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Interaction potential for SiOz: A molecular-dynamics study of structural correlations
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An interaction potential consisting of two-body and three-body covalent interactions is proposed
for SiOz. The interaction potential is used in molecular-dynamics studies of structural and dynami-

cal correlations of crystalline, molten, and vitreous states under various conditions of densities and

temperatures. The two-body contribution to the interaction potential consists of steric repulsion
due to atomic sizes, Coulomb interactions resulting from charge transfer, and charge-dipole interac-
tion to include the effects of large electronic polarizability of anions. The three-body covalent con-

tributions include 0-Si-0 and Si-0-Si interactions which are angle dependent and functions of Si-0
distance. In lattice-structure calculations with the total potential function, a-cristobalite and a-
quartz are found to have the lowest and almost degenerate energies, in agreement with experiments.

The energies for p-cristobalite, p-quartz, and keatite are found to be higher than those for a-
cristobalite and a-quartz. Molecular-dynamics calculations with this potential function correctly
describe the short- and intermediate-range order in molten and vitreous states. In the latter, partial

pair-distribution functions give Si—0, 0—0, and Si—Si bond lengths of 1.62, 2.65, and 3.05 A, re-

spectively. The vitreous state consists of nearly ideal Si(Ol&2)4 tetrahedra in corner-sharing

configurations. The Si—U—Si bond-angle distribution has a peak at 142' and a full width at half

maximum {FWHM) of 25' in good agreement with nuclear magnetic resonance experiments. The

calculated static structure factor is also in agreement with neutron-diffraction experiments. Partial

static structure factors reveal that intermediate-range Si-Si, O-O, and Si-0 correlations between 4

and 8 A give rise to the first sharp diffraction peak {FSDP). The FSDP is absent in charge-charge

structure factor, which indicates that charge neutrality prevails over length scales between 4 and 8
0
A. Dynamical correlations in vitreous and molten states, phonon densities of states of crystalline

and vitreous Si02, infrared spectra of crystalline, vitreous and molten states, isotope effect, distribu-

tion of rings and their structure in molten and vitreous states, and structural transformations at

high pressures will be discussed in subsequent papers.

I. INTRODUCTION

Silicon dioxide is one of the most extensively studied
materials in condensed-matter physics, chemistry, ma-
terials science, and engineering. ' Although crystalline
SiOz is known to have as many as 40 different struc-
tures, ' only cristobalite, quartz, ' coesite, and stisho-
vite have a temperature-density field of thermodynamic
stability for chemically pure SiOz (no other element add-
ed for structural stability). Structures of a- and p-
cristobalites and quartz at atmospheric pressure, and
coesite at high pressures, involve different arrangements
of nearly ideal corner-sharing Si(0,&2)~ tetrahedra. '

However, the densest structure of Si02, namely stisho-
vite, has distorted Si(0,/3)6 octahedra sharing edges and
coI'neI's.

Table I lists the densities, crystal structures, bond
lengths, and bond angles (0—Si—0 and Si—0—Si) for
p- and a-cristobalites, keatite, ' p- and a-quartz, coesite,
and stishovite. It is intriguing that p-cristobalite and
coesite have the same Si—0 bond length and 0—Si—0
bond angle even though their densities differ by 33%. On

the other hand, this increase in the density increases the
average Si—0—Si bond angle and also changes the con-
nectivity of the tetrahedra. Additionally, the distribution
of rings also changes from six in p-cristobalite to four,
six, and eight in coesite.

It is conceivable that the richness of crystalline forms
of Si02 may even extend into the molten and vitreous
states at different temperatures and pressures. The struc-
tures of the vitreous and molten states have been studied
extensively with x-ray and neutron-diffraction tech-
niques. It should be remembered that unlike crystals
the diffraction measurements in amorphous systems pro-
vide only an angle-averaged function of the magnitude of
the wave vector iqi. Structural correlations have also
been inferred from nuclear magnetic resonance
(NMR), ' Raman, ' ' and infrared' ' measure-
Inents. Structural transformations in a-SiO2 under pres-
sure have been investigated with neutron and Brillouin
scattering.

Several different approaches have been used to under-
stand the structure of a-Si02. The first approach, pro-
posed by Lebedev in 1921, states that the structure of
a-SiOz consists of "microcrystallites, " and in 1936 this
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was extended by Valenkov and Porai-Koshits. In 1932,
Zachariasen proposed the continuous-random-network
model for a-SiOz, which was extended by Warren,
Krutter, and Morningstar in 1936. In 1982, Phillips '

proposed the "paracrystallite" model, based on the pres-
ence of —66-A-diam P-cristobalite crystallites.

Bell and Dean have attempted to explain the struc-
ture and dynamics of a-SiOz using a ball-and-stick cluster
model. Attempts have been made by Gaskell and Tar-
rant, and Robertson and Moss to relax the strain in
the Bell-Dean model with a Keating-type" potential
function. Structural correlations and the vibrational
spectrum of a-SiOz have been investigated by Sen and
Thorpe,

'
Thorpe and Galeener, de Leeuw and

Thorpe, and Guttman and Rahman using random-

network models. Models of a-Si02 based on Bethe lattice
have been used by Laughlin and Joannopoulos, and
Galeener et al. ,

' and Barrio et al. In contrast to
random-network models that have we11-defined distribu-
tion of ring sizes, models based on Bethe lattice have no
closed rings.

