphs, and 
(g) for the Star graph].
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Figure 3. Dyadic synchronisations indices observed experimentally. Mean (symbol) and standard deviation 
(error bar) over the total number of trials of the dyadic synchronisation index ρdh k,

 for players of Group 1 (left 
panel) and Group 2 (right panel) in Complete (a), Ring (b), Path (c) and Star graph (d) are presented (the 
respective interaction patterns are shown in Fig. 2). Different symbols and colours refer to pairs related to 
different players. In each panel, the black subscripts on the bottom represent h, whereas those on the top 
represent k (bold black for visually connected pairs, grey for uncoupled pairs). For each participant of both 
groups and in all the implemented topologies, the highest mean values are obtained for the visually connected 
dyads.
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Discussion
In this research, we studied synchronisation in multiplayer human ensembles. We asked two groups of seven 
volunteers to carry out a joint task in which they had to generate and synchronise an oscillatory motion of their 
preferred hand. We found that the coordination level of the participants in the two different ensembles varied 
over different topologies, and that such variations were more significant in the group characterised by a higher 
heterogeneity in terms of the natural oscillation frequency of its members.

Specifically, we observed that the synchronisation levels in Complete and Star graphs were higher than those 
in Path and Ring graphs, thus revealing, for the first time in a human ensemble, the key theoretical finding in 
Network Science44, 45 that synchronisation depends on the structure of the interconnections between agents in 
a network46–50. In addition, we observed that the synchronisation level for a given topology was quantitatively 
different for the two groups characterised by a different dispersion of the agents’ frequencies. In the particular 
case of the Path graph, we found that the group whose members had natural frequencies closer to each other 
(Group 1) synchronised better. This extends to multiplayer scenarios the results of51, which showed that greater 
interpersonal synchrony in musical duo performances is achieved when the endogenous rhythms of two pianists 
are closer to each other.

Furthermore, we observed that individual consistency in the intrinsic oscillation frequency tends to enhance 
synchronisation, particularly in the Complete graph, and that players are not always able to maintain a high level 
of synchronisation over time, particularly for the Ring and Path graphs.

Note that there are other differences between the groups that might have an effect on the synchronisation lev-
els observed experimentally (e.g., sex, weight, size, education, and so forth). In general, social factors and person-
ality traits may affect some of the variables defined in Methods, and others. In fact, we are exploring the possibility 
of performing group synchronisation tasks where the same participants coordinate their motion in the presence 
as well as in the absence of social interaction, by means of a computer-based set-up recently proposed in52. Our 
preliminary results show that, also in the absence of social interaction, the topological structure of the intercon-
nections among the groups members does have a statistically significant effect on their synchronisation levels.

Despite the incredible complexity of such human social interactions, we found that a rather simple mathe-
matical model of coupled Kuramoto oscillators was able to capture most of the features observed experimentally. 
The availability of a mathematical description of the players’ dynamics can be instrumental for designing better 
architectures driving virtual agents (e.g., robots, computer avatars) to coordinate their motion within groups of 
humans53–56, as well as for predicting the coupling strength needed to restore synchronisation based on initial 
knowledge of individual consistency, group variance and topology.

Even though we studied a specific laboratory-oriented joint task, our approach reveals general principles 
behind the emergence of movement coordination in human groups that can relate to a large variety of contexts. 
A specific example where our results find confirmation is the coordination level, measured with the same group 
synchronisation index, of players in a football team. As shown in36, this index depends on the defensive playing 
method, giving rise to different interaction patterns among the players, as well as on the players’ dynamics when 
considering different teams. A similar tendency was found for the synchronisation of people dancing during a 
club music set, which was found to depend on the features of the songs being played10.

More generally, our study provides a criterion to determine the best players’ arrangement in multi-agent sce-
narios (in terms of their individual behaviour), and to designate the most appropriate interconnections among 
them (structure of their interactions) in order to optimise coordination when required. This is the case for 
instance in music and sport, where achieving a high level of coordination is indeed a matter of crucial importance.

In music, the quality of the performance in an orchestra is related to the musicians playing in synchrony42. 
During an orchestral show (Star graph, with the central node being the conductor) the ensemble composition, in 
addition to classic orchestra rules, can be decided according to group heterogeneity and individual consistencies.

In collective sports, the overall performance can be improved when participants coordinate their move-
ments36. For instance, in team rowing (Path graph), it is important to decide who is sitting behind whom in order 
to maximise group homogeneity, hence synchronisation. In group ice-skating, where usually athletes split into 
sub-groups while performing, choosing the right composition of each subset based on individual dynamics could 
help increase the overall coordination. In synchronised swimming (Ring and all-to-all graphs), our findings can 
provide useful hints to adapt the choreographic sequence to the type of visual coupling available in these graphs. 
In recreational activities (e.g., our social Sunday jogging), health benefits and social affiliation might be greater 
when the group members synchronise their pace57.