The first molecular-dynamics (MD) calculations for a
glass (BeF2) were performed by Rahman, Fowler, and

Narten. ' In 1976, Woodcock, Angel, and Cheeseman
carried out an MD simulation of a-Si02 using a purely
ionic interaction consisting of Born-Mayer-Hug gins
repulsion and Coulomb interaction. Since then, several
MD simulations have been performed with full ionic po-
tentials or truncated Coulomb interaction. Soules stud-
ied a-Si02 and silicate glasses; Mitra, Amin, Fincham,

TABLE I. Density, crystal structure, bond lengths, and bond angles for a few crystalline forms of Si02. Names of the structures
are given in the first column. In the second column, the upper number denotes the mass density in g/cm', whereas the lower number

in parentheses represents the number density in units of 10 cm '. Group symmetry and number of Si02 molecules per unit cell

(mol/u. c.) are given in the third column. In the fourth column the upper numbers give Si—0 bond lengths and the lower numbers,

(Si—0), represent the average bond length. In the last column values of bond angles Si—0—Si, average value (Si—0—Si), bond

angle 0—Si—0, and its average value (0—Si—0) are given.

Name

P-cristobalite'

a-cristobalite

keatite'

P-quartz~

a-quartz'

coesite

stisho vite~

Mass and number
densities

g/cm'
(10 cm ')

2.20
(6.618)

2.35
(7.088)

2.50
{7.526)

2.52
(7.57)

2.65
(7.956)

2.92
(8.784)

4.29
(12.88)

Crystal
structure

cubic
(Fd 3m)

8 mol/u. c.
tetragonal

(P4,2, )

4 mol/u. c.

tetragonal
(P4)2)

12 mol/u. c.
hexagonal

(P6p2)
3 mol/u. c.

trigonal
{P321)

3 mol/u. c.
monoclinic

(P21/0)
16 mol/u. c.

tetragonal
(P42/mnm}
2 mol/u. c.

Bond
length

(A)

dst~ = 1 611
(ds, o) =1.611

dst —o(1)= 1.602
(2)= 1.617

dsl~o 1 56 1 62
(ds,~)=1.590

dst~(1 }= 1.591
dst~(2) =1 606

dst~{1)=1 605
dst~{2)=1 614
(ds; o) =1.609

ds —o = 1.60-1.62
(ds, o) =1.609

d; (1)= 1.809
dsi~(2) =1 757

Bond
angles
(deg)

+Si—0—Si = 146.7
(4Si—0—Si) =146.7
40—Si—0= 107.8, 112.8

4Si—0—Si = 144.7
( 4Si—0—Si) =144.7
40—Si—0= 108.1-111.3
( +0—Si—0)=109.5
+Si—0—Si = 148.2-159.5
( +Si—0—Si ) = 155.2
40—Si—0= 103.7-113.8
QSi—0—Si=150.9
( 4Si—0—Si ) = 150.9
40—Si—0= 108.0-110.5
QSi—0—Si= 143.7
(4Si—0—Si) =143.7
+0—Si—0= 108.7-110.4
+Si—0—Si = 137.4-180
( QSi—0—Si) =148.4
+0—Si—0= 107.9-110.5
(&kO—Si—0) =109.5
+Si—0—Si=81,90,106"
40—Si—0= 100,130

'References 3 and 8.
Reference 4.

'References 3 and 8.
References 3 and 8.

'Reference 5.
Reference 6.

~Reference 7.
"%'e have calculated these angles using the structural parameters for stishovite given in Ref. 7.
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and Hockney, and Mitra investigated the properties of
a-SiOz. Garofalini' performed MD calculations for a-
SiOz and silicate glasses using truncated Coulomb in-
teractions. Kubicki and Lasaga have studied a-SiOz us-

ing a simple ionic model with Born-Mayer repulsion
terms and central-force-field covalent potentials. Feuston
and Garofalini have used short-ranged two- and three-
body interactions to investigate the properties of a-SiOz.

In this paper, we investigate structural correlations in
molten and a-SiOz using the proposed interaction poten-
tial with the MD method. The structural issues we have
addressed include short-range order and intermediate-
range correlations manifested in the form of the first
sharp diffraction peak. This paper is divided into six sec-
tions. The interaction potential is discussed in Sec. II. In
Sec. III we discuss the energies of the crystalline struc-
tures of SiOz based on our model of interaction potential.
Details of MD simulations, the preparation of vitreous
states, a discussion of correlation functions used in the
analysis of MD results, and the comparison with experi-
ments are given in Sec. IV. In Sec. V, results for short-
and intermediate-range order are discussed; results for
the molten state are also given. Concluding remarks are
given in Sec. VI.

II. INTERACTION POTENTIAL

Monoatomic systems with close-packed structures can
be reasonably well described by two-body interaction po-
tentials. The essence of these potentials lies in the fact
that the repulsive part describes the scale of atomic size
and the attractive part represents the cohesion of the con-
densed phase. These interaction potentials are unsatis-
factory for elemental semiconductors such as Si or Ge be-
cause the diamond structure is unstable when described
by any reasonably smooth two-body potential. It is
therefore essential to include three-body interactions to
take into account the covalent interactions in elemental
semiconductors.

The situation is different in AX& (A =Si or Ge and
X=O, S, Se, and Te) -type semiconductors and insula-
tors. There is a charge transfer from A to X, resulting in
the formation of A + and X ions in the condensed
phase. As a result of charge transfer, A + ions are con-
siderably smaller than X ions. Thus, the two-body in-
teraction potentials for these systems should include at
least steric repulsion and long-range Coulomb interac-
tions. The most primitive model to include these essen-
tial interactions is the charged hard-sphere model, pro-
vided the ratio of the atomic sizes is greater than a criti-
cal value (o„/o„)2.44). Since the negative ions such
as 0,S,Se, and Te are among the largest in the
Periodic Table and thus highly polarizable, the electronic
polarizability of these ions is an important term in the in-
teraction potential. In addition, covalent interactions,
which are essential in materials such as Si, Ge, S, and Se,
are also important for AXz-type materials.

Recently, we have developed interaction potentials for
MD simulations of AXz-type glasses. These potentials
include two- and three-body interactions:

V=
1 i(j N

Vq(r J
)+

1(i(j k&N
V3(rj, rjk, r,k) .

The two-body part of the potential, Vz, consists of three
terms: (1) Steric repulsion due to ionic sizes, (2) Coulomb
interactions to take into account charge transfer, and (3)
charge-dipole interaction to include the effect of electron-
ic polarizabilities. We use the form

2
~ig r r

(2)

where H; and g; are the strengths and exponents of the
steric repulsion, and Z, and a, represent the effective
charge and electronic polarizability of the ith ion, respec-
tively. For A"+ and X the effective charges are +4Q
and —2Q, respectively, where Q is the unit of charge
transfer. The exponential screening term in the charge-
dipole interaction provides a reasonable cutoff for the r
interaction. The value of the decay length r4, is taken to
be a few A so that the magnitude of the charge-dipole po-
tential at the edge (L/2) of the MD cell is reduced to a
few percent of the charge-dipole potential without the ex-
ponential term.

Although there are six three-body terms in the interac-
tion potential or AXz-type systems, the two most impor-
tant terms involve X—A —X and A —X—A because
A —X is the smallest bond with the strongest attractive
energy. The three-body X—A —X and A —X—A in-
teractions include variations of A —X bond length, and
of gX—A —X and 4A —X—A bond angles. The ex-
pression for the three-body interaction is

V3 Bj,kf (r;, r;—k )P(8jik, 8i;k ), (3)

where 8;k is the strength of the three-body interaction,
the functions f(r, , r,k) repres"ent the effects of bond
stretching, and p(8~;k, 8J;k) the effects of bond bending.

Si
0

1.60
—0.80

0.00
2.40

Si-Si
Si-0
0-0

11
9
7

0.057
11.387
51.692

A-X- A
X-A-X

1.40
0.35

1.0
1.0

141.00
109.47

2.60
2.60

TABLE II. Constants in the interaction potential for Si02,
Eqs. (1)-(5). Unit of length is A and of energy e~/A = 14.39 eV.
Z is the effective charge, a the electronic polarizability (which
has the dimension of volume), g the repulsive exponents, and H
the repulsive strength. The constants B, I, 8, and ro pertain to
the three-body part of the interaction potential, where B is the
strength, and I, 8, and ro are constants defined in Eqs. (4) and
(5). The range of the three-body interactions is ~ rp.

Z
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We define r,~
=

~ r,. —ri ~
and 81;k as the angle subtended by

r, and r&, at the vertex at i. The three-body contribution
vanishes when the angle O.,k is equal to 0;&, and is posi-
tive otherwise. Thus the angle-dependent part,
p(8, ;k, 8J;i, ) of Eq. (3) discriminates in favor of pair of
bonds with desired geometry emanating from the vertex
i T.he expressions for f (r,j., r,k) an.d p(8J;k, 8j,k ) read

r

f(r), r,„)= / I
exp +

"o ri.k ro

0 for r, , rk) rp,

for rgJfr+' Cro

(4)

p(8i;„,8;k ) =(cos8,,&
—cos8,„) (5)

where ro is the cutoff distance for the three-body interac-
tion. The form in Eq. (4) automatically cuts off the in-
teraction when r;, or r k =rp with no discontinuities in
the derivatives with respect to r.

In the three-body 1-A-J and A-I-A interactions, the
radial part, f(r,j, r,&), is the. same, but the angular part
p (8J;k, 8i;k ) is different due to different values of the an-
gles 8»„»and 8„»„.The strengths of the three-body in-
teractions (8»„»and 8„»„)are, of course, different.

The constants in the interaction potentials were deter-
mined in two steps. First, from our earlier experience
with superionic conductors and glasses, ' the ex-
ponents g~„,g„~,and g~z in the two-body part were
taken to be 11, 9, and 7, respectively. Since the size of
X ions is much larger than that of A + ions and the
dimension of the electronic polarizability is volume, we
neglect the electronic polarizability of A + ions,
a„4+=0, and used the experimental value of a 2 taken

from standard tables; r4, is chosen to be 4.43 A. The
remaining constants, i.e., the strengths of steric repul-
sions and effective charge are determined from the melt-
ing temperature and pressure at the experimental density.
Among the repulsive constants, Hzz is the least impor-
tant because A + ions are small and A +-A"+ interac-
tion has the strongest Coulomb repulsion. The optimum

values of 8&~z and 8~&~ in the three-body interactions
are listed in Table II. No adjustment of the two-body
part was made when three-body interactions were incor-
porated. The values of all the constants in the interaction
potential are given in Table II. The two-body contribu-
tions to the interaction potentials, Eq. (2), for Si02 are
shown in Fig. 1.

III. ENERGIES OF CRYSTALLINE STRUCTURES

Energies of some of the commonly occurring crystal-
line forms of Si02 were calculated with the proposed in-
teraction potential, Eqs. (1)—(5). The crystalline struc-
tures we investigated include a- and P-cristobalites, a-
and P-quartz, keatite, and ideal P-cristobalite. The essen-
tial information about these structures is given in Table I.
Ideal P-cristobalite can be obtained by starting from the
diamond structure of Si and introducing oxygen atoms at
the midpoint of neighboring Si atoms. However, this
structure is dynamically unstable and not found in nature
because the Si—0—Si lie on a straight line. The energy
for ideal P-cristobalite is included for the purpose of illus-
tration only.