As we further observed that high values of ρg can coexist with low values of ρdh k,
 for some pairs of agents, a 

good performance in certain group activities can be achieved by increasing specific dyadic couplings. This is, for 
example, the case of people performing the Mexican wave, also known as La Ola58. The effect of a human wave 
travelling across the crowd can be improved by locating side by side people who are similar in their physical char-
acteristics as well as reaction times.

Methods
Participants. A total of 14 volunteers participated in the experiments: 5 females and 9 males (5 participants 
were left handed). The majority of the participants were graduate and PhD students from the EuroMov centre at 
the University of Montpellier in France. The experiments were held in two different sessions: seven participants 
took part in the first one and formed Group 1, the other seven participated in the second session and formed 
Group 2.

The study was carried out according to the principles expressed in the Declaration of Helsinki and was 
approved by the local ethical committee (EuroMov, University of Montpellier). All participants provided written 
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informed consent for both study participation and publication of identifying information and images. Such con-
sent was also approved by the ethical committee.

Task and procedure. Participants were asked to sit in a circle and move their preferred hand as smoothly 
as possible back and forth (i.e., away from and towards their bodies), along a direction required to be straight 
and parallel to the floor. Four different interaction patterns among players were implemented by asking each 
participant to focus their gaze on the motion of only a designated subset of other participants (for more details 
about the equipment employed and on how the different interaction structures were implemented see Section 1 
of Supplementary Information).

•	 Complete graph (Fig. 2a,e): participants were asked to keep their gaze focused on the middle of the circle in 
order to see the movements of all other participants.

•	 Ring graph (Fig. 2b,f): each player was asked to maintain in her/his field of view the hand motion of only two 
other players, called partners.

•	 Path graph (Fig. 2c,f): similar to the Ring graph, but two participants, defined as external participants, were 
asked to maintain in their field of view the hand motion of only one partner (different for the two players).

•	 Star graph (Fig. 2d,g): all participants but one sat side-by-side facing the remaining participant. The former, 
defined as peripheral players, were asked to focus their gaze on the motion of the latter, defined as central 
player, who in turn was asked to maintain in her/his field of view the hand motion of all others.

Each group performed the experiments in two different conditions:

 1. Eyes-closed condition. Participants were asked to oscillate their preferred hand at their own comfortable 
tempo for 30-second trials (16 trials for Group 1 and 10 trials for Group 2) while keeping their eyes closed.

 2. Eyes-open condition. Participants were asked to synchronise the motion of each other’s preferred hands 
during 30-second trials. For each topology, 10 trials lasting 30s each were performed.

Data acquisition and analysis. In order to detect the motion of the participants’ hands, circular markers 
were attached on top of their index finger. Eight infrared cameras (Nexus MX13 Vicon System ©) were located 
around the experimental room to record the position of the markers. For further details on how the experimental 
data was acquired and processed refer to Section 2 in Supplementary Information.

Synchronisation metrics. Let ∈ ∀ ∈x t t T( ) [0, ]k  be the continuous time series representing the 
motion of each agent’s preferred hand, with ∈k N[1, ], where N is the number of individuals and T is the dura-
tion of the experiment. Let ∈x t[ ]k i , with ∈k N[1, ] and ∈i N[1, ]T , be the respective discrete time series of the 
kth agent, obtained after sampling xk(t) at time instants ti, where NT is the number of time steps of duration 
∆ =T : T

NT
, that is the sampling period. Let θ π π∈ −t( ) [ , ]k  be the phase of the kth agent, which can be estimated 

by making use of the Hilbert transform of the signal xk(t)59. The cluster phase or Kuramoto order parameter is 
defined, both in its complex form ′ ∈q t( )  and in its real form π π∈ −q t( ) [ , ] as

∑′ = = ′ ′θ

=
I Rq t

N
e q t q t q t( ): 1 , ( ): atan2( ( ( )), ( ( )))

(1)k

N
j t

1

( )k

which can be regarded as the average phase of the group at time t.
Let φ θ π π= − ∈ −t t q t( ): ( ) ( ) [ , ]k k  be the relative phase between the kth participant and the group phase at 

time t. The relative phase between the kth participant and the group averaged over the time interval [0, T] is 
defined, both in its complex form φ ′ ∈k  and in its real form φ π π∈ −[ , ]k  as

∫ ∑φ φ φ φ′ = = ′ ′φ φ

=







 I R
T

e dt
N

e: 1 1 , : atan2( ( ), ( ))
(2)k

T j t

T i

N
j t

k k k
0

( )

1

k
T

k i

In order to quantify the degree of synchronisation of the kth participant with respect to the group, the following 
parameter

ρ φ= ′ ∈: [0, 1] (3)k k

is defined as the individual synchronisation index: the closer ρk is to 1, the smaller the average phase mismatch 
between agent k and the group over the whole duration T of the experiment.

Similarly, in order to quantify the synchronisation level of the entire group at time t, the following parameter

∑ρ = ∈φ φ

=

−( )t
N

e( ): 1 [0, 1]
(4)g

k

N
j t

1

( )k k

is defined as the group synchronisation index: the closer ρg(t) is to 1, the smaller the average phase mismatch 
among the agents in the group at time t. Its value can be averaged over the whole time interval [0, T] in order to 
have an estimate of the mean synchronisation level of the group during the total duration of the performance:
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∫ ∑ρ ρ ρ= ∈
=



T
t dt

N
t: 1 ( ) 1 [ ] [0, 1]

(5)g

T

g
T i

N

g i
0 1

T

Moreover, by denoting with φ θ θ π π= − ∈ 

− 


t t t( ): ( ) ( ) ,d h kh k,

 the relative phase between two participants in the 
group at time t, it is possible to define the following parameter

∫ ∑ρ = ∈φ φ

=


{ } { }
T

e dt
N

e: 1 1 [0, 1]
(6)

d

T j t

T i

N
j t

0

( )

1

( )
h k

dh k
T

dh k i

,
, ,

as their dyadic synchronisation index: the closer ρdh k,
 is to 1, the lower the phase mismatch between agents h and k 

over the whole trial.

Networks of heterogeneous Kuramoto oscillators. A network of heterogeneous nonlinearly coupled 
Kuramoto oscillators was employed to capture the group dynamics observed experimentally37:

∑θ ω θ θ= + − = …
=



c
N

a k Nsin( ), 1, 2, ,
(7)k k

h

N

kh h k
1

where θk represents the phase of the motion of the preferred hand of the kth human participant in the ensemble, 
ωk her/his own preferred oscillation frequency when not connected to any other agent (estimated from the 
eyes-closed trials), and N the number of participants. Each player is modelled with a different value of ωk, thus 
accounting for human-to-human variability, and is affected by the interaction with her/his neighbours modelled 
by the second term in the right hand side of equation (7). Specifically, =a 1kh  if there is a connection between 
players k and h (they are looking at each other in the eyes-open trials), while =a 0kh  if there is not.

Parameter c, here assumed to be constant and equal for all nodes in the network, models the interaction 
strength among the players, i.e., the strength of their mutual visual coupling. Such coupling strength was set for 
the proposed mathematical model to match the values of group synchronisation indices ρg observed experimen-
tally, that is c = 1.25 for Group 1 and c = 4.40 for Group 2 (Fig. 4).

For both human ensembles, the group synchronisation indices observed experimentally (Fig. 4a,d) is shown 
together with that obtained numerically by simulating the model proposed in equation (7) with two different 

Figure 4. Group synchronisation indices for each group and topology. The height of each bar represents the 
mean value over time of ρg(t) averaged over the total number of eyes-open trials, with different scales of grey 
referring to different topologies, whilst the black error bar represents its averaged standard deviation. The group 
synchronisation indices obtained experimentally across the four implemented topologies for Group 1 (a), which 
is characterised by a lower coefficient of variation =c 13%v1

, are captured well numerically when c = 1.25 (b), 
while they are not when c = 4.40 (c). Analogously for Group 2 (d), which is characterised by a higher coefficient 
of variation =c 21%v2

, they are captured well numerically when c = 4.40 (e), while they are not when c = 1.25 
(f).
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values of coupling strength c. It is possible to appreciate how a lower (higher) value of c in the model reproduces 
well the experimental observations in the case of lower (higher) heterogeneity in the natural oscillation frequen-
cies of the agents (as quantified by the coefficient of variation cv, Fig. 4b,e). On the other hand, experiments are 
not well reproduced when:

•	 The natural oscillation frequencies of the agents are close to each other and the coupling strength is too high 
(c = 4.40 in Group 1, the coordination level in Complete graph and Star graph should be higher than that in 
Ring graph and Path graph, Fig. 4c);

•	 The natural oscillation frequencies of the agents are far from each other and the coupling strength is too low 
(c = 1.25 in Group 2, the coordination level in Ring, Path and Star graph is not comparable with that obtained 
experimentally, Fig. 4f).

As expected from theory60, in order to reproduce the experiments (see also Supplementary Tables 3 and 4 for 
further details) the coupling strength c among the nodes in the model needs to take higher values for higher dis-
persions of the oscillation frequencies. Further information on how the model was initialised and parameterised 
can be found in Section 3 of Supplementary Information.
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