The density dependence of the energy of the above-
mentioned structures is shown in Fig. 2. The lowest-
energy structures are a-cristobalite and a-quartz. These
structures are nearly degenerate in energy, although their
densities differ by 12%. The densities at the minima for
a-cristobalite and a-quartz are 7. 16X 10 and
8.03 X 10 cm, respectively, and the corresponding ex-
perimental values are 7.0g8X10 cm (=2.35 g/cm )

and 7.956X10 cm (=2.65 g/cm ). Experimentally,
a-cristobalite and a-quartz are also the lowest-energy
structures found in nature. At high temperatures and
normal pressure, a-cristobalite and a-quartz transform
into corresponding P-structures at T =490—530 (Ref. 4)
and 840 K, respectively. The energies of P-cristobalite
and P-quartz are higher than those of a-cristobalite and
a-quartz. The energy of ideal P-cristobalite is higher

-0.60

1.5

1
o+
cu 05

Q)

0

-0.66

-0.72

0 2
I

4 6

r (A)

8 10

-0.78
D

e-, C

6 7 8 9 10

p (1022cm 3)

FIG. 1. Si-Si, Si-O, and O-O contributions to the two-body
part of the interaction potentials, Eq. (2), for Si02. Total in-
teraction potential is a sum of two-body, Eq. (2), and three-body
contributions, Eq. {3). Unit of length is A and of energy
e~/A=14. 39 eV.

FIG. 2. Total potential energy {two plus three body) per par-
ticle, Eo/JV in units of e /A=14. 39 eV, for various crystalline
phases of Si02 as a function of density: ideal P-cristobalite (iP-
C), P-cristobalite {P-C), a-cristobalite {a-Q, P-quartz (P-Q), a-
quartz {a-Q), and keatite.
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than those of a-cristobalite and a-quartz. Although the
energy of ideal P-cristobalite is lower than that of real P-
cristobalite, the density of the ideal structure is much
lower than the experimental value and it is dynamically
unstable. The energy of keatite is higher than those of
cristobalite and quartz structures. The energy minimum
for keatite occurs at 7.22X 10 cm, in good agreement
with the experimental value 7.526 X 10 cm (see Table
I).

IV. MOLECULAR-DYNAMICS CALCULATION
AND THE PREPARATION OF VITREOUS STATES

A. Molecular-dynamics method

Molecular-dynamics calculations were performed for
systems of 648 and 5184 particles with periodic-boundary
conditions. The number density in the simulation
(6.62X10 cm ) corresponds to the experimental value
2.20 g/cm for a-SiOz. The length of the MD box was
21.392 A for 648-particle system and 42.782 A for 5184-
particle systems, respectively. Long-range Coulomb in-
teractions were treated with Ewald's summation. The
equations of motion were integrated with an algorithm
due to Beeman and Alben using a time step of
0.5X10 ' sec. The total energy of the system was con-
served to better than 1 part in 10 over the entire simula-
tion.

B. Characterization of molten states

where JV and m are the number of particles and mass
of the ath species. The values of the constant of self-
diffusion obtained by these two methods are in satisfacto-
ry agreement with each other. The total energy per parti-
cle and the constants of self-difFusion for Si and 0 at
these four temperatures are shown in Figs. 3(a) and 3(b),
respectively. Finite diffusivities for Si and 0 indicate that
the systems at these temperatures are in the molten state.
However, the small values of diffusion constants at 2000
K suggest that this system is close to freezing.

The molten state 2000 K was quenched and thermal-
ized at a rate of 0.1% per 10 6,t, leading to a state at 1500
K. At this temperature, long-range diffusion ceases and
the system undergoes thermal arrest. However, local
rearrangements continue to take place because of consid-
erable thermal energy in the system. This system was
thermalized for 30000 time steps and then the averages
were accumulated over an additional 30000 time steps.
A schematic of the cooling and thermalization schedule
is given in Fig. 4. Using similar cooling and thermaliza-
tion schedules, systems at 600, 300, and 0 K were ob-
tained. The total energy per particle for these three
states are also shown in Fig. 3(a). The constants of self-
diffusion at 600, 300, and 0 K are negligible (&10
cm /sec).

-0.68

Starting from a random configuration, the system was
heated to a temperature of 3000 K and equilibrated for a
long time (60000 time steps) so that the initial state has
no effect on the system at 3000 K. The system at 3000 K
was run for an additional 30000 time steps and the aver-
ages were evaluated over two segments of 15000 time
steps each. Within statistical uncertainty, the averages
over these two segments are found to be the same. The
long simulations are necessary because the relaxation is
much slower with the inclusion of three-body forces. The
system at 3000 K was cooled to 2500 K, equilibrated for
30000 time steps, and again the averages were calculated
over an additional 15000 time steps. Using the same
cooling schedule, a system at 2000 K was obtained. In
addition a system at 3500 K was prepared by heating the
3000-K system.

The constants of self-diffusion were calculated from
mean-square dispacements,

-0.76
0

1.2

LQ

C)

0.8

04-

-0.70
CU

Q)
-0.72

-0.74

Si
~ Q

(b)

0
0

1 2 3

(r'), =( x [r, (&+s)—r, (s)]'1

~ j (a)

D = lim ( ( r ) /6t ),

(6)
W ~ ~, ~ ~ I

1 2 3
T (103K)

and velocity autocorrelation functions,

k~T
D = f Z (t)dt,

m o

(v, (0) v, (t))
Z (t)=

FIG. 3. (a) Total internal energy per particle, E/JV, in units
0

of e'/A=14. 39 eV, vs temperature T, for amorphous and mol-
ten SiO, . The results for amorphous and molten states are for
fixed number density 6.62X10 cm (=2.20 g/cm ). The
change in slope at high temperature to low temperature indi-
cates the onset of structural arrest. (b) Constants of self-
diffusion for silicon and oxygen vs temperature.
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C. Structural correlation functions

Molecular-dynamics trajectories provide complete in-
formation on structural and dynamical correlations. In
this paper, we have examined two-body structural corre-
lations through pair-distribution functions and static
structure factors, and three-body correlations through
bond-angle distributions.

Partial pair-distribution functions are calculated from

(n &(r) )hr =4m r b, r pc&g &(r), (10)

where n &(r)hr denotes the number of particles of species
p in a shell between r and r+hr around a particle of
species a. The angular brackets represent the ensemble
average and an average over all the particles of species a.
p is the total number density (=JV/0, JV= JV +JVti) and

c&=JVti/JV is the concentration of species p.
The coordination number N &(R) is an integral over

the corresponding partial pair-distribution function:
R

N &(R)=4mpc& g &(r)r dr . (11)
0

N &(R) gives the number of particles of species P around

an a in a sphere of radius R. The total pair-distribution
function g (r) is defined as

g(r)= g c citg ti(r) .
a,P

(12)

S(q)= g(c c&)'~ S p(q) .
a,P

(14)

In a neutral system, the structural information about
two-body correlations is completely determined by the
above-mentioned correlation functions. However, in sys-
tems with charge-transfer efFects, it is also instructive to
examine two-body charge-charge correlations. In this pa-
per, we investigate both the density-density static struc-
ture factor, S(q) and charge-charge static structure fac-
tor Szz(q), defined as

Partial static structure factors are calculated from the
Fourier transforms of corresponding partial pair-
distribution functions:

S ti(q)=5 ti+4~p(c cti)'~

&& I [g &(r) 1] — r dr, (13)
0 QT

and the total static structure factor is given by

initial molten
configuration r

, Thermalization
60,0005t

Szz(q) =
g Z, Z&(c c&)'~ S &(q)
a, P

(15)

Liquid
3000K

Heat & Thermalize
30,0008,t Liquid

3500K
The corresponding charge-charge pair-distribution func-
tion is then

Cool & Thermalize
30,000bt

Liquid
2500K

gzz(r) =
g Z~Zttc~cpg~p( r)
a, P

Z~c~
(16)

Cool 8 Thermalize
30,000k,t

Liquid
2000K Quench & Thermalize

0.1% per 10ht

30,0006,t

Thermal Arrest
Glass
1500K

Relaxation &

Thermalization
30,000At

Glass
1500K

D. Neutron-scattering correlation functions

The neutron-scattering static structure factor can be
obtained from the partial static structure factors by
weighting them with coherent neutron-scattering
lengths:

Cool & Thermalize
30,000bt

gb b&(c,c&)'~ [S &(q) 5,&+(c c&—)' ]
a,P

Glass
OK

Steepest
descent
quench Glass

300K Cool & Thermalize
30,000LB

Glass
600K

a
b

FIG. 4. Schematic diagram of quenching and thermalization
schedules used in MD simulations for preparing Si02 glass from
a well-thermalized molten state. Measurements were made for
30000 steps (15000+15000) in each state indicated in the
boxes. Steepest-descent quench is a mathematically well-defined
procedure to find the nearest local minimum of the system
(Refs. 68 and 69).

where b denotes the coherent neutron-scattering length
of species a. The other structural correlation functions
that are often used in the analysis of neutron-diffraction
data are gN(r), t(r), d(r), and qIN(q) We define the.se
quantities as follows:

pc b c&b&g &(r)
a,P~(r)=

gb c
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t (r)=4mprgN(r},

d ( r ) = t ( r ) 4—n.pr,
qI&(q}=f "d(r)sin(qr}dr

0

=q[SN(q}—I] .

(20)

(21)

Si-Si

Slightly different definitions of neutron-scattering correla-
tions are used by different groups

E. Bond angle distributions

24
20
16
12
8

I I
)

I I I
i

I I I

Si-0

Bond-angle distributions are obtained from MD t
toriess as follows: Let us first consider the case of an X—

m ragec-

A —X bond angle distribution. In this case, a list of
atom isnearest-neighbor atoms of type X around an A

constructed. This requires a cutoff distance for A-X sep-
aration which is taken to be the position of the first
minimum in g„x(r) Fro. m this nearest-neighbor list for
each A atom, the angles gX—A —X are calculat d f

bonds and a histogram is then constructed from an
average over all angles involving all A atoms. Next, let
us consider an A —A —X bond-angle distribution. In
t is case, two nearest-neighbor distance lists involving
atoms A and X around each A atom are constructed.
The cutoff distances are the first minima

'
minima in g„„~rjand

g„x(r). Then a histogram is constructed from all A-
A —Xangles.

V. RESULTS

Atomic tra]ectories from MD simulations are used to
calculate a variety of positional and angular corr'elations
in molten and vitreous Si02. The calculation for vitreous
and mo ten states are carried out at a fixed b d

22 —3 =
num er ensi

y o 6.62 X 10 cm (=2.20 g/cm ). Short- and
intermediate-range order in the system are then inferred
from these correlation functions. A detailed comparison
o the MD results is made with diffraction and NMR

arp i ractionmeasurements. The origin of the first sha diff
peak (FSDP) is traced through partial static structure
actors and from a comparison between density-density

and charge-charge correlation functions.

I I . I
i

I I I
t

I I I

O-O

12

FIG. 5. Partial pair-distribution functions g (r) vs r in SiO

g ass at . i he arrows indicate the coordination numbers.

12

Si-0

2.64+0.02 A
valu

and the corresponding experimental
ue, inferred from neutron-diffraction data, is

2.632+0.089 A. The average value of O-O separation
remains at 2.64 A in the molten state, although the width
of the first peak in goo(r} shows the expected thermal

A. Short-range order

The partial pair-distribution functions and bond-an le
e s ort-range order.istributions are used to determine th h t-

igures 5 and 6 show the MD results fo S'-S' S'-0,
pair-distribution functions in the glass and molten

states, respectively. In the glass, the position of the first
peak in gs;&(r) gives the Si—0 bond length to be
1.62+0.02 A. Thee corresponding experimental value
from recent neutron-diffraction data is 1.61+0.05 A.
From the area under the first peak, the nearest-neighbor
coordination of Si is found to be 4 and of 0 to be 2, in ac-
cordance with the 8 —n rule. Th 't' f he position or the first
peak in gs;o(r) remains at 1.62 A in the molten state, al-
though the pair-distribution function is broader than that
of the amorphous state.

The nearest-neighbor O-O distance from Fig. 5 is

0
0

I I I I I I I

FIG. 6. Partial pair-distribution functions g &(r) vs r in mol-
ten SiO& at 2500 K. The arrows indicate the coordination nurn-

bers.
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TABLE III. Molecular-dynamics results for the bond lengths
and full width at half maximum (FWHM) for a-SiOz and molten
SiO&.

Si-Si-Si

Glass
(310 K)

Bond length FWHM
(A) (A)

Liquid
(2500 K)

Bond length FWHM
(A) (A)

Q)

CD
C

O
CQ

I
I

I
I

I
I

Si-Si-0

I I
I

I
I

I
1

0-0-Si

Si—0
0—0
Si—Si

1.62
2.64
3.10

0.05
0.15
0.20

1.62
2.64
3.15

0.15
0.35
0.30

C0
~~
JD
L

M

I
I

I
I

I
I

Si-0-Si

I
I

I
I

I
I

I
I

I i ~

Si-Si-Si
1

I
I

0-Si-0

V)I
D)

U

O
CQ

I

I
I

I f I

Si-Si-0
I I

~ } I

0-0-Si

c0
JD

L

(I}

I I
I i 1

Si-0-Si

broadening. From the area under the first peak in goo(r)
we determine that each 0 on the average has six nearest-
neighbor 0 atoms, in accordance with neutron experi-
ments. ' Molecular-dynamics results for the bond lengths
and full widths at half inaximum (FWHM) for a-SiOz and
molten SiOz are summarized in Table III.

The bond-angle distributions in the amorphous and
molten SiOz are shown in Figs. 7 and 8, respectively. The
angle distribution for 40—Si—0 is peaked at 109' with
a full width at half maximum (FWHM) of 10' in the glass
at 310 K and 14' in the molten state at 2500 K. The first
peak in the +0—0—0 distribution occurs at 60' in the
amorphous as well as the molten states. The facts that
each Si has four nearest-neighbor 0 atoms and that
+0—Si—0 and +0 0—0 distributions have peaks at
109' and 60', respectively, establish the presence of
Si(0,&z)4 tetrahedra. These tetrahedra are nearly perfect
and are present in the molten state as well. It should also
be noted that for perfect Si(0,&z)4 tetrahedra 0—0—Si
angle is 35.26' and, indeed, the corresponding bond-angle
distributions in Figs. 7 and 8 are peaked around 35'.

I I I I I I

60 120 180 60 120 180
0'(deg)

FIG. 8. Distribution of bond angles in molten SiO& at 2500
K. The 0—Si—0 distribution has a peak at 109' with a
FWHM of 14. The Si—0—Si distribution is peaked around
142' with a FWHM of 34'.

B. Connectivity of Si(Oi zz )4 tetrahedra

The QSi—0—Si bond-angle distributions in Figs. 7
and 8 reveal how the nearest-neighbor tetrahedra are
connected to one another. For angles less than 120 ' the
distribution is zero, indicating that there are no edge-
sharing tetrahedra (two-fold rings) in the system. All the
tetrahedra are joined at corners. The QSi—0—Si distri-
bution peaks around 142' with a FWHM of 25' in the
glass at 310 K. Mozzi and Warren have determined the
QSi—0—Si bond-angle distribution using the x-ray-
diffraction technique. They find a peak in the distribu-
tion of 144' with a FWHM of 38'. The distribution has no
weight below 120', thus ruling out the possibility of
edge-sharing tetrahedra. Recent NMR measurement by
Pettifer et al. reveals that the peak in QSi—0—Si dis-
tribution is at 142' and the FWHM is 26'. From the MD
results we determine that the QSi—0—Si distribution in
the molten state at 2500 K is peaked around 142.5' with a
FWHM of 34'. Table IV gives MD result for the bond
angles and FWHM for a-SiOz and molten SiOz.

It is interesting to note that theoretical calculations
on the ground-state structure of an isolated Si—0—Si
molecule give the QSi—0—Si bond angle to be 136.4'.

TABLE IV. Molecular-dynamics results for the bond angles
and full width at half maximum (FWHM) for a-SiOz and molten
SiO~.

60 120 180 60 120 180
8(deg)

FIG. I. Distribution of bond angles for a-SiOz at 310 K. The
0—Si—0 distribution has a peak at 109' with a FWHM of 10.
The Si—0—Si distribution is peaked around 142 with a
FWHM of 25'.

0—Si—0
Si—0—Si

109.6
142.0

10
25

Glass
(310 K)

Bond angle FWHM
(deg) (deg)

Liquid
(2500 K)

Bond angle FWHM
(deg) (deg)

109.5 14
142.5 34
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FIG. 10. Neutron static structure factor S&(q) for a-Si02.
Solid line, MD results at 310 K; solid dots, neutron-diffraction
experiments (Ref. 13) at 10 K.

FIG. 9. A schematic view of corner-sharing tetrahedra in a-
SiOz.

This angle is not too different from the angles found in
crystalline and amorphous states of SiOz.

A typical pair of corner-sharing tetrahedra from our
MD calculations for glass is shown in Fig. 9. With the
calculated Si 0 bond length of 1.62 A and an Si—0—Si
bond angle of 142', one can explain the occurrence of
various peaks in the partial pair-distribution functions.
For instance, the Si-Si nearest-neighbor separation (Si&-

Siz) is 3.06 A, which explains the position of the first peak
0

at 3.10 A in gs; s;(r). X-ray measurements, as quoted by
Johnson et al. ,' give the nearest-neighbor Si-Si separa-
tion in a-SiOz to be 3.08+0. 10 A. The Si-Si separation

0
remains at 3.1 A in the molten state.

The second-nearest-neighbor O-O separation [O(2)-
O(7)] calculated from Fig. 9 is 4.86 A. In goo(r) shown
in Fig. 5, the second peak indeed occurs at 5 A. The cor-
responding 0—0—0 bond angle in Fig. 9 is found to be
134' and, in fact, a peak is observed at 134 in the
0—0—0 bond-angle distribution shown in Fig. 7. Final-
ly, the Si—Si—Si bond-angle distributions in both Figs. 7
and 8 have peaks at 105 ' which, combined with the
nearest-neighbor Si-Si separation of 3.10 A, gives 4.92 A
for the second-nearest-neighbor Si-Si separation. The

0
broad second peak in gs,.s;(r) is observed at 5A. The
above analyses establish that all the important features in
the partial pair-distribution functions can be understood
on the basis of corner-sharing tetrahedra in the arnor-
phous state.

for S~(q) are in excellent agreement with the neutron-
di8'raction measurements.

The origin of various peaks in S~(q) can be inferred
from partial static structure factors calculated from MD
trajectories. The results for partial static structure fac-
tors in a-Si02 are shown in Fig. 11. It is evident that the
second peak in SN(q) involves contributions from Si-Si
and O-O correlations with partial cancellation arising
from Si-0 anticorrelations. The third and fourth peaks
receive contributions from Si-Si, Si-O, and O-O correla-
tions. A small shoulder observed at 10 A ' in S~(q)
consists of contributions mostly from O-O correlations.

The MD results for total pair-distribution functions
with and without coherent neutron-scattering lengths are
shown in Fig. 12. These distribution functions show
peaks at 1.62, 2.64, 3.10, 3.85, 4.15, and 5.05 A. The first
three peaks reflect the nearest-neighbor Si-O, O-O, and

I I I
i

I I I
i

I I I

I I I
i

I I I
i

I I I

I I I I I I I I l I

I 1 I
[

I 1 I
t

I t I

C. Comparison with difFraction experiments

Structural correlations in a-SiO& have been investigated
with both neutron- and x-ray-di8'raction techniques. For
a-Si02, the MD results (solid line) for the neutron static
structure factor $~(q) and the recent experimental results
of Johnson et al. ' (solid circles) are shown in Fig. 10.
The heights and widths of all the peaks in the MD results

0
0

FIG. 11. Partial static structure factors S &(q) for a-Si02 at
310 K.
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FIG. 14. Total charge-charge static structure factor Szz(q),
Eq. (15), for a-Si02 at 310 K. The most important feature of
this correlation function is the absence of the first sharp
diffraction peak.

FIG. 12. (a) Total pair-distribution function g(r), Eq. (12),
and (b) total neutron pair-distribution function g&(r), Eq. (18),
for a-SiO, at 310 K.

Si-Si separations, respectively. These nearest-neighbor
distances are also manifested in correlation functions t(r)
and d (r},shown in Fig 13. .

So far we have only discussed the positional correla-
tions such as pair-distribution functions and static struc-
ture factors that arise from number-density fiuctuations.
In a system like Si02, where the charge-transfer effect is
important, it is also instructive to investigate the nature
of charge-density fluctuations. Using the MD results for
partial static structure factors and the effective charges
+4Q and —2Q for Si and 0, respectively, we have calcu-
lated the charge-charge static structure factor, Szz(q),
from Eq. (15). The results for Szz(q) and the corre-
sponding charge-charge pair-distribution function,
qzz(r), Eq. (16), in the glassy state at 310 K are shown in
Figs. 14 and 15, respectively. The peaks in Szz(q) occur
at 2.76, 4.35, 6.75, and 10.36 A '. In the static structure
factors S(q}, Eq. (14}and Sz(q), Eq. (17), both of which

reflect number-density fluctuations, we find the first sharp
diffraction peak at 1.55, and the subsequent peaks at 2.88,
5.16, and 7.90 A '. The striking difference between S(q)
and Szz(q) is the absence of the FSDP in the latter. To
understand the absence of the FSDP in Szz(q), it should
be noted that the FSDP arises due to contributions from
Si-Si, Si-O, and O-O as is evident from Fig. 11. In Szz(q)
the factor multiplying the Si-0 partial static structure
factor is negative, whereas the factors multiplying Si-Si
and O-O structure factors are positive. As a result, there
is a large cancellation between Si-O, Si-Si, and O-O con-
tributions, causing the near disappearance of the FSDP
in the charge-charge static structure factor.

Partial static structure factors in Fig. 11 show that the
second peaks in Si-Si and 0-0 occur at the same q as the
largest minimum in Si-O. %hen weighted by the effective
charges on Si and 0, these maxima and the minimum in

Ss;o(q) add up and give rise to the second peak in Szz(q).
The position of this peak in Szz(q) is essentially at the
same position as the second peak in S(q) or S~(q). In a
similar fashion, it is easy to understand why the remain-
ing features in Szz(q) are out of phase with those found
in S(q) or S„(q).

D. Intermediate-range order and the first sharp difFraction peak

12
1

The first sharp diffraction (FSDP) is a feature common
to a variety of binary covalent glasses. These include
Si02, Ge02, As2Se3, SiSe2, As2S3, etc. Diffraction mea-
surements on these systems reveal that the position of the

2
0

10
8

L

4
2

0

I I I
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I I l
(

l l 2
0

~ —4
rv —6—8—10—12

0
I I I I I I I ) I I 1

FIG. 13. MD results for d(r), Eq. (19), and t(r), Eq. (20), at
310 K.

FIG. 15. Total charge-charge pair-distribution function
g»(r), Eq. (16), for a-SiO, at 310 K.



INTERACTION POTENTIAL FOR Si02.. . . . STRUCTURAL CORRELATIONS 12 207

FSDP lies between 1.0 and 1.5A '. In fact, the highest
value corresponds to the FSDP position in a-Si02..
Neutron- and x-rap-diffraction experiments observe the
FSDP around 1.5 A ' and our simulations reveal the po-
sition of the FSDP to be around 1.55 A '. Partial static
structure factors, shown in Fig. 11, indicate that the
FSDP consists of contributions from Si-Si, Si-O, and O-O
correlations.

As regards the spatial extent of these correlations, it is
clear from the total pair-distribution function g (r) in Fig.
12 that the FSDP's cannot arise from correlations beyond
8 A since g(r) is almost unity beyond this distance.
Below 4 A the structure in g(r) arises mainly from
nearest-neighbor distances between Si-0 (1.62 A), O-O
(2.64 A), and Si-Si (3.10 A}. This leaves the correlations
in the range 4-8 A. We have calculated the structure
factor from g (r) by truncating correlations beyond a cer-
tain distance r, :

I I I
)

I I I
i

I l I

Si-Si

I I
]

I I I
[

I I I

I I I I I I I l I I I

1 I I
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I I I
[

I I I

I I I
i

I I I
t

I I I

I

p
4 8

q(A ')
12

FIG. 16. MD results for the neutron static structure S&(q)
for molten Si02 at 2500 K. Solid line is for the molten state and
dashed for glass at 310 K.

S(q) =1+4mp f [g (r) —1] dr . (22)
0 gr

We find that r, ~ 8 A has a negligible effect on the FSDP,
but for 4 & r, & 8 A the FSDP becomes rounded and its
height is affected significantly. The sensitivity of the
FSDP to these spatial correlations establishes the range
of intermediate-range order to be between 4 and 8 A.

This information regarding the FSDP derived from the
static structure factor and corresponding pair-
distribution function, when combined with the fact that
the FSDP is absent in Szz(q), leads to a much deeper un-
derstanding of the origin of FSDP's in covalent glasses.
First of all, it should be stressed that in a-GeSez and a-
SiSez, which have different connectivities than a-SiOz, the
FSDP also arises from density-density correlations in the
range 4-8 A. Furthermore, the FSDP is also absent in
the Szz(q) for o-GeSe2 and a-SiSe2. Also, when only
two-body interactions are used to describe the glassy
state in a-GeSez with the hypernetted-chain-
approximation (HNC) scheme, the FSDP is absent in
Szz(q), but not in S(q). The point to be emphasized
here is that the absence of the FSDP in Szz(q) is indepen
dent of the interaction potential used to describe the sys
rem, or the particular detail of the connectivity of the sys
rem, or the theoretical scheme used to carry out the calcu
lations.

The analyses of the origin of the FSDP form S(q) and

12

FIG. 17. MD results for partial neutron static structure fac-
tor S &(q) for molten SiO& at 2500.

Szz(q) imply that the FSDP results from correlations in
0

the range 4-8 A. These correlations are such that there
are no charge-density fluctuations arising in the 4—8 A
range. In other words, charge neutrality prevails in the
range 4-8 A in these covalent glasses.

E. Static structure factor for the molten state

The neutron static structure factor Sz(q} for molten
SiOz at 2500 K is shown in Fig. 16. Corresponding par-
tial static structure factors for the molten state are shown
in Fig. 17.

To the best of our knowledge there is no neutron-
diffraction experiment available for molten SiOz. The
general features of Sz(q) in the molten state are as fol-
lows: The height of the FSDP is reduced and the width
of the peak increases when compared to the result for the
glassy state at 310 K. Other peaks in Sz(q) and S~&(q) in
Fig. 17 also show reduced height and thermal broaden-
ing. The x-ray structure factor can easily be computed
from S &(q) by multiplying them with appropriate form
factors. The molten-state structure factor displays all the
features found in the structure factor for a-SiOz. Results
for partial static structure factors in the molten state,
shown in Fig. 17, indicate that the first sharp diffraction
peak in Sz(q) is due to Si-Si, Si-O, and O-O correlations,
the second peak arises from Si-Si and O-O correlations
with partial cancellation from Si-0 anticorrelations, and
the third peak is due to all three correlations, etc.

VI. CONCLUSION

In this paper, we have investigated the structural prop-
erties of a-SiOz using the molecular-dynamics technique.
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The calculations are based on an effective potential con-
sisting of two- and three-body terms. The two-body po-
tential consists of Coulomb interaction, steric repulsion,
and charge-dipole contributions. The three-body term
comprises angle-dependent interactions involving Si—
0—Si and 0—Si—0 angles, and variations in Si—0
bond length. Our results for the static structure factor
are in very good agreement with the neutron-diffraction
experiments. " The MD results reveal that a-Si02 con-
sists of Si(O, &z)~ tetrahedra sharing corners, with the
Si—0—Si bond-angle distribution peaking around 142
and having a FWHM of 25'. Recent NMR measure-
ments determine the peak in Si-0-Si distribution to be
at 142' with a FWHM of 26'.

In molecular-dynamics results for the static structure
factor, the first sharp diffraction peak occurs around 1.55
A, which is in good agreement with diffraction mea-
surements. The simulations also show that the FSDP
arises from Si-Si, Si-O, and 0-0 correlations in the range
4-8 A and the absence of a FSDP in charge-charge
structure factor implies that charge neutrality prevails
over the length scale responsible for a FSDP.

We have also investigated structural correlations in
molten Si02. The short-range order in the molten state is
also dominated by Si(O, &2)4 tetrahedra. These tetrahedra
are corner sharing, and the Si—0—Si bond-angle distri-
bution has a peak at 142.5', while in a-Si02 this angle is
142'. Owing to increased thermal effects the FWHM is
considerably broader, 34' compared to 25' in the vitreous

state at 310 K. The persistence of intermediate-range or-
der, signified by the FSDP, is somewhat surprising in
sufticiently high-temperature molten states, and it should
be investigated by diffraction experiments.
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